freebsd-nq/sys/arm/xscale/ixp425/ixp425_npe.c
Paolo Pisati ef544f6312 o break newbus api: add a new argument of type driver_filter_t to
bus_setup_intr()

o add an int return code to all fast handlers

o retire INTR_FAST/IH_FAST

For more info: http://docs.freebsd.org/cgi/getmsg.cgi?fetch=465712+0+current/freebsd-current

Reviewed by: many
Approved by: re@
2007-02-23 12:19:07 +00:00

1397 lines
44 KiB
C

/*-
* Copyright (c) 2006 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/
/*-
* Copyright (c) 2001-2005, Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Intel XScale Network Processing Engine (NPE) support.
*
* Each NPE has an ixpnpeX device associated with it that is
* attached at boot. Depending on the microcode loaded into
* an NPE there may be an Ethernet interface (npeX) or some
* other network interface (e.g. for ATM). This file has support
* for loading microcode images and the associated NPE CPU
* manipulations (start, stop, reset).
*
* The code here basically replaces the npeDl and npeMh classes
* in the Intel Access Library (IAL).
*
* NB: Microcode images are loaded with firmware(9). To
* include microcode in a static kernel include the
* ixpnpe_fw device. Otherwise the firmware will be
* automatically loaded from the filesystem.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/time.h>
#include <sys/bus.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <sys/linker.h>
#include <sys/firmware.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/cpufunc.h>
#include <machine/resource.h>
#include <machine/intr.h>
#include <arm/xscale/ixp425/ixp425reg.h>
#include <arm/xscale/ixp425/ixp425var.h>
#include <arm/xscale/ixp425/ixp425_npereg.h>
#include <arm/xscale/ixp425/ixp425_npevar.h>
struct ixpnpe_softc {
device_t sc_dev;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
bus_size_t sc_size; /* size of mapped register window */
struct resource *sc_irq; /* IRQ resource */
void *sc_ih; /* interrupt handler */
struct mtx sc_mtx; /* mailbox lock */
uint32_t sc_msg[2]; /* reply msg collected in ixpnpe_intr */
int sc_msgwaiting; /* sc_msg holds valid data */
int validImage; /* valid ucode image loaded */
int started; /* NPE is started */
uint8_t functionalityId;/* ucode functionality ID */
int insMemSize; /* size of instruction memory */
int dataMemSize; /* size of data memory */
uint32_t savedExecCount;
uint32_t savedEcsDbgCtxtReg2;
};
#define IX_NPEDL_NPEIMAGE_FIELD_MASK 0xff
/* used to read download map from version in microcode image */
#define IX_NPEDL_BLOCK_TYPE_INSTRUCTION 0x00000000
#define IX_NPEDL_BLOCK_TYPE_DATA 0x00000001
#define IX_NPEDL_BLOCK_TYPE_STATE 0x00000002
#define IX_NPEDL_END_OF_DOWNLOAD_MAP 0x0000000F
/*
* masks used to extract address info from State information context
* register addresses as read from microcode image
*/
#define IX_NPEDL_MASK_STATE_ADDR_CTXT_REG 0x0000000F
#define IX_NPEDL_MASK_STATE_ADDR_CTXT_NUM 0x000000F0
/* LSB offset of Context Number field in State-Info Context Address */
#define IX_NPEDL_OFFSET_STATE_ADDR_CTXT_NUM 4
/* size (in words) of single State Information entry (ctxt reg address|data) */
#define IX_NPEDL_STATE_INFO_ENTRY_SIZE 2
typedef struct {
uint32_t type;
uint32_t offset;
} IxNpeDlNpeMgrDownloadMapBlockEntry;
typedef union {
IxNpeDlNpeMgrDownloadMapBlockEntry block;
uint32_t eodmMarker;
} IxNpeDlNpeMgrDownloadMapEntry;
typedef struct {
/* 1st entry in the download map (there may be more than one) */
IxNpeDlNpeMgrDownloadMapEntry entry[1];
} IxNpeDlNpeMgrDownloadMap;
/* used to access an instruction or data block in a microcode image */
typedef struct {
uint32_t npeMemAddress;
uint32_t size;
uint32_t data[1];
} IxNpeDlNpeMgrCodeBlock;
/* used to access each Context Reg entry state-information block */
typedef struct {
uint32_t addressInfo;
uint32_t value;
} IxNpeDlNpeMgrStateInfoCtxtRegEntry;
/* used to access a state-information block in a microcode image */
typedef struct {
uint32_t size;
IxNpeDlNpeMgrStateInfoCtxtRegEntry ctxtRegEntry[1];
} IxNpeDlNpeMgrStateInfoBlock;
static int npe_debug = 0;
SYSCTL_INT(_debug, OID_AUTO, ixp425npe, CTLFLAG_RW, &npe_debug,
0, "IXP425 NPE debug msgs");
TUNABLE_INT("debug.ixp425npe", &npe_debug);
#define DPRINTF(dev, fmt, ...) do { \
if (npe_debug) device_printf(dev, fmt, __VA_ARGS__); \
} while (0)
#define DPRINTFn(n, dev, fmt, ...) do { \
if (npe_debug >= n) printf(fmt, __VA_ARGS__); \
} while (0)
static int npe_checkbits(struct ixpnpe_softc *, uint32_t reg, uint32_t);
static int npe_isstopped(struct ixpnpe_softc *);
static int npe_load_ins(struct ixpnpe_softc *,
const IxNpeDlNpeMgrCodeBlock *bp, int verify);
static int npe_load_data(struct ixpnpe_softc *,
const IxNpeDlNpeMgrCodeBlock *bp, int verify);
static int npe_load_stateinfo(struct ixpnpe_softc *,
const IxNpeDlNpeMgrStateInfoBlock *bp, int verify);
static int npe_load_image(struct ixpnpe_softc *,
const uint32_t *imageCodePtr, int verify);
static int npe_cpu_reset(struct ixpnpe_softc *);
static int npe_cpu_start(struct ixpnpe_softc *);
static int npe_cpu_stop(struct ixpnpe_softc *);
static void npe_cmd_issue_write(struct ixpnpe_softc *,
uint32_t cmd, uint32_t addr, uint32_t data);
static uint32_t npe_cmd_issue_read(struct ixpnpe_softc *,
uint32_t cmd, uint32_t addr);
static int npe_ins_write(struct ixpnpe_softc *,
uint32_t addr, uint32_t data, int verify);
static int npe_data_write(struct ixpnpe_softc *,
uint32_t addr, uint32_t data, int verify);
static void npe_ecs_reg_write(struct ixpnpe_softc *,
uint32_t reg, uint32_t data);
static uint32_t npe_ecs_reg_read(struct ixpnpe_softc *, uint32_t reg);
static void npe_issue_cmd(struct ixpnpe_softc *, uint32_t command);
static void npe_cpu_step_save(struct ixpnpe_softc *);
