ef2d104210
Notice that 'unit' wasn't defined once I changed the parameters of the func. These things make me feel like wading in with a flamethrowr or something. Too much cruft! </rant>
2353 lines
61 KiB
C
2353 lines
61 KiB
C
/*-
|
|
* Copyright (c) 1992, 1993, University of Vermont and State
|
|
* Agricultural College.
|
|
* Copyright (c) 1992, 1993, Garrett A. Wollman.
|
|
*
|
|
* Portions:
|
|
* Copyright (c) 1990, 1991, William F. Jolitz
|
|
* Copyright (c) 1990, The Regents of the University of California
|
|
*
|
|
* 3Com 3C507 support:
|
|
* Copyright (c) 1993, 1994, Charles M. Hannum
|
|
*
|
|
* EtherExpress 16 support:
|
|
* Copyright (c) 1993, 1994, 1995, Rodney W. Grimes
|
|
* Copyright (c) 1997, Aaron C. Smith
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* Vermont and State Agricultural College and Garrett A. Wollman, by
|
|
* William F. Jolitz, by the University of California, Berkeley,
|
|
* Lawrence Berkeley Laboratory, and their contributors, by
|
|
* Charles M. Hannum, by Rodney W. Grimes, and by Aaron C. Smith.
|
|
* 4. Neither the names of the Universities nor the names of the authors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OR AUTHORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $Id: if_ie.c,v 1.64 1999/08/20 14:12:13 mdodd Exp $
|
|
*/
|
|
|
|
/*
|
|
* Intel 82586 Ethernet chip
|
|
* Register, bit, and structure definitions.
|
|
*
|
|
* Written by GAW with reference to the Clarkson Packet Driver code for this
|
|
* chip written by Russ Nelson and others.
|
|
*
|
|
* Intel EtherExpress 16 support from if_ix.c, written by Rodney W. Grimes.
|
|
*/
|
|
|
|
/*
|
|
* The i82586 is a very versatile chip, found in many implementations.
|
|
* Programming this chip is mostly the same, but certain details differ
|
|
* from card to card. This driver is written so that different cards
|
|
* can be automatically detected at run-time.
|
|
*/
|
|
|
|
/*
|
|
Mode of operation:
|
|
|
|
We run the 82586 in a standard Ethernet mode. We keep NFRAMES received
|
|
frame descriptors around for the receiver to use, and NRXBUFS associated
|
|
receive buffer descriptors, both in a circular list. Whenever a frame is
|
|
received, we rotate both lists as necessary. (The 586 treats both lists
|
|
as a simple queue.) We also keep a transmit command around so that packets
|
|
can be sent off quickly.
|
|
|
|
We configure the adapter in AL-LOC = 1 mode, which means that the
|
|
Ethernet/802.3 MAC header is placed at the beginning of the receive buffer
|
|
rather than being split off into various fields in the RFD. This also
|
|
means that we must include this header in the transmit buffer as well.
|
|
|
|
By convention, all transmit commands, and only transmit commands, shall
|
|
have the I (IE_CMD_INTR) bit set in the command. This way, when an
|
|
interrupt arrives at ieintr(), it is immediately possible to tell
|
|
what precisely caused it. ANY OTHER command-sending routines should
|
|
run at splimp(), and should post an acknowledgement to every interrupt
|
|
they generate.
|
|
|
|
The 82586 has a 24-bit address space internally, and the adaptor's memory
|
|
is located at the top of this region. However, the value we are given in
|
|
configuration is normally the *bottom* of the adaptor RAM. So, we must go
|
|
through a few gyrations to come up with a kernel virtual address which
|
|
represents the actual beginning of the 586 address space. First, we
|
|
autosize the RAM by running through several possible sizes and trying to
|
|
initialize the adapter under the assumption that the selected size is
|
|
correct. Then, knowing the correct RAM size, we set up our pointers in
|
|
ie_softc[unit]. `iomem' represents the computed base of the 586 address
|
|
space. `iomembot' represents the actual configured base of adapter RAM.
|
|
Finally, `iosize' represents the calculated size of 586 RAM. Then, when
|
|
laying out commands, we use the interval [iomembot, iomembot + iosize); to
|
|
make 24-pointers, we subtract iomem, and to make 16-pointers, we subtract
|
|
iomem and and with 0xffff.
|
|
|
|
*/
|
|
|
|
#include "ie.h"
|
|
#if NIE > 0
|
|
#include "opt_inet.h"
|
|
#include "opt_ipx.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/syslog.h>
|
|
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_dl.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
|
|
#include "bpf.h"
|
|
|
|
#include <machine/clock.h>
|
|
#include <machine/md_var.h>
|
|
|
|
#include <i386/isa/isa_device.h>
|
|
#include <i386/isa/ic/i82586.h>
|
|
#include <i386/isa/icu.h>
|
|
#include <i386/isa/if_iereg.h>
|
|
#include <i386/isa/if_ie507.h>
|
|
#include <i386/isa/if_iee16.h>
|
|
#include <i386/isa/elink.h>
|
|
|
|
#if NBPF > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
#define IED_RINT 0x01
|
|
#define IED_TINT 0x02
|
|
#define IED_RNR 0x04
|
|
#define IED_CNA 0x08
|
|
#define IED_READFRAME 0x10
|
|
static int ie_debug = IED_RNR;
|
|
|
|
#endif
|
|
|
|
#define IE_BUF_LEN ETHER_MAX_LEN /* length of transmit buffer */
|
|
|
|
/* Forward declaration */
|
|
struct ie_softc;
|
|
|
|
static struct mbuf *last_not_for_us;
|
|
|
|
static int ieprobe(struct isa_device * dvp);
|
|
static int ieattach(struct isa_device * dvp);
|
|
static ointhand2_t ieintr;
|
|
static int sl_probe(struct isa_device * dvp);
|
|
static int el_probe(struct isa_device * dvp);
|
|
static int ni_probe(struct isa_device * dvp);
|
|
static int ee16_probe(struct isa_device * dvp);
|
|
|
|
static int check_ie_present(int unit, caddr_t where, unsigned size);
|
|
static void ieinit(void *);
|
|
static void ie_stop(int unit);
|
|
static int ieioctl(struct ifnet * ifp, u_long command, caddr_t data);
|
|
static void iestart(struct ifnet * ifp);
|
|
|
|
static void el_reset_586(int unit);
|
|
static void el_chan_attn(int unit);
|
|
|
|
static void sl_reset_586(int unit);
|
|
static void sl_chan_attn(int unit);
|
|
|
|
static void ee16_reset_586(int unit);
|
|
static void ee16_chan_attn(int unit);
|
|
static __inline void ee16_interrupt_enable(struct ie_softc * ie);
|
|
static void ee16_eeprom_outbits(struct ie_softc * ie, int edata, int cnt);
|
|
static void ee16_eeprom_clock(struct ie_softc * ie, int state);
|
|
static u_short ee16_read_eeprom(struct ie_softc * ie, int location);
|
|
static int ee16_eeprom_inbits(struct ie_softc * ie);
|
|
static void ee16_shutdown(int howto, void *sc);
|
|
|
|
static void iereset(int unit);
|
|
static void ie_readframe(int unit, struct ie_softc * ie, int bufno);
|
|
static void ie_drop_packet_buffer(int unit, struct ie_softc * ie);
|
|
static void sl_read_ether(int unit, unsigned char addr[6]);
|
|
static void find_ie_mem_size(int unit);
|
|
static void chan_attn_timeout(void *rock);
|
|
static int command_and_wait(int unit, int command,
|
|
void volatile * pcmd, int);
|
|
static void run_tdr(int unit, volatile struct ie_tdr_cmd * cmd);
|
|
static int ierint(int unit, struct ie_softc * ie);
|
|
static int ietint(int unit, struct ie_softc * ie);
|
|
static int iernr(int unit, struct ie_softc * ie);
|
|
static void start_receiver(int unit);
|
|
static __inline int ieget(int, struct ie_softc *, struct mbuf **,
|
|
struct ether_header *, int *);
|
|
static v_caddr_t setup_rfa(v_caddr_t ptr, struct ie_softc * ie);
|
|
static int mc_setup(int, v_caddr_t, volatile struct ie_sys_ctl_block *);
|
|
static void ie_mc_reset(int unit);
|
|
|
|
#ifdef DEBUG
|
|
static void print_rbd(volatile struct ie_recv_buf_desc * rbd);
|
|
|
|
static int in_ierint = 0;
|
|
static int in_ietint = 0;
|
|
|
|
#endif
|
|
|
|
/*
|
|
* This tells the autoconf code how to set us up.
|
|
*/
|
|
struct isa_driver iedriver = {
|
|
ieprobe, ieattach, "ie",
|
|
};
|
|
|
|
enum ie_hardware {
|
|
IE_STARLAN10,
|
|
IE_EN100,
|
|
IE_SLFIBER,
|
|
IE_3C507,
|
|
IE_NI5210,
|
|
IE_EE16,
|
|
IE_UNKNOWN
|
|
};
|
|
|
|
static const char *ie_hardware_names[] = {
|
|
"StarLAN 10",
|
|
"EN100",
|
|
"StarLAN Fiber",
|
|
"3C507",
|
|
"NI5210",
|
|
"EtherExpress 16",
|
|
"Unknown"
|
|
};
|
|
|
|
/*
|
|
sizeof(iscp) == 1+1+2+4 == 8
|
|
sizeof(scb) == 2+2+2+2+2+2+2+2 == 16
|
|
NFRAMES * sizeof(rfd) == NFRAMES*(2+2+2+2+6+6+2+2) == NFRAMES*24 == 384
|
|
sizeof(xmit_cmd) == 2+2+2+2+6+2 == 18
|
|
sizeof(transmit buffer) == 1512
|
|
sizeof(transmit buffer desc) == 8
|
|
-----
|
|
1946
|
|
|
|
NRXBUFS * sizeof(rbd) == NRXBUFS*(2+2+4+2+2) == NRXBUFS*12
|
|
NRXBUFS * IE_RBUF_SIZE == NRXBUFS*256
|
|
|
|
NRXBUFS should be (16384 - 1946) / (256 + 12) == 14438 / 268 == 53
|
|
|
|
With NRXBUFS == 48, this leaves us 1574 bytes for another command or
|
|
more buffers. Another transmit command would be 18+8+1512 == 1538
|
|
---just barely fits!
|
|
|
|
Obviously all these would have to be reduced for smaller memory sizes.
|
|
With a larger memory, it would be possible to roughly double the number of
|
|
both transmit and receive buffers.
|
|
*/
|
|
|
|
#define NFRAMES 8 /* number of receive frames */
|
|
#define NRXBUFS 48 /* number of buffers to allocate */
|
|
#define IE_RBUF_SIZE 256 /* size of each buffer, MUST BE POWER OF TWO */
|
|
#define NTXBUFS 2 /* number of transmit commands */
|
|
#define IE_TBUF_SIZE ETHER_MAX_LEN /* size of transmit buffer */
|
|
|
|
/*
|
|
* Ethernet status, per interface.
