2099 lines
46 KiB
C
2099 lines
46 KiB
C
/*
|
|
* Copyright (c) 1991 Regents of the University of California.
|
|
* All rights reserved.
|
|
* Copyright (c) 1994 John S. Dyson
|
|
* All rights reserved.
|
|
* Copyright (c) 1994 David Greenman
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the Systems Programming Group of the University of Utah Computer
|
|
* Science Department and William Jolitz of UUNET Technologies Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
|
|
* $Id: pmap.c,v 1.54 1995/03/26 23:42:07 davidg Exp $
|
|
*/
|
|
|
|
/*
|
|
* Derived from hp300 version by Mike Hibler, this version by William
|
|
* Jolitz uses a recursive map [a pde points to the page directory] to
|
|
* map the page tables using the pagetables themselves. This is done to
|
|
* reduce the impact on kernel virtual memory for lots of sparse address
|
|
* space, and to reduce the cost of memory to each process.
|
|
*
|
|
* Derived from: hp300/@(#)pmap.c 7.1 (Berkeley) 12/5/90
|
|
*/
|
|
/*
|
|
* Major modifications by John S. Dyson primarily to support
|
|
* pageable page tables, eliminating pmap_attributes,
|
|
* discontiguous memory pages, and using more efficient string
|
|
* instructions. Jan 13, 1994. Further modifications on Mar 2, 1994,
|
|
* general clean-up and efficiency mods.
|
|
*/
|
|
|
|
/*
|
|
* Manages physical address maps.
|
|
*
|
|
* In addition to hardware address maps, this
|
|
* module is called upon to provide software-use-only
|
|
* maps which may or may not be stored in the same
|
|
* form as hardware maps. These pseudo-maps are
|
|
* used to store intermediate results from copy
|
|
* operations to and from address spaces.
|
|
*
|
|
* Since the information managed by this module is
|
|
* also stored by the logical address mapping module,
|
|
* this module may throw away valid virtual-to-physical
|
|
* mappings at almost any time. However, invalidations
|
|
* of virtual-to-physical mappings must be done as
|
|
* requested.
|
|
*
|
|
* In order to cope with hardware architectures which
|
|
* make virtual-to-physical map invalidates expensive,
|
|
* this module may delay invalidate or reduced protection
|
|
* operations until such time as they are actually
|
|
* necessary. This module is given full information as
|
|
* to which processors are currently using which maps,
|
|
* and to when physical maps must be made correct.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/user.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_page.h>
|
|
|
|
#include <machine/cputypes.h>
|
|
#include <machine/md_var.h>
|
|
|
|
#include <i386/isa/isa.h>
|
|
|
|
/*
|
|
* Allocate various and sundry SYSMAPs used in the days of old VM
|
|
* and not yet converted. XXX.
|
|
*/
|
|
#define BSDVM_COMPAT 1
|
|
|
|
/*
|
|
* Get PDEs and PTEs for user/kernel address space
|
|
*/
|
|
#define pmap_pde(m, v) (&((m)->pm_pdir[((vm_offset_t)(v) >> PD_SHIFT)&1023]))
|
|
#define pdir_pde(m, v) (m[((vm_offset_t)(v) >> PD_SHIFT)&1023])
|
|
|
|
#define pmap_pte_pa(pte) (*(int *)(pte) & PG_FRAME)
|
|
|
|
#define pmap_pde_v(pte) ((*(int *)pte & PG_V) != 0)
|
|
#define pmap_pte_w(pte) ((*(int *)pte & PG_W) != 0)
|
|
#define pmap_pte_m(pte) ((*(int *)pte & PG_M) != 0)
|
|
#define pmap_pte_u(pte) ((*(int *)pte & PG_U) != 0)
|
|
#define pmap_pte_v(pte) ((*(int *)pte & PG_V) != 0)
|
|
|
|
#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
|
|
#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
|
|
|
|
/*
|
|
* Given a map and a machine independent protection code,
|
|
* convert to a vax protection code.