static int npe_cpu_step(struct ixpnpe_softc *, uint32_t npeInstruction,
uint32_t ctxtNum, uint32_t ldur);
static void npe_cpu_step_restore(struct ixpnpe_softc *);
static int npe_logical_reg_read(struct ixpnpe_softc *,
uint32_t regAddr, uint32_t regSize,
uint32_t ctxtNum, uint32_t *regVal);
static int npe_logical_reg_write(struct ixpnpe_softc *,
uint32_t regAddr, uint32_t regVal,
uint32_t regSize, uint32_t ctxtNum, int verify);
static int npe_physical_reg_write(struct ixpnpe_softc *,
uint32_t regAddr, uint32_t regValue, int verify);
static int npe_ctx_reg_write(struct ixpnpe_softc *, uint32_t ctxtNum,
uint32_t ctxtReg, uint32_t ctxtRegVal, int verify);
static void ixpnpe_intr(void *arg);
static uint32_t
npe_reg_read(struct ixpnpe_softc *sc, bus_size_t off)
{
uint32_t v = bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
DPRINTFn(9, sc->sc_dev, "%s(0x%lx) => 0x%x\n", __func__, off, v);
return v;
}
static void
npe_reg_write(struct ixpnpe_softc *sc, bus_size_t off, uint32_t val)
{
DPRINTFn(9, sc->sc_dev, "%s(0x%lx, 0x%x)\n", __func__, off, val);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
}
struct ixpnpe_softc *
ixpnpe_attach(device_t dev)
{
struct ixp425_softc *sa = device_get_softc(device_get_parent(dev));
struct ixpnpe_softc *sc;
bus_addr_t base;
int rid, irq;
/* XXX M_BUS */
sc = malloc(sizeof(struct ixpnpe_softc), M_TEMP, M_WAITOK | M_ZERO);
sc->sc_dev = dev;
sc->sc_iot = sa->sc_iot;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), "npe driver", MTX_DEF);
if (device_get_unit(dev) == 0) {
base = IXP425_NPE_B_HWBASE;
sc->sc_size = IXP425_NPE_B_SIZE;
irq = IXP425_INT_NPE_B;
/* size of instruction memory */
sc->insMemSize = IX_NPEDL_INS_MEMSIZE_WORDS_NPEB;
/* size of data memory */
sc->dataMemSize = IX_NPEDL_DATA_MEMSIZE_WORDS_NPEB;
} else {
base = IXP425_NPE_C_HWBASE;
sc->sc_size = IXP425_NPE_C_SIZE;
irq = IXP425_INT_NPE_C;
/* size of instruction memory */
sc->insMemSize = IX_NPEDL_INS_MEMSIZE_WORDS_NPEC;
/* size of data memory */
sc->dataMemSize = IX_NPEDL_DATA_MEMSIZE_WORDS_NPEC;
}
if (bus_space_map(sc->sc_iot, base, sc->sc_size, 0, &sc->sc_ioh))
panic("%s: Cannot map registers", device_get_name(dev));
/*
* Setup IRQ and handler for NPE message support.
*/
rid = 0;
sc->sc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
irq, irq, 1, RF_ACTIVE);
if (!sc->sc_irq)
panic("%s: Unable to allocate irq %u", device_get_name(dev), irq);
/* XXX could be a source of entropy */
bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, ixpnpe_intr, sc, &sc->sc_ih);
/* enable output fifo interrupts (NB: must also set OFIFO Write Enable) */
npe_reg_write(sc, IX_NPECTL,
npe_reg_read(sc, IX_NPECTL) | (IX_NPECTL_OFE | IX_NPECTL_OFWE));
return sc;
}
void
ixpnpe_detach(struct ixpnpe_softc *sc)
{
/* disable output fifo interrupts */
npe_reg_write(sc, IX_NPECTL,
npe_reg_read(sc, IX_NPECTL) &~ (IX_NPECTL_OFE | IX_NPECTL_OFWE));
bus_teardown_intr(sc->sc_dev, sc->sc_irq, sc->sc_ih);
bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_size);
mtx_destroy(&sc->sc_mtx);
free(sc, M_TEMP);
}
int
ixpnpe_stopandreset(struct ixpnpe_softc *sc)
{
int error;
mtx_lock(&sc->sc_mtx);
error = npe_cpu_stop(sc); /* stop NPE */
if (error == 0)
error = npe_cpu_reset(sc); /* reset it */
if (error == 0)
sc->started = 0; /* mark stopped */
mtx_unlock(&sc->sc_mtx);
DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
return error;
}
static int
ixpnpe_start_locked(struct ixpnpe_softc *sc)
{
int error;
if (!sc->started) {
error = npe_cpu_start(sc);
if (error == 0)
sc->started = 1;
} else
error = 0;
DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
return error;
}
int
ixpnpe_start(struct ixpnpe_softc *sc)
{
int ret;
mtx_lock(&sc->sc_mtx);
ret = ixpnpe_start_locked(sc);
mtx_unlock(&sc->sc_mtx);
return (ret);
}
int
ixpnpe_stop(struct ixpnpe_softc *sc)
{
int error;
mtx_lock(&sc->sc_mtx);
error = npe_cpu_stop(sc);
if (error == 0)
sc->started = 0;
mtx_unlock(&sc->sc_mtx);
DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
return error;
}
/*
* Indicates the start of an NPE Image, in new NPE Image Library format.
* 2 consecutive occurances indicates the end of the NPE Image Library
*/
#define NPE_IMAGE_MARKER 0xfeedf00d
/*
* NPE Image Header definition, used in new NPE Image Library format
*/
typedef struct {
uint32_t marker;
uint32_t id;
uint32_t size;
} IxNpeDlImageMgrImageHeader;
static int
npe_findimage(struct ixpnpe_softc *sc,
const uint32_t *imageLibrary, uint32_t imageId,
const uint32_t **imagePtr, uint32_t *imageSize)
{
const IxNpeDlImageMgrImageHeader *image;
uint32_t offset = 0;
while (imageLibrary[offset] == NPE_IMAGE_MARKER) {
image = (const IxNpeDlImageMgrImageHeader *)&imageLibrary[offset];
offset += sizeof(IxNpeDlImageMgrImageHeader)/sizeof(uint32_t);
DPRINTF(sc->sc_dev, "%s: off %u mark 0x%x id 0x%x size %u\n",
__func__, offset, image->marker, image->id, image->size);
if (image->id == imageId) {
*imagePtr = imageLibrary + offset;
*imageSize = image->size;
return 0;
}
/* 2 consecutive NPE_IMAGE_MARKER's indicates end of library */
if (image->id == NPE_IMAGE_MARKER) {
device_printf(sc->sc_dev,
"imageId 0x%08x not found in image library header\n", imageId);
/* reached end of library, image not found */
return EIO;
}
offset += image->size;
}
return EIO;
}
int
ixpnpe_init(struct ixpnpe_softc *sc, const char *imageName, uint32_t imageId)
{
uint32_t imageSize;
const uint32_t *imageCodePtr;
const struct firmware *fw;
int error;
DPRINTF(sc->sc_dev, "load %s, imageId 0x%08x\n", imageName, imageId);
#if 0
IxFeatureCtrlDeviceId devid = IX_NPEDL_DEVICEID_FROM_IMAGEID_GET(imageId);
/*
* Checking if image being loaded is meant for device that is running.