|
|
*/
|
|
static struct ie_softc {
|
|
struct arpcom arpcom;
|
|
void (*ie_reset_586) (int);
|
|
void (*ie_chan_attn) (int);
|
|
enum ie_hardware hard_type;
|
|
int hard_vers;
|
|
int unit;
|
|
|
|
u_short port; /* i/o base address for this interface */
|
|
caddr_t iomem; /* memory size */
|
|
caddr_t iomembot; /* memory base address */
|
|
unsigned iosize;
|
|
int bus_use; /* 0 means 16bit, 1 means 8 bit adapter */
|
|
|
|
int want_mcsetup;
|
|
int promisc;
|
|
int nframes;
|
|
int nrxbufs;
|
|
int ntxbufs;
|
|
volatile struct ie_int_sys_conf_ptr *iscp;
|
|
volatile struct ie_sys_ctl_block *scb;
|
|
volatile struct ie_recv_frame_desc **rframes; /* nframes worth */
|
|
volatile struct ie_recv_buf_desc **rbuffs; /* nrxbufs worth */
|
|
volatile u_char **cbuffs; /* nrxbufs worth */
|
|
int rfhead, rftail, rbhead, rbtail;
|
|
|
|
volatile struct ie_xmit_cmd **xmit_cmds; /* ntxbufs worth */
|
|
volatile struct ie_xmit_buf **xmit_buffs; /* ntxbufs worth */
|
|
volatile u_char **xmit_cbuffs; /* ntxbufs worth */
|
|
int xmit_count;
|
|
|
|
struct ie_en_addr mcast_addrs[MAXMCAST + 1];
|
|
int mcast_count;
|
|
|
|
u_short irq_encoded; /* encoded interrupt on IEE16 */
|
|
} ie_softc[NIE];
|
|
|
|
#define MK_24(base, ptr) ((caddr_t)((uintptr_t)ptr - (uintptr_t)base))
|
|
#define MK_16(base, ptr) ((u_short)(uintptr_t)MK_24(base, ptr))
|
|
|
|
#define PORT ie_softc[unit].port
|
|
#define MEM ie_softc[unit].iomem
|
|
|
|
int
|
|
ieprobe(struct isa_device *dvp)
|
|
{
|
|
int ret;
|
|
|
|
ret = sl_probe(dvp);
|
|
if (!ret)
|
|
ret = el_probe(dvp);
|
|
if (!ret)
|
|
ret = ni_probe(dvp);
|
|
if (!ret)
|
|
ret = ee16_probe(dvp);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
sl_probe(struct isa_device *dvp)
|
|
{
|
|
int unit = dvp->id_unit;
|
|
u_char c;
|
|
|
|
ie_softc[unit].port = dvp->id_iobase;
|
|
ie_softc[unit].iomembot = dvp->id_maddr;
|
|
ie_softc[unit].iomem = 0;
|
|
ie_softc[unit].bus_use = 0;
|
|
|
|
c = inb(PORT + IEATT_REVISION);
|
|
switch (SL_BOARD(c)) {
|
|
case SL10_BOARD:
|
|
ie_softc[unit].hard_type = IE_STARLAN10;
|
|
ie_softc[unit].ie_reset_586 = sl_reset_586;
|
|
ie_softc[unit].ie_chan_attn = sl_chan_attn;
|
|
break;
|
|
case EN100_BOARD:
|
|
ie_softc[unit].hard_type = IE_EN100;
|
|
ie_softc[unit].ie_reset_586 = sl_reset_586;
|
|
ie_softc[unit].ie_chan_attn = sl_chan_attn;
|
|
break;
|
|
case SLFIBER_BOARD:
|
|
ie_softc[unit].hard_type = IE_SLFIBER;
|
|
ie_softc[unit].ie_reset_586 = sl_reset_586;
|
|
ie_softc[unit].ie_chan_attn = sl_chan_attn;
|
|
break;
|
|
|
|
/*
|
|
* Anything else is not recognized or cannot be used.
|
|
*/
|
|
default:
|
|
return (0);
|
|
}
|
|
|
|
ie_softc[unit].hard_vers = SL_REV(c);
|
|
|
|
/*
|
|
* Divine memory size on-board the card. Ususally 16k.
|
|
*/
|
|
find_ie_mem_size(unit);
|
|
|
|
if (!ie_softc[unit].iosize) {
|
|
return (0);
|
|
}
|
|
dvp->id_msize = ie_softc[unit].iosize;
|
|
|
|
switch (ie_softc[unit].hard_type) {
|
|
case IE_EN100:
|
|
case IE_STARLAN10:
|
|
case IE_SLFIBER:
|
|
sl_read_ether(unit, ie_softc[unit].arpcom.ac_enaddr);
|
|
break;
|
|
|
|
default:
|
|
if (bootverbose)
|
|
printf("ie%d: unknown AT&T board type code %d\n", unit,
|
|
ie_softc[unit].hard_type);
|
|
return (0);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
|
|
static int
|
|
el_probe(struct isa_device *dvp)
|
|
{
|
|
struct ie_softc *sc = &ie_softc[dvp->id_unit];
|
|
u_char c;
|
|
int i;
|
|
u_char signature[] = "*3COM*";
|
|
int unit = dvp->id_unit;
|
|
|
|
sc->unit = unit;
|
|
sc->port = dvp->id_iobase;
|
|
sc->iomembot = dvp->id_maddr;
|
|
sc->bus_use = 0;
|
|
|
|
/* Need this for part of the probe. */
|
|
sc->ie_reset_586 = el_reset_586;
|
|
sc->ie_chan_attn = el_chan_attn;
|
|
|
|
/* Reset and put card in CONFIG state without changing address. */
|
|
elink_reset();
|
|
outb(ELINK_ID_PORT, 0x00);
|
|
elink_idseq(ELINK_507_POLY);
|
|
elink_idseq(ELINK_507_POLY);
|
|
outb(ELINK_ID_PORT, 0xff);
|
|
|
|
c = inb(PORT + IE507_MADDR);
|
|
if (c & 0x20) {
|
|
#ifdef DEBUG
|
|
printf("ie%d: can't map 3C507 RAM in high memory\n", unit);
|
|
#endif
|
|
return (0);
|
|
}
|
|
/* go to RUN state */
|
|
outb(ELINK_ID_PORT, 0x00);
|
|
elink_idseq(ELINK_507_POLY);
|
|
outb(ELINK_ID_PORT, 0x00);
|
|
|
|
outb(PORT + IE507_CTRL, EL_CTRL_NRST);
|
|
|
|
for (i = 0; i < 6; i++)
|
|
if (inb(PORT + i) != signature[i])
|
|
return (0);
|
|
|
|
c = inb(PORT + IE507_IRQ) & 0x0f;
|
|
|
|
if (dvp->id_irq != (1 << c)) {
|
|
printf("ie%d: kernel configured irq %d "
|
|
"doesn't match board configured irq %d\n",
|
|
unit, ffs(dvp->id_irq) - 1, c);
|
|
return (0);
|
|
}
|
|
c = (inb(PORT + IE507_MADDR) & 0x1c) + 0xc0;
|
|
|
|
if (kvtop(dvp->id_maddr) != ((int) c << 12)) {
|
|
printf("ie%d: kernel configured maddr %lx "
|
|
"doesn't match board configured maddr %x\n",
|
|
unit, kvtop(dvp->id_maddr), (int) c << 12);
|
|
return (0);
|
|
}
|
|
outb(PORT + IE507_CTRL, EL_CTRL_NORMAL);
|
|
|
|
sc->hard_type = IE_3C507;
|
|
sc->hard_vers = 0; /* 3C507 has no version number. */
|
|
|
|
/*
|
|
* Divine memory size on-board the card.
|
|
*/
|
|
find_ie_mem_size(unit);
|
|
|
|
if (!sc->iosize) {
|
|
printf("ie%d: can't find shared memory\n", unit);
|
|
outb(PORT + IE507_CTRL, EL_CTRL_NRST);
|
|
return (0);
|
|
}
|
|
if (!dvp->id_msize)
|
|
dvp->id_msize = sc->iosize;
|
|
else if (dvp->id_msize != sc->iosize) {
|
|
printf("ie%d: kernel configured msize %d "
|
|
"doesn't match board configured msize %d\n",
|
|
unit, dvp->id_msize, sc->iosize);
|
|
outb(PORT + IE507_CTRL, EL_CTRL_NRST);
|
|
return (0);
|
|
}
|
|
sl_read_ether(unit, ie_softc[unit].arpcom.ac_enaddr);
|
|
|
|
/* Clear the interrupt latch just in case. */
|
|
outb(PORT + IE507_ICTRL, 1);
|
|
|
|
return (16);
|
|
}
|
|
|
|
|
|
static int
|
|
ni_probe(struct isa_device *dvp)
|
|
{
|
|
int unit = dvp->id_unit;
|
|
int boardtype, c;
|
|
|
|
ie_softc[unit].port = dvp->id_iobase;
|
|
ie_softc[unit].iomembot = dvp->id_maddr;
|
|
ie_softc[unit].iomem = 0;
|
|
ie_softc[unit].bus_use = 1;
|
|
|
|
boardtype = inb(PORT + IEATT_REVISION);
|
|
c = inb(PORT + IEATT_REVISION + 1);
|
|
boardtype = boardtype + (c << 8);
|
|
switch (boardtype) {
|
|
case 0x5500: /* This is the magic cookie for the NI5210 */
|
|
ie_softc[unit].hard_type = IE_NI5210;
|
|
ie_softc[unit].ie_reset_586 = sl_reset_586;
|
|
ie_softc[unit].ie_chan_attn = sl_chan_attn;
|
|
break;
|
|
|
|
/*
|
|
* Anything else is not recognized or cannot be used.
|
|
*/
|
|
default:
|
|
return (0);
|
|
}
|
|
|
|
ie_softc[unit].hard_vers = 0;
|
|
|
|
/*
|
|
* Divine memory size on-board the card. Either 8 or 16k.
|
|
*/
|
|
find_ie_mem_size(unit);
|
|
|
|
if (!ie_softc[unit].iosize) {
|
|
return (0);
|
|
}
|
|
if (!dvp->id_msize)
|
|
dvp->id_msize = ie_softc[unit].iosize;
|
|
else if (dvp->id_msize != ie_softc[unit].iosize) {
|
|
printf("ie%d: kernel configured msize %d "
|
|
"doesn't match board configured msize %d\n",
|
|
unit, dvp->id_msize, ie_softc[unit].iosize);
|
|
return (0);
|
|
}
|
|
sl_read_ether(unit, ie_softc[unit].arpcom.ac_enaddr);
|
|
|
|
return (8);
|
|
|
|
}
|
|
|
|
|
|
static void
|
|
ee16_shutdown(int howto, void *sc)
|
|
{
|
|
struct ie_softc *ie = (struct ie_softc *)sc;
|
|
int unit = ie - &ie_softc[0];
|
|
|
|
ee16_reset_586(unit);
|
|
outb(PORT + IEE16_ECTRL, IEE16_RESET_ASIC);
|
|
outb(PORT + IEE16_ECTRL, 0);
|
|
}
|
|
|
|
|
|
/* Taken almost exactly from Rod's if_ix.c. */
|
|
|
|
int
|
|
ee16_probe(struct isa_device *dvp)
|
|
{
|
|
struct ie_softc *sc = &ie_softc[dvp->id_unit];
|
|
|
|
int i;
|
|
int unit = dvp->id_unit;
|
|
u_short board_id, id_var1, id_var2, checksum = 0;
|
|
u_short eaddrtemp, irq;
|
|
u_short pg, adjust, decode, edecode;
|
|
u_char bart_config;
|
|
u_long bd_maddr;
|
|
|
|
short irq_translate[] = {0, IRQ9, IRQ3, IRQ4, IRQ5, IRQ10, IRQ11, 0};
|
|
char irq_encode[] = {0, 0, 0, 2, 3, 4, 0, 0, 0, 1, 5, 6, 0, 0, 0, 0};
|
|
|
|
/* Need this for part of the probe. */
|
|
sc->ie_reset_586 = ee16_reset_586;
|
|
sc->ie_chan_attn = ee16_chan_attn;
|
|
|
|
/* unsure if this is necessary */
|
|
sc->bus_use = 0;
|
|
|
|
/* reset any ee16 at the current iobase */
|
|
outb(dvp->id_iobase + IEE16_ECTRL, IEE16_RESET_ASIC);
|
|
outb(dvp->id_iobase + IEE16_ECTRL, 0);
|
|
DELAY(240);
|
|
|
|
/* now look for ee16. */
|
|
board_id = id_var1 = id_var2 = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
id_var1 = inb(dvp->id_iobase + IEE16_ID_PORT);
|
|
id_var2 = ((id_var1 & 0x03) << 2);
|
|
board_id |= ((id_var1 >> 4) << id_var2);
|
|
}
|
|
|
|
if (board_id != IEE16_ID) {
|
|
printf("ie%d: unknown board_id: %x\n", unit, board_id);
|
|
return (0);
|
|
}
|
|
/* need sc->port for ee16_read_eeprom */
|
|
sc->port = dvp->id_iobase;
|
|
sc->hard_type = IE_EE16;
|
|
|
|
/*
|
|
* The shared RAM location on the EE16 is encoded into bits 3-7 of
|
|
* EEPROM location 6. We zero the upper byte, and shift the 5 bits
|
|
* right 3. The resulting number tells us the RAM location.
