freebsd-nq/lib/libkse/thread/thr_private.h
Daniel Eischen 40791d9d15 Fix suspend and resume.
Submitted (in part) by:	Kazuaki Oda <kaakun@highway.ne.jp>
2003-05-04 16:17:01 +00:00

1213 lines
35 KiB
C

/*
* Copyright (c) 1995-1998 John Birrell <jb@cimlogic.com.au>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by John Birrell.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Private thread definitions for the uthread kernel.
*
* $FreeBSD$
*/
#ifndef _THR_PRIVATE_H
#define _THR_PRIVATE_H
/*
* Include files.
*/
#include <setjmp.h>
#include <signal.h>
#include <stdio.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/cdefs.h>
#include <sys/kse.h>
#include <sched.h>
#include <ucontext.h>
#include <unistd.h>
#include <pthread.h>
#include <pthread_np.h>
#include "ksd.h"
#include "lock.h"
#include "pthread_md.h"
/*
* Evaluate the storage class specifier.
*/
#ifdef GLOBAL_PTHREAD_PRIVATE
#define SCLASS
#define SCLASS_PRESET(x...) = x
#else
#define SCLASS extern
#define SCLASS_PRESET(x...)
#endif
/*
* Kernel fatal error handler macro.
*/
#define PANIC(string) _thr_exit(__FILE__,__LINE__,string)
/* Output debug messages like this: */
#define stdout_debug(args...) _thread_printf(STDOUT_FILENO, ##args)
#define stderr_debug(args...) _thread_printf(STDOUT_FILENO, ##args)
#define DBG_MUTEX 0x0001
#define DBG_SIG 0x0002
#define THR_ASSERT(cond, msg) do { \
if (!(cond)) \
PANIC(msg); \
} while (0)
/*
* State change macro without scheduling queue change:
*/
#define THR_SET_STATE(thrd, newstate) do { \
(thrd)->state = newstate; \
(thrd)->fname = __FILE__; \
(thrd)->lineno = __LINE__; \
} while (0)
/*
* Define the signals to be used for scheduling.
*/
#define _ITIMER_SCHED_TIMER ITIMER_PROF
#define _SCHED_SIGNAL SIGPROF
#define TIMESPEC_ADD(dst, src, val) \
do { \
(dst)->tv_sec = (src)->tv_sec + (val)->tv_sec; \
(dst)->tv_nsec = (src)->tv_nsec + (val)->tv_nsec; \
if ((dst)->tv_nsec > 1000000000) { \
(dst)->tv_sec++; \
(dst)->tv_nsec -= 1000000000; \
} \
} while (0)
#define TIMESPEC_SUB(dst, src, val) \
do { \
(dst)->tv_sec = (src)->tv_sec - (val)->tv_sec; \
(dst)->tv_nsec = (src)->tv_nsec - (val)->tv_nsec; \
if ((dst)->tv_nsec < 0) { \
(dst)->tv_sec--; \
(dst)->tv_nsec += 1000000000; \
} \
} while (0)
/*
* Priority queues.
*
* XXX It'd be nice if these were contained in uthread_priority_queue.[ch].
*/
typedef struct pq_list {
TAILQ_HEAD(, pthread) pl_head; /* list of threads at this priority */
TAILQ_ENTRY(pq_list) pl_link; /* link for queue of priority lists */
int pl_prio; /* the priority of this list */
int pl_queued; /* is this in the priority queue */
} pq_list_t;
typedef struct pq_queue {
TAILQ_HEAD(, pq_list) pq_queue; /* queue of priority lists */
pq_list_t *pq_lists; /* array of all priority lists */
int pq_size; /* number of priority lists */
#define PQF_ACTIVE 0x0001
int pq_flags;
int pq_threads;
} pq_queue_t;
/*
* Each KSEG has a scheduling queue. For now, threads that exist in their
* own KSEG (system scope) will get a full priority queue. In the future
* this can be optimized for the single thread per KSEG case.
*/
struct sched_queue {
pq_queue_t sq_runq;
TAILQ_HEAD(, pthread) sq_waitq; /* waiting in userland */
};
/* Used to maintain pending and active signals: */
struct sigstatus {
siginfo_t *info; /* arg 2 to signal handler */
int pending; /* Is this a pending signal? */
int blocked; /*
* This signal has occured and hasn't
* yet been handled; ignore subsequent
* signals until the handler is done.
*/
int signo;
};
typedef struct kse_thr_mailbox *kse_critical_t;
struct kse_group;
#define MAX_KSE_LOCKLEVEL 3
struct kse {
struct kse_mailbox k_mbx; /* kernel kse mailbox */
/* -- location and order specific items for gdb -- */
struct pthread *k_curthread; /* current thread */
struct kse_group *k_kseg; /* parent KSEG */
struct sched_queue *k_schedq; /* scheduling queue */
/* -- end of location and order specific items -- */
TAILQ_ENTRY(kse) k_qe; /* KSE list link entry */
TAILQ_ENTRY(kse) k_kgqe; /* KSEG's KSE list entry */
struct ksd k_ksd; /* KSE specific data */
/*
* Items that are only modified by the kse, or that otherwise
* don't need to be locked when accessed
*/
struct lock k_lock;
struct lockuser k_lockusers[MAX_KSE_LOCKLEVEL];
int k_locklevel;
sigset_t k_sigmask;
struct sigstatus k_sigq[NSIG];
stack_t k_stack;
int k_check_sigq;
int k_flags;
#define KF_STARTED 0x0001 /* kernel kse created */
#define KF_INITIALIZED 0x0002 /* initialized on 1st upcall */
int k_waiting;
int k_idle; /* kse is idle */
int k_error; /* syscall errno in critical */
int k_cpu; /* CPU ID when bound */
int k_done; /* this KSE is done */
};
/*
* Each KSE group contains one or more KSEs in which threads can run.