|
|
*/
|
|
#define pte_prot(m, p) (protection_codes[p])
|
|
int protection_codes[8];
|
|
|
|
struct pmap kernel_pmap_store;
|
|
pmap_t kernel_pmap;
|
|
|
|
vm_offset_t phys_avail[6]; /* 2 entries + 1 null */
|
|
vm_offset_t avail_start; /* PA of first available physical page */
|
|
vm_offset_t avail_end; /* PA of last available physical page */
|
|
vm_size_t mem_size; /* memory size in bytes */
|
|
vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
|
|
vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
|
|
int i386pagesperpage; /* PAGE_SIZE / I386_PAGE_SIZE */
|
|
boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
|
|
vm_offset_t vm_first_phys, vm_last_phys;
|
|
|
|
static inline int pmap_is_managed();
|
|
static void i386_protection_init();
|
|
static void pmap_alloc_pv_entry();
|
|
static inline pv_entry_t get_pv_entry();
|
|
int nkpt;
|
|
|
|
|
|
extern vm_offset_t clean_sva, clean_eva;
|
|
extern int cpu_class;
|
|
|
|
#if BSDVM_COMPAT
|
|
#include <sys/msgbuf.h>
|
|
|
|
/*
|
|
* All those kernel PT submaps that BSD is so fond of
|
|
*/
|
|
pt_entry_t *CMAP1, *CMAP2, *ptmmap;
|
|
pv_entry_t pv_table;
|
|
caddr_t CADDR1, CADDR2, ptvmmap;
|
|
pt_entry_t *msgbufmap;
|
|
struct msgbuf *msgbufp;
|
|
|
|
#endif
|
|
|
|
void
|
|
init_pv_entries(int);
|
|
|
|
/*
|
|
* Routine: pmap_pte
|
|
* Function:
|
|
* Extract the page table entry associated
|
|
* with the given map/virtual_address pair.
|
|
* [ what about induced faults -wfj]
|
|
*/
|
|
|
|
inline pt_entry_t * const
|
|
pmap_pte(pmap, va)
|
|
register pmap_t pmap;
|
|
vm_offset_t va;
|
|
{
|
|
|
|
if (pmap && *pmap_pde(pmap, va)) {
|
|
vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
|
|
|
|
/* are we current address space or kernel? */
|
|
if ((pmap == kernel_pmap) || (frame == ((int) PTDpde & PG_FRAME)))
|
|
return ((pt_entry_t *) vtopte(va));
|
|
/* otherwise, we are alternate address space */
|
|
else {
|
|
if (frame != ((int) APTDpde & PG_FRAME)) {
|
|
APTDpde = pmap->pm_pdir[PTDPTDI];
|
|
pmap_update();
|
|
}
|
|
return ((pt_entry_t *) avtopte(va));
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_extract
|
|
* Function:
|
|
* Extract the physical page address associated
|
|
* with the given map/virtual_address pair.
|
|
*/
|
|
|
|
vm_offset_t
|
|
pmap_extract(pmap, va)
|
|
register pmap_t pmap;
|
|
vm_offset_t va;
|
|
{
|
|
vm_offset_t pa;
|
|
|
|
if (pmap && *pmap_pde(pmap, va)) {
|
|
vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
|
|
|
|
/* are we current address space or kernel? */
|
|
if ((pmap == kernel_pmap)
|
|
|| (frame == ((int) PTDpde & PG_FRAME))) {
|
|
pa = *(int *) vtopte(va);
|
|
/* otherwise, we are alternate address space */
|
|
} else {
|
|
if (frame != ((int) APTDpde & PG_FRAME)) {
|
|
APTDpde = pmap->pm_pdir[PTDPTDI];
|
|
pmap_update();
|
|
}
|
|
pa = *(int *) avtopte(va);
|
|
}
|
|
return ((pa & PG_FRAME) | (va & ~PG_FRAME));
|
|
}
|
|
return 0;
|
|
|
|
}
|
|
|
|
/*
|
|
* determine if a page is managed (memory vs. device)
|
|
*/
|
|
static inline int
|
|
pmap_is_managed(pa)
|
|
vm_offset_t pa;
|
|
{
|
|
int i;
|
|
|
|
if (!pmap_initialized)
|
|
return 0;
|
|
|
|
for (i = 0; phys_avail[i + 1]; i += 2) {
|
|
if (pa >= phys_avail[i] && pa < phys_avail[i + 1])
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* find the vm_page_t of a pte (only) given va of pte and pmap
|
|
*/
|
|
__inline vm_page_t
|
|