|
|
* Because the EE16 supports either 16k or 32k of shared RAM, we
|
|
* only worry about the 32k locations.
|
|
*
|
|
* NOTE: if a 64k EE16 exists, it should be added to this switch. then
|
|
* the ia->ia_msize would need to be set per case statement.
|
|
*
|
|
* value msize location ===== ===== ======== 0x03 0x8000
|
|
* 0xCC000 0x06 0x8000 0xD0000 0x0C 0x8000 0xD4000 0x18
|
|
* 0x8000 0xD8000
|
|
*
|
|
*/
|
|
|
|
bd_maddr = 0;
|
|
i = (ee16_read_eeprom(sc, 6) & 0x00ff) >> 3;
|
|
switch (i) {
|
|
case 0x03:
|
|
bd_maddr = 0xCC000;
|
|
break;
|
|
case 0x06:
|
|
bd_maddr = 0xD0000;
|
|
break;
|
|
case 0x0c:
|
|
bd_maddr = 0xD4000;
|
|
break;
|
|
case 0x18:
|
|
bd_maddr = 0xD8000;
|
|
break;
|
|
default:
|
|
bd_maddr = 0;
|
|
break;
|
|
}
|
|
dvp->id_msize = 0x8000;
|
|
if (kvtop(dvp->id_maddr) != bd_maddr) {
|
|
printf("ie%d: kernel configured maddr %lx "
|
|
"doesn't match board configured maddr %lx\n",
|
|
unit, kvtop(dvp->id_maddr), bd_maddr);
|
|
}
|
|
sc->iomembot = dvp->id_maddr;
|
|
sc->iomem = 0; /* XXX some probes set this and some don't */
|
|
sc->iosize = dvp->id_msize;
|
|
|
|
/* need to put the 586 in RESET while we access the eeprom. */
|
|
outb(PORT + IEE16_ECTRL, IEE16_RESET_586);
|
|
|
|
/* read the eeprom and checksum it, should == IEE16_ID */
|
|
for (i = 0; i < 0x40; i++)
|
|
checksum += ee16_read_eeprom(sc, i);
|
|
|
|
if (checksum != IEE16_ID) {
|
|
printf("ie%d: invalid eeprom checksum: %x\n", unit, checksum);
|
|
return (0);
|
|
}
|
|
/*
|
|
* Size and test the memory on the board. The size of the memory
|
|
* can be one of 16k, 32k, 48k or 64k. It can be located in the
|
|
* address range 0xC0000 to 0xEFFFF on 16k boundaries.
|
|
*
|
|
* If the size does not match the passed in memory allocation size
|
|
* issue a warning, but continue with the minimum of the two sizes.
|
|
*/
|
|
|
|
switch (dvp->id_msize) {
|
|
case 65536:
|
|
case 32768: /* XXX Only support 32k and 64k right now */
|
|
break;
|
|
case 16384:
|
|
case 49512:
|
|
default:
|
|
printf("ie%d: mapped memory size %d not supported\n", unit,
|
|
dvp->id_msize);
|
|
return (0);
|
|
break; /* NOTREACHED */
|
|
}
|
|
|
|
if ((kvtop(dvp->id_maddr) < 0xC0000) ||
|
|
(kvtop(dvp->id_maddr) + sc->iosize > 0xF0000)) {
|
|
printf("ie%d: mapped memory location %p out of range\n", unit,
|
|
(void *)dvp->id_maddr);
|
|
return (0);
|
|
}
|
|
pg = (kvtop(dvp->id_maddr) & 0x3C000) >> 14;
|
|
adjust = IEE16_MCTRL_FMCS16 | (pg & 0x3) << 2;
|
|
decode = ((1 << (sc->iosize / 16384)) - 1) << pg;
|
|
edecode = ((~decode >> 4) & 0xF0) | (decode >> 8);
|
|
|
|
/* ZZZ This should be checked against eeprom location 6, low byte */
|
|
outb(PORT + IEE16_MEMDEC, decode & 0xFF);
|
|
/* ZZZ This should be checked against eeprom location 1, low byte */
|
|
outb(PORT + IEE16_MCTRL, adjust);
|
|
/* ZZZ Now if I could find this one I would have it made */
|
|
outb(PORT + IEE16_MPCTRL, (~decode & 0xFF));
|
|
/* ZZZ I think this is location 6, high byte */
|
|
outb(PORT + IEE16_MECTRL, edecode); /* XXX disable Exxx */
|
|
|
|
(void) kvtop(dvp->id_maddr);
|
|
|
|
/*
|
|
* first prime the stupid bart DRAM controller so that it works,
|
|
* then zero out all of memory.
|
|
*/
|
|
bzero(sc->iomembot, 32);
|
|
bzero(sc->iomembot, sc->iosize);
|
|
|
|
/*
|
|
* Get the encoded interrupt number from the EEPROM, check it
|
|
* against the passed in IRQ. Issue a warning if they do not match.
|
|
* Always use the passed in IRQ, not the one in the EEPROM.
|
|
*/
|
|
irq = ee16_read_eeprom(sc, IEE16_EEPROM_CONFIG1);
|
|
irq = (irq & IEE16_EEPROM_IRQ) >> IEE16_EEPROM_IRQ_SHIFT;
|
|
irq = irq_translate[irq];
|
|
if (dvp->id_irq > 0) {
|
|
if (irq != dvp->id_irq) {
|
|
printf("ie%d: WARNING: board configured "
|
|
"at irq %u, using %u\n",
|
|
dvp->id_unit, dvp->id_irq, irq);
|
|
irq = dvp->id_unit;
|
|
}
|
|
} else {
|
|
dvp->id_irq = irq;
|
|
}
|
|
sc->irq_encoded = irq_encode[ffs(irq) - 1];
|
|
|
|
/*
|
|
* Get the hardware ethernet address from the EEPROM and save it in
|
|
* the softc for use by the 586 setup code.
|
|
*/
|
|
eaddrtemp = ee16_read_eeprom(sc, IEE16_EEPROM_ENET_HIGH);
|
|
sc->arpcom.ac_enaddr[1] = eaddrtemp & 0xFF;
|
|
sc->arpcom.ac_enaddr[0] = eaddrtemp >> 8;
|
|
eaddrtemp = ee16_read_eeprom(sc, IEE16_EEPROM_ENET_MID);
|
|
sc->arpcom.ac_enaddr[3] = eaddrtemp & 0xFF;
|
|
sc->arpcom.ac_enaddr[2] = eaddrtemp >> 8;
|
|
eaddrtemp = ee16_read_eeprom(sc, IEE16_EEPROM_ENET_LOW);
|
|
sc->arpcom.ac_enaddr[5] = eaddrtemp & 0xFF;
|
|
sc->arpcom.ac_enaddr[4] = eaddrtemp >> 8;
|
|
|
|
/* disable the board interrupts */
|
|
outb(PORT + IEE16_IRQ, sc->irq_encoded);
|
|
|
|
/* enable loopback to keep bad packets off the wire */
|
|
if (sc->hard_type == IE_EE16) {
|
|
bart_config = inb(PORT + IEE16_CONFIG);
|
|
bart_config |= IEE16_BART_LOOPBACK;
|
|
bart_config |= IEE16_BART_MCS16_TEST;/* inb doesn't get bit! */
|
|
outb(PORT + IEE16_CONFIG, bart_config);
|
|
bart_config = inb(PORT + IEE16_CONFIG);
|
|
}
|
|
/* take the board out of reset state */
|
|
outb(PORT + IEE16_ECTRL, 0);
|
|
DELAY(100);
|
|
|
|
if (!check_ie_present(unit, dvp->id_maddr, sc->iosize))
|
|
return (0);
|
|
|
|
return (16); /* return the number of I/O ports */
|
|
}
|
|
|
|
/*
|
|
* Taken almost exactly from Bill's if_is.c, then modified beyond recognition.
|
|
*/
|
|
int
|
|
ieattach(struct isa_device *dvp)
|
|
{
|
|
int factor;
|
|
int unit = dvp->id_unit;
|
|
struct ie_softc *ie = &ie_softc[unit];
|
|
struct ifnet *ifp = &ie->arpcom.ac_if;
|
|
size_t allocsize;
|
|
|
|
dvp->id_ointr = ieintr;
|
|
|
|
/*
|
|
* based on the amount of memory we have, allocate our tx and rx
|
|
* resources.
|
|
*/
|
|
factor = dvp->id_msize / 16384;
|
|
ie->nframes = factor * NFRAMES;
|
|
ie->nrxbufs = factor * NRXBUFS;
|
|
ie->ntxbufs = factor * NTXBUFS;
|
|
|
|
/*
|
|
* Since all of these guys are arrays of pointers, allocate as one
|
|
* big chunk and dole out accordingly.
|
|
*/
|
|
allocsize = sizeof(void *) * (ie->nframes
|
|
+ (ie->nrxbufs * 2)
|
|
+ (ie->ntxbufs * 3));
|
|
ie->rframes = (volatile struct ie_recv_frame_desc **) malloc(allocsize,
|
|
M_DEVBUF,
|
|
M_NOWAIT);
|
|
if (ie->rframes == NULL)
|
|
return (0);
|
|
ie->rbuffs =
|
|
(volatile struct ie_recv_buf_desc **)&ie->rframes[ie->nframes];
|
|
ie->cbuffs = (volatile u_char **)&ie->rbuffs[ie->nrxbufs];
|
|
ie->xmit_cmds =
|
|
(volatile struct ie_xmit_cmd **)&ie->cbuffs[ie->nrxbufs];
|
|
ie->xmit_buffs =
|
|
(volatile struct ie_xmit_buf **)&ie->xmit_cmds[ie->ntxbufs];
|
|
ie->xmit_cbuffs = (volatile u_char **)&ie->xmit_buffs[ie->ntxbufs];
|
|
|
|
ifp->if_softc = ie;
|
|
ifp->if_unit = unit;
|
|
ifp->if_name = iedriver.name;
|
|
ifp->if_mtu = ETHERMTU;
|
|
printf("ie%d: <%s R%d> address %6D\n", unit,
|
|
ie_hardware_names[ie->hard_type],
|
|
ie->hard_vers + 1,
|
|
ie->arpcom.ac_enaddr, ":");
|
|
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_output = ether_output;
|
|
ifp->if_start = iestart;
|
|
ifp->if_ioctl = ieioctl;
|
|
ifp->if_init = ieinit;
|
|
ifp->if_type = IFT_ETHER;
|
|
ifp->if_addrlen = 6;
|
|
ifp->if_hdrlen = 14;
|
|
|
|
if (ie->hard_type == IE_EE16)
|
|
at_shutdown(ee16_shutdown, ie, SHUTDOWN_POST_SYNC);
|
|
|
|
#if NBPF > 0
|
|
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
|
|
#endif
|
|
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* What to do upon receipt of an interrupt.