* Image is forward compatible. i.e Image built for IXP42X should run
* on IXP46X but not vice versa.
*/
if (devid > (ixFeatureCtrlDeviceRead() & IX_FEATURE_CTRL_DEVICE_TYPE_MASK))
return EINVAL;
#endif
error = ixpnpe_stopandreset(sc); /* stop and reset the NPE */
if (error != 0)
return error;
fw = firmware_get(imageName);
if (fw == NULL)
return ENOENT;
/* Locate desired image in files w/ combined images */
error = npe_findimage(sc, fw->data, imageId, &imageCodePtr, &imageSize);
if (error != 0)
goto done;
/*
* If download was successful, store image Id in list of
* currently loaded images. If a critical error occured
* during download, record that the NPE has an invalid image
*/
mtx_lock(&sc->sc_mtx);
error = npe_load_image(sc, imageCodePtr, 1 /*VERIFY*/);
if (error == 0) {
sc->validImage = 1;
error = ixpnpe_start_locked(sc);
} else {
sc->validImage = 0;
}
sc->functionalityId = IX_NPEDL_FUNCTIONID_FROM_IMAGEID_GET(imageId);
mtx_unlock(&sc->sc_mtx);
done:
firmware_put(fw, FIRMWARE_UNLOAD);
DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
return error;
}
int
ixpnpe_getfunctionality(struct ixpnpe_softc *sc)
{
return (sc->validImage ? sc->functionalityId : 0);
}
static int
npe_checkbits(struct ixpnpe_softc *sc, uint32_t reg, uint32_t expectedBitsSet)
{
uint32_t val;
val = npe_reg_read(sc, reg);
DPRINTFn(5, sc->sc_dev, "%s(0x%x, 0x%x) => 0x%x (%u)\n",
__func__, reg, expectedBitsSet, val,
(val & expectedBitsSet) == expectedBitsSet);
return ((val & expectedBitsSet) == expectedBitsSet);
}
static int
npe_isstopped(struct ixpnpe_softc *sc)
{
return npe_checkbits(sc,
IX_NPEDL_REG_OFFSET_EXCTL, IX_NPEDL_EXCTL_STATUS_STOP);
}
static int
npe_load_ins(struct ixpnpe_softc *sc,
const IxNpeDlNpeMgrCodeBlock *bp, int verify)
{
uint32_t npeMemAddress;
int i, blockSize;
npeMemAddress = bp->npeMemAddress;
blockSize = bp->size; /* NB: instruction/data count */
if (npeMemAddress + blockSize > sc->insMemSize) {
device_printf(sc->sc_dev, "Block size too big for NPE memory\n");
return EINVAL; /* XXX */
}
for (i = 0; i < blockSize; i++, npeMemAddress++) {
if (npe_ins_write(sc, npeMemAddress, bp->data[i], verify) != 0) {
device_printf(sc->sc_dev, "NPE instruction write failed");
return EIO;
}
}
return 0;
}
static int
npe_load_data(struct ixpnpe_softc *sc,
const IxNpeDlNpeMgrCodeBlock *bp, int verify)
{
uint32_t npeMemAddress;
int i, blockSize;
npeMemAddress = bp->npeMemAddress;
blockSize = bp->size; /* NB: instruction/data count */
if (npeMemAddress + blockSize > sc->dataMemSize) {
device_printf(sc->sc_dev, "Block size too big for NPE memory\n");
return EINVAL;
}
for (i = 0; i < blockSize; i++, npeMemAddress++) {
if (npe_data_write(sc, npeMemAddress, bp->data[i], verify) != 0) {
device_printf(sc->sc_dev, "NPE data write failed\n");
return EIO;
}
}
return 0;
}
static int
npe_load_stateinfo(struct ixpnpe_softc *sc,
const IxNpeDlNpeMgrStateInfoBlock *bp, int verify)
{
int i, nentries, error;
npe_cpu_step_save(sc);
/* for each state-info context register entry in block */
nentries = bp->size / IX_NPEDL_STATE_INFO_ENTRY_SIZE;
error = 0;
for (i = 0; i < nentries; i++) {
/* each state-info entry is 2 words (address, value) in length */
uint32_t regVal = bp->ctxtRegEntry[i].value;
uint32_t addrInfo = bp->ctxtRegEntry[i].addressInfo;
uint32_t reg = (addrInfo & IX_NPEDL_MASK_STATE_ADDR_CTXT_REG);
uint32_t cNum = (addrInfo & IX_NPEDL_MASK_STATE_ADDR_CTXT_NUM) >>
IX_NPEDL_OFFSET_STATE_ADDR_CTXT_NUM;
/* error-check Context Register No. and Context Number values */
if (!(0 <= reg && reg < IX_NPEDL_CTXT_REG_MAX)) {
device_printf(sc->sc_dev, "invalid Context Register %u\n", reg);
error = EINVAL;
break;
}
if (!(0 <= cNum && cNum < IX_NPEDL_CTXT_NUM_MAX)) {
device_printf(sc->sc_dev, "invalid Context Number %u\n", cNum);
error = EINVAL;
break;
}
/* NOTE that there is no STEVT register for Context 0 */
if (cNum == 0 && reg == IX_NPEDL_CTXT_REG_STEVT) {
device_printf(sc->sc_dev, "no STEVT for Context 0\n");
error = EINVAL;
break;
}
if (npe_ctx_reg_write(sc, cNum, reg, regVal, verify) != 0) {
device_printf(sc->sc_dev, "write of state-info to NPE failed\n");
error = EIO;
break;
}
}
npe_cpu_step_restore(sc);
return error;
}
static int
npe_load_image(struct ixpnpe_softc *sc,