pmap_pte_vm_page(pmap, pt)
|
|
pmap_t pmap;
|
|
vm_offset_t pt;
|
|
{
|
|
vm_page_t m;
|
|
|
|
pt = i386_trunc_page(pt);
|
|
pt = (pt - UPT_MIN_ADDRESS) / NBPG;
|
|
pt = ((vm_offset_t) pmap->pm_pdir[pt]) & PG_FRAME;
|
|
m = PHYS_TO_VM_PAGE(pt);
|
|
return m;
|
|
}
|
|
|
|
/*
|
|
* Wire a page table page
|
|
*/
|
|
__inline void
|
|
pmap_use_pt(pmap, va)
|
|
pmap_t pmap;
|
|
vm_offset_t va;
|
|
{
|
|
vm_offset_t pt;
|
|
|
|
if ((va >= UPT_MIN_ADDRESS) || !pmap_initialized)
|
|
return;
|
|
|
|
pt = (vm_offset_t) vtopte(va);
|
|
vm_page_hold(pmap_pte_vm_page(pmap, pt));
|
|
}
|
|
|
|
/*
|
|
* Unwire a page table page
|
|
*/
|
|
inline void
|
|
pmap_unuse_pt(pmap, va)
|
|
pmap_t pmap;
|
|
vm_offset_t va;
|
|
{
|
|
vm_offset_t pt;
|
|
vm_page_t m;
|
|
|
|
if ((va >= UPT_MIN_ADDRESS) || !pmap_initialized)
|
|
return;
|
|
|
|
pt = (vm_offset_t) vtopte(va);
|
|
m = pmap_pte_vm_page(pmap, pt);
|
|
vm_page_unhold(m);
|
|
if (pmap != kernel_pmap &&
|
|
(m->hold_count == 0) &&
|
|
(m->wire_count == 0) &&
|
|
(va < KPT_MIN_ADDRESS)) {
|
|
pmap_page_protect(VM_PAGE_TO_PHYS(m), VM_PROT_NONE);
|
|
vm_page_free(m);
|
|
}
|
|
}
|
|
|
|
/* [ macro again?, should I force kstack into user map here? -wfj ] */
|
|
void
|
|
pmap_activate(pmap, pcbp)
|
|
register pmap_t pmap;
|
|
struct pcb *pcbp;
|
|
{
|
|
PMAP_ACTIVATE(pmap, pcbp);
|
|
}
|
|
|
|
/*
|
|
* Bootstrap the system enough to run with virtual memory.
|
|
* Map the kernel's code and data, and allocate the system page table.
|
|
*
|
|
* On the I386 this is called after mapping has already been enabled
|
|
* and just syncs the pmap module with what has already been done.
|
|
* [We can't call it easily with mapping off since the kernel is not
|
|
* mapped with PA == VA, hence we would have to relocate every address
|
|
* from the linked base (virtual) address "KERNBASE" to the actual
|
|
* (physical) address starting relative to 0]
|
|
*/
|
|
|
|
#define DMAPAGES 8
|
|
void
|
|
pmap_bootstrap(firstaddr, loadaddr)
|
|
vm_offset_t firstaddr;
|
|
vm_offset_t loadaddr;
|
|
{
|
|
#if BSDVM_COMPAT
|
|
vm_offset_t va;
|
|
pt_entry_t *pte;
|
|
|
|
#endif
|
|
|
|
avail_start = firstaddr + DMAPAGES * NBPG;
|
|
|
|
virtual_avail = (vm_offset_t) KERNBASE + avail_start;
|
|
virtual_end = VM_MAX_KERNEL_ADDRESS;
|
|
i386pagesperpage = PAGE_SIZE / NBPG;
|
|
|
|
/*
|
|
* Initialize protection array.
|
|
*/
|
|
i386_protection_init();
|
|
|
|
/*
|
|
* The kernel's pmap is statically allocated so we don't have to use
|
|
* pmap_create, which is unlikely to work correctly at this part of
|
|
* the boot sequence.
|
|
*/
|
|
kernel_pmap = &kernel_pmap_store;
|
|
|
|
kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + IdlePTD);
|
|
|
|
simple_lock_init(&kernel_pmap->pm_lock);
|
|
kernel_pmap->pm_count = 1;
|
|
nkpt = NKPT;
|
|
|
|
#if BSDVM_COMPAT
|
|
/*
|
|
* Allocate all the submaps we need
|
|
*/
|
|
#define SYSMAP(c, p, v, n) \
|
|
v = (c)va; va += ((n)*NBPG); p = pte; pte += (n);
|
|
|
|
va = virtual_avail;
|
|
pte = pmap_pte(kernel_pmap, va);
|
|
|
|
SYSMAP(caddr_t, CMAP1, CADDR1, 1)
|
|
SYSMAP(caddr_t, CMAP2, CADDR2, 1)
|
|
SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
|
|
SYSMAP(struct msgbuf *, msgbufmap, msgbufp, 1)
|
|
virtual_avail = va;
|
|
#endif
|
|
/*
|
|
* Reserve special hunk of memory for use by bus dma as a bounce
|
|
* buffer (contiguous virtual *and* physical memory).