|
|
*/
|
|
static void
|
|
ieintr(int unit)
|
|
{
|
|
register struct ie_softc *ie = &ie_softc[unit];
|
|
register u_short status;
|
|
|
|
/* Clear the interrupt latch on the 3C507. */
|
|
if (ie->hard_type == IE_3C507
|
|
&& (inb(PORT + IE507_CTRL) & EL_CTRL_INTL))
|
|
outb(PORT + IE507_ICTRL, 1);
|
|
|
|
/* disable interrupts on the EE16. */
|
|
if (ie->hard_type == IE_EE16)
|
|
outb(PORT + IEE16_IRQ, ie->irq_encoded);
|
|
|
|
status = ie->scb->ie_status;
|
|
|
|
loop:
|
|
|
|
/* Don't ack interrupts which we didn't receive */
|
|
ie_ack(ie->scb, IE_ST_WHENCE & status, unit, ie->ie_chan_attn);
|
|
|
|
if (status & (IE_ST_RECV | IE_ST_RNR)) {
|
|
#ifdef DEBUG
|
|
in_ierint++;
|
|
if (ie_debug & IED_RINT)
|
|
printf("ie%d: rint\n", unit);
|
|
#endif
|
|
ierint(unit, ie);
|
|
#ifdef DEBUG
|
|
in_ierint--;
|
|
#endif
|
|
}
|
|
if (status & IE_ST_DONE) {
|
|
#ifdef DEBUG
|
|
in_ietint++;
|
|
if (ie_debug & IED_TINT)
|
|
printf("ie%d: tint\n", unit);
|
|
#endif
|
|
ietint(unit, ie);
|
|
#ifdef DEBUG
|
|
in_ietint--;
|
|
#endif
|
|
}
|
|
if (status & IE_ST_RNR) {
|
|
#ifdef DEBUG
|
|
if (ie_debug & IED_RNR)
|
|
printf("ie%d: rnr\n", unit);
|
|
#endif
|
|
iernr(unit, ie);
|
|
}
|
|
#ifdef DEBUG
|
|
if ((status & IE_ST_ALLDONE)
|
|
&& (ie_debug & IED_CNA))
|
|
printf("ie%d: cna\n", unit);
|
|
#endif
|
|
|
|
if ((status = ie->scb->ie_status) & IE_ST_WHENCE)
|
|
goto loop;
|
|
|
|
/* Clear the interrupt latch on the 3C507. */
|
|
if (ie->hard_type == IE_3C507)
|
|
outb(PORT + IE507_ICTRL, 1);
|
|
|
|
/* enable interrupts on the EE16. */
|
|
if (ie->hard_type == IE_EE16)
|
|
outb(PORT + IEE16_IRQ, ie->irq_encoded | IEE16_IRQ_ENABLE);
|
|
|
|
}
|
|
|
|
/*
|
|
* Process a received-frame interrupt.
|
|
*/
|
|
static int
|
|
ierint(int unit, struct ie_softc *ie)
|
|
{
|
|
int i, status;
|
|
static int timesthru = 1024;
|
|
|
|
i = ie->rfhead;
|
|
while (1) {
|
|
status = ie->rframes[i]->ie_fd_status;
|
|
|
|
if ((status & IE_FD_COMPLETE) && (status & IE_FD_OK)) {
|
|
ie->arpcom.ac_if.if_ipackets++;
|
|
if (!--timesthru) {
|
|
ie->arpcom.ac_if.if_ierrors +=
|
|
ie->scb->ie_err_crc +
|
|
ie->scb->ie_err_align +
|
|
ie->scb->ie_err_resource +
|
|
ie->scb->ie_err_overrun;
|
|
ie->scb->ie_err_crc = 0;
|
|
ie->scb->ie_err_align = 0;
|
|
ie->scb->ie_err_resource = 0;
|
|
ie->scb->ie_err_overrun = 0;
|
|
timesthru = 1024;
|
|
}
|
|
ie_readframe(unit, ie, i);
|
|
} else {
|
|
if (status & IE_FD_RNR) {
|
|
if (!(ie->scb->ie_status & IE_RU_READY)) {
|
|
ie->rframes[0]->ie_fd_next =
|
|
MK_16(MEM, ie->rbuffs[0]);
|
|
ie->scb->ie_recv_list =
|
|
MK_16(MEM, ie->rframes[0]);
|
|
command_and_wait(unit, IE_RU_START,
|
|
0, 0);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
i = (i + 1) % ie->nframes;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Process a command-complete interrupt. These are only generated by
|
|
* the transmission of frames. This routine is deceptively simple, since
|
|
* most of the real work is done by iestart().
|
|
*/
|
|
static int
|
|
ietint(int unit, struct ie_softc *ie)
|
|
{
|
|
int status;
|
|
int i;
|
|
|
|
ie->arpcom.ac_if.if_timer = 0;
|
|
ie->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
|
|
|
|
for (i = 0; i < ie->xmit_count; i++) {
|
|
status = ie->xmit_cmds[i]->ie_xmit_status;
|
|
|
|
if (status & IE_XS_LATECOLL) {
|
|
printf("ie%d: late collision\n", unit);
|
|
ie->arpcom.ac_if.if_collisions++;
|
|
ie->arpcom.ac_if.if_oerrors++;
|
|
} else if (status & IE_XS_NOCARRIER) {
|
|
printf("ie%d: no carrier\n", unit);
|
|
ie->arpcom.ac_if.if_oerrors++;
|
|
} else if (status & IE_XS_LOSTCTS) {
|
|
printf("ie%d: lost CTS\n", unit);
|
|
ie->arpcom.ac_if.if_oerrors++;
|
|
} else if (status & IE_XS_UNDERRUN) {
|
|
printf("ie%d: DMA underrun\n", unit);
|
|
ie->arpcom.ac_if.if_oerrors++;
|
|
} else if (status & IE_XS_EXCMAX) {
|
|
printf("ie%d: too many collisions\n", unit);
|
|
ie->arpcom.ac_if.if_collisions += 16;
|
|
ie->arpcom.ac_if.if_oerrors++;
|
|
} else {
|
|
ie->arpcom.ac_if.if_opackets++;
|
|
ie->arpcom.ac_if.if_collisions += status & IE_XS_MAXCOLL;
|
|
}
|
|
}
|
|
ie->xmit_count = 0;
|
|
|
|
/*
|
|
* If multicast addresses were added or deleted while we were
|
|
* transmitting, ie_mc_reset() set the want_mcsetup flag indicating
|
|
* that we should do it.
|
|
*/
|
|
if (ie->want_mcsetup) {
|
|
mc_setup(unit, (v_caddr_t) ie->xmit_cbuffs[0], ie->scb);
|
|
ie->want_mcsetup = 0;
|
|
}
|
|
/* Wish I knew why this seems to be necessary... */
|
|
ie->xmit_cmds[0]->ie_xmit_status |= IE_STAT_COMPL;
|
|
|
|
iestart(&ie->arpcom.ac_if);
|
|
return (0); /* shouldn't be necessary */
|
|
}
|
|
|
|
/*
|
|
* Process a receiver-not-ready interrupt. I believe that we get these
|
|
* when there aren't enough buffers to go around. For now (FIXME), we
|
|
* just restart the receiver, and hope everything's ok.
|
|
*/
|
|
static int
|
|
iernr(int unit, struct ie_softc *ie)
|
|
{
|
|
#ifdef doesnt_work
|
|
setup_rfa((v_caddr_t) ie->rframes[0], ie);
|
|
|
|
ie->scb->ie_recv_list = MK_16(MEM, ie_softc[unit].rframes[0]);
|
|
command_and_wait(unit, IE_RU_START, 0, 0);
|
|
#else
|
|
/* This doesn't work either, but it doesn't hang either. */
|
|
command_and_wait(unit, IE_RU_DISABLE, 0, 0); /* just in case */
|
|
setup_rfa((v_caddr_t) ie->rframes[0], ie); /* ignore cast-qual */
|
|
|
|
ie->scb->ie_recv_list = MK_16(MEM, ie_softc[unit].rframes[0]);
|
|
command_and_wait(unit, IE_RU_START, 0, 0); /* was ENABLE */
|
|
|
|
#endif
|
|
ie_ack(ie->scb, IE_ST_WHENCE, unit, ie->ie_chan_attn);
|
|
|
|
ie->arpcom.ac_if.if_ierrors++;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Compare two Ether/802 addresses for equality, inlined and
|
|
* unrolled for speed. I'd love to have an inline assembler
|
|
* version of this...
|
|
*/
|
|
static __inline int
|
|
ether_equal(u_char * one, u_char * two)
|
|
{
|
|
if (one[0] != two[0])
|
|
return (0);
|
|
if (one[1] != two[1])
|
|
return (0);
|
|
if (one[2] != two[2])
|
|
return (0);
|
|
if (one[3] != two[3])
|
|
return (0);
|
|
if (one[4] != two[4])
|
|
return (0);
|
|
if (one[5] != two[5])
|
|
return (0);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Check for a valid address. to_bpf is filled in with one of the following:
|
|
* 0 -> BPF doesn't get this packet
|
|
* 1 -> BPF does get this packet
|
|
* 2 -> BPF does get this packet, but we don't
|
|
* Return value is true if the packet is for us, and false otherwise.
|
|
*
|
|
* This routine is a mess, but it's also critical that it be as fast
|
|
* as possible. It could be made cleaner if we can assume that the
|
|
* only client which will fiddle with IFF_PROMISC is BPF. This is
|
|
* probably a good assumption, but we do not make it here. (Yet.)
|
|
*/
|
|
static __inline int
|
|
check_eh(struct ie_softc * ie, struct ether_header * eh, int *to_bpf)
|
|
{
|
|
int i;
|
|
|
|
switch (ie->promisc) {
|
|
case IFF_ALLMULTI:
|
|
/*
|
|
* Receiving all multicasts, but no unicasts except those
|
|
* destined for us.
|
|
*/
|
|
#if NBPF > 0
|
|
/* BPF gets this packet if anybody cares */
|
|
*to_bpf = (ie->arpcom.ac_if.if_bpf != 0);
|
|
#endif
|
|
if (eh->ether_dhost[0] & 1) {
|
|
return (1);
|
|
}
|
|
if (ether_equal(eh->ether_dhost, ie->arpcom.ac_enaddr))
|
|
return (1);
|
|
return (0);
|
|
|
|
case IFF_PROMISC:
|
|
/*
|
|
* Receiving all packets. These need to be passed on to
|
|
* BPF.
|
|
*/
|
|
#if NBPF > 0
|
|
*to_bpf = (ie->arpcom.ac_if.if_bpf != 0);
|
|
#endif
|
|
/* If for us, accept and hand up to BPF */
|
|
if (ether_equal(eh->ether_dhost, ie->arpcom.ac_enaddr))
|
|
return (1);
|
|
|
|
#if NBPF > 0
|
|
if (*to_bpf)
|
|
*to_bpf = 2; /* we don't need to see it */
|
|
#endif
|
|
|
|
/*
|
|
* Not a multicast, so BPF wants to see it but we don't.
|
|
*/
|
|
if (!(eh->ether_dhost[0] & 1))
|
|
return (1);
|
|
|
|
/*
|
|
* If it's one of our multicast groups, accept it and pass
|
|
* it up.
|
|
*/
|
|
for (i = 0; i < ie->mcast_count; i++) {
|
|
if (ether_equal(eh->ether_dhost,
|
|
(u_char *)&ie->mcast_addrs[i])) {
|
|
#if NBPF > 0
|
|
if (*to_bpf)
|
|
*to_bpf = 1;
|
|
#endif
|
|
return (1);
|
|
}
|
|
}
|
|
return (1);
|
|
|
|
case IFF_ALLMULTI | IFF_PROMISC:
|
|
/*
|
|
* Acting as a multicast router, and BPF running at the same
|
|
* time. Whew! (Hope this is a fast machine...)