const uint32_t *imageCodePtr, int verify)
{
#define EOM(marker) ((marker) == IX_NPEDL_END_OF_DOWNLOAD_MAP)
const IxNpeDlNpeMgrDownloadMap *downloadMap;
int i, error;
if (!npe_isstopped(sc)) { /* verify NPE is stopped */
device_printf(sc->sc_dev, "cannot load image, NPE not stopped\n");
return EIO;
}
/*
* Read Download Map, checking each block type and calling
* appropriate function to perform download
*/
error = 0;
downloadMap = (const IxNpeDlNpeMgrDownloadMap *) imageCodePtr;
for (i = 0; !EOM(downloadMap->entry[i].eodmMarker); i++) {
/* calculate pointer to block to be downloaded */
const uint32_t *bp = imageCodePtr + downloadMap->entry[i].block.offset;
switch (downloadMap->entry[i].block.type) {
case IX_NPEDL_BLOCK_TYPE_INSTRUCTION:
error = npe_load_ins(sc,
(const IxNpeDlNpeMgrCodeBlock *) bp, verify);
DPRINTF(sc->sc_dev, "%s: inst, error %d\n", __func__, error);
break;
case IX_NPEDL_BLOCK_TYPE_DATA:
error = npe_load_data(sc,
(const IxNpeDlNpeMgrCodeBlock *) bp, verify);
DPRINTF(sc->sc_dev, "%s: data, error %d\n", __func__, error);
break;
case IX_NPEDL_BLOCK_TYPE_STATE:
error = npe_load_stateinfo(sc,
(const IxNpeDlNpeMgrStateInfoBlock *) bp, verify);
DPRINTF(sc->sc_dev, "%s: state, error %d\n", __func__, error);
break;
default:
device_printf(sc->sc_dev,
"unknown block type 0x%x in download map\n",
downloadMap->entry[i].block.type);
error = EIO; /* XXX */
break;
}
if (error != 0)
break;
}
return error;
#undef EOM
}
/* contains Reset values for Context Store Registers */
static const struct {
uint32_t regAddr;
uint32_t regResetVal;
} ixNpeDlEcsRegResetValues[] = {
{ IX_NPEDL_ECS_BG_CTXT_REG_0, IX_NPEDL_ECS_BG_CTXT_REG_0_RESET },
{ IX_NPEDL_ECS_BG_CTXT_REG_1, IX_NPEDL_ECS_BG_CTXT_REG_1_RESET },
{ IX_NPEDL_ECS_BG_CTXT_REG_2, IX_NPEDL_ECS_BG_CTXT_REG_2_RESET },
{ IX_NPEDL_ECS_PRI_1_CTXT_REG_0, IX_NPEDL_ECS_PRI_1_CTXT_REG_0_RESET },
{ IX_NPEDL_ECS_PRI_1_CTXT_REG_1, IX_NPEDL_ECS_PRI_1_CTXT_REG_1_RESET },
{ IX_NPEDL_ECS_PRI_1_CTXT_REG_2, IX_NPEDL_ECS_PRI_1_CTXT_REG_2_RESET },
{ IX_NPEDL_ECS_PRI_2_CTXT_REG_0, IX_NPEDL_ECS_PRI_2_CTXT_REG_0_RESET },
{ IX_NPEDL_ECS_PRI_2_CTXT_REG_1, IX_NPEDL_ECS_PRI_2_CTXT_REG_1_RESET },
{ IX_NPEDL_ECS_PRI_2_CTXT_REG_2, IX_NPEDL_ECS_PRI_2_CTXT_REG_2_RESET },
{ IX_NPEDL_ECS_DBG_CTXT_REG_0, IX_NPEDL_ECS_DBG_CTXT_REG_0_RESET },
{ IX_NPEDL_ECS_DBG_CTXT_REG_1, IX_NPEDL_ECS_DBG_CTXT_REG_1_RESET },
{ IX_NPEDL_ECS_DBG_CTXT_REG_2, IX_NPEDL_ECS_DBG_CTXT_REG_2_RESET },
{ IX_NPEDL_ECS_INSTRUCT_REG, IX_NPEDL_ECS_INSTRUCT_REG_RESET }
};
/* contains Reset values for Context Store Registers */
static const uint32_t ixNpeDlCtxtRegResetValues[] = {
IX_NPEDL_CTXT_REG_RESET_STEVT,
IX_NPEDL_CTXT_REG_RESET_STARTPC,
IX_NPEDL_CTXT_REG_RESET_REGMAP,
IX_NPEDL_CTXT_REG_RESET_CINDEX,
};
#define IX_NPEDL_RESET_NPE_PARITY 0x0800
#define IX_NPEDL_PARITY_BIT_MASK 0x3F00FFFF
#define IX_NPEDL_CONFIG_CTRL_REG_MASK 0x3F3FFFFF
static int
npe_cpu_reset(struct ixpnpe_softc *sc)
{
#define N(a) (sizeof(a) / sizeof(a[0]))
struct ixp425_softc *sa = device_get_softc(device_get_parent(sc->sc_dev));
uint32_t ctxtReg; /* identifies Context Store reg (0-3) */
uint32_t regAddr;
uint32_t regVal;
uint32_t resetNpeParity;
uint32_t ixNpeConfigCtrlRegVal;
int i, error = 0;
/* pre-store the NPE Config Control Register Value */
ixNpeConfigCtrlRegVal = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_CTL);
ixNpeConfigCtrlRegVal |= 0x3F000000;
/* disable the parity interrupt */
npe_reg_write(sc, IX_NPEDL_REG_OFFSET_CTL,
(ixNpeConfigCtrlRegVal & IX_NPEDL_PARITY_BIT_MASK));
DPRINTFn(2, sc->sc_dev, "%s: dis parity int, CTL => 0x%x\n",
__func__, ixNpeConfigCtrlRegVal & IX_NPEDL_PARITY_BIT_MASK);
npe_cpu_step_save(sc);
/*
* Clear the FIFOs.
*/
while (npe_checkbits(sc,
IX_NPEDL_REG_OFFSET_WFIFO, IX_NPEDL_MASK_WFIFO_VALID)) {
/* read from the Watch-point FIFO until empty */
(void) npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WFIFO);
}
while (npe_checkbits(sc,
IX_NPEDL_REG_OFFSET_STAT, IX_NPEDL_MASK_STAT_OFNE)) {
/* read from the outFIFO until empty */
(void) npe_reg_read(sc, IX_NPEDL_REG_OFFSET_FIFO);
}
while (npe_checkbits(sc,
IX_NPEDL_REG_OFFSET_STAT, IX_NPEDL_MASK_STAT_IFNE)) {
/*
* Step execution of the NPE intruction to read inFIFO using
* the Debug Executing Context stack.