* At least for now, there is one scheduling queue per KSE group; KSEs
* within the same KSE group compete for threads from the same scheduling
* queue. A scope system thread has one KSE in one KSE group; the group
* does not use its scheduling queue.
*/
struct kse_group {
TAILQ_HEAD(, kse) kg_kseq; /* list of KSEs in group */
TAILQ_HEAD(, pthread) kg_threadq; /* list of threads in group */
TAILQ_ENTRY(kse_group) kg_qe; /* link entry */
struct sched_queue kg_schedq; /* scheduling queue */
struct lock kg_lock;
int kg_threadcount; /* # of assigned threads */
int kg_ksecount; /* # of assigned KSEs */
int kg_idle_kses;
int kg_flags;
#define KGF_SINGLE_THREAD 0x0001 /* scope system kse group */
#define KGF_SCHEDQ_INITED 0x0002 /* has an initialized schedq */
};
/*
* Add/remove threads from a KSE's scheduling queue.
* For now the scheduling queue is hung off the KSEG.
*/
#define KSEG_THRQ_ADD(kseg, thr) \
do { \
TAILQ_INSERT_TAIL(&(kseg)->kg_threadq, thr, kle);\
(kseg)->kg_threadcount++; \
} while (0)
#define KSEG_THRQ_REMOVE(kseg, thr) \
do { \
TAILQ_REMOVE(&(kseg)->kg_threadq, thr, kle); \
(kseg)->kg_threadcount--; \
} while (0)
/*
* Lock acquire and release for KSEs.
*/
#define KSE_LOCK_ACQUIRE(kse, lck) \
do { \
if ((kse)->k_locklevel >= MAX_KSE_LOCKLEVEL) \
PANIC("Exceeded maximum lock level"); \
else { \
(kse)->k_locklevel++; \
_lock_acquire((lck), \
&(kse)->k_lockusers[(kse)->k_locklevel - 1], 0); \
} \
} while (0)
#define KSE_LOCK_RELEASE(kse, lck) \
do { \
if ((kse)->k_locklevel > 0) { \
_lock_release((lck), \
&(kse)->k_lockusers[(kse)->k_locklevel - 1]); \
(kse)->k_locklevel--; \
} \
} while (0)
/*
* Lock our own KSEG.
*/
#define KSE_LOCK(curkse) \
KSE_LOCK_ACQUIRE(curkse, &(curkse)->k_kseg->kg_lock)
#define KSE_UNLOCK(curkse) \
KSE_LOCK_RELEASE(curkse, &(curkse)->k_kseg->kg_lock)
/*
* Lock a potentially different KSEG.
*/
#define KSE_SCHED_LOCK(curkse, kseg) \
KSE_LOCK_ACQUIRE(curkse, &(kseg)->kg_lock)
#define KSE_SCHED_UNLOCK(curkse, kseg) \
KSE_LOCK_RELEASE(curkse, &(kseg)->kg_lock)
/*
* Waiting queue manipulation macros (using pqe link):
*/
#define KSE_WAITQ_REMOVE(kse, thrd) \
do { \
if (((thrd)->flags & THR_FLAGS_IN_WAITQ) != 0) { \
TAILQ_REMOVE(&(kse)->k_schedq->sq_waitq, thrd, pqe); \
(thrd)->flags &= ~THR_FLAGS_IN_WAITQ; \
} \
} while (0)
#define KSE_WAITQ_INSERT(kse, thrd) kse_waitq_insert(thrd)
#define KSE_WAITQ_FIRST(kse) TAILQ_FIRST(&(kse)->k_schedq->sq_waitq)
#define KSE_SET_WAIT(kse) atomic_store_rel_int(&(kse)->k_waiting, 1)
#define KSE_CLEAR_WAIT(kse) atomic_store_rel_int(&(kse)->k_waiting, 0)
#define KSE_WAITING(kse) (kse)->k_waiting != 0
#define KSE_WAKEUP(kse) kse_wakeup(&(kse)->k_mbx)
#define KSE_SET_IDLE(kse) ((kse)->k_idle = 1)
#define KSE_CLEAR_IDLE(kse) ((kse)->k_idle = 0)
#define KSE_IS_IDLE(kse) ((kse)->k_idle != 0)
/*
* TailQ initialization values.
*/
#define TAILQ_INITIALIZER { NULL, NULL }
/*
* lock initialization values.
*/
#define LCK_INITIALIZER { NULL, NULL, LCK_DEFAULT }
struct pthread_mutex {
/*
* Lock for accesses to this structure.
