freebsd-nq/sys/dev/sound/pcm/buffer.c
Alexander Motin 1f7a6325fe sound(4): Remove pointless Giant from bus_dma_tag_create().
None of the drivers really implement asynchronous buffer loading, so
they don't need lock there.  The only question is which of them have
BUS_DMA_NOWAIT flag there already, and to which it should be added.
2021-09-04 18:30:36 -04:00

806 lines
17 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
* Portions Copyright (c) Ryan Beasley <ryan.beasley@gmail.com> - GSoC 2006
* Copyright (c) 1999 Cameron Grant <cg@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_snd.h"
#endif
#include <dev/sound/pcm/sound.h>
#include "feeder_if.h"
#define SND_USE_FXDIV
#define SND_DECLARE_FXDIV
#include "snd_fxdiv_gen.h"
SND_DECLARE_FILE("$FreeBSD$");
struct snd_dbuf *
sndbuf_create(device_t dev, char *drv, char *desc, struct pcm_channel *channel)
{
struct snd_dbuf *b;
b = malloc(sizeof(*b), M_DEVBUF, M_WAITOK | M_ZERO);
snprintf(b->name, SNDBUF_NAMELEN, "%s:%s", drv, desc);
b->dev = dev;
b->channel = channel;
return b;
}
void
sndbuf_destroy(struct snd_dbuf *b)
{
sndbuf_free(b);
free(b, M_DEVBUF);
}
bus_addr_t
sndbuf_getbufaddr(struct snd_dbuf *buf)
{
return (buf->buf_addr);
}
static void
sndbuf_setmap(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct snd_dbuf *b = (struct snd_dbuf *)arg;
if (snd_verbose > 3) {
device_printf(b->dev, "sndbuf_setmap %lx, %lx; ",
(u_long)segs[0].ds_addr, (u_long)segs[0].ds_len);
printf("%p -> %lx\n", b->buf, (u_long)segs[0].ds_addr);
}
if (error == 0)
b->buf_addr = segs[0].ds_addr;
else
b->buf_addr = 0;
}
/*
* Allocate memory for DMA buffer. If the device does not use DMA transfers,
* the driver can call malloc(9) and sndbuf_setup() itself.
*/
int
sndbuf_alloc(struct snd_dbuf *b, bus_dma_tag_t dmatag, int dmaflags,
unsigned int size)
{
int ret;
b->dmatag = dmatag;
b->dmaflags = dmaflags | BUS_DMA_NOWAIT | BUS_DMA_COHERENT;
b->maxsize = size;
b->bufsize = b->maxsize;
b->buf_addr = 0;
b->flags |= SNDBUF_F_MANAGED;
if (bus_dmamem_alloc(b->dmatag, (void **)&b->buf, b->dmaflags,
&b->dmamap)) {
sndbuf_free(b);
return (ENOMEM);
}
if (bus_dmamap_load(b->dmatag, b->dmamap, b->buf, b->maxsize,
sndbuf_setmap, b, BUS_DMA_NOWAIT) != 0 || b->buf_addr == 0) {
sndbuf_free(b);
return (ENOMEM);
}
ret = sndbuf_resize(b, 2, b->maxsize / 2);
if (ret != 0)
sndbuf_free(b);
return (ret);
}
int
sndbuf_setup(struct snd_dbuf *b, void *buf, unsigned int size)
{
b->flags &= ~SNDBUF_F_MANAGED;
if (buf)
b->flags |= SNDBUF_F_MANAGED;
b->buf = buf;
b->maxsize = size;
b->bufsize = b->maxsize;
return sndbuf_resize(b, 2, b->maxsize / 2);
}
void
sndbuf_free(struct snd_dbuf *b)
{
if (b->tmpbuf)
free(b->tmpbuf, M_DEVBUF);
if (b->shadbuf)
free(b->shadbuf, M_DEVBUF);
if (b->buf) {
if (b->flags & SNDBUF_F_MANAGED) {
if (b->buf_addr)
bus_dmamap_unload(b->dmatag, b->dmamap);
if (b->dmatag)
bus_dmamem_free(b->dmatag, b->buf, b->dmamap);
} else
free(b->buf, M_DEVBUF);
}
b->tmpbuf = NULL;
b->shadbuf = NULL;
b->buf = NULL;
b->sl = 0;
b->dmatag = NULL;
b->dmamap = NULL;
}
#define SNDBUF_CACHE_SHIFT 5
int
sndbuf_resize(struct snd_dbuf *b, unsigned int blkcnt, unsigned int blksz)
{
unsigned int bufsize, allocsize;
u_int8_t *tmpbuf;
CHN_LOCK(b->channel);
if (b->maxsize == 0)
goto out;
if (blkcnt == 0)
