freebsd-nq/lib/libzfs_core/libzfs_core.c
Christian Schwarz a73f361fdb Implement bookmark copying
This feature allows copying existing bookmarks using

    zfs bookmark fs#target fs#newbookmark

There are some niche use cases for such functionality,
e.g. when using bookmarks as markers for replication progress.

Copying redaction bookmarks produces a normal bookmark that
cannot be used for redacted send (we are not duplicating
the redaction object).

ZCP support for bookmarking (both creation and copying) will be
implemented in a separate patch based on this work.

Overview:

- Terminology:
    - source = existing snapshot or bookmark
    - new/bmark = new bookmark
- Implement bookmark copying in `dsl_bookmark.c`
  - create new bookmark node
  - copy source's `zbn_phys` to new's `zbn_phys`
  - zero-out redaction object id in copy
- Extend existing bookmark ioctl nvlist schema to accept
  bookmarks as sources
  - => `dsl_bookmark_create_nvl_validate` is authoritative
- use `dsl_dataset_is_before` check for both snapshot
  and bookmark sources
- Adjust CLI
  - refactor shortname expansion logic in `zfs_do_bookmark`
- Update man pages
  - warn about redaction bookmark handling
- Add test cases
  - CLI
  - pyyzfs libzfs_core bindings

Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Christian Schwarz <me@cschwarz.com>
Closes #9571
2020-02-11 13:19:12 -08:00

1624 lines
48 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
* Copyright (c) 2013 Steven Hartland. All rights reserved.
* Copyright (c) 2017 Datto Inc.
* Copyright 2017 RackTop Systems.
* Copyright (c) 2017 Open-E, Inc. All Rights Reserved.
* Copyright (c) 2019, 2020 by Christian Schwarz. All rights reserved.
*/
/*
* LibZFS_Core (lzc) is intended to replace most functionality in libzfs.
* It has the following characteristics:
*
* - Thread Safe. libzfs_core is accessible concurrently from multiple
* threads. This is accomplished primarily by avoiding global data
* (e.g. caching). Since it's thread-safe, there is no reason for a
* process to have multiple libzfs "instances". Therefore, we store
* our few pieces of data (e.g. the file descriptor) in global
* variables. The fd is reference-counted so that the libzfs_core
* library can be "initialized" multiple times (e.g. by different
* consumers within the same process).
*
* - Committed Interface. The libzfs_core interface will be committed,
* therefore consumers can compile against it and be confident that
* their code will continue to work on future releases of this code.
* Currently, the interface is Evolving (not Committed), but we intend
* to commit to it once it is more complete and we determine that it
* meets the needs of all consumers.
*
* - Programmatic Error Handling. libzfs_core communicates errors with
* defined error numbers, and doesn't print anything to stdout/stderr.
*
* - Thin Layer. libzfs_core is a thin layer, marshaling arguments
* to/from the kernel ioctls. There is generally a 1:1 correspondence
* between libzfs_core functions and ioctls to ZFS_DEV.
*
* - Clear Atomicity. Because libzfs_core functions are generally 1:1
* with kernel ioctls, and kernel ioctls are general atomic, each
* libzfs_core function is atomic. For example, creating multiple
* snapshots with a single call to lzc_snapshot() is atomic -- it
* can't fail with only some of the requested snapshots created, even
* in the event of power loss or system crash.
*
* - Continued libzfs Support. Some higher-level operations (e.g.
* support for "zfs send -R") are too complicated to fit the scope of
* libzfs_core. This functionality will continue to live in libzfs.
* Where appropriate, libzfs will use the underlying atomic operations
* of libzfs_core. For example, libzfs may implement "zfs send -R |
* zfs receive" by using individual "send one snapshot", rename,
* destroy, and "receive one snapshot" operations in libzfs_core.
* /sbin/zfs and /sbin/zpool will link with both libzfs and
* libzfs_core. Other consumers should aim to use only libzfs_core,
* since that will be the supported, stable interface going forwards.
*/
#include <libzfs_core.h>
#include <ctype.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#ifdef ZFS_DEBUG
#include <stdio.h>
#endif
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <libzutil.h>
#include <sys/nvpair.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/zfs_ioctl.h>
static int g_fd = -1;
static pthread_mutex_t g_lock = PTHREAD_MUTEX_INITIALIZER;
static int g_refcount;
#ifdef ZFS_DEBUG
static zfs_ioc_t fail_ioc_cmd;
static zfs_errno_t fail_ioc_err;
static void
libzfs_core_debug_ioc(void)
{
/*
* To test running newer user space binaries with kernel's
* that don't yet support an ioctl or a new ioctl arg we
* provide an override to intentionally fail an ioctl.
*
* USAGE:
* The override variable, ZFS_IOC_TEST, is of the form "cmd:err"
*
* For example, to fail a ZFS_IOC_POOL_CHECKPOINT with a
* ZFS_ERR_IOC_CMD_UNAVAIL, the string would be "0x5a4d:1029"
*
* $ sudo sh -c "ZFS_IOC_TEST=0x5a4d:1029 zpool checkpoint tank"
* cannot checkpoint 'tank': the loaded zfs module does not support
* this operation. A reboot may be required to enable this operation.
*/
if (fail_ioc_cmd == 0) {
char *ioc_test = getenv("ZFS_IOC_TEST");
unsigned int ioc_num = 0, ioc_err = 0;
if (ioc_test != NULL &&
sscanf(ioc_test, "%i:%i", &ioc_num, &ioc_err) == 2 &&
ioc_num < ZFS_IOC_LAST) {
fail_ioc_cmd = ioc_num;
fail_ioc_err = ioc_err;
}
}
}
#endif
int
libzfs_core_init(void)
{
(void) pthread_mutex_lock(&g_lock);
if (g_refcount == 0) {
g_fd = open(ZFS_DEV, O_RDWR);
if (g_fd < 0) {
(void) pthread_mutex_unlock(&g_lock);
return (errno);
}
}
g_refcount++;
#ifdef ZFS_DEBUG
libzfs_core_debug_ioc();
#endif
(void) pthread_mutex_unlock(&g_lock);
return (0);
}
void
libzfs_core_fini(void)
{
(void) pthread_mutex_lock(&g_lock);
ASSERT3S(g_refcount, >, 0);
if (g_refcount > 0)
g_refcount--;
if (g_refcount == 0 && g_fd != -1) {
(void) close(g_fd);
g_fd = -1;
}
(void) pthread_mutex_unlock(&g_lock);
}
static int
lzc_ioctl(zfs_ioc_t ioc, const char *name,
nvlist_t *source, nvlist_t **resultp)
{
zfs_cmd_t zc = {"\0"};
int error = 0;
char *packed = NULL;
size_t size = 0;
ASSERT3S(g_refcount, >, 0);
VERIFY3S(g_fd, !=, -1);
#ifdef ZFS_DEBUG
if (ioc == fail_ioc_cmd)
return (fail_ioc_err);
#endif
if (name != NULL)
(void) strlcpy(zc.zc_name, name, sizeof (zc.zc_name));
if (source != NULL) {
packed = fnvlist_pack(source, &size);
zc.zc_nvlist_src = (uint64_t)(uintptr_t)packed;
zc.zc_nvlist_src_size = size;
}
if (resultp != NULL) {
*resultp = NULL;
if (ioc == ZFS_IOC_CHANNEL_PROGRAM) {
zc.zc_nvlist_dst_size = fnvlist_lookup_uint64(source,
ZCP_ARG_MEMLIMIT);
} else {
zc.zc_nvlist_dst_size = MAX(size * 2, 128 * 1024);
}
zc.zc_nvlist_dst = (uint64_t)(uintptr_t)
malloc(zc.zc_nvlist_dst_size);
if (zc.zc_nvlist_dst == (uint64_t)0) {
error = ENOMEM;
goto out;
}
}
while (zfs_ioctl_fd(g_fd, ioc, &zc) != 0) {
/*
* If ioctl exited with ENOMEM, we retry the ioctl after
* increasing the size of the destination nvlist.