|
|
*/
|
|
#if NBPF > 0
|
|
*to_bpf = (ie->arpcom.ac_if.if_bpf != 0);
|
|
#endif
|
|
/* We want to see multicasts. */
|
|
if (eh->ether_dhost[0] & 1)
|
|
return (1);
|
|
|
|
/* We want to see our own packets */
|
|
if (ether_equal(eh->ether_dhost, ie->arpcom.ac_enaddr))
|
|
return (1);
|
|
|
|
/* Anything else goes to BPF but nothing else. */
|
|
#if NBPF > 0
|
|
if (*to_bpf)
|
|
*to_bpf = 2;
|
|
#endif
|
|
return (1);
|
|
|
|
default:
|
|
/*
|
|
* Only accept unicast packets destined for us, or
|
|
* multicasts for groups that we belong to. For now, we
|
|
* assume that the '586 will only return packets that we
|
|
* asked it for. This isn't strictly true (it uses hashing
|
|
* for the multicast filter), but it will do in this case,
|
|
* and we want to get out of here as quickly as possible.
|
|
*/
|
|
#if NBPF > 0
|
|
*to_bpf = (ie->arpcom.ac_if.if_bpf != 0);
|
|
#endif
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* We want to isolate the bits that have meaning... This assumes that
|
|
* IE_RBUF_SIZE is an even power of two. If somehow the act_len exceeds
|
|
* the size of the buffer, then we are screwed anyway.
|
|
*/
|
|
static __inline int
|
|
ie_buflen(struct ie_softc * ie, int head)
|
|
{
|
|
return (ie->rbuffs[head]->ie_rbd_actual
|
|
& (IE_RBUF_SIZE | (IE_RBUF_SIZE - 1)));
|
|
}
|
|
|
|
static __inline int
|
|
ie_packet_len(int unit, struct ie_softc * ie)
|
|
{
|
|
int i;
|
|
int head = ie->rbhead;
|
|
int acc = 0;
|
|
|
|
do {
|
|
if (!(ie->rbuffs[ie->rbhead]->ie_rbd_actual & IE_RBD_USED)) {
|
|
#ifdef DEBUG
|
|
print_rbd(ie->rbuffs[ie->rbhead]);
|
|
#endif
|
|
log(LOG_ERR,
|
|
"ie%d: receive descriptors out of sync at %d\n",
|
|
unit, ie->rbhead);
|
|
iereset(unit);
|
|
return (-1);
|
|
}
|
|
i = ie->rbuffs[head]->ie_rbd_actual & IE_RBD_LAST;
|
|
|
|
acc += ie_buflen(ie, head);
|
|
head = (head + 1) % ie->nrxbufs;
|
|
} while (!i);
|
|
|
|
return (acc);
|
|
}
|
|
|
|
/*
|
|
* Read data off the interface, and turn it into an mbuf chain.
|
|
*
|
|
* This code is DRAMATICALLY different from the previous version; this
|
|
* version tries to allocate the entire mbuf chain up front, given the
|
|
* length of the data available. This enables us to allocate mbuf
|
|
* clusters in many situations where before we would have had a long
|
|
* chain of partially-full mbufs. This should help to speed up the
|
|
* operation considerably. (Provided that it works, of course.)
|
|
*/
|
|
static __inline int
|
|
ieget(int unit, struct ie_softc *ie, struct mbuf **mp,
|
|
struct ether_header *ehp, int *to_bpf)
|
|
{
|
|
struct mbuf *m, *top, **mymp;
|
|
int i;
|
|
int offset;
|
|
int totlen, resid;
|
|
int thismboff;
|
|
int head;
|
|
|
|
totlen = ie_packet_len(unit, ie);
|
|
if (totlen <= 0)
|
|
return (-1);
|
|
|
|
i = ie->rbhead;
|
|
|
|
/*
|
|
* Snarf the Ethernet header.
|
|
*/
|
|
bcopy((v_caddr_t) ie->cbuffs[i], (caddr_t) ehp, sizeof *ehp);
|
|
/* ignore cast-qual warning here */
|
|
|
|
/*
|
|
* As quickly as possible, check if this packet is for us. If not,
|
|
* don't waste a single cycle copying the rest of the packet in.
|
|
* This is only a consideration when FILTER is defined; i.e., when
|
|
* we are either running BPF or doing multicasting.
|
|
*/
|
|
if (!check_eh(ie, ehp, to_bpf)) {
|
|
ie_drop_packet_buffer(unit, ie);
|
|
ie->arpcom.ac_if.if_ierrors--; /* just this case, it's not an
|
|
* error
|
|
*/
|
|
return (-1);
|
|
}
|
|
totlen -= (offset = sizeof *ehp);
|
|
|
|
MGETHDR(*mp, M_DONTWAIT, MT_DATA);
|
|
if (!*mp) {
|
|
ie_drop_packet_buffer(unit, ie);
|
|
return (-1);
|
|
}
|
|
m = *mp;
|
|
m->m_pkthdr.rcvif = &ie->arpcom.ac_if;
|
|
m->m_len = MHLEN;
|
|
resid = m->m_pkthdr.len = totlen;
|
|
top = 0;
|
|
mymp = ⊤
|
|
|
|
/*
|
|
* This loop goes through and allocates mbufs for all the data we
|
|
* will be copying in. It does not actually do the copying yet.
|
|
*/
|
|
do { /* while(resid > 0) */
|
|
/*
|
|
* Try to allocate an mbuf to hold the data that we have.
|
|
* If we already allocated one, just get another one and
|
|
* stick it on the end (eventually). If we don't already
|
|
* have one, try to allocate an mbuf cluster big enough to
|
|
* hold the whole packet, if we think it's reasonable, or a
|
|
* single mbuf which may or may not be big enough. Got that?
|
|
*/
|
|
if (top) {
|
|
MGET(m, M_DONTWAIT, MT_DATA);
|
|
if (!m) {
|
|
m_freem(top);
|
|
ie_drop_packet_buffer(unit, ie);
|
|
return (-1);
|
|
}
|
|
m->m_len = MLEN;
|
|
}
|
|
if (resid >= MINCLSIZE) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if (m->m_flags & M_EXT)
|
|
m->m_len = min(resid, MCLBYTES);
|
|
} else {
|
|
if (resid < m->m_len) {
|
|
if (!top && resid + max_linkhdr <= m->m_len)
|
|
m->m_data += max_linkhdr;
|
|
m->m_len = resid;
|
|
}
|
|
}
|
|
resid -= m->m_len;
|
|
*mymp = m;
|
|
mymp = &m->m_next;
|
|
} while (resid > 0);
|
|
|
|
resid = totlen;
|
|
m = top;
|
|
thismboff = 0;
|
|
head = ie->rbhead;
|
|
|
|
/*
|
|
* Now we take the mbuf chain (hopefully only one mbuf most of the
|
|
* time) and stuff the data into it. There are no possible failures
|
|
* at or after this point.
|
|
*/
|
|
while (resid > 0) { /* while there's stuff left */
|
|
int thislen = ie_buflen(ie, head) - offset;
|
|
|
|
/*
|
|
* If too much data for the current mbuf, then fill the
|
|
* current one up, go to the next one, and try again.
|
|
*/
|
|
if (thislen > m->m_len - thismboff) {
|
|
int newlen = m->m_len - thismboff;
|
|
|
|
bcopy((v_caddr_t) (ie->cbuffs[head] + offset),
|
|
mtod(m, v_caddr_t) +thismboff, (unsigned) newlen);
|
|
/* ignore cast-qual warning */
|
|
m = m->m_next;
|
|
thismboff = 0; /* new mbuf, so no offset */
|
|
offset += newlen; /* we are now this far into
|
|
* the packet */
|
|
resid -= newlen; /* so there is this much left
|
|
* to get */
|
|
continue;
|
|
}
|
|
/*
|
|
* If there is more than enough space in the mbuf to hold
|
|
* the contents of this buffer, copy everything in, advance
|
|
* pointers, and so on.
|
|
*/
|
|
if (thislen < m->m_len - thismboff) {
|
|
bcopy((v_caddr_t) (ie->cbuffs[head] + offset),
|
|
mtod(m, caddr_t) +thismboff, (unsigned) thislen);
|
|
thismboff += thislen; /* we are this far into the
|
|
* mbuf */
|
|
resid -= thislen; /* and this much is left */
|
|
goto nextbuf;
|
|
}
|
|
/*
|
|
* Otherwise, there is exactly enough space to put this
|
|
* buffer's contents into the current mbuf. Do the
|
|
* combination of the above actions.
|
|
*/
|
|
bcopy((v_caddr_t) (ie->cbuffs[head] + offset),
|
|
mtod(m, caddr_t) + thismboff, (unsigned) thislen);
|
|
m = m->m_next;
|
|
thismboff = 0; /* new mbuf, start at the beginning */
|
|
resid -= thislen; /* and we are this far through */
|
|
|
|
/*
|
|
* Advance all the pointers. We can get here from either of
|
|
* the last two cases, but never the first.
|
|
*/
|
|
nextbuf:
|
|
offset = 0;
|
|
ie->rbuffs[head]->ie_rbd_actual = 0;
|
|
ie->rbuffs[head]->ie_rbd_length |= IE_RBD_LAST;
|
|
ie->rbhead = head = (head + 1) % ie->nrxbufs;
|
|
ie->rbuffs[ie->rbtail]->ie_rbd_length &= ~IE_RBD_LAST;
|
|
ie->rbtail = (ie->rbtail + 1) % ie->nrxbufs;
|
|
}
|
|
|
|
/*
|
|
* Unless something changed strangely while we were doing the copy,
|
|
* we have now copied everything in from the shared memory. This
|
|
* means that we are done.
|
|
*/
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Read frame NUM from unit UNIT (pre-cached as IE).
|
|
*
|
|
* This routine reads the RFD at NUM, and copies in the buffers from
|
|
* the list of RBD, then rotates the RBD and RFD lists so that the receiver
|
|
* doesn't start complaining. Trailers are DROPPED---there's no point
|
|
* in wasting time on confusing code to deal with them. Hopefully,
|
|
* this machine will never ARP for trailers anyway.
|
|
*/
|
|
static void
|
|
ie_readframe(int unit, struct ie_softc *ie, int num/* frame number to read */)
|
|
{
|
|
struct ie_recv_frame_desc rfd;
|
|
struct mbuf *m = 0;
|
|
struct ether_header eh;
|
|
|
|
#if NBPF > 0
|
|
int bpf_gets_it = 0;
|
|
|
|
#endif
|
|
|
|
bcopy((v_caddr_t) (ie->rframes[num]), &rfd,
|
|
sizeof(struct ie_recv_frame_desc));
|
|
|
|
/*
|
|
* Immediately advance the RFD list, since we we have copied ours
|
|
* now.
|
|
*/
|
|
ie->rframes[num]->ie_fd_status = 0;
|
|
ie->rframes[num]->ie_fd_last |= IE_FD_LAST;
|
|
ie->rframes[ie->rftail]->ie_fd_last &= ~IE_FD_LAST;
|
|
ie->rftail = (ie->rftail + 1) % ie->nframes;
|
|
ie->rfhead = (ie->rfhead + 1) % ie->nframes;
|
|
|
|
if (rfd.ie_fd_status & IE_FD_OK) {
|
|
#if NBPF > 0
|
|
if (ieget(unit, ie, &m, &eh, &bpf_gets_it)) {
|
|
#else
|
|
if (ieget(unit, ie, &m, &eh, (int *)0)) {
|
|
#endif
|
|
ie->arpcom.ac_if.if_ierrors++; /* this counts as an
|
|
* error */
|
|
return;
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
if (ie_debug & IED_READFRAME) {
|
|
printf("ie%d: frame from ether %6D type %x\n", unit,
|
|
eh.ether_shost, ":", (unsigned) eh.ether_type);
|
|
}
|
|
if (ntohs(eh.ether_type) > ETHERTYPE_TRAIL
|
|
&& ntohs(eh.ether_type) < (ETHERTYPE_TRAIL + ETHERTYPE_NTRAILER))
|
|
printf("received trailer!\n");
|
|
#endif
|
|
|
|
if (!m)
|
|
return;
|
|
|
|
if (last_not_for_us) {
|
|
m_freem(last_not_for_us);
|
|
last_not_for_us = 0;
|
|
}
|
|
#if NBPF > 0
|
|
/*
|
|
* Check for a BPF filter; if so, hand it up. Note that we have to
|
|
* stick an extra mbuf up front, because bpf_mtap expects to have
|
|
* the ether header at the front. It doesn't matter that this
|
|
* results in an ill-formatted mbuf chain, since BPF just looks at
|
|
* the data. (It doesn't try to free the mbuf, tho' it will make a
|
|
* copy for tcpdump.)