blkcnt = b->blkcnt;
if (blksz == 0)
blksz = b->blksz;
if (blkcnt < 2 || blksz < 16 || (blkcnt * blksz) > b->maxsize) {
CHN_UNLOCK(b->channel);
return EINVAL;
}
if (blkcnt == b->blkcnt && blksz == b->blksz)
goto out;
bufsize = blkcnt * blksz;
if (bufsize > b->allocsize ||
bufsize < (b->allocsize >> SNDBUF_CACHE_SHIFT)) {
allocsize = round_page(bufsize);
CHN_UNLOCK(b->channel);
tmpbuf = malloc(allocsize, M_DEVBUF, M_WAITOK);
CHN_LOCK(b->channel);
if (snd_verbose > 3)
printf("%s(): b=%p %p -> %p [%d -> %d : %d]\n",
__func__, b, b->tmpbuf, tmpbuf,
b->allocsize, allocsize, bufsize);
if (b->tmpbuf != NULL)
free(b->tmpbuf, M_DEVBUF);
b->tmpbuf = tmpbuf;
b->allocsize = allocsize;
} else if (snd_verbose > 3)
printf("%s(): b=%p %d [%d] NOCHANGE\n",
__func__, b, b->allocsize, b->bufsize);
b->blkcnt = blkcnt;
b->blksz = blksz;
b->bufsize = bufsize;
sndbuf_reset(b);
out:
CHN_UNLOCK(b->channel);
return 0;
}
int
sndbuf_remalloc(struct snd_dbuf *b, unsigned int blkcnt, unsigned int blksz)
{
unsigned int bufsize, allocsize;
u_int8_t *buf, *tmpbuf, *shadbuf;
if (blkcnt < 2 || blksz < 16)
return EINVAL;
bufsize = blksz * blkcnt;
if (bufsize > b->allocsize ||
bufsize < (b->allocsize >> SNDBUF_CACHE_SHIFT)) {
allocsize = round_page(bufsize);
CHN_UNLOCK(b->channel);
buf = malloc(allocsize, M_DEVBUF, M_WAITOK);
tmpbuf = malloc(allocsize, M_DEVBUF, M_WAITOK);
shadbuf = malloc(allocsize, M_DEVBUF, M_WAITOK);
CHN_LOCK(b->channel);
if (b->buf != NULL)
free(b->buf, M_DEVBUF);
b->buf = buf;
if (b->tmpbuf != NULL)
free(b->tmpbuf, M_DEVBUF);
b->tmpbuf = tmpbuf;
if (b->shadbuf != NULL)
free(b->shadbuf, M_DEVBUF);
b->shadbuf = shadbuf;
if (snd_verbose > 3)
printf("%s(): b=%p %d -> %d [%d]\n",
__func__, b, b->allocsize, allocsize, bufsize);
b->allocsize = allocsize;
} else if (snd_verbose > 3)
printf("%s(): b=%p %d [%d] NOCHANGE\n",
__func__, b, b->allocsize, b->bufsize);
b->blkcnt = blkcnt;
b->blksz = blksz;
b->bufsize = bufsize;
b->maxsize = bufsize;
b->sl = bufsize;
sndbuf_reset(b);
return 0;
}
/**
* @brief Zero out space in buffer free area
*
* This function clears a chunk of @c length bytes in the buffer free area
* (i.e., where the next write will be placed).
*
* @param b buffer context
* @param length number of bytes to blank
*/
void
sndbuf_clear(struct snd_dbuf *b, unsigned int length)
{
int i;
u_char data, *p;
if (length == 0)
return;
if (length > b->bufsize)
length = b->bufsize;
data = sndbuf_zerodata(b->fmt);
i = sndbuf_getfreeptr(b);
p = sndbuf_getbuf(b);
while (length > 0) {
p[i] = data;
length--;
i++;
if (i >= b->bufsize)
i = 0;
}
}
/**
* @brief Zap buffer contents, resetting "ready area" fields
*
* @param b buffer context
*/
void
sndbuf_fillsilence(struct snd_dbuf *b)
{
if (b->bufsize > 0)
memset(sndbuf_getbuf(b), sndbuf_zerodata(b->fmt), b->bufsize);
b->rp = 0;
b->rl = b->bufsize;
}
void
sndbuf_fillsilence_rl(struct snd_dbuf *b, u_int rl)
{
if (b->bufsize > 0)
memset(sndbuf_getbuf(b), sndbuf_zerodata(b->fmt), b->bufsize);
b->rp = 0;
b->rl = min(b->bufsize, rl);
}
/**
* @brief Reset buffer w/o flushing statistics
*
* This function just zeroes out buffer contents and sets the "ready length"
* to zero. This was originally to facilitate minimal playback interruption
* (i.e., dropped samples) in SNDCTL_DSP_SILENCE/SKIP ioctls.