*
* Channel programs that exit with ENOMEM ran over the
* lua memory sandbox; they should not be retried.
*/
if (errno == ENOMEM && resultp != NULL &&
ioc != ZFS_IOC_CHANNEL_PROGRAM) {
free((void *)(uintptr_t)zc.zc_nvlist_dst);
zc.zc_nvlist_dst_size *= 2;
zc.zc_nvlist_dst = (uint64_t)(uintptr_t)
malloc(zc.zc_nvlist_dst_size);
if (zc.zc_nvlist_dst == (uint64_t)0) {
error = ENOMEM;
goto out;
}
} else {
error = errno;
break;
}
}
if (zc.zc_nvlist_dst_filled) {
*resultp = fnvlist_unpack((void *)(uintptr_t)zc.zc_nvlist_dst,
zc.zc_nvlist_dst_size);
}
out:
if (packed != NULL)
fnvlist_pack_free(packed, size);
free((void *)(uintptr_t)zc.zc_nvlist_dst);
return (error);
}
int
lzc_create(const char *fsname, enum lzc_dataset_type type, nvlist_t *props,
uint8_t *wkeydata, uint_t wkeylen)
{
int error;
nvlist_t *hidden_args = NULL;
nvlist_t *args = fnvlist_alloc();
fnvlist_add_int32(args, "type", (dmu_objset_type_t)type);
if (props != NULL)
fnvlist_add_nvlist(args, "props", props);
if (wkeydata != NULL) {
hidden_args = fnvlist_alloc();
fnvlist_add_uint8_array(hidden_args, "wkeydata", wkeydata,
wkeylen);
fnvlist_add_nvlist(args, ZPOOL_HIDDEN_ARGS, hidden_args);
}
error = lzc_ioctl(ZFS_IOC_CREATE, fsname, args, NULL);
nvlist_free(hidden_args);
nvlist_free(args);
return (error);
}
int
lzc_clone(const char *fsname, const char *origin, nvlist_t *props)
{
int error;
nvlist_t *hidden_args = NULL;
nvlist_t *args = fnvlist_alloc();
fnvlist_add_string(args, "origin", origin);
if (props != NULL)
fnvlist_add_nvlist(args, "props", props);
error = lzc_ioctl(ZFS_IOC_CLONE, fsname, args, NULL);
nvlist_free(hidden_args);
nvlist_free(args);
return (error);
}
int
lzc_promote(const char *fsname, char *snapnamebuf, int snapnamelen)
{
/*
* The promote ioctl is still legacy, so we need to construct our
* own zfs_cmd_t rather than using lzc_ioctl().
*/
zfs_cmd_t zc = { "\0" };
ASSERT3S(g_refcount, >, 0);
VERIFY3S(g_fd, !=, -1);
(void) strlcpy(zc.zc_name, fsname, sizeof (zc.zc_name));
if (zfs_ioctl_fd(g_fd, ZFS_IOC_PROMOTE, &zc) != 0) {
int error = errno;
if (error == EEXIST && snapnamebuf != NULL)
(void) strlcpy(snapnamebuf, zc.zc_string, snapnamelen);
return (error);
}
return (0);
}
int
lzc_rename(const char *source, const char *target)
{
zfs_cmd_t zc = { "\0" };
int error;
ASSERT3S(g_refcount, >, 0);
VERIFY3S(g_fd, !=, -1);
(void) strlcpy(zc.zc_name, source, sizeof (zc.zc_name));
(void) strlcpy(zc.zc_value, target, sizeof (zc.zc_value));
error = zfs_ioctl_fd(g_fd, ZFS_IOC_RENAME, &zc);
if (error != 0)
error = errno;
return (error);
}
int
lzc_destroy(const char *fsname)
{
int error;
nvlist_t *args = fnvlist_alloc();
error = lzc_ioctl(ZFS_IOC_DESTROY, fsname, args, NULL);
nvlist_free(args);
return (error);
}
/*
* Creates snapshots.
*
* The keys in the snaps nvlist are the snapshots to be created.
* They must all be in the same pool.
*
* The props nvlist is properties to set. Currently only user properties
* are supported. { user:prop_name -> string value }
*
* The returned results nvlist will have an entry for each snapshot that failed.
* The value will be the (int32) error code.
*
* The return value will be 0 if all snapshots were created, otherwise it will
* be the errno of a (unspecified) snapshot that failed.
*/
int
lzc_snapshot(nvlist_t *snaps, nvlist_t *props, nvlist_t **errlist)
{
nvpair_t *elem;
nvlist_t *args;
int error;
char pool[ZFS_MAX_DATASET_NAME_LEN];
*errlist = NULL;
/* determine the pool name */
elem = nvlist_next_nvpair(snaps, NULL);
if (elem == NULL)
return (0);
(void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
pool[strcspn(pool, "/@")] = '\0';
args = fnvlist_alloc();
fnvlist_add_nvlist(args, "snaps", snaps);
if (props != NULL)
fnvlist_add_nvlist(args, "props", props);
error = lzc_ioctl(ZFS_IOC_SNAPSHOT, pool, args, errlist);
nvlist_free(args);
return (error);
}
/*
* Destroys snapshots.
*
* The keys in the snaps nvlist are the snapshots to be destroyed.
* They must all be in the same pool.
*
* Snapshots that do not exist will be silently ignored.
*
* If 'defer' is not set, and a snapshot has user holds or clones, the
* destroy operation will fail and none of the snapshots will be
* destroyed.
*
* If 'defer' is set, and a snapshot has user holds or clones, it will be
* marked for deferred destruction, and will be destroyed when the last hold
* or clone is removed/destroyed.
*
* The return value will be 0 if all snapshots were destroyed (or marked for
* later destruction if 'defer' is set) or didn't exist to begin with.
*
* Otherwise the return value will be the errno of a (unspecified) snapshot
* that failed, no snapshots will be destroyed, and the errlist will have an
* entry for each snapshot that failed. The value in the errlist will be
* the (int32) error code.