*/
error = npe_cpu_step(sc, IX_NPEDL_INSTR_RD_FIFO, 0, 0);
if (error != 0) {
DPRINTF(sc->sc_dev, "%s: cannot step (1), error %u\n",
__func__, error);
npe_cpu_step_restore(sc);
return error;
}
}
/*
* Reset the mailbox reg
*/
/* ...from XScale side */
npe_reg_write(sc, IX_NPEDL_REG_OFFSET_MBST, IX_NPEDL_REG_RESET_MBST);
/* ...from NPE side */
error = npe_cpu_step(sc, IX_NPEDL_INSTR_RESET_MBOX, 0, 0);
if (error != 0) {
DPRINTF(sc->sc_dev, "%s: cannot step (2), error %u\n", __func__, error);
npe_cpu_step_restore(sc);
return error;
}
/*
* Reset the physical registers in the NPE register file:
* Note: no need to save/restore REGMAP for Context 0 here
* since all Context Store regs are reset in subsequent code.
*/
for (regAddr = 0;
regAddr < IX_NPEDL_TOTAL_NUM_PHYS_REG && error == 0;
regAddr++) {
/* for each physical register in the NPE reg file, write 0 : */
error = npe_physical_reg_write(sc, regAddr, 0, TRUE);
if (error != 0) {
DPRINTF(sc->sc_dev, "%s: cannot write phy reg, error %u\n",
__func__, error);
npe_cpu_step_restore(sc);
return error; /* abort reset */
}
}
/*
* Reset the context store:
*/
for (i = IX_NPEDL_CTXT_NUM_MIN; i <= IX_NPEDL_CTXT_NUM_MAX; i++) {
/* set each context's Context Store registers to reset values: */
for (ctxtReg = 0; ctxtReg < IX_NPEDL_CTXT_REG_MAX; ctxtReg++) {
/* NOTE that there is no STEVT register for Context 0 */
if (!(i == 0 && ctxtReg == IX_NPEDL_CTXT_REG_STEVT)) {
regVal = ixNpeDlCtxtRegResetValues[ctxtReg];
error = npe_ctx_reg_write(sc, i, ctxtReg, regVal, TRUE);
if (error != 0) {
DPRINTF(sc->sc_dev, "%s: cannot write ctx reg, error %u\n",
__func__, error);
npe_cpu_step_restore(sc);
return error; /* abort reset */
}
}
}
}
npe_cpu_step_restore(sc);
/* write Reset values to Execution Context Stack registers */
for (i = 0; i < N(ixNpeDlEcsRegResetValues); i++)
npe_ecs_reg_write(sc,
ixNpeDlEcsRegResetValues[i].regAddr,
ixNpeDlEcsRegResetValues[i].regResetVal);
/* clear the profile counter */
npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_CLR_PROFILE_CNT);
/* clear registers EXCT, AP0, AP1, AP2 and AP3 */
for (regAddr = IX_NPEDL_REG_OFFSET_EXCT;
regAddr <= IX_NPEDL_REG_OFFSET_AP3;
regAddr += sizeof(uint32_t))
npe_reg_write(sc, regAddr, 0);
/* Reset the Watch-count register */
npe_reg_write(sc, IX_NPEDL_REG_OFFSET_WC, 0);
/*
* WR IXA00055043 - Remove IMEM Parity Introduced by NPE Reset Operation
*/
/*
* Reset the NPE and its coprocessor - to reset internal
* states and remove parity error. Note this makes no
* sense based on the documentation. The feature control
* register always reads back as 0 on the ixp425 and further
* the bit definition of NPEA/NPEB is off by 1 according to
* the Intel documention--so we're blindly following the
* Intel code w/o any real understanding.
*/
regVal = EXP_BUS_READ_4(sa, EXP_FCTRL_OFFSET);
DPRINTFn(2, sc->sc_dev, "%s: FCTRL 0x%x\n", __func__, regVal);
resetNpeParity =
IX_NPEDL_RESET_NPE_PARITY << (1 + device_get_unit(sc->sc_dev));
DPRINTFn(2, sc->sc_dev, "%s: FCTRL fuse parity, write 0x%x\n",
__func__, regVal | resetNpeParity);
EXP_BUS_WRITE_4(sa, EXP_FCTRL_OFFSET, regVal | resetNpeParity);
/* un-fuse and un-reset the NPE & coprocessor */
DPRINTFn(2, sc->sc_dev, "%s: FCTRL unfuse parity, write 0x%x\n",
__func__, regVal & resetNpeParity);
EXP_BUS_WRITE_4(sa, EXP_FCTRL_OFFSET, regVal &~ resetNpeParity);
/*
* Call NpeMgr function to stop the NPE again after the Feature Control
* has unfused and Un-Reset the NPE and its associated Coprocessors.
*/
error = npe_cpu_stop(sc);
/* restore NPE configuration bus Control Register - Parity Settings */
npe_reg_write(sc, IX_NPEDL_REG_OFFSET_CTL,
(ixNpeConfigCtrlRegVal & IX_NPEDL_CONFIG_CTRL_REG_MASK));
DPRINTFn(2, sc->sc_dev, "%s: restore CTL => 0x%x\n",
__func__, npe_reg_read(sc, IX_NPEDL_REG_OFFSET_CTL));
return error;
#undef N
}
static int
npe_cpu_start(struct ixpnpe_softc *sc)
{
uint32_t ecsRegVal;
/*
* Ensure only Background Context Stack Level is Active by turning off
* the Active bit in each of the other Executing Context Stack levels.
*/
ecsRegVal = npe_ecs_reg_read(sc, IX_NPEDL_ECS_PRI_1_CTXT_REG_0);
ecsRegVal &= ~IX_NPEDL_MASK_ECS_REG_0_ACTIVE;
npe_ecs_reg_write(sc, IX_NPEDL_ECS_PRI_1_CTXT_REG_0, ecsRegVal);
ecsRegVal = npe_ecs_reg_read(sc, IX_NPEDL_ECS_PRI_2_CTXT_REG_0);
ecsRegVal &= ~IX_NPEDL_MASK_ECS_REG_0_ACTIVE;
npe_ecs_reg_write(sc, IX_NPEDL_ECS_PRI_2_CTXT_REG_0, ecsRegVal);
ecsRegVal = npe_ecs_reg_read(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0);
ecsRegVal &= ~IX_NPEDL_MASK_ECS_REG_0_ACTIVE;
npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0, ecsRegVal);
/* clear the pipeline */
npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_CLR_PIPE);
/* start NPE execution by issuing command through EXCTL register on NPE */
npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_START);
/*
* Check execution status of NPE to verify operation was successful.