|
|
*/
|
|
if (bpf_gets_it) {
|
|
struct mbuf m0;
|
|
|
|
m0.m_len = sizeof eh;
|
|
m0.m_data = (caddr_t)&eh;
|
|
m0.m_next = m;
|
|
|
|
/* Pass it up */
|
|
bpf_mtap(&ie->arpcom.ac_if, &m0);
|
|
}
|
|
/*
|
|
* A signal passed up from the filtering code indicating that the
|
|
* packet is intended for BPF but not for the protocol machinery. We
|
|
* can save a few cycles by not handing it off to them.
|
|
*/
|
|
if (bpf_gets_it == 2) {
|
|
last_not_for_us = m;
|
|
return;
|
|
}
|
|
#endif /* NBPF > 0 */
|
|
/*
|
|
* In here there used to be code to check destination addresses upon
|
|
* receipt of a packet. We have deleted that code, and replaced it
|
|
* with code to check the address much earlier in the cycle, before
|
|
* copying the data in; this saves us valuable cycles when operating
|
|
* as a multicast router or when using BPF.
|
|
*/
|
|
|
|
/*
|
|
* Finally pass this packet up to higher layers.
|
|
*/
|
|
ether_input(&ie->arpcom.ac_if, &eh, m);
|
|
}
|
|
|
|
static void
|
|
ie_drop_packet_buffer(int unit, struct ie_softc * ie)
|
|
{
|
|
int i;
|
|
|
|
do {
|
|
/*
|
|
* This means we are somehow out of sync. So, we reset the
|
|
* adapter.
|
|
*/
|
|
if (!(ie->rbuffs[ie->rbhead]->ie_rbd_actual & IE_RBD_USED)) {
|
|
#ifdef DEBUG
|
|
print_rbd(ie->rbuffs[ie->rbhead]);
|
|
#endif
|
|
log(LOG_ERR, "ie%d: receive descriptors out of sync at %d\n",
|
|
unit, ie->rbhead);
|
|
iereset(unit);
|
|
return;
|
|
}
|
|
i = ie->rbuffs[ie->rbhead]->ie_rbd_actual & IE_RBD_LAST;
|
|
|
|
ie->rbuffs[ie->rbhead]->ie_rbd_length |= IE_RBD_LAST;
|
|
ie->rbuffs[ie->rbhead]->ie_rbd_actual = 0;
|
|
ie->rbhead = (ie->rbhead + 1) % ie->nrxbufs;
|
|
ie->rbuffs[ie->rbtail]->ie_rbd_length &= ~IE_RBD_LAST;
|
|
ie->rbtail = (ie->rbtail + 1) % ie->nrxbufs;
|
|
} while (!i);
|
|
}
|
|
|
|
|
|
/*
|
|
* Start transmission on an interface.
|
|
*/
|
|
static void
|
|
iestart(struct ifnet *ifp)
|
|
{
|
|
struct ie_softc *ie = ifp->if_softc;
|
|
struct mbuf *m0, *m;
|
|
volatile unsigned char *buffer;
|
|
u_short len;
|
|
|
|
/*
|
|
* This is not really volatile, in this routine, but it makes gcc
|
|
* happy.
|
|
*/
|
|
volatile u_short *bptr = &ie->scb->ie_command_list;
|
|
|
|
if (!(ifp->if_flags & IFF_RUNNING))
|
|
return;
|
|
if (ifp->if_flags & IFF_OACTIVE)
|
|
return;
|
|
|
|
do {
|
|
IF_DEQUEUE(&ie->arpcom.ac_if.if_snd, m);
|
|
if (!m)
|
|
break;
|
|
|
|
buffer = ie->xmit_cbuffs[ie->xmit_count];
|
|
len = 0;
|
|
|
|
for (m0 = m; m && len < IE_BUF_LEN; m = m->m_next) {
|
|
bcopy(mtod(m, caddr_t), buffer, m->m_len);
|
|
buffer += m->m_len;
|
|
len += m->m_len;
|
|
}
|
|
|
|
m_freem(m0);
|
|
len = max(len, ETHER_MIN_LEN);
|
|
|
|
#if NBPF > 0
|
|
/*
|
|
* See if bpf is listening on this interface, let it see the
|
|
* packet before we commit it to the wire.
|
|
*/
|
|
if (ie->arpcom.ac_if.if_bpf)
|
|
bpf_tap(&ie->arpcom.ac_if,
|
|
(void *)ie->xmit_cbuffs[ie->xmit_count], len);
|
|
#endif
|
|
|
|
ie->xmit_buffs[ie->xmit_count]->ie_xmit_flags =
|
|
IE_XMIT_LAST|len;
|
|
ie->xmit_buffs[ie->xmit_count]->ie_xmit_next = 0xffff;
|
|
ie->xmit_buffs[ie->xmit_count]->ie_xmit_buf =
|
|
MK_24(ie->iomem, ie->xmit_cbuffs[ie->xmit_count]);
|
|
|
|
ie->xmit_cmds[ie->xmit_count]->com.ie_cmd_cmd = IE_CMD_XMIT;
|
|
ie->xmit_cmds[ie->xmit_count]->ie_xmit_status = 0;
|
|
ie->xmit_cmds[ie->xmit_count]->ie_xmit_desc =
|
|
MK_16(ie->iomem, ie->xmit_buffs[ie->xmit_count]);
|
|
|
|
*bptr = MK_16(ie->iomem, ie->xmit_cmds[ie->xmit_count]);
|
|
bptr = &ie->xmit_cmds[ie->xmit_count]->com.ie_cmd_link;
|
|
ie->xmit_count++;
|
|
} while (ie->xmit_count < ie->ntxbufs);
|
|
|
|
/*
|
|
* If we queued up anything for transmission, send it.
|
|
*/
|
|
if (ie->xmit_count) {
|
|
ie->xmit_cmds[ie->xmit_count - 1]->com.ie_cmd_cmd |=
|
|
IE_CMD_LAST | IE_CMD_INTR;
|
|
|
|
/*
|
|
* By passing the command pointer as a null, we tell
|
|
* command_and_wait() to pretend that this isn't an action
|
|
* command. I wish I understood what was happening here.
|
|
*/
|
|
command_and_wait(ifp->if_unit, IE_CU_START, 0, 0);
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Check to see if there's an 82586 out there.
|
|
*/
|
|
static int
|
|
check_ie_present(int unit, caddr_t where, unsigned size)
|
|
{
|
|
volatile struct ie_sys_conf_ptr *scp;
|
|
volatile struct ie_int_sys_conf_ptr *iscp;
|
|
volatile struct ie_sys_ctl_block *scb;
|
|
u_long realbase;
|
|
int s;
|
|
|
|
s = splimp();
|
|
|
|
realbase = (uintptr_t) where + size - (1 << 24);
|
|
|
|
scp = (volatile struct ie_sys_conf_ptr *) (uintptr_t)
|
|
(realbase + IE_SCP_ADDR);
|
|
bzero((volatile char *) scp, sizeof *scp);
|
|
|
|
/*
|
|
* First we put the ISCP at the bottom of memory; this tests to make
|
|
* sure that our idea of the size of memory is the same as the
|
|
* controller's. This is NOT where the ISCP will be in normal
|
|
* operation.
|
|
*/
|
|
iscp = (volatile struct ie_int_sys_conf_ptr *) where;
|
|
bzero((volatile char *)iscp, sizeof *iscp);
|
|
|
|
scb = (volatile struct ie_sys_ctl_block *) where;
|
|
bzero((volatile char *)scb, sizeof *scb);
|
|
|
|
scp->ie_bus_use = ie_softc[unit].bus_use; /* 8-bit or 16-bit */
|
|
scp->ie_iscp_ptr = (caddr_t) (uintptr_t)
|
|
((volatile char *) iscp - (volatile char *) (uintptr_t) realbase);
|
|
|
|
iscp->ie_busy = 1;
|
|
iscp->ie_scb_offset = MK_16(realbase, scb) + 256;
|
|
|
|
(*ie_softc[unit].ie_reset_586) (unit);
|
|
(*ie_softc[unit].ie_chan_attn) (unit);
|
|
|
|
DELAY(100); /* wait a while... */
|
|
|
|
if (iscp->ie_busy) {
|
|
splx(s);
|
|
return (0);
|
|
}
|
|
/*
|
|
* Now relocate the ISCP to its real home, and reset the controller
|
|
* again.
|
|
*/
|
|
iscp = (void *) Align((caddr_t) (uintptr_t)
|
|
(realbase + IE_SCP_ADDR -
|
|
sizeof(struct ie_int_sys_conf_ptr)));
|
|
bzero((volatile char *) iscp, sizeof *iscp); /* ignore cast-qual */
|
|
|
|
scp->ie_iscp_ptr = (caddr_t) (uintptr_t)
|
|
((volatile char *) iscp - (volatile char *) (uintptr_t) realbase);
|
|
|
|
iscp->ie_busy = 1;
|
|
iscp->ie_scb_offset = MK_16(realbase, scb);
|
|
|
|
(*ie_softc[unit].ie_reset_586) (unit);
|
|
(*ie_softc[unit].ie_chan_attn) (unit);
|
|
|
|
DELAY(100);
|
|
|
|
if (iscp->ie_busy) {
|
|
splx(s);
|
|
return (0);
|
|
}
|
|
ie_softc[unit].iosize = size;
|
|
ie_softc[unit].iomem = (caddr_t) (uintptr_t) realbase;
|
|
|
|
ie_softc[unit].iscp = iscp;
|
|
ie_softc[unit].scb = scb;
|
|
|
|
/*
|
|
* Acknowledge any interrupts we may have caused...
|
|
*/
|
|
ie_ack(scb, IE_ST_WHENCE, unit, ie_softc[unit].ie_chan_attn);
|
|
splx(s);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Divine the memory size of ie board UNIT.
|
|
* Better hope there's nothing important hiding just below the ie card...