*/
int
lzc_destroy_snaps(nvlist_t *snaps, boolean_t defer, nvlist_t **errlist)
{
nvpair_t *elem;
nvlist_t *args;
int error;
char pool[ZFS_MAX_DATASET_NAME_LEN];
/* determine the pool name */
elem = nvlist_next_nvpair(snaps, NULL);
if (elem == NULL)
return (0);
(void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
pool[strcspn(pool, "/@")] = '\0';
args = fnvlist_alloc();
fnvlist_add_nvlist(args, "snaps", snaps);
if (defer)
fnvlist_add_boolean(args, "defer");
error = lzc_ioctl(ZFS_IOC_DESTROY_SNAPS, pool, args, errlist);
nvlist_free(args);
return (error);
}
int
lzc_snaprange_space(const char *firstsnap, const char *lastsnap,
uint64_t *usedp)
{
nvlist_t *args;
nvlist_t *result;
int err;
char fs[ZFS_MAX_DATASET_NAME_LEN];
char *atp;
/* determine the fs name */
(void) strlcpy(fs, firstsnap, sizeof (fs));
atp = strchr(fs, '@');
if (atp == NULL)
return (EINVAL);
*atp = '\0';
args = fnvlist_alloc();
fnvlist_add_string(args, "firstsnap", firstsnap);
err = lzc_ioctl(ZFS_IOC_SPACE_SNAPS, lastsnap, args, &result);
nvlist_free(args);
if (err == 0)
*usedp = fnvlist_lookup_uint64(result, "used");
fnvlist_free(result);
return (err);
}
boolean_t
lzc_exists(const char *dataset)
{
/*
* The objset_stats ioctl is still legacy, so we need to construct our
* own zfs_cmd_t rather than using lzc_ioctl().
*/
zfs_cmd_t zc = {"\0"};
ASSERT3S(g_refcount, >, 0);
VERIFY3S(g_fd, !=, -1);
(void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
return (zfs_ioctl_fd(g_fd, ZFS_IOC_OBJSET_STATS, &zc) == 0);
}
/*
* outnvl is unused.
* It was added to preserve the function signature in case it is
* needed in the future.
*/
/*ARGSUSED*/
int
lzc_sync(const char *pool_name, nvlist_t *innvl, nvlist_t **outnvl)
{
return (lzc_ioctl(ZFS_IOC_POOL_SYNC, pool_name, innvl, NULL));
}
/*
* Create "user holds" on snapshots. If there is a hold on a snapshot,
* the snapshot can not be destroyed. (However, it can be marked for deletion
* by lzc_destroy_snaps(defer=B_TRUE).)
*
* The keys in the nvlist are snapshot names.
* The snapshots must all be in the same pool.
* The value is the name of the hold (string type).
*
* If cleanup_fd is not -1, it must be the result of open(ZFS_DEV, O_EXCL).
* In this case, when the cleanup_fd is closed (including on process
* termination), the holds will be released. If the system is shut down
* uncleanly, the holds will be released when the pool is next opened
* or imported.
*
* Holds for snapshots which don't exist will be skipped and have an entry
* added to errlist, but will not cause an overall failure.
*
* The return value will be 0 if all holds, for snapshots that existed,
* were successfully created.
*
* Otherwise the return value will be the errno of a (unspecified) hold that
* failed and no holds will be created.
*
* In all cases the errlist will have an entry for each hold that failed
* (name = snapshot), with its value being the error code (int32).
*/
int
lzc_hold(nvlist_t *holds, int cleanup_fd, nvlist_t **errlist)
{
char pool[ZFS_MAX_DATASET_NAME_LEN];
nvlist_t *args;
nvpair_t *elem;
int error;
/* determine the pool name */
elem = nvlist_next_nvpair(holds, NULL);
if (elem == NULL)
return (0);
(void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
pool[strcspn(pool, "/@")] = '\0';
args = fnvlist_alloc();
fnvlist_add_nvlist(args, "holds", holds);
if (cleanup_fd != -1)
fnvlist_add_int32(args, "cleanup_fd", cleanup_fd);
error = lzc_ioctl(ZFS_IOC_HOLD, pool, args, errlist);
nvlist_free(args);
return (error);
}
/*
* Release "user holds" on snapshots. If the snapshot has been marked for
* deferred destroy (by lzc_destroy_snaps(defer=B_TRUE)), it does not have
* any clones, and all the user holds are removed, then the snapshot will be
* destroyed.
*
* The keys in the nvlist are snapshot names.
* The snapshots must all be in the same pool.
* The value is an nvlist whose keys are the holds to remove.
*
* Holds which failed to release because they didn't exist will have an entry
* added to errlist, but will not cause an overall failure.
*
* The return value will be 0 if the nvl holds was empty or all holds that
* existed, were successfully removed.
*
* Otherwise the return value will be the errno of a (unspecified) hold that
* failed to release and no holds will be released.
*
* In all cases the errlist will have an entry for each hold that failed to
* to release.
*/
int
lzc_release(nvlist_t *holds, nvlist_t **errlist)
{
char pool[ZFS_MAX_DATASET_NAME_LEN];
nvpair_t *elem;
/* determine the pool name */
elem = nvlist_next_nvpair(holds, NULL);
if (elem == NULL)
return (0);
(void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
pool[strcspn(pool, "/@")] = '\0';
return (lzc_ioctl(ZFS_IOC_RELEASE, pool, holds, errlist));
}
/*
* Retrieve list of user holds on the specified snapshot.
*
* On success, *holdsp will be set to an nvlist which the caller must free.
* The keys are the names of the holds, and the value is the creation time
* of the hold (uint64) in seconds since the epoch.
*/
int
lzc_get_holds(const char *snapname, nvlist_t **holdsp)
{
return (lzc_ioctl(ZFS_IOC_GET_HOLDS, snapname, NULL, holdsp));
}
/*
* Generate a zfs send stream for the specified snapshot and write it to
* the specified file descriptor.
*
* "snapname" is the full name of the snapshot to send (e.g. "pool/fs@snap")
*
* If "from" is NULL, a full (non-incremental) stream will be sent.
* If "from" is non-NULL, it must be the full name of a snapshot or
* bookmark to send an incremental from (e.g. "pool/fs@earlier_snap" or
* "pool/fs#earlier_bmark"). If non-NULL, the specified snapshot or
* bookmark must represent an earlier point in the history of "snapname").
* It can be an earlier snapshot in the same filesystem or zvol as "snapname",
* or it can be the origin of "snapname"'s filesystem, or an earlier
* snapshot in the origin, etc.
*
* "fd" is the file descriptor to write the send stream to.
*
* If "flags" contains LZC_SEND_FLAG_LARGE_BLOCK, the stream is permitted
* to contain DRR_WRITE records with drr_length > 128K, and DRR_OBJECT
* records with drr_blksz > 128K.