|
|
*/
|
|
{
|
|
isaphysmem = va;
|
|
|
|
virtual_avail = pmap_map(va, firstaddr,
|
|
firstaddr + DMAPAGES * NBPG, VM_PROT_ALL);
|
|
}
|
|
|
|
*(int *) CMAP1 = *(int *) CMAP2 = *(int *) PTD = 0;
|
|
pmap_update();
|
|
|
|
}
|
|
|
|
/*
|
|
* Initialize the pmap module.
|
|
* Called by vm_init, to initialize any structures that the pmap
|
|
* system needs to map virtual memory.
|
|
* pmap_init has been enhanced to support in a fairly consistant
|
|
* way, discontiguous physical memory.
|
|
*/
|
|
void
|
|
pmap_init(phys_start, phys_end)
|
|
vm_offset_t phys_start, phys_end;
|
|
{
|
|
vm_offset_t addr;
|
|
vm_size_t npg, s;
|
|
int i;
|
|
|
|
/*
|
|
* Now that kernel map has been allocated, we can mark as unavailable
|
|
* regions which we have mapped in locore.
|
|
*/
|
|
addr = atdevbase;
|
|
(void) vm_map_find(kernel_map, NULL, (vm_offset_t) 0,
|
|
&addr, (0x100000 - 0xa0000), FALSE);
|
|
|
|
addr = (vm_offset_t) KERNBASE + IdlePTD;
|
|
vm_object_reference(kernel_object);
|
|
(void) vm_map_find(kernel_map, kernel_object, addr,
|
|
&addr, (4 + NKPDE) * NBPG, FALSE);
|
|
|
|
/*
|
|
* calculate the number of pv_entries needed
|
|
*/
|
|
vm_first_phys = phys_avail[0];
|
|
for (i = 0; phys_avail[i + 1]; i += 2);
|
|
npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / NBPG;
|
|
|
|
/*
|
|
* Allocate memory for random pmap data structures. Includes the
|
|
* pv_head_table.
|
|
*/
|
|
s = (vm_size_t) (sizeof(struct pv_entry) * npg);
|
|
s = i386_round_page(s);
|
|
addr = (vm_offset_t) kmem_alloc(kernel_map, s);
|
|
pv_table = (pv_entry_t) addr;
|
|
|
|
/*
|
|
* init the pv free list
|
|
*/
|
|
init_pv_entries(npg);
|
|
/*
|
|
* Now it is safe to enable pv_table recording.
|
|
*/
|
|
pmap_initialized = TRUE;
|
|
}
|
|
|
|
/*
|
|
* Used to map a range of physical addresses into kernel
|
|
* virtual address space.
|
|
*
|
|
* For now, VM is already on, we only need to map the
|
|
* specified memory.
|
|
*/
|
|
vm_offset_t
|
|
pmap_map(virt, start, end, prot)
|
|
vm_offset_t virt;
|
|
vm_offset_t start;
|
|
vm_offset_t end;
|
|
int prot;
|
|
{
|
|
while (start < end) {
|
|
pmap_enter(kernel_pmap, virt, start, prot, FALSE);
|
|
virt += PAGE_SIZE;
|
|
start += PAGE_SIZE;
|
|
}
|
|
return (virt);
|
|
}
|
|
|
|
/*
|
|
* Create and return a physical map.
|
|
*
|
|
* If the size specified for the map
|
|
* is zero, the map is an actual physical
|
|
* map, and may be referenced by the
|
|
* hardware.
|
|
*
|
|
* If the size specified is non-zero,
|
|
* the map will be used in software only, and
|
|
* is bounded by that size.