*/
return npe_checkbits(sc,
IX_NPEDL_REG_OFFSET_EXCTL, IX_NPEDL_EXCTL_STATUS_RUN) ? 0 : EIO;
}
static int
npe_cpu_stop(struct ixpnpe_softc *sc)
{
/* stop NPE execution by issuing command through EXCTL register on NPE */
npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_STOP);
/* verify that NPE Stop was successful */
return npe_checkbits(sc,
IX_NPEDL_REG_OFFSET_EXCTL, IX_NPEDL_EXCTL_STATUS_STOP) ? 0 : EIO;
}
#define IX_NPEDL_REG_SIZE_BYTE 8
#define IX_NPEDL_REG_SIZE_SHORT 16
#define IX_NPEDL_REG_SIZE_WORD 32
/*
* Introduce extra read cycles after issuing read command to NPE
* so that we read the register after the NPE has updated it
* This is to overcome race condition between XScale and NPE
*/
#define IX_NPEDL_DELAY_READ_CYCLES 2
/*
* To mask top three MSBs of 32bit word to download into NPE IMEM
*/
#define IX_NPEDL_MASK_UNUSED_IMEM_BITS 0x1FFFFFFF;
static void
npe_cmd_issue_write(struct ixpnpe_softc *sc,
uint32_t cmd, uint32_t addr, uint32_t data)
{
npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXDATA, data);
npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXAD, addr);
npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCTL, cmd);
}
static uint32_t
npe_cmd_issue_read(struct ixpnpe_softc *sc, uint32_t cmd, uint32_t addr)
{
uint32_t data;
int i;
npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXAD, addr);
npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCTL, cmd);
for (i = 0; i <= IX_NPEDL_DELAY_READ_CYCLES; i++)
data = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_EXDATA);
return data;
}
static int
npe_ins_write(struct ixpnpe_softc *sc, uint32_t addr, uint32_t data, int verify)
{
DPRINTFn(4, sc->sc_dev, "%s(0x%x, 0x%x)\n", __func__, addr, data);
npe_cmd_issue_write(sc, IX_NPEDL_EXCTL_CMD_WR_INS_MEM, addr, data);
if (verify) {
uint32_t rdata;
/*
* Write invalid data to this reg, so we can see if we're reading
* the EXDATA register too early.
*/
npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXDATA, ~data);
/* Disabled since top 3 MSB are not used for Azusa hardware Refer WR:IXA00053900*/
data &= IX_NPEDL_MASK_UNUSED_IMEM_BITS;
rdata = npe_cmd_issue_read(sc, IX_NPEDL_EXCTL_CMD_RD_INS_MEM, addr);
rdata &= IX_NPEDL_MASK_UNUSED_IMEM_BITS;
if (data != rdata)
return EIO;
}
return 0;
}
static int
npe_data_write(struct ixpnpe_softc *sc, uint32_t addr, uint32_t data, int verify)
{
DPRINTFn(4, sc->sc_dev, "%s(0x%x, 0x%x)\n", __func__, addr, data);
npe_cmd_issue_write(sc, IX_NPEDL_EXCTL_CMD_WR_DATA_MEM, addr, data);
if (verify) {
/*
* Write invalid data to this reg, so we can see if we're reading
* the EXDATA register too early.
*/
npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXDATA, ~data);
if (data != npe_cmd_issue_read(sc, IX_NPEDL_EXCTL_CMD_RD_DATA_MEM, addr))
return EIO;
}
return 0;
}
static void
npe_ecs_reg_write(struct ixpnpe_softc *sc, uint32_t reg, uint32_t data)
{
npe_cmd_issue_write(sc, IX_NPEDL_EXCTL_CMD_WR_ECS_REG, reg, data);
}
static uint32_t
npe_ecs_reg_read(struct ixpnpe_softc *sc, uint32_t reg)
{
return npe_cmd_issue_read(sc, IX_NPEDL_EXCTL_CMD_RD_ECS_REG, reg);
}
static void
npe_issue_cmd(struct ixpnpe_softc *sc, uint32_t command)
{
npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCTL, command);
}
static void
npe_cpu_step_save(struct ixpnpe_softc *sc)
{
/* turn off the halt bit by clearing Execution Count register. */
/* save reg contents 1st and restore later */
sc->savedExecCount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_EXCT);
npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCT, 0);
/* ensure that IF and IE are on (temporarily), so that we don't end up
* stepping forever */
sc->savedEcsDbgCtxtReg2 = npe_ecs_reg_read(sc, IX_NPEDL_ECS_DBG_CTXT_REG_2);
npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_2,
(sc->savedEcsDbgCtxtReg2 | IX_NPEDL_MASK_ECS_DBG_REG_2_IF |
IX_NPEDL_MASK_ECS_DBG_REG_2_IE));
}
static int
npe_cpu_step(struct ixpnpe_softc *sc, uint32_t npeInstruction,
uint32_t ctxtNum, uint32_t ldur)
{
#define IX_NPE_DL_MAX_NUM_OF_RETRIES 1000000
uint32_t ecsDbgRegVal;
uint32_t oldWatchcount, newWatchcount;
int tries;
/* set the Active bit, and the LDUR, in the debug level */
ecsDbgRegVal = IX_NPEDL_MASK_ECS_REG_0_ACTIVE |
(ldur << IX_NPEDL_OFFSET_ECS_REG_0_LDUR);
npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0, ecsDbgRegVal);
/*
* Set CCTXT at ECS DEBUG L3 to specify in which context to execute the
* instruction, and set SELCTXT at ECS DEBUG Level to specify which context
* store to access.
* Debug ECS Level Reg 1 has form 0x000n000n, where n = context number
*/
ecsDbgRegVal = (ctxtNum << IX_NPEDL_OFFSET_ECS_REG_1_CCTXT) |
(ctxtNum << IX_NPEDL_OFFSET_ECS_REG_1_SELCTXT);
npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_1, ecsDbgRegVal);
/* clear the pipeline */
npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_CLR_PIPE);
/* load NPE instruction into the instruction register */
npe_ecs_reg_write(sc, IX_NPEDL_ECS_INSTRUCT_REG, npeInstruction);
/* we need this value later to wait for completion of NPE execution step */
oldWatchcount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WC);
/* issue a Step One command via the Execution Control register */
npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_STEP);
/*
* Force the XScale to wait until the NPE has finished execution step
* NOTE that this delay will be very small, just long enough to allow a
* single NPE instruction to complete execution; if instruction execution
* is not completed before timeout retries, exit the while loop.