*
* If "flags" contains LZC_SEND_FLAG_EMBED_DATA, the stream is permitted
* to contain DRR_WRITE_EMBEDDED records with drr_etype==BP_EMBEDDED_TYPE_DATA,
* which the receiving system must support (as indicated by support
* for the "embedded_data" feature).
*
* If "flags" contains LZC_SEND_FLAG_COMPRESS, the stream is generated by using
* compressed WRITE records for blocks which are compressed on disk and in
* memory. If the lz4_compress feature is active on the sending system, then
* the receiving system must have that feature enabled as well.
*
* If "flags" contains LZC_SEND_FLAG_RAW, the stream is generated, for encrypted
* datasets, by sending data exactly as it exists on disk. This allows backups
* to be taken even if encryption keys are not currently loaded.
*/
int
lzc_send(const char *snapname, const char *from, int fd,
enum lzc_send_flags flags)
{
return (lzc_send_resume_redacted(snapname, from, fd, flags, 0, 0,
NULL));
}
int
lzc_send_redacted(const char *snapname, const char *from, int fd,
enum lzc_send_flags flags, const char *redactbook)
{
return (lzc_send_resume_redacted(snapname, from, fd, flags, 0, 0,
redactbook));
}
int
lzc_send_resume(const char *snapname, const char *from, int fd,
enum lzc_send_flags flags, uint64_t resumeobj, uint64_t resumeoff)
{
return (lzc_send_resume_redacted(snapname, from, fd, flags, resumeobj,
resumeoff, NULL));
}
/*
* snapname: The name of the "tosnap", or the snapshot whose contents we are
* sending.
* from: The name of the "fromsnap", or the incremental source.
* fd: File descriptor to write the stream to.
* flags: flags that determine features to be used by the stream.
* resumeobj: Object to resume from, for resuming send
* resumeoff: Offset to resume from, for resuming send.
* redactnv: nvlist of string -> boolean(ignored) containing the names of all
* the snapshots that we should redact with respect to.
* redactbook: Name of the redaction bookmark to create.
*/
int
lzc_send_resume_redacted(const char *snapname, const char *from, int fd,
enum lzc_send_flags flags, uint64_t resumeobj, uint64_t resumeoff,
const char *redactbook)
{
nvlist_t *args;
int err;
args = fnvlist_alloc();
fnvlist_add_int32(args, "fd", fd);
if (from != NULL)
fnvlist_add_string(args, "fromsnap", from);
if (flags & LZC_SEND_FLAG_LARGE_BLOCK)
fnvlist_add_boolean(args, "largeblockok");
if (flags & LZC_SEND_FLAG_EMBED_DATA)
fnvlist_add_boolean(args, "embedok");
if (flags & LZC_SEND_FLAG_COMPRESS)
fnvlist_add_boolean(args, "compressok");
if (flags & LZC_SEND_FLAG_RAW)
fnvlist_add_boolean(args, "rawok");
if (flags & LZC_SEND_FLAG_SAVED)
fnvlist_add_boolean(args, "savedok");
if (resumeobj != 0 || resumeoff != 0) {
fnvlist_add_uint64(args, "resume_object", resumeobj);
fnvlist_add_uint64(args, "resume_offset", resumeoff);
}
if (redactbook != NULL)
fnvlist_add_string(args, "redactbook", redactbook);
err = lzc_ioctl(ZFS_IOC_SEND_NEW, snapname, args, NULL);
nvlist_free(args);
return (err);
}
/*
* "from" can be NULL, a snapshot, or a bookmark.
*
* If from is NULL, a full (non-incremental) stream will be estimated. This
* is calculated very efficiently.
*
* If from is a snapshot, lzc_send_space uses the deadlists attached to
* each snapshot to efficiently estimate the stream size.
*
* If from is a bookmark, the indirect blocks in the destination snapshot
* are traversed, looking for blocks with a birth time since the creation TXG of
* the snapshot this bookmark was created from. This will result in
* significantly more I/O and be less efficient than a send space estimation on
* an equivalent snapshot. This process is also used if redact_snaps is
* non-null.
*/
int
lzc_send_space_resume_redacted(const char *snapname, const char *from,
enum lzc_send_flags flags, uint64_t resumeobj, uint64_t resumeoff,
uint64_t resume_bytes, const char *redactbook, int fd, uint64_t *spacep)
{
nvlist_t *args;
nvlist_t *result;
int err;
args = fnvlist_alloc();
if (from != NULL)
fnvlist_add_string(args, "from", from);
if (flags & LZC_SEND_FLAG_LARGE_BLOCK)
fnvlist_add_boolean(args, "largeblockok");
if (flags & LZC_SEND_FLAG_EMBED_DATA)
fnvlist_add_boolean(args, "embedok");
if (flags & LZC_SEND_FLAG_COMPRESS)
fnvlist_add_boolean(args, "compressok");
if (flags & LZC_SEND_FLAG_RAW)
fnvlist_add_boolean(args, "rawok");
if (resumeobj != 0 || resumeoff != 0) {
fnvlist_add_uint64(args, "resume_object", resumeobj);
fnvlist_add_uint64(args, "resume_offset", resumeoff);
fnvlist_add_uint64(args, "bytes", resume_bytes);
}
if (redactbook != NULL)
fnvlist_add_string(args, "redactbook", redactbook);
if (fd != -1)
fnvlist_add_int32(args, "fd", fd);
err = lzc_ioctl(ZFS_IOC_SEND_SPACE, snapname, args, &result);
nvlist_free(args);
if (err == 0)
*spacep = fnvlist_lookup_uint64(result, "space");
nvlist_free(result);
return (err);
}
int
lzc_send_space(const char *snapname, const char *from,
enum lzc_send_flags flags, uint64_t *spacep)
{
return (lzc_send_space_resume_redacted(snapname, from, flags, 0, 0, 0,
NULL, -1, spacep));
}
static int
recv_read(int fd, void *buf, int ilen)
{
char *cp = buf;
int rv;
int len = ilen;
do {
rv = read(fd, cp, len);
cp += rv;
len -= rv;
} while (rv > 0);
if (rv < 0 || len != 0)
return (EIO);
return (0);
}
/*
* Linux adds ZFS_IOC_RECV_NEW for resumable and raw streams and preserves the
* legacy ZFS_IOC_RECV user/kernel interface. The new interface supports all
* stream options but is currently only used for resumable streams. This way
* updated user space utilities will interoperate with older kernel modules.
*
* Non-Linux OpenZFS platforms have opted to modify the legacy interface.