*/
struct lock m_lock;
enum pthread_mutextype m_type;
int m_protocol;
TAILQ_HEAD(mutex_head, pthread) m_queue;
struct pthread *m_owner;
long m_flags;
int m_count;
int m_refcount;
/*
* Used for priority inheritence and protection.
*
* m_prio - For priority inheritence, the highest active
* priority (threads locking the mutex inherit
* this priority). For priority protection, the
* ceiling priority of this mutex.
* m_saved_prio - mutex owners inherited priority before
* taking the mutex, restored when the owner
* unlocks the mutex.
*/
int m_prio;
int m_saved_prio;
/*
* Link for list of all mutexes a thread currently owns.
*/
TAILQ_ENTRY(pthread_mutex) m_qe;
};
/*
* Flags for mutexes.
*/
#define MUTEX_FLAGS_PRIVATE 0x01
#define MUTEX_FLAGS_INITED 0x02
#define MUTEX_FLAGS_BUSY 0x04
/*
* Static mutex initialization values.
*/
#define PTHREAD_MUTEX_STATIC_INITIALIZER \
{ LCK_INITIALIZER, PTHREAD_MUTEX_DEFAULT, PTHREAD_PRIO_NONE, \
TAILQ_INITIALIZER, NULL, MUTEX_FLAGS_PRIVATE, 0, 0, 0, 0, \
TAILQ_INITIALIZER }
struct pthread_mutex_attr {
enum pthread_mutextype m_type;
int m_protocol;
int m_ceiling;
long m_flags;
};
#define PTHREAD_MUTEXATTR_STATIC_INITIALIZER \
{ PTHREAD_MUTEX_DEFAULT, PTHREAD_PRIO_NONE, 0, MUTEX_FLAGS_PRIVATE }
/*
* Condition variable definitions.
*/
enum pthread_cond_type {
COND_TYPE_FAST,
COND_TYPE_MAX
};
struct pthread_cond {
/*
* Lock for accesses to this structure.
*/
struct lock c_lock;
enum pthread_cond_type c_type;
TAILQ_HEAD(cond_head, pthread) c_queue;
struct pthread_mutex *c_mutex;
long c_flags;
long c_seqno;
};
struct pthread_cond_attr {
enum pthread_cond_type c_type;
long c_flags;
};
/*
* Flags for condition variables.
*/
#define COND_FLAGS_PRIVATE 0x01
#define COND_FLAGS_INITED 0x02
#define COND_FLAGS_BUSY 0x04
/*
* Static cond initialization values.
*/
#define PTHREAD_COND_STATIC_INITIALIZER \
{ LCK_INITIALIZER, COND_TYPE_FAST, TAILQ_INITIALIZER, \
NULL, NULL, 0, 0 }
/*
* Semaphore definitions.
*/
struct sem {
#define SEM_MAGIC ((u_int32_t) 0x09fa4012)
u_int32_t magic;
pthread_mutex_t lock;
pthread_cond_t gtzero;
u_int32_t count;
u_int32_t nwaiters;
};
/*
* Cleanup definitions.
*/
struct pthread_cleanup {
struct pthread_cleanup *next;
void (*routine) ();
void *routine_arg;
};
struct pthread_attr {
int sched_policy;
int sched_inherit;
int sched_interval;
int prio;
int suspend;
#define THR_STACK_USER 0x100 /* 0xFF reserved for <pthread.h> */
int flags;
void *arg_attr;
void (*cleanup_attr) ();
void *stackaddr_attr;
size_t stacksize_attr;
size_t guardsize_attr;
};
/*
* Thread creation state attributes.
*/
#define THR_CREATE_RUNNING 0
#define THR_CREATE_SUSPENDED 1
/*
* Miscellaneous definitions.
*/
#define THR_STACK_DEFAULT 65536
/*
* Maximum size of initial thread's stack. This perhaps deserves to be larger
* than the stacks of other threads, since many applications are likely to run
* almost entirely on this stack.
*/
#define THR_STACK_INITIAL 0x100000
/*
* Define the different priority ranges. All applications have thread
* priorities constrained within 0-31. The threads library raises the
* priority when delivering signals in order to ensure that signal
* delivery happens (from the POSIX spec) "as soon as possible".
* In the future, the threads library will also be able to map specific
* threads into real-time (cooperating) processes or kernel threads.
* The RT and SIGNAL priorities will be used internally and added to
* thread base priorities so that the scheduling queue can handle both
* normal and RT priority threads with and without signal handling.
*
* The approach taken is that, within each class, signal delivery
* always has priority over thread execution.
*/
#define THR_DEFAULT_PRIORITY 15
#define THR_MIN_PRIORITY 0
#define THR_MAX_PRIORITY 31 /* 0x1F */
#define THR_SIGNAL_PRIORITY 32 /* 0x20 */
#define THR_RT_PRIORITY 64 /* 0x40 */
#define THR_FIRST_PRIORITY THR_MIN_PRIORITY
#define THR_LAST_PRIORITY \
(THR_MAX_PRIORITY + THR_SIGNAL_PRIORITY + THR_RT_PRIORITY)
#define THR_BASE_PRIORITY(prio) ((prio) & THR_MAX_PRIORITY)
/*
* Clock resolution in microseconds.
*/
#define CLOCK_RES_USEC 10000
/*
* Time slice period in microseconds.