|
|
*/
|
|
static void
|
|
find_ie_mem_size(int unit)
|
|
{
|
|
unsigned size;
|
|
|
|
ie_softc[unit].iosize = 0;
|
|
|
|
for (size = 65536; size >= 8192; size -= 8192) {
|
|
if (check_ie_present(unit, ie_softc[unit].iomembot, size)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
void
|
|
el_reset_586(int unit)
|
|
{
|
|
outb(PORT + IE507_CTRL, EL_CTRL_RESET);
|
|
DELAY(100);
|
|
outb(PORT + IE507_CTRL, EL_CTRL_NORMAL);
|
|
DELAY(100);
|
|
}
|
|
|
|
void
|
|
sl_reset_586(int unit)
|
|
{
|
|
outb(PORT + IEATT_RESET, 0);
|
|
}
|
|
|
|
void
|
|
ee16_reset_586(int unit)
|
|
{
|
|
outb(PORT + IEE16_ECTRL, IEE16_RESET_586);
|
|
DELAY(100);
|
|
outb(PORT + IEE16_ECTRL, 0);
|
|
DELAY(100);
|
|
}
|
|
|
|
void
|
|
el_chan_attn(int unit)
|
|
{
|
|
outb(PORT + IE507_ATTN, 1);
|
|
}
|
|
|
|
void
|
|
sl_chan_attn(int unit)
|
|
{
|
|
outb(PORT + IEATT_ATTN, 0);
|
|
}
|
|
|
|
void
|
|
ee16_chan_attn(int unit)
|
|
{
|
|
outb(PORT + IEE16_ATTN, 0);
|
|
}
|
|
|
|
u_short
|
|
ee16_read_eeprom(struct ie_softc *sc, int location)
|
|
{
|
|
int ectrl, edata;
|
|
|
|
ectrl = inb(sc->port + IEE16_ECTRL);
|
|
ectrl &= IEE16_ECTRL_MASK;
|
|
ectrl |= IEE16_ECTRL_EECS;
|
|
outb(sc->port + IEE16_ECTRL, ectrl);
|
|
|
|
ee16_eeprom_outbits(sc, IEE16_EEPROM_READ, IEE16_EEPROM_OPSIZE1);
|
|
ee16_eeprom_outbits(sc, location, IEE16_EEPROM_ADDR_SIZE);
|
|
edata = ee16_eeprom_inbits(sc);
|
|
ectrl = inb(sc->port + IEE16_ECTRL);
|
|
ectrl &= ~(IEE16_RESET_ASIC | IEE16_ECTRL_EEDI | IEE16_ECTRL_EECS);
|
|
outb(sc->port + IEE16_ECTRL, ectrl);
|
|
ee16_eeprom_clock(sc, 1);
|
|
ee16_eeprom_clock(sc, 0);
|
|
return edata;
|
|
}
|
|
|
|
void
|
|
ee16_eeprom_outbits(struct ie_softc *sc, int edata, int count)
|
|
{
|
|
int ectrl, i;
|
|
|
|
ectrl = inb(sc->port + IEE16_ECTRL);
|
|
ectrl &= ~IEE16_RESET_ASIC;
|
|
for (i = count - 1; i >= 0; i--) {
|
|
ectrl &= ~IEE16_ECTRL_EEDI;
|
|
if (edata & (1 << i)) {
|
|
ectrl |= IEE16_ECTRL_EEDI;
|
|
}
|
|
outb(sc->port + IEE16_ECTRL, ectrl);
|
|
DELAY(1); /* eeprom data must be setup for 0.4 uSec */
|
|
ee16_eeprom_clock(sc, 1);
|
|
ee16_eeprom_clock(sc, 0);
|
|
}
|
|
ectrl &= ~IEE16_ECTRL_EEDI;
|
|
outb(sc->port + IEE16_ECTRL, ectrl);
|
|
DELAY(1); /* eeprom data must be held for 0.4 uSec */
|
|
}
|
|
|
|
int
|
|
ee16_eeprom_inbits(struct ie_softc *sc)
|
|
{
|
|
int ectrl, edata, i;
|
|
|
|
ectrl = inb(sc->port + IEE16_ECTRL);
|
|
ectrl &= ~IEE16_RESET_ASIC;
|
|
for (edata = 0, i = 0; i < 16; i++) {
|
|
edata = edata << 1;
|
|
ee16_eeprom_clock(sc, 1);
|
|
ectrl = inb(sc->port + IEE16_ECTRL);
|
|
if (ectrl & IEE16_ECTRL_EEDO) {
|
|
edata |= 1;
|
|
}
|
|
ee16_eeprom_clock(sc, 0);
|
|
}
|
|
return (edata);
|
|
}
|
|
|
|
void
|
|
ee16_eeprom_clock(struct ie_softc *sc, int state)
|
|
{
|
|
int ectrl;
|
|
|
|
ectrl = inb(sc->port + IEE16_ECTRL);
|
|
ectrl &= ~(IEE16_RESET_ASIC | IEE16_ECTRL_EESK);
|
|
if (state) {
|
|
ectrl |= IEE16_ECTRL_EESK;
|
|
}
|
|
outb(sc->port + IEE16_ECTRL, ectrl);
|
|
DELAY(9); /* EESK must be stable for 8.38 uSec */
|
|
}
|
|
|
|
static __inline void
|
|
ee16_interrupt_enable(struct ie_softc *sc)
|
|
{
|
|
DELAY(100);
|
|
outb(sc->port + IEE16_IRQ, sc->irq_encoded | IEE16_IRQ_ENABLE);
|
|
DELAY(100);
|
|
}
|
|
|
|
void
|
|
sl_read_ether(int unit, unsigned char addr[6])
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 6; i++)
|
|
addr[i] = inb(PORT + i);
|
|
}
|
|
|
|
|
|
static void
|
|
iereset(int unit)
|
|
{
|
|
int s = splimp();
|
|
|
|
if (unit >= NIE) {
|
|
splx(s);
|
|
return;
|
|
}
|
|
printf("ie%d: reset\n", unit);
|
|
ie_softc[unit].arpcom.ac_if.if_flags &= ~IFF_UP;
|
|
ieioctl(&ie_softc[unit].arpcom.ac_if, SIOCSIFFLAGS, 0);
|
|
|
|
/*
|
|
* Stop i82586 dead in its tracks.
|
|
*/
|
|
if (command_and_wait(unit, IE_RU_ABORT | IE_CU_ABORT, 0, 0))
|
|
printf("ie%d: abort commands timed out\n", unit);
|
|
|
|
if (command_and_wait(unit, IE_RU_DISABLE | IE_CU_STOP, 0, 0))
|
|
printf("ie%d: disable commands timed out\n", unit);
|
|
|
|
#ifdef notdef
|
|
if (!check_ie_present(unit, ie_softc[unit].iomembot,
|
|
e_softc[unit].iosize))
|
|
panic("ie disappeared!");
|
|
#endif
|
|
|
|
ie_softc[unit].arpcom.ac_if.if_flags |= IFF_UP;
|
|
ieioctl(&ie_softc[unit].arpcom.ac_if, SIOCSIFFLAGS, 0);
|
|
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This is called if we time out.
|
|
*/
|
|
static void
|
|
chan_attn_timeout(void *rock)
|
|
{
|
|
*(int *) rock = 1;
|
|
}
|
|
|
|
/*
|
|
* Send a command to the controller and wait for it to either
|
|
* complete or be accepted, depending on the command. If the
|
|
* command pointer is null, then pretend that the command is
|
|
* not an action command. If the command pointer is not null,
|
|
* and the command is an action command, wait for
|
|
* ((volatile struct ie_cmd_common *)pcmd)->ie_cmd_status & MASK
|
|
* to become true.
|
|
*/
|
|
static int
|
|
command_and_wait(int unit, int cmd, volatile void *pcmd, int mask)
|
|
{
|
|
volatile struct ie_cmd_common *cc = pcmd;
|
|
volatile int timedout = 0;
|
|
struct callout_handle ch;
|
|
|
|
ie_softc[unit].scb->ie_command = (u_short) cmd;
|
|
|
|
if (IE_ACTION_COMMAND(cmd) && pcmd) {
|
|
(*ie_softc[unit].ie_chan_attn) (unit);
|
|
|
|
/*
|
|
* According to the packet driver, the minimum timeout
|
|
* should be .369 seconds, which we round up to .37.
|
|
*/
|
|
ch = timeout(chan_attn_timeout, (caddr_t)&timedout,
|
|
37 * hz / 100);
|
|
/* ignore cast-qual */
|
|
|
|
/*
|
|
* Now spin-lock waiting for status. This is not a very
|
|
* nice thing to do, but I haven't figured out how, or
|
|
* indeed if, we can put the process waiting for action to
|
|
* sleep. (We may be getting called through some other
|
|
* timeout running in the kernel.)
|
|
*/
|
|
while (1) {
|
|
if ((cc->ie_cmd_status & mask) || timedout)
|
|
break;
|
|
}
|
|
|
|
untimeout(chan_attn_timeout, (caddr_t)&timedout, ch);
|
|
/* ignore cast-qual */
|
|
|
|
return (timedout);
|
|
} else {
|
|
|
|
/*
|
|
* Otherwise, just wait for the command to be accepted.
|
|
*/
|
|
(*ie_softc[unit].ie_chan_attn) (unit);
|
|
|
|
while (ie_softc[unit].scb->ie_command); /* spin lock */
|
|
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Run the time-domain reflectometer...
|
|
*/
|
|
static void
|
|
run_tdr(int unit, volatile struct ie_tdr_cmd *cmd)
|
|
{
|
|
int result;
|
|
|
|
cmd->com.ie_cmd_status = 0;
|
|
cmd->com.ie_cmd_cmd = IE_CMD_TDR | IE_CMD_LAST;
|
|
cmd->com.ie_cmd_link = 0xffff;
|
|
cmd->ie_tdr_time = 0;
|
|
|
|
ie_softc[unit].scb->ie_command_list = MK_16(MEM, cmd);
|
|
cmd->ie_tdr_time = 0;
|
|
|
|
if (command_and_wait(unit, IE_CU_START, cmd, IE_STAT_COMPL))
|
|
result = 0x2000;
|
|
else
|
|
result = cmd->ie_tdr_time;
|
|
|
|
ie_ack(ie_softc[unit].scb, IE_ST_WHENCE, unit,
|
|
ie_softc[unit].ie_chan_attn);
|
|
|
|
if (result & IE_TDR_SUCCESS)
|
|
return;
|
|
|
|
if (result & IE_TDR_XCVR) {
|
|
printf("ie%d: transceiver problem\n", unit);
|
|
} else if (result & IE_TDR_OPEN) {
|
|
printf("ie%d: TDR detected an open %d clocks away\n", unit,
|
|
result & IE_TDR_TIME);
|
|
} else if (result & IE_TDR_SHORT) {
|
|
printf("ie%d: TDR detected a short %d clocks away\n", unit,
|
|
result & IE_TDR_TIME);
|
|
} else {
|
|
printf("ie%d: TDR returned unknown status %x\n", unit, result);
|
|
}
|
|
}
|
|
|
|
static void
|
|
start_receiver(int unit)
|
|
{
|
|
int s = splimp();
|
|
|
|
ie_softc[unit].scb->ie_recv_list = MK_16(MEM, ie_softc[unit].rframes[0]);
|
|
command_and_wait(unit, IE_RU_START, 0, 0);
|
|
|
|
ie_ack(ie_softc[unit].scb, IE_ST_WHENCE, unit, ie_softc[unit].ie_chan_attn);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Here is a helper routine for iernr() and ieinit(). This sets up
|
|
* the RFA.
|
|
*/
|
|
static v_caddr_t
|
|
setup_rfa(v_caddr_t ptr, struct ie_softc * ie)
|
|
{
|
|
volatile struct ie_recv_frame_desc *rfd = (volatile void *)ptr;
|
|
volatile struct ie_recv_buf_desc *rbd;
|
|
int i;
|
|
int unit = ie - &ie_softc[0];
|
|
|
|
/* First lay them out */
|
|
for (i = 0; i < ie->nframes; i++) {
|
|
ie->rframes[i] = rfd;
|
|
bzero((volatile char *) rfd, sizeof *rfd); /* ignore cast-qual */
|
|
rfd++;
|
|
}
|
|
|
|
ptr = Alignvol(rfd); /* ignore cast-qual */
|
|
|
|
/* Now link them together */
|
|
for (i = 0; i < ie->nframes; i++) {
|
|
ie->rframes[i]->ie_fd_next =
|
|
MK_16(MEM, ie->rframes[(i + 1) % ie->nframes]);
|
|
}
|
|
|
|
/* Finally, set the EOL bit on the last one. */
|
|
ie->rframes[ie->nframes - 1]->ie_fd_last |= IE_FD_LAST;
|
|
|
|
/*
|
|
* Now lay out some buffers for the incoming frames. Note that we
|
|
* set aside a bit of slop in each buffer, to make sure that we have
|
|
* enough space to hold a single frame in every buffer.