*/
static int
recv_impl(const char *snapname, nvlist_t *recvdprops, nvlist_t *localprops,
uint8_t *wkeydata, uint_t wkeylen, const char *origin, boolean_t force,
boolean_t resumable, boolean_t raw, int input_fd,
const dmu_replay_record_t *begin_record, int cleanup_fd,
uint64_t *read_bytes, uint64_t *errflags, uint64_t *action_handle,
nvlist_t **errors)
{
dmu_replay_record_t drr;
char fsname[MAXPATHLEN];
char *atp;
int error;
boolean_t payload = B_FALSE;
ASSERT3S(g_refcount, >, 0);
VERIFY3S(g_fd, !=, -1);
/* Set 'fsname' to the name of containing filesystem */
(void) strlcpy(fsname, snapname, sizeof (fsname));
atp = strchr(fsname, '@');
if (atp == NULL)
return (EINVAL);
*atp = '\0';
/* If the fs does not exist, try its parent. */
if (!lzc_exists(fsname)) {
char *slashp = strrchr(fsname, '/');
if (slashp == NULL)
return (ENOENT);
*slashp = '\0';
}
/*
* The begin_record is normally a non-byteswapped BEGIN record.
* For resumable streams it may be set to any non-byteswapped
* dmu_replay_record_t.
*/
if (begin_record == NULL) {
error = recv_read(input_fd, &drr, sizeof (drr));
if (error != 0)
return (error);
} else {
drr = *begin_record;
payload = (begin_record->drr_payloadlen != 0);
}
/*
* All receives with a payload should use the new interface.
*/
if (resumable || raw || wkeydata != NULL || payload) {
nvlist_t *outnvl = NULL;
nvlist_t *innvl = fnvlist_alloc();
fnvlist_add_string(innvl, "snapname", snapname);
if (recvdprops != NULL)
fnvlist_add_nvlist(innvl, "props", recvdprops);
if (localprops != NULL)
fnvlist_add_nvlist(innvl, "localprops", localprops);
if (wkeydata != NULL) {
/*
* wkeydata must be placed in the special
* ZPOOL_HIDDEN_ARGS nvlist so that it
* will not be printed to the zpool history.
*/
nvlist_t *hidden_args = fnvlist_alloc();
fnvlist_add_uint8_array(hidden_args, "wkeydata",
wkeydata, wkeylen);
fnvlist_add_nvlist(innvl, ZPOOL_HIDDEN_ARGS,
hidden_args);
nvlist_free(hidden_args);
}
if (origin != NULL && strlen(origin))
fnvlist_add_string(innvl, "origin", origin);
fnvlist_add_byte_array(innvl, "begin_record",
(uchar_t *)&drr, sizeof (drr));
fnvlist_add_int32(innvl, "input_fd", input_fd);
if (force)
fnvlist_add_boolean(innvl, "force");
if (resumable)
fnvlist_add_boolean(innvl, "resumable");
if (cleanup_fd >= 0)
fnvlist_add_int32(innvl, "cleanup_fd", cleanup_fd);
if (action_handle != NULL)
fnvlist_add_uint64(innvl, "action_handle",
*action_handle);
error = lzc_ioctl(ZFS_IOC_RECV_NEW, fsname, innvl, &outnvl);
if (error == 0 && read_bytes != NULL)
error = nvlist_lookup_uint64(outnvl, "read_bytes",
read_bytes);
if (error == 0 && errflags != NULL)
error = nvlist_lookup_uint64(outnvl, "error_flags",
errflags);
if (error == 0 && action_handle != NULL)
error = nvlist_lookup_uint64(outnvl, "action_handle",
action_handle);
if (error == 0 && errors != NULL) {
nvlist_t *nvl;
error = nvlist_lookup_nvlist(outnvl, "errors", &nvl);
if (error == 0)
*errors = fnvlist_dup(nvl);
}
fnvlist_free(innvl);
fnvlist_free(outnvl);
} else {
zfs_cmd_t zc = {"\0"};
char *packed = NULL;
size_t size;
ASSERT3S(g_refcount, >, 0);
(void) strlcpy(zc.zc_name, fsname, sizeof (zc.zc_name));
(void) strlcpy(zc.zc_value, snapname, sizeof (zc.zc_value));
if (recvdprops != NULL) {
packed = fnvlist_pack(recvdprops, &size);
zc.zc_nvlist_src = (uint64_t)(uintptr_t)packed;
zc.zc_nvlist_src_size = size;
}
if (localprops != NULL) {
packed = fnvlist_pack(localprops, &size);
zc.zc_nvlist_conf = (uint64_t)(uintptr_t)packed;
zc.zc_nvlist_conf_size = size;
}
if (origin != NULL)
(void) strlcpy(zc.zc_string, origin,
sizeof (zc.zc_string));
ASSERT3S(drr.drr_type, ==, DRR_BEGIN);
zc.zc_begin_record = drr.drr_u.drr_begin;
zc.zc_guid = force;
zc.zc_cookie = input_fd;
zc.zc_cleanup_fd = -1;
zc.zc_action_handle = 0;
if (cleanup_fd >= 0)
zc.zc_cleanup_fd = cleanup_fd;
if (action_handle != NULL)
zc.zc_action_handle = *action_handle;
zc.zc_nvlist_dst_size = 128 * 1024;
zc.zc_nvlist_dst = (uint64_t)(uintptr_t)
malloc(zc.zc_nvlist_dst_size);
error = zfs_ioctl_fd(g_fd, ZFS_IOC_RECV, &zc);
if (error != 0) {
error = errno;
} else {
if (read_bytes != NULL)
*read_bytes = zc.zc_cookie;
if (errflags != NULL)
*errflags = zc.zc_obj;
if (action_handle != NULL)
*action_handle = zc.zc_action_handle;
if (errors != NULL)
VERIFY0(nvlist_unpack(
(void *)(uintptr_t)zc.zc_nvlist_dst,
zc.zc_nvlist_dst_size, errors, KM_SLEEP));
}
if (packed != NULL)
fnvlist_pack_free(packed, size);
free((void *)(uintptr_t)zc.zc_nvlist_dst);
}
return (error);
}
/*
* The simplest receive case: receive from the specified fd, creating the
* specified snapshot. Apply the specified properties as "received" properties
* (which can be overridden by locally-set properties). If the stream is a
* clone, its origin snapshot must be specified by 'origin'. The 'force'
* flag will cause the target filesystem to be rolled back or destroyed if
* necessary to receive.
*
* Return 0 on success or an errno on failure.
*
* Note: this interface does not work on dedup'd streams
* (those with DMU_BACKUP_FEATURE_DEDUP).
*/
int
lzc_receive(const char *snapname, nvlist_t *props, const char *origin,
boolean_t force, boolean_t raw, int fd)
{
return (recv_impl(snapname, props, NULL, NULL, 0, origin, force,
B_FALSE, raw, fd, NULL, -1, NULL, NULL, NULL, NULL));
}
/*
* Like lzc_receive, but if the receive fails due to premature stream
* termination, the intermediate state will be preserved on disk. In this
* case, ECKSUM will be returned. The receive may subsequently be resumed
* with a resuming send stream generated by lzc_send_resume().