*/
#define TIMESLICE_USEC 20000
/*
* XXX - Define a thread-safe macro to get the current time of day
* which is updated at regular intervals by something.
*
* For now, we just make the system call to get the time.
*/
#define KSE_GET_TOD(curkse, tsp) \
do { \
*tsp = (curkse)->k_mbx.km_timeofday; \
if ((tsp)->tv_sec == 0) \
clock_gettime(CLOCK_REALTIME, tsp); \
} while (0)
struct pthread_rwlockattr {
int pshared;
};
struct pthread_rwlock {
pthread_mutex_t lock; /* monitor lock */
int state; /* 0 = idle >0 = # of readers -1 = writer */
pthread_cond_t read_signal;
pthread_cond_t write_signal;
int blocked_writers;
};
/*
* Thread states.
*/
enum pthread_state {
PS_RUNNING,
PS_LOCKWAIT,
PS_MUTEX_WAIT,
PS_COND_WAIT,
PS_SLEEP_WAIT,
PS_SIGSUSPEND,
PS_SIGWAIT,
PS_JOIN,
PS_SUSPENDED,
PS_DEAD,
PS_DEADLOCK,
PS_STATE_MAX
};
union pthread_wait_data {
pthread_mutex_t mutex;
pthread_cond_t cond;
const sigset_t *sigwait; /* Waiting on a signal in sigwait */
struct lock *lock;
};
/*
* Define a continuation routine that can be used to perform a
* transfer of control:
*/
typedef void (*thread_continuation_t) (void *);
/*
* This stores a thread's state prior to running a signal handler.
* It is used when a signal is delivered to a thread blocked in
* userland. If the signal handler returns normally, the thread's
* state is restored from here.
*/
struct pthread_sigframe {
int psf_flags;
int psf_interrupted;
int psf_signo;
enum pthread_state psf_state;
union pthread_wait_data psf_wait_data;
struct timespec psf_wakeup_time;
sigset_t psf_sigset;
sigset_t psf_sigmask;
int psf_seqno;
};
struct join_status {
struct pthread *thread;
void *ret;
int error;
};
struct pthread_specific_elem {
const void *data;
int seqno;
};
#define MAX_THR_LOCKLEVEL 3
/*
* Thread structure.
*/
struct pthread {
/*
* Thread mailbox is first so it cal be aligned properly.
*/
struct kse_thr_mailbox tmbx;
void *alloc_addr; /* real address (unaligned) */
/*
* Magic value to help recognize a valid thread structure
* from an invalid one:
*/
#define THR_MAGIC ((u_int32_t) 0xd09ba115)
u_int32_t magic;
char *name;
u_int64_t uniqueid; /* for gdb */
/* Queue entry for list of all threads: */
TAILQ_ENTRY(pthread) tle; /* link for all threads in process */
TAILQ_ENTRY(pthread) kle; /* link for all threads in KSE/KSEG */
/* Queue entry for GC lists: */
TAILQ_ENTRY(pthread) gcle;
/*
* Lock for accesses to this thread structure.
*/
struct lock lock;
struct lockuser lockusers[MAX_THR_LOCKLEVEL];
int locklevel;
kse_critical_t critical[MAX_KSE_LOCKLEVEL];
struct kse *kse;
struct kse_group *kseg;
/*
* Thread start routine, argument, stack pointer and thread
* attributes.
*/
void *(*start_routine)(void *);
void *arg;
struct pthread_attr attr;
int active; /* thread running */
int blocked; /* thread blocked in kernel */
int need_switchout;
int need_wakeup;
/*
* Used for tracking delivery of signal handlers.
*/
struct pthread_sigframe *curframe;
siginfo_t siginfo[NSIG];
/*
* Cancelability flags - the lower 2 bits are used by cancel
* definitions in pthread.h
*/
#define THR_AT_CANCEL_POINT 0x0004
#define THR_CANCELLING 0x0008
#define THR_CANCEL_NEEDED 0x0010
int cancelflags;
thread_continuation_t continuation;
/*
* The thread's base and pending signal masks. The active
* signal mask is stored in the thread's context (in mailbox).
*/
sigset_t sigmask;
sigset_t sigpend;
int sigmask_seqno;
int check_pending;
int refcount;
/* Thread state: */
enum pthread_state state;
int lock_switch;
/*
* Number of microseconds accumulated by this thread when
* time slicing is active.
*/
long slice_usec;
/*
* Time to wake up thread. This is used for sleeping threads and
* for any operation which may time out (such as select).
*/
struct timespec wakeup_time;
/* TRUE if operation has timed out. */
int timeout;
/*
* Error variable used instead of errno. The function __error()
* returns a pointer to this.
*/
int error;
/*
* The joiner is the thread that is joining to this thread. The
* join status keeps track of a join operation to another thread.
*/
struct pthread *joiner;
struct join_status join_status;
/*
* The current thread can belong to only one scheduling queue at
* a time (ready or waiting queue). It can also belong to:
*
* o A queue of threads waiting for a mutex
* o A queue of threads waiting for a condition variable
*
* It is possible for a thread to belong to more than one of the
* above queues if it is handling a signal. A thread may only
* enter a mutex or condition variable queue when it is not
* being called from a signal handler. If a thread is a member
* of one of these queues when a signal handler is invoked, it
* must be removed from the queue before invoking the handler
* and then added back to the queue after return from the handler.