*
* @param b buffer context
*/
void
sndbuf_softreset(struct snd_dbuf *b)
{
b->rl = 0;
if (b->buf && b->bufsize > 0)
sndbuf_clear(b, b->bufsize);
}
void
sndbuf_reset(struct snd_dbuf *b)
{
b->hp = 0;
b->rp = 0;
b->rl = 0;
b->dl = 0;
b->prev_total = 0;
b->total = 0;
b->xrun = 0;
if (b->buf && b->bufsize > 0)
sndbuf_clear(b, b->bufsize);
sndbuf_clearshadow(b);
}
u_int32_t
sndbuf_getfmt(struct snd_dbuf *b)
{
return b->fmt;
}
int
sndbuf_setfmt(struct snd_dbuf *b, u_int32_t fmt)
{
b->fmt = fmt;
b->bps = AFMT_BPS(b->fmt);
b->align = AFMT_ALIGN(b->fmt);
#if 0
b->bps = AFMT_CHANNEL(b->fmt);
if (b->fmt & AFMT_16BIT)
b->bps <<= 1;
else if (b->fmt & AFMT_24BIT)
b->bps *= 3;
else if (b->fmt & AFMT_32BIT)
b->bps <<= 2;
#endif
return 0;
}
unsigned int
sndbuf_getspd(struct snd_dbuf *b)
{
return b->spd;
}
void
sndbuf_setspd(struct snd_dbuf *b, unsigned int spd)
{
b->spd = spd;
}
unsigned int
sndbuf_getalign(struct snd_dbuf *b)
{
return (b->align);
}
unsigned int
sndbuf_getblkcnt(struct snd_dbuf *b)
{
return b->blkcnt;
}
void
sndbuf_setblkcnt(struct snd_dbuf *b, unsigned int blkcnt)
{
b->blkcnt = blkcnt;
}
unsigned int
sndbuf_getblksz(struct snd_dbuf *b)
{
return b->blksz;
}
void
sndbuf_setblksz(struct snd_dbuf *b, unsigned int blksz)
{
b->blksz = blksz;
}
unsigned int
sndbuf_getbps(struct snd_dbuf *b)
{
return b->bps;
}
void *
sndbuf_getbuf(struct snd_dbuf *b)
{
return b->buf;
}
void *
sndbuf_getbufofs(struct snd_dbuf *b, unsigned int ofs)
{
KASSERT(ofs < b->bufsize, ("%s: ofs invalid %d", __func__, ofs));
return b->buf + ofs;
}
unsigned int
sndbuf_getsize(struct snd_dbuf *b)
{
return b->bufsize;
}
unsigned int
sndbuf_getmaxsize(struct snd_dbuf *b)
{
return b->maxsize;
}
unsigned int
sndbuf_getallocsize(struct snd_dbuf *b)
{
return b->allocsize;
}
unsigned int
sndbuf_runsz(struct snd_dbuf *b)
{
return b->dl;
}
void
sndbuf_setrun(struct snd_dbuf *b, int go)
{
b->dl = go? b->blksz : 0;
}
struct selinfo *
sndbuf_getsel(struct snd_dbuf *b)
{
return &b->sel;
}
/************************************************************/
unsigned int
sndbuf_getxrun(struct snd_dbuf *b)
{
SNDBUF_LOCKASSERT(b);
return b->xrun;
}
void
sndbuf_setxrun(struct snd_dbuf *b, unsigned int xrun)
{
SNDBUF_LOCKASSERT(b);
b->xrun = xrun;
}
unsigned int
sndbuf_gethwptr(struct snd_dbuf *b)
{
SNDBUF_LOCKASSERT(b);
return b->hp;
}
void
sndbuf_sethwptr(struct snd_dbuf *b, unsigned int ptr)
{
SNDBUF_LOCKASSERT(b);
b->hp = ptr;
}
unsigned int
sndbuf_getready(struct snd_dbuf *b)
{
SNDBUF_LOCKASSERT(b);
KASSERT((b->rl >= 0) && (b->rl <= b->bufsize), ("%s: b->rl invalid %d", __func__, b->rl));
return b->rl;
}
unsigned int
sndbuf_getreadyptr(struct snd_dbuf *b)
{
SNDBUF_LOCKASSERT(b);
KASSERT((b->rp >= 0) && (b->rp <= b->bufsize), ("%s: b->rp invalid %d", __func__, b->rp));
return b->rp;
}
unsigned int
sndbuf_getfree(struct snd_dbuf *b)