*/
int
lzc_receive_resumable(const char *snapname, nvlist_t *props, const char *origin,
boolean_t force, boolean_t raw, int fd)
{
return (recv_impl(snapname, props, NULL, NULL, 0, origin, force,
B_TRUE, raw, fd, NULL, -1, NULL, NULL, NULL, NULL));
}
/*
* Like lzc_receive, but allows the caller to read the begin record and then to
* pass it in. That could be useful if the caller wants to derive, for example,
* the snapname or the origin parameters based on the information contained in
* the begin record.
* The begin record must be in its original form as read from the stream,
* in other words, it should not be byteswapped.
*
* The 'resumable' parameter allows to obtain the same behavior as with
* lzc_receive_resumable.
*/
int
lzc_receive_with_header(const char *snapname, nvlist_t *props,
const char *origin, boolean_t force, boolean_t resumable, boolean_t raw,
int fd, const dmu_replay_record_t *begin_record)
{
if (begin_record == NULL)
return (EINVAL);
return (recv_impl(snapname, props, NULL, NULL, 0, origin, force,
resumable, raw, fd, begin_record, -1, NULL, NULL, NULL, NULL));
}
/*
* Like lzc_receive, but allows the caller to pass all supported arguments
* and retrieve all values returned. The only additional input parameter
* is 'cleanup_fd' which is used to set a cleanup-on-exit file descriptor.
*
* The following parameters all provide return values. Several may be set
* in the failure case and will contain additional information.
*
* The 'read_bytes' value will be set to the total number of bytes read.
*
* The 'errflags' value will contain zprop_errflags_t flags which are
* used to describe any failures.
*
* The 'action_handle' is used to pass the handle for this guid/ds mapping.
* It should be set to zero on first call and will contain an updated handle
* on success, it should be passed in subsequent calls.
*
* The 'errors' nvlist contains an entry for each unapplied received
* property. Callers are responsible for freeing this nvlist.
*/
int lzc_receive_one(const char *snapname, nvlist_t *props,
const char *origin, boolean_t force, boolean_t resumable, boolean_t raw,
int input_fd, const dmu_replay_record_t *begin_record, int cleanup_fd,
uint64_t *read_bytes, uint64_t *errflags, uint64_t *action_handle,
nvlist_t **errors)
{
return (recv_impl(snapname, props, NULL, NULL, 0, origin, force,
resumable, raw, input_fd, begin_record, cleanup_fd, read_bytes,
errflags, action_handle, errors));
}
/*
* Like lzc_receive_one, but allows the caller to pass an additional 'cmdprops'
* argument.
*
* The 'cmdprops' nvlist contains both override ('zfs receive -o') and
* exclude ('zfs receive -x') properties. Callers are responsible for freeing
* this nvlist
*/
int lzc_receive_with_cmdprops(const char *snapname, nvlist_t *props,
nvlist_t *cmdprops, uint8_t *wkeydata, uint_t wkeylen, const char *origin,
boolean_t force, boolean_t resumable, boolean_t raw, int input_fd,
const dmu_replay_record_t *begin_record, int cleanup_fd,
uint64_t *read_bytes, uint64_t *errflags, uint64_t *action_handle,
nvlist_t **errors)
{
return (recv_impl(snapname, props, cmdprops, wkeydata, wkeylen, origin,
force, resumable, raw, input_fd, begin_record, cleanup_fd,
read_bytes, errflags, action_handle, errors));
}
/*
* Roll back this filesystem or volume to its most recent snapshot.
* If snapnamebuf is not NULL, it will be filled in with the name
* of the most recent snapshot.
* Note that the latest snapshot may change if a new one is concurrently
* created or the current one is destroyed. lzc_rollback_to can be used
* to roll back to a specific latest snapshot.
*
* Return 0 on success or an errno on failure.
*/
int
lzc_rollback(const char *fsname, char *snapnamebuf, int snapnamelen)
{
nvlist_t *args;
nvlist_t *result;
int err;
args = fnvlist_alloc();
err = lzc_ioctl(ZFS_IOC_ROLLBACK, fsname, args, &result);
nvlist_free(args);
if (err == 0 && snapnamebuf != NULL) {
const char *snapname = fnvlist_lookup_string(result, "target");
(void) strlcpy(snapnamebuf, snapname, snapnamelen);
}
nvlist_free(result);
return (err);
}
/*
* Roll back this filesystem or volume to the specified snapshot,
* if possible.
*
* Return 0 on success or an errno on failure.
*/
int
lzc_rollback_to(const char *fsname, const char *snapname)
{
nvlist_t *args;
nvlist_t *result;
int err;
args = fnvlist_alloc();
fnvlist_add_string(args, "target", snapname);
err = lzc_ioctl(ZFS_IOC_ROLLBACK, fsname, args, &result);
nvlist_free(args);
nvlist_free(result);
return (err);
}
/*
* Creates new bookmarks from existing snapshot or bookmark.
*
* The bookmarks nvlist maps from the full name of the new bookmark to
* the full name of the source snapshot or bookmark.
* All the bookmarks and snapshots must be in the same pool.
* The new bookmarks names must be unique.
* => see function dsl_bookmark_create_nvl_validate
*
* The returned results nvlist will have an entry for each bookmark that failed.
* The value will be the (int32) error code.
*
* The return value will be 0 if all bookmarks were created, otherwise it will
* be the errno of a (undetermined) bookmarks that failed.
*/
int
lzc_bookmark(nvlist_t *bookmarks, nvlist_t **errlist)
{
nvpair_t *elem;
int error;
char pool[ZFS_MAX_DATASET_NAME_LEN];
/* determine pool name from first bookmark */
elem = nvlist_next_nvpair(bookmarks, NULL);
if (elem == NULL)
return (0);
(void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
pool[strcspn(pool, "/#")] = '\0';
error = lzc_ioctl(ZFS_IOC_BOOKMARK, pool, bookmarks, errlist);
return (error);
}
/*
* Retrieve bookmarks.
*
* Retrieve the list of bookmarks for the given file system. The props
* parameter is an nvlist of property names (with no values) that will be
* returned for each bookmark.
*
* The following are valid properties on bookmarks, most of which are numbers
* (represented as uint64 in the nvlist), except redact_snaps, which is a
* uint64 array, and redact_complete, which is a boolean
*
* "guid" - globally unique identifier of the snapshot it refers to
* "createtxg" - txg when the snapshot it refers to was created
* "creation" - timestamp when the snapshot it refers to was created
* "ivsetguid" - IVset guid for identifying encrypted snapshots
* "redact_snaps" - list of guids of the redaction snapshots for the specified
* bookmark. If the bookmark is not a redaction bookmark, the nvlist will
* not contain an entry for this value. If it is redacted with respect to
* no snapshots, it will contain value -> NULL uint64 array
* "redact_complete" - boolean value; true if the redaction bookmark is
* complete, false otherwise.
*
* The format of the returned nvlist as follows:
* <short name of bookmark> -> {
* <name of property> -> {
* "value" -> uint64
* }
* ...