|
|
*/
|
|
rbd = (volatile void *) ptr;
|
|
|
|
for (i = 0; i < ie->nrxbufs; i++) {
|
|
ie->rbuffs[i] = rbd;
|
|
bzero((volatile char *)rbd, sizeof *rbd);
|
|
ptr = Alignvol(ptr + sizeof *rbd);
|
|
rbd->ie_rbd_length = IE_RBUF_SIZE;
|
|
rbd->ie_rbd_buffer = MK_24(MEM, ptr);
|
|
ie->cbuffs[i] = (volatile void *) ptr;
|
|
ptr += IE_RBUF_SIZE;
|
|
rbd = (volatile void *) ptr;
|
|
}
|
|
|
|
/* Now link them together */
|
|
for (i = 0; i < ie->nrxbufs; i++) {
|
|
ie->rbuffs[i]->ie_rbd_next =
|
|
MK_16(MEM, ie->rbuffs[(i + 1) % ie->nrxbufs]);
|
|
}
|
|
|
|
/* Tag EOF on the last one */
|
|
ie->rbuffs[ie->nrxbufs - 1]->ie_rbd_length |= IE_RBD_LAST;
|
|
|
|
/*
|
|
* We use the head and tail pointers on receive to keep track of the
|
|
* order in which RFDs and RBDs are used.
|
|
*/
|
|
ie->rfhead = 0;
|
|
ie->rftail = ie->nframes - 1;
|
|
ie->rbhead = 0;
|
|
ie->rbtail = ie->nrxbufs - 1;
|
|
|
|
ie->scb->ie_recv_list = MK_16(MEM, ie->rframes[0]);
|
|
ie->rframes[0]->ie_fd_buf_desc = MK_16(MEM, ie->rbuffs[0]);
|
|
|
|
ptr = Alignvol(ptr);
|
|
return (ptr);
|
|
}
|
|
|
|
/*
|
|
* Run the multicast setup command.
|
|
* Call at splimp().
|
|
*/
|
|
static int
|
|
mc_setup(int unit, v_caddr_t ptr,
|
|
volatile struct ie_sys_ctl_block * scb)
|
|
{
|
|
struct ie_softc *ie = &ie_softc[unit];
|
|
volatile struct ie_mcast_cmd *cmd = (volatile void *) ptr;
|
|
|
|
cmd->com.ie_cmd_status = 0;
|
|
cmd->com.ie_cmd_cmd = IE_CMD_MCAST | IE_CMD_LAST;
|
|
cmd->com.ie_cmd_link = 0xffff;
|
|
|
|
/* ignore cast-qual */
|
|
bcopy((v_caddr_t) ie->mcast_addrs, (v_caddr_t) cmd->ie_mcast_addrs,
|
|
ie->mcast_count * sizeof *ie->mcast_addrs);
|
|
|
|
cmd->ie_mcast_bytes = ie->mcast_count * 6; /* grrr... */
|
|
|
|
scb->ie_command_list = MK_16(MEM, cmd);
|
|
if (command_and_wait(unit, IE_CU_START, cmd, IE_STAT_COMPL)
|
|
|| !(cmd->com.ie_cmd_status & IE_STAT_OK)) {
|
|
printf("ie%d: multicast address setup command failed\n", unit);
|
|
return (0);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* This routine takes the environment generated by check_ie_present()
|
|
* and adds to it all the other structures we need to operate the adapter.
|
|
* This includes executing the CONFIGURE, IA-SETUP, and MC-SETUP commands,
|
|
* starting the receiver unit, and clearing interrupts.
|
|
*
|
|
* THIS ROUTINE MUST BE CALLED AT splimp() OR HIGHER.
|
|
*/
|
|
static void
|
|
ieinit(xsc)
|
|
void *xsc;
|
|
{
|
|
struct ie_softc *ie = xsc;
|
|
volatile struct ie_sys_ctl_block *scb = ie->scb;
|
|
v_caddr_t ptr;
|
|
int i;
|
|
int unit = ie->unit;
|
|
|
|
ptr = Alignvol((volatile char *) scb + sizeof *scb);
|
|
|
|
/*
|
|
* Send the configure command first.
|
|
*/
|
|
{
|
|
volatile struct ie_config_cmd *cmd = (volatile void *) ptr;
|
|
|
|
ie_setup_config(cmd, ie->promisc,
|
|
ie->hard_type == IE_STARLAN10);
|
|
cmd->com.ie_cmd_status = 0;
|
|
cmd->com.ie_cmd_cmd = IE_CMD_CONFIG | IE_CMD_LAST;
|
|
cmd->com.ie_cmd_link = 0xffff;
|
|
|
|
scb->ie_command_list = MK_16(MEM, cmd);
|
|
|
|
if (command_and_wait(unit, IE_CU_START, cmd, IE_STAT_COMPL)
|
|
|| !(cmd->com.ie_cmd_status & IE_STAT_OK)) {
|
|
printf("ie%d: configure command failed\n", unit);
|
|
return;
|
|
}
|
|
}
|
|
/*
|
|
* Now send the Individual Address Setup command.
|
|
*/
|
|
{
|
|
volatile struct ie_iasetup_cmd *cmd = (volatile void *) ptr;
|
|
|
|
cmd->com.ie_cmd_status = 0;
|
|
cmd->com.ie_cmd_cmd = IE_CMD_IASETUP | IE_CMD_LAST;
|
|
cmd->com.ie_cmd_link = 0xffff;
|
|
|
|
bcopy((volatile char *)ie_softc[unit].arpcom.ac_enaddr,
|
|
(volatile char *)&cmd->ie_address, sizeof cmd->ie_address);
|
|
scb->ie_command_list = MK_16(MEM, cmd);
|
|
if (command_and_wait(unit, IE_CU_START, cmd, IE_STAT_COMPL)
|
|
|| !(cmd->com.ie_cmd_status & IE_STAT_OK)) {
|
|
printf("ie%d: individual address "
|
|
"setup command failed\n", unit);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now run the time-domain reflectometer.
|
|
*/
|
|
run_tdr(unit, (volatile void *) ptr);
|
|
|
|
/*
|
|
* Acknowledge any interrupts we have generated thus far.
|
|
*/
|
|
ie_ack(ie->scb, IE_ST_WHENCE, unit, ie->ie_chan_attn);
|
|
|
|
/*
|
|
* Set up the RFA.
|
|
*/
|
|
ptr = setup_rfa(ptr, ie);
|
|
|
|
/*
|
|
* Finally, the transmit command and buffer are the last little bit
|
|
* of work.
|
|
*/
|
|
|
|
/* transmit command buffers */
|
|
for (i = 0; i < ie->ntxbufs; i++) {
|
|
ie->xmit_cmds[i] = (volatile void *) ptr;
|
|
ptr += sizeof *ie->xmit_cmds[i];
|
|
ptr = Alignvol(ptr);
|
|
ie->xmit_buffs[i] = (volatile void *)ptr;
|
|
ptr += sizeof *ie->xmit_buffs[i];
|
|
ptr = Alignvol(ptr);
|
|
}
|
|
|
|
/* transmit buffers */
|
|
for (i = 0; i < ie->ntxbufs - 1; i++) {
|
|
ie->xmit_cbuffs[i] = (volatile void *)ptr;
|
|
ptr += IE_BUF_LEN;
|
|
ptr = Alignvol(ptr);
|
|
}
|
|
ie->xmit_cbuffs[ie->ntxbufs - 1] = (volatile void *) ptr;
|
|
|
|
for (i = 1; i < ie->ntxbufs; i++) {
|
|
bzero((v_caddr_t) ie->xmit_cmds[i], sizeof *ie->xmit_cmds[i]);
|
|
bzero((v_caddr_t) ie->xmit_buffs[i], sizeof *ie->xmit_buffs[i]);
|
|
}
|
|
|
|
/*
|
|
* This must be coordinated with iestart() and ietint().
|
|
*/
|
|
ie->xmit_cmds[0]->ie_xmit_status = IE_STAT_COMPL;
|
|
|
|
/* take the ee16 out of loopback */
|
|
if (ie->hard_type == IE_EE16) {
|
|
u_int8_t bart_config;
|
|
|
|
bart_config = inb(PORT + IEE16_CONFIG);
|
|
bart_config &= ~IEE16_BART_LOOPBACK;
|
|
/* inb doesn't get bit! */
|
|
bart_config |= IEE16_BART_MCS16_TEST;
|
|
outb(PORT + IEE16_CONFIG, bart_config);
|
|
ee16_interrupt_enable(ie);
|
|
ee16_chan_attn(unit);
|
|
}
|
|
ie->arpcom.ac_if.if_flags |= IFF_RUNNING; /* tell higher levels
|
|
* we're here */
|
|
start_receiver(unit);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
ie_stop(int unit)
|
|
{
|
|
command_and_wait(unit, IE_RU_DISABLE, 0, 0);
|
|
}
|
|
|
|
static int
|
|
ieioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
int s, error = 0;
|
|
|
|
s = splimp();
|
|
|
|
switch (command) {
|
|
case SIOCSIFADDR:
|
|
case SIOCGIFADDR:
|
|
case SIOCSIFMTU:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
/*
|
|
* Note that this device doesn't have an "all multicast"
|
|
* mode, so we must turn on promiscuous mode and do the
|
|
* filtering manually.
|
|
*/
|
|
if ((ifp->if_flags & IFF_UP) == 0 &&
|
|
(ifp->if_flags & IFF_RUNNING)) {
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
ie_stop(ifp->if_unit);
|
|
} else if ((ifp->if_flags & IFF_UP) &&
|
|
(ifp->if_flags & IFF_RUNNING) == 0) {
|
|
ie_softc[ifp->if_unit].promisc =
|
|
ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI);
|
|
ieinit(ifp->if_softc);
|
|
} else if (ie_softc[ifp->if_unit].promisc ^
|
|
(ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))) {
|
|
ie_softc[ifp->if_unit].promisc =
|
|
ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI);
|
|
ieinit(ifp->if_softc);
|
|
}
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
/*
|
|
* Update multicast listeners
|
|
*/
|
|
/* reset multicast filtering */
|
|
ie_mc_reset(ifp->if_unit);
|
|
error = 0;
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
}
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
ie_mc_reset(int unit)
|
|
{
|
|
struct ie_softc *ie = &ie_softc[unit];
|
|
struct ifmultiaddr *ifma;
|
|
|
|
/*
|
|
* Step through the list of addresses.
|
|
*/
|
|
ie->mcast_count = 0;
|
|
for (ifma = ie->arpcom.ac_if.if_multiaddrs.lh_first; ifma;
|
|
ifma = ifma->ifma_link.le_next) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
|
|
/* XXX - this is broken... */
|
|
if (ie->mcast_count >= MAXMCAST) {
|
|
ie->arpcom.ac_if.if_flags |= IFF_ALLMULTI;
|
|
ieioctl(&ie->arpcom.ac_if, SIOCSIFFLAGS, (void *) 0);
|
|
goto setflag;
|
|
}
|
|
bcopy(LLADDR((struct sockaddr_dl *) ifma->ifma_addr),
|
|
&(ie->mcast_addrs[ie->mcast_count]), 6);
|
|
ie->mcast_count++;
|
|
}
|
|
|
|
setflag:
|
|
ie->want_mcsetup = 1;
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
static void
|
|
print_rbd(volatile struct ie_recv_buf_desc * rbd)
|
|
{
|
|
printf("RBD at %p:\n"
|
|
"actual %04x, next %04x, buffer %p\n"
|
|
"length %04x, mbz %04x\n",
|
|
(volatile void *) rbd,
|
|
rbd->ie_rbd_actual, rbd->ie_rbd_next,
|
|
(void *) rbd->ie_rbd_buffer,
|
|
rbd->ie_rbd_length, rbd->mbz);
|
|
}
|
|
|
|
#endif /* DEBUG */
|
|
#endif /* NIE > 0 */
|