{
SNDBUF_LOCKASSERT(b);
KASSERT((b->rl >= 0) && (b->rl <= b->bufsize), ("%s: b->rl invalid %d", __func__, b->rl));
return b->bufsize - b->rl;
}
unsigned int
sndbuf_getfreeptr(struct snd_dbuf *b)
{
SNDBUF_LOCKASSERT(b);
KASSERT((b->rp >= 0) && (b->rp <= b->bufsize), ("%s: b->rp invalid %d", __func__, b->rp));
KASSERT((b->rl >= 0) && (b->rl <= b->bufsize), ("%s: b->rl invalid %d", __func__, b->rl));
return (b->rp + b->rl) % b->bufsize;
}
u_int64_t
sndbuf_getblocks(struct snd_dbuf *b)
{
SNDBUF_LOCKASSERT(b);
return b->total / b->blksz;
}
u_int64_t
sndbuf_getprevblocks(struct snd_dbuf *b)
{
SNDBUF_LOCKASSERT(b);
return b->prev_total / b->blksz;
}
u_int64_t
sndbuf_gettotal(struct snd_dbuf *b)
{
SNDBUF_LOCKASSERT(b);
return b->total;
}
u_int64_t
sndbuf_getprevtotal(struct snd_dbuf *b)
{
SNDBUF_LOCKASSERT(b);
return b->prev_total;
}
void
sndbuf_updateprevtotal(struct snd_dbuf *b)
{
SNDBUF_LOCKASSERT(b);
b->prev_total = b->total;
}
unsigned int
sndbuf_xbytes(unsigned int v, struct snd_dbuf *from, struct snd_dbuf *to)
{
if (from == NULL || to == NULL || v == 0)
return 0;
return snd_xbytes(v, sndbuf_getalign(from) * sndbuf_getspd(from),
sndbuf_getalign(to) * sndbuf_getspd(to));
}
u_int8_t
sndbuf_zerodata(u_int32_t fmt)
{
if (fmt & (AFMT_SIGNED | AFMT_PASSTHROUGH))
return (0x00);
else if (fmt & AFMT_MU_LAW)
return (0x7f);
else if (fmt & AFMT_A_LAW)
return (0x55);
return (0x80);
}
/************************************************************/
/**
* @brief Acquire buffer space to extend ready area
*
* This function extends the ready area length by @c count bytes, and may
* optionally copy samples from another location stored in @c from. The
* counter @c snd_dbuf::total is also incremented by @c count bytes.
*
* @param b audio buffer
* @param from sample source (optional)
* @param count number of bytes to acquire
*
* @retval 0 Unconditional
*/
int
sndbuf_acquire(struct snd_dbuf *b, u_int8_t *from, unsigned int count)
{
int l;
KASSERT(count <= sndbuf_getfree(b), ("%s: count %d > free %d", __func__, count, sndbuf_getfree(b)));
KASSERT((b->rl >= 0) && (b->rl <= b->bufsize), ("%s: b->rl invalid %d", __func__, b->rl));
b->total += count;
if (from != NULL) {
while (count > 0) {
l = min(count, sndbuf_getsize(b) - sndbuf_getfreeptr(b));
bcopy(from, sndbuf_getbufofs(b, sndbuf_getfreeptr(b)), l);
from += l;
b->rl += l;
count -= l;
}
} else
b->rl += count;
KASSERT((b->rl >= 0) && (b->rl <= b->bufsize), ("%s: b->rl invalid %d, count %d", __func__, b->rl, count));
return 0;
}
/**
* @brief Dispose samples from channel buffer, increasing size of ready area
*
* This function discards samples from the supplied buffer by advancing the
* ready area start pointer and decrementing the ready area length. If
* @c to is not NULL, then the discard samples will be copied to the location
* it points to.