* "redact_snaps" -> {
* "value" -> uint64 array
* }
* "redact_complete" -> {
* "value" -> boolean value
* }
* }
*/
int
lzc_get_bookmarks(const char *fsname, nvlist_t *props, nvlist_t **bmarks)
{
return (lzc_ioctl(ZFS_IOC_GET_BOOKMARKS, fsname, props, bmarks));
}
/*
* Get bookmark properties.
*
* Given a bookmark's full name, retrieve all properties for the bookmark.
*
* The format of the returned property list is as follows:
* {
* <name of property> -> {
* "value" -> uint64
* }
* ...
* "redact_snaps" -> {
* "value" -> uint64 array
* }
*/
int
lzc_get_bookmark_props(const char *bookmark, nvlist_t **props)
{
int error;
nvlist_t *innvl = fnvlist_alloc();
error = lzc_ioctl(ZFS_IOC_GET_BOOKMARK_PROPS, bookmark, innvl, props);
fnvlist_free(innvl);
return (error);
}
/*
* Destroys bookmarks.
*
* The keys in the bmarks nvlist are the bookmarks to be destroyed.
* They must all be in the same pool. Bookmarks are specified as
* <fs>#<bmark>.
*
* Bookmarks that do not exist will be silently ignored.
*
* The return value will be 0 if all bookmarks that existed were destroyed.
*
* Otherwise the return value will be the errno of a (undetermined) bookmark
* that failed, no bookmarks will be destroyed, and the errlist will have an
* entry for each bookmarks that failed. The value in the errlist will be
* the (int32) error code.
*/
int
lzc_destroy_bookmarks(nvlist_t *bmarks, nvlist_t **errlist)
{
nvpair_t *elem;
int error;
char pool[ZFS_MAX_DATASET_NAME_LEN];
/* determine the pool name */
elem = nvlist_next_nvpair(bmarks, NULL);
if (elem == NULL)
return (0);
(void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
pool[strcspn(pool, "/#")] = '\0';
error = lzc_ioctl(ZFS_IOC_DESTROY_BOOKMARKS, pool, bmarks, errlist);
return (error);
}
static int
lzc_channel_program_impl(const char *pool, const char *program, boolean_t sync,
uint64_t instrlimit, uint64_t memlimit, nvlist_t *argnvl, nvlist_t **outnvl)
{
int error;
nvlist_t *args;
args = fnvlist_alloc();
fnvlist_add_string(args, ZCP_ARG_PROGRAM, program);
fnvlist_add_nvlist(args, ZCP_ARG_ARGLIST, argnvl);
fnvlist_add_boolean_value(args, ZCP_ARG_SYNC, sync);
fnvlist_add_uint64(args, ZCP_ARG_INSTRLIMIT, instrlimit);
fnvlist_add_uint64(args, ZCP_ARG_MEMLIMIT, memlimit);
error = lzc_ioctl(ZFS_IOC_CHANNEL_PROGRAM, pool, args, outnvl);
fnvlist_free(args);
return (error);
}
/*
* Executes a channel program.
*
* If this function returns 0 the channel program was successfully loaded and
* ran without failing. Note that individual commands the channel program ran
* may have failed and the channel program is responsible for reporting such
* errors through outnvl if they are important.
*
* This method may also return:
*
* EINVAL The program contains syntax errors, or an invalid memory or time
* limit was given. No part of the channel program was executed.
* If caused by syntax errors, 'outnvl' contains information about the
* errors.
*
* ECHRNG The program was executed, but encountered a runtime error, such as
* calling a function with incorrect arguments, invoking the error()
* function directly, failing an assert() command, etc. Some portion
* of the channel program may have executed and committed changes.
* Information about the failure can be found in 'outnvl'.
*
* ENOMEM The program fully executed, but the output buffer was not large
* enough to store the returned value. No output is returned through
* 'outnvl'.
*
* ENOSPC The program was terminated because it exceeded its memory usage
* limit. Some portion of the channel program may have executed and
* committed changes to disk. No output is returned through 'outnvl'.
*
* ETIME The program was terminated because it exceeded its Lua instruction
* limit. Some portion of the channel program may have executed and
* committed changes to disk. No output is returned through 'outnvl'.
*/
int
lzc_channel_program(const char *pool, const char *program, uint64_t instrlimit,
uint64_t memlimit, nvlist_t *argnvl, nvlist_t **outnvl)
{
return (lzc_channel_program_impl(pool, program, B_TRUE, instrlimit,
memlimit, argnvl, outnvl));
}
/*
* Creates a checkpoint for the specified pool.
*
* If this function returns 0 the pool was successfully checkpointed.
*
* This method may also return:
*
* ZFS_ERR_CHECKPOINT_EXISTS
* The pool already has a checkpoint. A pools can only have one
* checkpoint at most, at any given time.
*
* ZFS_ERR_DISCARDING_CHECKPOINT
* ZFS is in the middle of discarding a checkpoint for this pool.
* The pool can be checkpointed again once the discard is done.
*
* ZFS_DEVRM_IN_PROGRESS
* A vdev is currently being removed. The pool cannot be
* checkpointed until the device removal is done.
*
* ZFS_VDEV_TOO_BIG
* One or more top-level vdevs exceed the maximum vdev size
* supported for this feature.
*/
int
lzc_pool_checkpoint(const char *pool)
{
int error;
nvlist_t *result = NULL;
nvlist_t *args = fnvlist_alloc();
error = lzc_ioctl(ZFS_IOC_POOL_CHECKPOINT, pool, args, &result);
fnvlist_free(args);
fnvlist_free(result);
return (error);
}
/*
* Discard the checkpoint from the specified pool.
*
* If this function returns 0 the checkpoint was successfully discarded.
*
* This method may also return:
*
* ZFS_ERR_NO_CHECKPOINT
* The pool does not have a checkpoint.
*
* ZFS_ERR_DISCARDING_CHECKPOINT
* ZFS is already in the middle of discarding the checkpoint.
*/
int
lzc_pool_checkpoint_discard(const char *pool)
{
int error;
nvlist_t *result = NULL;
nvlist_t *args = fnvlist_alloc();
error = lzc_ioctl(ZFS_IOC_POOL_DISCARD_CHECKPOINT, pool, args, &result);
fnvlist_free(args);
fnvlist_free(result);
return (error);
}
/*
* Executes a read-only channel program.
*
* A read-only channel program works programmatically the same way as a
* normal channel program executed with lzc_channel_program(). The only
* difference is it runs exclusively in open-context and therefore can
* return faster. The downside to that, is that the program cannot change
* on-disk state by calling functions from the zfs.sync submodule.
*
* The return values of this function (and their meaning) are exactly the
* same as the ones described in lzc_channel_program().
*/
int
lzc_channel_program_nosync(const char *pool, const char *program,
uint64_t timeout, uint64_t memlimit, nvlist_t *argnvl, nvlist_t **outnvl)
{
return (lzc_channel_program_impl(pool, program, B_FALSE, timeout,
memlimit, argnvl, outnvl));
}
/*
* Performs key management functions
*
* crypto_cmd should be a value from dcp_cmd_t. If the command specifies to
* load or change a wrapping key, the key should be specified in the
* hidden_args nvlist so that it is not logged.