*/
newWatchcount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WC);
for (tries = 0; tries < IX_NPE_DL_MAX_NUM_OF_RETRIES &&
newWatchcount == oldWatchcount; tries++) {
/* Watch Count register increments when NPE completes an instruction */
newWatchcount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WC);
}
return (tries < IX_NPE_DL_MAX_NUM_OF_RETRIES) ? 0 : EIO;
#undef IX_NPE_DL_MAX_NUM_OF_RETRIES
}
static void
npe_cpu_step_restore(struct ixpnpe_softc *sc)
{
/* clear active bit in debug level */
npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0, 0);
/* clear the pipeline */
npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_CLR_PIPE);
/* restore Execution Count register contents. */
npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCT, sc->savedExecCount);
/* restore IF and IE bits to original values */
npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_2, sc->savedEcsDbgCtxtReg2);
}
static int
npe_logical_reg_read(struct ixpnpe_softc *sc,
uint32_t regAddr, uint32_t regSize,
uint32_t ctxtNum, uint32_t *regVal)
{
uint32_t npeInstruction, mask;
int error;
switch (regSize) {
case IX_NPEDL_REG_SIZE_BYTE:
npeInstruction = IX_NPEDL_INSTR_RD_REG_BYTE;
mask = 0xff;
break;
case IX_NPEDL_REG_SIZE_SHORT:
npeInstruction = IX_NPEDL_INSTR_RD_REG_SHORT;
mask = 0xffff;
break;
case IX_NPEDL_REG_SIZE_WORD:
npeInstruction = IX_NPEDL_INSTR_RD_REG_WORD;
mask = 0xffffffff;
break;
default:
return EINVAL;
}
/* make regAddr be the SRC and DEST operands (e.g. movX d0, d0) */
npeInstruction |= (regAddr << IX_NPEDL_OFFSET_INSTR_SRC) |
(regAddr << IX_NPEDL_OFFSET_INSTR_DEST);
/* step execution of NPE intruction using Debug Executing Context stack */
error = npe_cpu_step(sc, npeInstruction, ctxtNum, IX_NPEDL_RD_INSTR_LDUR);
if (error != 0) {
DPRINTF(sc->sc_dev, "%s(0x%x, %u, %u), cannot step, error %d\n",
__func__, regAddr, regSize, ctxtNum, error);
return error;
}
/* read value of register from Execution Data register */
*regVal = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_EXDATA);
/* align value from left to right */
*regVal = (*regVal >> (IX_NPEDL_REG_SIZE_WORD - regSize)) & mask;
return 0;
}
static int
npe_logical_reg_write(struct ixpnpe_softc *sc, uint32_t regAddr, uint32_t regVal,
uint32_t regSize, uint32_t ctxtNum, int verify)
{
int error;
DPRINTFn(4, sc->sc_dev, "%s(0x%x, 0x%x, %u, %u)\n",
__func__, regAddr, regVal, regSize, ctxtNum);
if (regSize == IX_NPEDL_REG_SIZE_WORD) {
/* NPE register addressing is left-to-right: e.g. |d0|d1|d2|d3| */
/* Write upper half-word (short) to |d0|d1| */
error = npe_logical_reg_write(sc, regAddr,
regVal >> IX_NPEDL_REG_SIZE_SHORT,
IX_NPEDL_REG_SIZE_SHORT, ctxtNum, verify);
if (error != 0)
return error;
/* Write lower half-word (short) to |d2|d3| */
error = npe_logical_reg_write(sc,
regAddr + sizeof(uint16_t),
regVal & 0xffff,
IX_NPEDL_REG_SIZE_SHORT, ctxtNum, verify);
} else {
uint32_t npeInstruction;
switch (regSize) {
case IX_NPEDL_REG_SIZE_BYTE:
npeInstruction = IX_NPEDL_INSTR_WR_REG_BYTE;
regVal &= 0xff;
break;
case IX_NPEDL_REG_SIZE_SHORT:
npeInstruction = IX_NPEDL_INSTR_WR_REG_SHORT;
regVal &= 0xffff;
break;
default:
return EINVAL;
}
/* fill dest operand field of instruction with destination reg addr */
npeInstruction |= (regAddr << IX_NPEDL_OFFSET_INSTR_DEST);
/* fill src operand field of instruction with least-sig 5 bits of val*/
npeInstruction |= ((regVal & IX_NPEDL_MASK_IMMED_INSTR_SRC_DATA) <<
IX_NPEDL_OFFSET_INSTR_SRC);
/* fill coprocessor field of instruction with most-sig 11 bits of val*/
npeInstruction |= ((regVal & IX_NPEDL_MASK_IMMED_INSTR_COPROC_DATA) <<
IX_NPEDL_DISPLACE_IMMED_INSTR_COPROC_DATA);
/* step execution of NPE intruction using Debug ECS */
error = npe_cpu_step(sc, npeInstruction,
ctxtNum, IX_NPEDL_WR_INSTR_LDUR);
}
if (error != 0) {
DPRINTF(sc->sc_dev, "%s(0x%x, 0x%x, %u, %u), error %u writing reg\n",
__func__, regAddr, regVal, regSize, ctxtNum, error);
return error;
}
if (verify) {
uint32_t retRegVal;
error = npe_logical_reg_read(sc, regAddr, regSize, ctxtNum, &retRegVal);
if (error == 0 && regVal != retRegVal)
error = EIO; /* XXX ambiguous */
}
return error;
}
/*
* There are 32 physical registers used in an NPE. These are
* treated as 16 pairs of 32-bit registers. To write one of the pair,
* write the pair number (0-16) to the REGMAP for Context 0. Then write
* the value to register 0 or 4 in the regfile, depending on which
* register of the pair is to be written
*/
static int
npe_physical_reg_write(struct ixpnpe_softc *sc,
uint32_t regAddr, uint32_t regValue, int verify)
{
int error;
/*
* Set REGMAP for context 0 to (regAddr >> 1) to choose which pair (0-16)
* of physical registers to write .