*
* Use pqe for the scheduling queue link (both ready and waiting),
* sqe for synchronization (mutex, condition variable, and join)
* queue links, and qe for all other links.
*/
TAILQ_ENTRY(pthread) pqe; /* priority, wait queues link */
TAILQ_ENTRY(pthread) sqe; /* synchronization queue link */
/* Wait data. */
union pthread_wait_data data;
/*
* Set to TRUE if a blocking operation was
* interrupted by a signal:
*/
int interrupted;
/* Signal number when in state PS_SIGWAIT: */
int signo;
/*
* Set to non-zero when this thread has entered a critical
* region. We allow for recursive entries into critical regions.
*/
int critical_count;
/*
* Set to TRUE if this thread should yield after leaving a
* critical region to check for signals, messages, etc.
*/
int critical_yield;
int sflags;
#define THR_FLAGS_IN_SYNCQ 0x0001
/* Miscellaneous flags; only set with scheduling lock held. */
int flags;
#define THR_FLAGS_PRIVATE 0x0001
#define THR_FLAGS_IN_WAITQ 0x0002 /* in waiting queue using pqe link */
#define THR_FLAGS_IN_RUNQ 0x0004 /* in run queue using pqe link */
#define THR_FLAGS_EXITING 0x0008 /* thread is exiting */
#define THR_FLAGS_SUSPENDED 0x0010 /* thread is suspended */
#define THR_FLAGS_GC_SAFE 0x0020 /* thread safe for cleaning */
#define THR_FLAGS_IN_TDLIST 0x0040 /* thread in all thread list */
#define THR_FLAGS_IN_GCLIST 0x0080 /* thread in gc list */
/*
* Base priority is the user setable and retrievable priority
* of the thread. It is only affected by explicit calls to
* set thread priority and upon thread creation via a thread
* attribute or default priority.
*/
char base_priority;
/*
* Inherited priority is the priority a thread inherits by
* taking a priority inheritence or protection mutex. It
* is not affected by base priority changes. Inherited
* priority defaults to and remains 0 until a mutex is taken
* that is being waited on by any other thread whose priority
* is non-zero.
*/
char inherited_priority;
/*
* Active priority is always the maximum of the threads base
* priority and inherited priority. When there is a change
* in either the base or inherited priority, the active
* priority must be recalculated.
*/
char active_priority;
/* Number of priority ceiling or protection mutexes owned. */
int priority_mutex_count;
/*
* Queue of currently owned mutexes.
*/
TAILQ_HEAD(, pthread_mutex) mutexq;
void *ret;
struct pthread_specific_elem *specific;
int specific_data_count;
/* Cleanup handlers Link List */
struct pthread_cleanup *cleanup;
char *fname; /* Ptr to source file name */
int lineno; /* Source line number. */
};
/*
* Critical regions can also be detected by looking at the threads
* current lock level. Ensure these macros increment and decrement
* the lock levels such that locks can not be held with a lock level
* of 0.
*/
#define THR_IN_CRITICAL(thrd) \
(((thrd)->locklevel > 0) || \
((thrd)->critical_count > 0))
#define THR_YIELD_CHECK(thrd) \
do { \
if (((thrd)->critical_yield != 0) && \
!(THR_IN_CRITICAL(thrd))) { \
THR_LOCK_SWITCH(thrd); \
_thr_sched_switch(thrd); \
THR_UNLOCK_SWITCH(thrd); \
} \
else if (((thrd)->check_pending != 0) && \
!(THR_IN_CRITICAL(thrd))) \
_thr_sig_check_pending(thrd); \
} while (0)
#define THR_LOCK_ACQUIRE(thrd, lck) \
do { \
if ((thrd)->locklevel >= MAX_THR_LOCKLEVEL) \
PANIC("Exceeded maximum lock level"); \
else { \
(thrd)->locklevel++; \
_lock_acquire((lck), \
&(thrd)->lockusers[(thrd)->locklevel - 1], \
(thrd)->active_priority); \
} \
} while (0)
#define THR_LOCK_RELEASE(thrd, lck) \
do { \
if ((thrd)->locklevel > 0) { \
_lock_release((lck), \
&(thrd)->lockusers[(thrd)->locklevel - 1]); \
(thrd)->locklevel--; \
if ((thrd)->lock_switch) \
; \
else { \
THR_YIELD_CHECK(thrd); \
} \
} \
} while (0)
#define THR_LOCK_SWITCH(thrd) \
do { \
THR_ASSERT(!(thrd)->lock_switch, "context switch locked"); \
_kse_critical_enter(); \
KSE_SCHED_LOCK((thrd)->kse, (thrd)->kseg); \
(thrd)->lock_switch = 1; \
} while (0)
#define THR_UNLOCK_SWITCH(thrd) \
do { \
THR_ASSERT((thrd)->lock_switch, "context switch not locked"); \
THR_ASSERT(_kse_in_critical(), "Er,not in critical region"); \
(thrd)->lock_switch = 0; \
KSE_SCHED_UNLOCK((thrd)->kse, (thrd)->kseg); \
_kse_critical_leave(&thrd->tmbx); \
} while (0)
/*
* For now, threads will have their own lock separate from their
* KSE scheduling lock.