*/
int
lzc_load_key(const char *fsname, boolean_t noop, uint8_t *wkeydata,
uint_t wkeylen)
{
int error;
nvlist_t *ioc_args;
nvlist_t *hidden_args;
if (wkeydata == NULL)
return (EINVAL);
ioc_args = fnvlist_alloc();
hidden_args = fnvlist_alloc();
fnvlist_add_uint8_array(hidden_args, "wkeydata", wkeydata, wkeylen);
fnvlist_add_nvlist(ioc_args, ZPOOL_HIDDEN_ARGS, hidden_args);
if (noop)
fnvlist_add_boolean(ioc_args, "noop");
error = lzc_ioctl(ZFS_IOC_LOAD_KEY, fsname, ioc_args, NULL);
nvlist_free(hidden_args);
nvlist_free(ioc_args);
return (error);
}
int
lzc_unload_key(const char *fsname)
{
return (lzc_ioctl(ZFS_IOC_UNLOAD_KEY, fsname, NULL, NULL));
}
int
lzc_change_key(const char *fsname, uint64_t crypt_cmd, nvlist_t *props,
uint8_t *wkeydata, uint_t wkeylen)
{
int error;
nvlist_t *ioc_args = fnvlist_alloc();
nvlist_t *hidden_args = NULL;
fnvlist_add_uint64(ioc_args, "crypt_cmd", crypt_cmd);
if (wkeydata != NULL) {
hidden_args = fnvlist_alloc();
fnvlist_add_uint8_array(hidden_args, "wkeydata", wkeydata,
wkeylen);
fnvlist_add_nvlist(ioc_args, ZPOOL_HIDDEN_ARGS, hidden_args);
}
if (props != NULL)
fnvlist_add_nvlist(ioc_args, "props", props);
error = lzc_ioctl(ZFS_IOC_CHANGE_KEY, fsname, ioc_args, NULL);
nvlist_free(hidden_args);
nvlist_free(ioc_args);
return (error);
}
int
lzc_reopen(const char *pool_name, boolean_t scrub_restart)
{
nvlist_t *args = fnvlist_alloc();
int error;
fnvlist_add_boolean_value(args, "scrub_restart", scrub_restart);
error = lzc_ioctl(ZFS_IOC_POOL_REOPEN, pool_name, args, NULL);
nvlist_free(args);
return (error);
}
/*
* Changes initializing state.
*
* vdevs should be a list of (<key>, guid) where guid is a uint64 vdev GUID.
* The key is ignored.
*
* If there are errors related to vdev arguments, per-vdev errors are returned
* in an nvlist with the key "vdevs". Each error is a (guid, errno) pair where
* guid is stringified with PRIu64, and errno is one of the following as
* an int64_t:
* - ENODEV if the device was not found
* - EINVAL if the devices is not a leaf or is not concrete (e.g. missing)
* - EROFS if the device is not writeable
* - EBUSY start requested but the device is already being either
* initialized or trimmed
* - ESRCH cancel/suspend requested but device is not being initialized
*
* If the errlist is empty, then return value will be:
* - EINVAL if one or more arguments was invalid
* - Other spa_open failures
* - 0 if the operation succeeded
*/
int
lzc_initialize(const char *poolname, pool_initialize_func_t cmd_type,
nvlist_t *vdevs, nvlist_t **errlist)
{
int error;
nvlist_t *args = fnvlist_alloc();
fnvlist_add_uint64(args, ZPOOL_INITIALIZE_COMMAND, (uint64_t)cmd_type);
fnvlist_add_nvlist(args, ZPOOL_INITIALIZE_VDEVS, vdevs);
error = lzc_ioctl(ZFS_IOC_POOL_INITIALIZE, poolname, args, errlist);
fnvlist_free(args);
return (error);
}
/*
* Changes TRIM state.
*
* vdevs should be a list of (<key>, guid) where guid is a uint64 vdev GUID.
* The key is ignored.
*
* If there are errors related to vdev arguments, per-vdev errors are returned
* in an nvlist with the key "vdevs". Each error is a (guid, errno) pair where
* guid is stringified with PRIu64, and errno is one of the following as
* an int64_t:
* - ENODEV if the device was not found
* - EINVAL if the devices is not a leaf or is not concrete (e.g. missing)
* - EROFS if the device is not writeable
* - EBUSY start requested but the device is already being either trimmed
* or initialized
* - ESRCH cancel/suspend requested but device is not being initialized
* - EOPNOTSUPP if the device does not support TRIM (or secure TRIM)
*
* If the errlist is empty, then return value will be:
* - EINVAL if one or more arguments was invalid
* - Other spa_open failures
* - 0 if the operation succeeded
*/
int
lzc_trim(const char *poolname, pool_trim_func_t cmd_type, uint64_t rate,
boolean_t secure, nvlist_t *vdevs, nvlist_t **errlist)
{
int error;
nvlist_t *args = fnvlist_alloc();
fnvlist_add_uint64(args, ZPOOL_TRIM_COMMAND, (uint64_t)cmd_type);
fnvlist_add_nvlist(args, ZPOOL_TRIM_VDEVS, vdevs);
fnvlist_add_uint64(args, ZPOOL_TRIM_RATE, rate);
fnvlist_add_boolean_value(args, ZPOOL_TRIM_SECURE, secure);
error = lzc_ioctl(ZFS_IOC_POOL_TRIM, poolname, args, errlist);
fnvlist_free(args);
return (error);
}
/*
* Create a redaction bookmark named bookname by redacting snapshot with respect
* to all the snapshots in snapnv.
*/
int
lzc_redact(const char *snapshot, const char *bookname, nvlist_t *snapnv)
{
nvlist_t *args = fnvlist_alloc();
fnvlist_add_string(args, "bookname", bookname);
fnvlist_add_nvlist(args, "snapnv", snapnv);
int error = lzc_ioctl(ZFS_IOC_REDACT, snapshot, args, NULL);
fnvlist_free(args);
return (error);
}
static int
wait_common(const char *pool, zpool_wait_activity_t activity, boolean_t use_tag,
uint64_t tag, boolean_t *waited)
{
nvlist_t *args = fnvlist_alloc();
nvlist_t *result = NULL;
fnvlist_add_int32(args, ZPOOL_WAIT_ACTIVITY, activity);
if (use_tag)
fnvlist_add_uint64(args, ZPOOL_WAIT_TAG, tag);
int error = lzc_ioctl(ZFS_IOC_WAIT, pool, args, &result);
if (error == 0 && waited != NULL)
*waited = fnvlist_lookup_boolean_value(result,
ZPOOL_WAIT_WAITED);
fnvlist_free(args);
fnvlist_free(result);
return (error);
}
int
lzc_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
{
return (wait_common(pool, activity, B_FALSE, 0, waited));
}
int
lzc_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
boolean_t *waited)
{
return (wait_common(pool, activity, B_TRUE, tag, waited));
}