*
* @param b PCM channel sound buffer
* @param to destination buffer (optional)
* @param count number of bytes to discard
*
* @returns 0 unconditionally
*/
int
sndbuf_dispose(struct snd_dbuf *b, u_int8_t *to, unsigned int count)
{
int l;
KASSERT(count <= sndbuf_getready(b), ("%s: count %d > ready %d", __func__, count, sndbuf_getready(b)));
KASSERT((b->rl >= 0) && (b->rl <= b->bufsize), ("%s: b->rl invalid %d", __func__, b->rl));
if (to != NULL) {
while (count > 0) {
l = min(count, sndbuf_getsize(b) - sndbuf_getreadyptr(b));
bcopy(sndbuf_getbufofs(b, sndbuf_getreadyptr(b)), to, l);
to += l;
b->rl -= l;
b->rp = (b->rp + l) % b->bufsize;
count -= l;
}
} else {
b->rl -= count;
b->rp = (b->rp + count) % b->bufsize;
}
KASSERT((b->rl >= 0) && (b->rl <= b->bufsize), ("%s: b->rl invalid %d, count %d", __func__, b->rl, count));
return 0;
}
#ifdef SND_DIAGNOSTIC
static uint32_t snd_feeder_maxfeed = 0;
SYSCTL_UINT(_hw_snd, OID_AUTO, feeder_maxfeed, CTLFLAG_RD,
&snd_feeder_maxfeed, 0, "maximum feeder count request");
static uint32_t snd_feeder_maxcycle = 0;
SYSCTL_UINT(_hw_snd, OID_AUTO, feeder_maxcycle, CTLFLAG_RD,
&snd_feeder_maxcycle, 0, "maximum feeder cycle");
#endif
/* count is number of bytes we want added to destination buffer */
int
sndbuf_feed(struct snd_dbuf *from, struct snd_dbuf *to, struct pcm_channel *channel, struct pcm_feeder *feeder, unsigned int count)
{
unsigned int cnt, maxfeed;
#ifdef SND_DIAGNOSTIC
unsigned int cycle;
if (count > snd_feeder_maxfeed)
snd_feeder_maxfeed = count;
cycle = 0;
#endif
KASSERT(count > 0, ("can't feed 0 bytes"));
if (sndbuf_getfree(to) < count)
return (EINVAL);
maxfeed = SND_FXROUND(SND_FXDIV_MAX, sndbuf_getalign(to));
do {
cnt = FEEDER_FEED(feeder, channel, to->tmpbuf,
min(count, maxfeed), from);
if (cnt == 0)
break;
sndbuf_acquire(to, to->tmpbuf, cnt);
count -= cnt;
#ifdef SND_DIAGNOSTIC
cycle++;
#endif
} while (count != 0);
#ifdef SND_DIAGNOSTIC
if (cycle > snd_feeder_maxcycle)
snd_feeder_maxcycle = cycle;
#endif
return (0);
}
/************************************************************/
void
sndbuf_dump(struct snd_dbuf *b, char *s, u_int32_t what)
{
printf("%s: [", s);
if (what & 0x01)
printf(" bufsize: %d, maxsize: %d", b->bufsize, b->maxsize);
if (what & 0x02)
printf(" dl: %d, rp: %d, rl: %d, hp: %d", b->dl, b->rp, b->rl, b->hp);
if (what & 0x04)
printf(" total: %ju, prev_total: %ju, xrun: %d", (uintmax_t)b->total, (uintmax_t)b->prev_total, b->xrun);
if (what & 0x08)
printf(" fmt: 0x%x, spd: %d", b->fmt, b->spd);
if (what & 0x10)
printf(" blksz: %d, blkcnt: %d, flags: 0x%x", b->blksz, b->blkcnt, b->flags);
printf(" ]\n");
}
/************************************************************/
u_int32_t
sndbuf_getflags(struct snd_dbuf *b)
{
return b->flags;
}
void
sndbuf_setflags(struct snd_dbuf *b, u_int32_t flags, int on)
{
b->flags &= ~flags;
if (on)
b->flags |= flags;
}
/**
* @brief Clear the shadow buffer by filling with samples equal to zero.
*
* @param b buffer to clear
*/
void
sndbuf_clearshadow(struct snd_dbuf *b)
{
KASSERT(b != NULL, ("b is a null pointer"));
KASSERT(b->sl >= 0, ("illegal shadow length"));
if ((b->shadbuf != NULL) && (b->sl > 0))
memset(b->shadbuf, sndbuf_zerodata(b->fmt), b->sl);
}
#ifdef OSSV4_EXPERIMENT
/**
* @brief Return peak value from samples in buffer ready area.
*
* Peak ranges from 0-32767. If channel is monaural, most significant 16
* bits will be zero. For now, only expects to work with 1-2 channel
* buffers.
*
* @note Currently only operates with linear PCM formats.
*
* @param b buffer to analyze
* @param lpeak pointer to store left peak value
* @param rpeak pointer to store right peak value
*/
void
sndbuf_getpeaks(struct snd_dbuf *b, int *lp, int *rp)
{
u_int32_t lpeak, rpeak;
lpeak = 0;
rpeak = 0;
/**
* @todo fill this in later
*/
}
#endif