*/
#define THR_LOCK(thr) THR_LOCK_ACQUIRE(thr, &(thr)->lock)
#define THR_UNLOCK(thr) THR_LOCK_RELEASE(thr, &(thr)->lock)
#define THR_THREAD_LOCK(curthrd, thr) THR_LOCK_ACQUIRE(curthrd, &(thr)->lock)
#define THR_THREAD_UNLOCK(curthrd, thr) THR_LOCK_RELEASE(curthrd, &(thr)->lock)
/*
* Priority queue manipulation macros (using pqe link). We use
* the thread's kseg link instead of the kse link because a thread
* does not (currently) have a statically assigned kse.
*/
#define THR_RUNQ_INSERT_HEAD(thrd) \
_pq_insert_head(&(thrd)->kseg->kg_schedq.sq_runq, thrd)
#define THR_RUNQ_INSERT_TAIL(thrd) \
_pq_insert_tail(&(thrd)->kseg->kg_schedq.sq_runq, thrd)
#define THR_RUNQ_REMOVE(thrd) \
_pq_remove(&(thrd)->kseg->kg_schedq.sq_runq, thrd)
#define THR_RUNQ_FIRST() \
_pq_first(&(thrd)->kseg->kg_schedq.sq_runq)
/*
* Macros to insert/remove threads to the all thread list and
* the gc list.
*/
#define THR_LIST_ADD(thrd) do { \
if (((thrd)->flags & THR_FLAGS_IN_TDLIST) == 0) { \
TAILQ_INSERT_HEAD(&_thread_list, thrd, tle); \
(thrd)->flags |= THR_FLAGS_IN_TDLIST; \
} \
} while (0)
#define THR_LIST_REMOVE(thrd) do { \
if (((thrd)->flags & THR_FLAGS_IN_TDLIST) != 0) { \
TAILQ_REMOVE(&_thread_list, thrd, tle); \
(thrd)->flags &= ~THR_FLAGS_IN_TDLIST; \
} \
} while (0)
#define THR_GCLIST_ADD(thrd) do { \
if (((thrd)->flags & THR_FLAGS_IN_GCLIST) == 0) { \
TAILQ_INSERT_HEAD(&_thread_gc_list, thrd, gcle);\
(thrd)->flags |= THR_FLAGS_IN_GCLIST; \
_gc_count++; \
} \
} while (0)
#define THR_GCLIST_REMOVE(thrd) do { \
if (((thrd)->flags & THR_FLAGS_IN_GCLIST) != 0) { \
TAILQ_REMOVE(&_thread_gc_list, thrd, gcle); \
(thrd)->flags &= ~THR_FLAGS_IN_GCLIST; \
_gc_count--; \
} \
} while (0)
#define GC_NEEDED() (atomic_load_acq_int(&_gc_count) >= 5)
/*
* Locking the scheduling queue for another thread uses that thread's
* KSEG lock.
*/
#define THR_SCHED_LOCK(curthr, thr) do { \
(curthr)->critical[(curthr)->locklevel] = _kse_critical_enter(); \
(curthr)->locklevel++; \
KSE_SCHED_LOCK((curthr)->kse, (thr)->kseg); \
} while (0)
#define THR_SCHED_UNLOCK(curthr, thr) do { \
KSE_SCHED_UNLOCK((curthr)->kse, (thr)->kseg); \
(curthr)->locklevel--; \
_kse_critical_leave((curthr)->critical[(curthr)->locklevel]); \
} while (0)
#define THR_CRITICAL_ENTER(thr) (thr)->critical_count++
#define THR_CRITICAL_LEAVE(thr) do { \
(thr)->critical_count--; \
if (((thr)->critical_yield != 0) && \
((thr)->critical_count == 0)) { \
(thr)->critical_yield = 0; \
THR_LOCK_SWITCH(thr); \
_thr_sched_switch(thr); \
THR_UNLOCK_SWITCH(thr); \
} \
} while (0)
#define THR_IS_ACTIVE(thrd) \
((thrd)->kse != NULL) && ((thrd)->kse->k_curthread == (thrd))
#define THR_IN_SYNCQ(thrd) (((thrd)->sflags & THR_FLAGS_IN_SYNCQ) != 0)
#define THR_IS_SUSPENDED(thrd) \
(((thrd)->state == PS_SUSPENDED) || \
(((thrd)->flags & THR_FLAGS_SUSPENDED) != 0))
#define THR_IS_EXITING(thrd) (((thrd)->flags & THR_FLAGS_EXITING) != 0)
/*
* Global variables for the pthread kernel.