*/
error = npe_logical_reg_write(sc, IX_NPEDL_CTXT_REG_ADDR_REGMAP,
(regAddr >> IX_NPEDL_OFFSET_PHYS_REG_ADDR_REGMAP),
IX_NPEDL_REG_SIZE_SHORT, 0, verify);
if (error == 0) {
/* regAddr = 0 or 4 */
regAddr = (regAddr & IX_NPEDL_MASK_PHYS_REG_ADDR_LOGICAL_ADDR) *
sizeof(uint32_t);
error = npe_logical_reg_write(sc, regAddr, regValue,
IX_NPEDL_REG_SIZE_WORD, 0, verify);
}
return error;
}
static int
npe_ctx_reg_write(struct ixpnpe_softc *sc, uint32_t ctxtNum,
uint32_t ctxtReg, uint32_t ctxtRegVal, int verify)
{
DPRINTFn(4, sc->sc_dev, "%s(%u, %u, %u)\n",
__func__, ctxtNum, ctxtReg, ctxtRegVal);
/*
* Context 0 has no STARTPC. Instead, this value is used to set
* NextPC for Background ECS, to set where NPE starts executing code
*/
if (ctxtNum == 0 && ctxtReg == IX_NPEDL_CTXT_REG_STARTPC) {
/* read BG_CTXT_REG_0, update NEXTPC bits, and write back to reg */
uint32_t v = npe_ecs_reg_read(sc, IX_NPEDL_ECS_BG_CTXT_REG_0);
v &= ~IX_NPEDL_MASK_ECS_REG_0_NEXTPC;
v |= (ctxtRegVal << IX_NPEDL_OFFSET_ECS_REG_0_NEXTPC) &
IX_NPEDL_MASK_ECS_REG_0_NEXTPC;
npe_ecs_reg_write(sc, IX_NPEDL_ECS_BG_CTXT_REG_0, v);
return 0;
} else {
static const struct {
uint32_t regAddress;
uint32_t regSize;
} regAccInfo[IX_NPEDL_CTXT_REG_MAX] = {
{ IX_NPEDL_CTXT_REG_ADDR_STEVT, IX_NPEDL_REG_SIZE_BYTE },
{ IX_NPEDL_CTXT_REG_ADDR_STARTPC, IX_NPEDL_REG_SIZE_SHORT },
{ IX_NPEDL_CTXT_REG_ADDR_REGMAP, IX_NPEDL_REG_SIZE_SHORT },
{ IX_NPEDL_CTXT_REG_ADDR_CINDEX, IX_NPEDL_REG_SIZE_BYTE }
};
return npe_logical_reg_write(sc, regAccInfo[ctxtReg].regAddress,
ctxtRegVal, regAccInfo[ctxtReg].regSize, ctxtNum, verify);
}
}
/*
* NPE Mailbox support.
*/
#define IX_NPEMH_MAXTRIES 100000
static int
ixpnpe_ofifo_wait(struct ixpnpe_softc *sc)
{
int i;
for (i = 0; i < IX_NPEMH_MAXTRIES; i++) {
if (npe_reg_read(sc, IX_NPESTAT) & IX_NPESTAT_OFNE)
return 1;
DELAY(10);
}
device_printf(sc->sc_dev, "%s: timeout, last status 0x%x\n",
__func__, npe_reg_read(sc, IX_NPESTAT));
return 0;
}
static void
ixpnpe_intr(void *arg)
{
struct ixpnpe_softc *sc = arg;
uint32_t status;
status = npe_reg_read(sc, IX_NPESTAT);
if ((status & IX_NPESTAT_OFINT) == 0) {
/* NB: should not happen */
device_printf(sc->sc_dev, "%s: status 0x%x\n", __func__, status);
/* XXX must silence interrupt? */
return;
}
/*
* A message is waiting in the output FIFO, copy it so
* the interrupt will be silenced; then signal anyone
* waiting to collect the result.
*/
sc->sc_msgwaiting = -1; /* NB: error indicator */
if (ixpnpe_ofifo_wait(sc)) {
sc->sc_msg[0] = npe_reg_read(sc, IX_NPEFIFO);
if (ixpnpe_ofifo_wait(sc)) {
sc->sc_msg[1] = npe_reg_read(sc, IX_NPEFIFO);
sc->sc_msgwaiting = 1; /* successful fetch */
}
}
wakeup_one(sc);
}
static int
ixpnpe_ififo_wait(struct ixpnpe_softc *sc)
{
int i;
for (i = 0; i < IX_NPEMH_MAXTRIES; i++) {
if (npe_reg_read(sc, IX_NPESTAT) & IX_NPESTAT_IFNF)
return 1;
DELAY(10);
}
return 0;
}
static int
ixpnpe_sendmsg_locked(struct ixpnpe_softc *sc, const uint32_t msg[2])
{
int error = 0;
mtx_assert(&sc->sc_mtx, MA_OWNED);
sc->sc_msgwaiting = 0;
if (ixpnpe_ififo_wait(sc)) {
npe_reg_write(sc, IX_NPEFIFO, msg[0]);
if (ixpnpe_ififo_wait(sc))
npe_reg_write(sc, IX_NPEFIFO, msg[1]);
else
error = EIO;
} else
error = EIO;
if (error)
device_printf(sc->sc_dev, "input FIFO timeout, msg [0x%x,0x%x]\n",
msg[0], msg[1]);
return error;
}
static int
ixpnpe_recvmsg_locked(struct ixpnpe_softc *sc, uint32_t msg[2])
{
mtx_assert(&sc->sc_mtx, MA_OWNED);
if (!sc->sc_msgwaiting)
msleep(sc, &sc->sc_mtx, 0, "npemh", 0);
bcopy(sc->sc_msg, msg, sizeof(sc->sc_msg));
/* NB: sc_msgwaiting != 1 means the ack fetch failed */
return sc->sc_msgwaiting != 1 ? EIO : 0;
}
/*
* Send a msg to the NPE and wait for a reply. We use the
* private mutex and sleep until an interrupt is received
* signalling the availability of data in the output FIFO
* so the caller cannot be holding a mutex. May be better
* piggyback on the caller's mutex instead but that would
* make other locking confusing.
*/
int
ixpnpe_sendandrecvmsg(struct ixpnpe_softc *sc,
const uint32_t send[2], uint32_t recv[2])
{
int error;
mtx_lock(&sc->sc_mtx);
error = ixpnpe_sendmsg_locked(sc, send);
if (error == 0)
error = ixpnpe_recvmsg_locked(sc, recv);
mtx_unlock(&sc->sc_mtx);
return error;
}
/* XXX temporary, not reliable */
int
ixpnpe_sendmsg(struct ixpnpe_softc *sc, const uint32_t msg[2])
{
int error;
mtx_lock(&sc->sc_mtx);
error = ixpnpe_sendmsg_locked(sc, msg);
mtx_unlock(&sc->sc_mtx);
return error;
}
int
ixpnpe_recvmsg(struct ixpnpe_softc *sc, uint32_t msg[2])
{
int error;
mtx_lock(&sc->sc_mtx);
if (sc->sc_msgwaiting)
bcopy(sc->sc_msg, msg, sizeof(sc->sc_msg));
/* NB: sc_msgwaiting != 1 means the ack fetch failed */
error = sc->sc_msgwaiting != 1 ? EIO : 0;
mtx_unlock(&sc->sc_mtx);
return error;
}