*/
SCLASS void *_usrstack SCLASS_PRESET(NULL);
SCLASS struct kse *_kse_initial SCLASS_PRESET(NULL);
SCLASS struct pthread *_thr_initial SCLASS_PRESET(NULL);
/* List of all threads: */
SCLASS TAILQ_HEAD(, pthread) _thread_list
SCLASS_PRESET(TAILQ_HEAD_INITIALIZER(_thread_list));
/* List of threads needing GC: */
SCLASS TAILQ_HEAD(, pthread) _thread_gc_list
SCLASS_PRESET(TAILQ_HEAD_INITIALIZER(_thread_gc_list));
/* Default thread attributes: */
SCLASS struct pthread_attr _pthread_attr_default
SCLASS_PRESET({
SCHED_RR, 0, TIMESLICE_USEC, THR_DEFAULT_PRIORITY,
THR_CREATE_RUNNING, PTHREAD_CREATE_JOINABLE, NULL,
NULL, NULL, THR_STACK_DEFAULT
});
/* Default mutex attributes: */
SCLASS struct pthread_mutex_attr _pthread_mutexattr_default
SCLASS_PRESET({PTHREAD_MUTEX_DEFAULT, PTHREAD_PRIO_NONE, 0, 0 });
/* Default condition variable attributes: */
SCLASS struct pthread_cond_attr _pthread_condattr_default
SCLASS_PRESET({COND_TYPE_FAST, 0});
/* Clock resolution in usec. */
SCLASS int _clock_res_usec SCLASS_PRESET(CLOCK_RES_USEC);
/* Array of signal actions for this process: */
SCLASS struct sigaction _thread_sigact[NSIG];
/*
* Array of counts of dummy handlers for SIG_DFL signals. This is used to
* assure that there is always a dummy signal handler installed while there
* is a thread sigwait()ing on the corresponding signal.
*/
SCLASS int _thread_dfl_count[NSIG];
/*
* Lock for above count of dummy handlers and for the process signal
* mask and pending signal sets.
*/
SCLASS struct lock _thread_signal_lock;
/* Pending signals and mask for this process: */
SCLASS sigset_t _thr_proc_sigpending;
SCLASS sigset_t _thr_proc_sigmask SCLASS_PRESET({{0, 0, 0, 0}});
SCLASS siginfo_t _thr_proc_siginfo[NSIG];
SCLASS pid_t _thr_pid SCLASS_PRESET(0);
/* Garbage collector lock. */
SCLASS struct lock _gc_lock;
SCLASS int _gc_check SCLASS_PRESET(0);
SCLASS int _gc_count SCLASS_PRESET(0);
SCLASS struct lock _mutex_static_lock;
SCLASS struct lock _rwlock_static_lock;
SCLASS struct lock _keytable_lock;
SCLASS struct lock _thread_list_lock;
SCLASS int _thr_guard_default;
SCLASS int _thr_page_size;
SCLASS int _thr_debug_flags SCLASS_PRESET(0);
/* Undefine the storage class and preset specifiers: */
#undef SCLASS
#undef SCLASS_PRESET
/*
* Function prototype definitions.
*/
__BEGIN_DECLS
int _cond_reinit(pthread_cond_t *);
void _cond_wait_backout(struct pthread *);
struct pthread *_get_curthread(void);
struct kse *_get_curkse(void);
void _set_curkse(struct kse *);
struct kse *_kse_alloc(struct pthread *);
kse_critical_t _kse_critical_enter(void);
void _kse_critical_leave(kse_critical_t);
int _kse_in_critical(void);
void _kse_free(struct pthread *, struct kse *);
void _kse_init();
struct kse_group *_kseg_alloc(struct pthread *);
void _kse_lock_wait(struct lock *, struct lockuser *lu);
void _kse_lock_wakeup(struct lock *, struct lockuser *lu);
void _kse_sig_check_pending(struct kse *);
void _kse_single_thread(struct pthread *);
void _kse_start(struct kse *);
int _kse_setthreaded(int);
int _kse_isthreaded(void);
void _kseg_free(struct kse_group *);
int _mutex_cv_lock(pthread_mutex_t *);
int _mutex_cv_unlock(pthread_mutex_t *);
void _mutex_lock_backout(struct pthread *);
void _mutex_notify_priochange(struct pthread *, struct pthread *, int);
int _mutex_reinit(struct pthread_mutex *);
void _mutex_unlock_private(struct pthread *);
void _libpthread_init(struct pthread *);
int _pq_alloc(struct pq_queue *, int, int);
void _pq_free(struct pq_queue *);
int _pq_init(struct pq_queue *);
void _pq_remove(struct pq_queue *pq, struct pthread *);
void _pq_insert_head(struct pq_queue *pq, struct pthread *);
void _pq_insert_tail(struct pq_queue *pq, struct pthread *);
struct pthread *_pq_first(struct pq_queue *pq);
void *_pthread_getspecific(pthread_key_t);
int _pthread_key_create(pthread_key_t *, void (*) (void *));
int _pthread_key_delete(pthread_key_t);
int _pthread_mutex_destroy(pthread_mutex_t *);
int _pthread_mutex_init(pthread_mutex_t *, const pthread_mutexattr_t *);
int _pthread_mutex_lock(pthread_mutex_t *);
int _pthread_mutex_trylock(pthread_mutex_t *);
int _pthread_mutex_unlock(pthread_mutex_t *);
int _pthread_mutexattr_init(pthread_mutexattr_t *);
int _pthread_mutexattr_destroy(pthread_mutexattr_t *);
int _pthread_mutexattr_settype(pthread_mutexattr_t *, int);
int _pthread_once(pthread_once_t *, void (*) (void));
struct pthread *_pthread_self(void);
int _pthread_setspecific(pthread_key_t, const void *);
struct pthread *_thr_alloc(struct pthread *);
int _thread_enter_uts(struct kse_thr_mailbox *, struct kse_mailbox *);
int _thread_switch(struct kse_thr_mailbox *, struct kse_thr_mailbox **);
void _thr_exit(char *, int, char *);
void _thr_exit_cleanup(void);
void _thr_lock_wait(struct lock *lock, struct lockuser *lu);
void _thr_lock_wakeup(struct lock *lock, struct lockuser *lu);
int _thr_ref_add(struct pthread *, struct pthread *, int);
void _thr_ref_delete(struct pthread *, struct pthread *);
int _thr_schedule_add(struct pthread *, struct pthread *);
void _thr_schedule_remove(struct pthread *, struct pthread *);
void _thr_setrunnable(struct pthread *curthread, struct pthread *thread);
void _thr_setrunnable_unlocked(struct pthread *thread);
void _thr_sig_add(struct pthread *, int, siginfo_t *, ucontext_t *);
void _thr_sig_dispatch(struct kse *, int, siginfo_t *);
int _thr_stack_alloc(struct pthread_attr *);
void _thr_stack_free(struct pthread_attr *);
void _thr_exit_cleanup(void);
void _thr_free(struct pthread *, struct pthread *);
void _thr_gc(struct pthread *);
void _thr_panic_exit(char *, int, char *);
void _thread_cleanupspecific(void);
void _thread_dump_info(void);
void _thread_printf(int, const char *, ...);
void _thr_sched_frame(struct pthread_sigframe *);
void _thr_sched_switch(struct pthread *);
void _thr_set_timeout(const struct timespec *);
void _thr_sig_handler(int, siginfo_t *, ucontext_t *);
void _thr_sig_check_pending(struct pthread *);
void _thr_sig_rundown(struct pthread *, ucontext_t *,
struct pthread_sigframe *);
void _thr_sig_send(struct pthread *pthread, int sig);
void _thr_sig_wrapper(void);
void _thr_sigframe_restore(struct pthread *thread, struct pthread_sigframe *psf);
void _thr_seterrno(struct pthread *, int);
void _thr_enter_cancellation_point(struct pthread *);
void _thr_leave_cancellation_point(struct pthread *);
int _thr_setconcurrency(int new_level);
int _thr_setmaxconcurrency(void);
/* XXX - Stuff that goes away when my sources get more up to date. */
/* #include <sys/kse.h> */
#ifdef SYS_KSE_H
int __sys_kse_create(struct kse_mailbox *, int);
int __sys_kse_thr_wakeup(struct kse_mailbox *);
int __sys_kse_exit(struct kse_mailbox *);
int __sys_kse_release(struct kse_mailbox *);
#endif
/* #include <sys/aio.h> */
#ifdef _SYS_AIO_H_
int __sys_aio_suspend(const struct aiocb * const[], int, const struct timespec *);
#endif
/* #include <fcntl.h> */
#ifdef _SYS_FCNTL_H_
int __sys_fcntl(int, int, ...);
int __sys_open(const char *, int, ...);
#endif
/* #include <sys/ioctl.h> */
#ifdef _SYS_IOCTL_H_
int __sys_ioctl(int, unsigned long, ...);
#endif
/* #inclde <sched.h> */
#ifdef _SCHED_H_
int __sys_sched_yield(void);
#endif
/* #include <signal.h> */
#ifdef _SIGNAL_H_
int __sys_kill(pid_t, int);
int __sys_sigaction(int, const struct sigaction *, struct sigaction *);
int __sys_sigpending(sigset_t *);
int __sys_sigprocmask(int, const sigset_t *, sigset_t *);
int __sys_sigsuspend(const sigset_t *);
int __sys_sigreturn(ucontext_t *);
int __sys_sigaltstack(const struct sigaltstack *, struct sigaltstack *);
#endif
/* #include <sys/socket.h> */
#ifdef _SYS_SOCKET_H_
int __sys_sendfile(int, int, off_t, size_t, struct sf_hdtr *,
off_t *, int);
#endif
/* #include <sys/uio.h> */
#ifdef _SYS_UIO_H_
ssize_t __sys_readv(int, const struct iovec *, int);
ssize_t __sys_writev(int, const struct iovec *, int);
#endif
/* #include <time.h> */
#ifdef _TIME_H_
int __sys_nanosleep(const struct timespec *, struct timespec *);
#endif
/* #include <unistd.h> */
#ifdef _UNISTD_H_
int __sys_close(int);
int __sys_execve(const char *, char * const *, char * const *);
int __sys_fork(void);
int __sys_fsync(int);
pid_t __sys_getpid(void);
int __sys_select(int, fd_set *, fd_set *, fd_set *, struct timeval *);
ssize_t __sys_read(int, void *, size_t);
ssize_t __sys_write(int, const void *, size_t);
void __sys_exit(int);
#endif
/* #include <poll.h> */
#ifdef _SYS_POLL_H_
int __sys_poll(struct pollfd *, unsigned, int);
#endif
/* #include <sys/mman.h> */
#ifdef _SYS_MMAN_H_
int __sys_msync(void *, size_t, int);
#endif
#endif /* !_THR_PRIVATE_H */