|
|
*
|
|
*/
|
|
|
|
pmap_t
|
|
pmap_create(size)
|
|
vm_size_t size;
|
|
{
|
|
register pmap_t pmap;
|
|
|
|
/*
|
|
* Software use map does not need a pmap
|
|
*/
|
|
if (size)
|
|
return (NULL);
|
|
|
|
pmap = (pmap_t) malloc(sizeof *pmap, M_VMPMAP, M_WAITOK);
|
|
bzero(pmap, sizeof(*pmap));
|
|
pmap_pinit(pmap);
|
|
return (pmap);
|
|
}
|
|
|
|
/*
|
|
* Initialize a preallocated and zeroed pmap structure,
|
|
* such as one in a vmspace structure.
|
|
*/
|
|
void
|
|
pmap_pinit(pmap)
|
|
register struct pmap *pmap;
|
|
{
|
|
/*
|
|
* No need to allocate page table space yet but we do need a valid
|
|
* page directory table.
|
|
*/
|
|
pmap->pm_pdir = (pd_entry_t *) kmem_alloc(kernel_map, PAGE_SIZE);
|
|
|
|
/* wire in kernel global address entries */
|
|
bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
|
|
|
|
/* install self-referential address mapping entry */
|
|
*(int *) (pmap->pm_pdir + PTDPTDI) =
|
|
((int) pmap_kextract((vm_offset_t) pmap->pm_pdir)) | PG_V | PG_KW;
|
|
|
|
pmap->pm_count = 1;
|
|
simple_lock_init(&pmap->pm_lock);
|
|
}
|
|
|
|
/*
|
|
* grow the number of kernel page table entries, if needed
|
|
*/
|
|
|
|
vm_page_t nkpg;
|
|
vm_offset_t kernel_vm_end;
|
|
|
|
void
|
|
pmap_growkernel(vm_offset_t addr)
|
|
{
|
|
struct proc *p;
|
|
struct pmap *pmap;
|
|
int s;
|
|
|
|
s = splhigh();
|
|
if (kernel_vm_end == 0) {
|
|
kernel_vm_end = KERNBASE;
|
|
nkpt = 0;
|
|
while (pdir_pde(PTD, kernel_vm_end)) {
|
|
kernel_vm_end = (kernel_vm_end + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
|
|
++nkpt;
|
|
}
|
|
}
|
|
addr = (addr + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
|
|
while (kernel_vm_end < addr) {
|
|
if (pdir_pde(PTD, kernel_vm_end)) {
|
|
kernel_vm_end = (kernel_vm_end + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
|
|
continue;
|
|
}
|
|
++nkpt;
|
|
if (!nkpg) {
|
|
nkpg = vm_page_alloc(kernel_object, 0, VM_ALLOC_SYSTEM);
|
|
if (!nkpg)
|
|
panic("pmap_growkernel: no memory to grow kernel");
|
|
vm_page_wire(nkpg);
|
|
vm_page_remove(nkpg);
|
|
pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
|
|
}
|
|
pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_KW);
|
|
nkpg = NULL;
|
|
|
|
for (p = (struct proc *) allproc; p != NULL; p = p->p_next) {
|
|
if (p->p_vmspace) {
|
|
pmap = &p->p_vmspace->vm_pmap;
|
|
*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
|
|
}
|
|
}
|
|
*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
|
|
kernel_vm_end = (kernel_vm_end + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Retire the given physical map from service.
|
|
* Should only be called if the map contains
|
|
* no valid mappings.
|
|
*/
|
|
void
|
|
pmap_destroy(pmap)
|
|
register pmap_t pmap;
|
|
{
|
|
int count;
|
|
|
|
if (pmap == NULL)
|
|
return;
|
|
|
|
simple_lock(&pmap->pm_lock);
|
|
count = --pmap->pm_count;
|
|
simple_unlock(&pmap->pm_lock);
|
|
if (count == 0) {
|
|
pmap_release(pmap);
|
|
free((caddr_t) pmap, M_VMPMAP);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Release any resources held by the given physical map.
|
|
* Called when a pmap initialized by pmap_pinit is being released.
|
|
* Should only be called if the map contains no valid mappings.
|
|
*/
|
|
void
|
|
pmap_release(pmap)
|
|
register struct pmap *pmap;
|
|
{
|
|
kmem_free(kernel_map, (vm_offset_t) pmap->pm_pdir, PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Add a reference to the specified pmap.
|
|
*/
|
|
void
|
|
pmap_reference(pmap)
|
|
pmap_t pmap;
|
|
{
|
|
if (pmap != NULL) {
|
|
simple_lock(&pmap->pm_lock);
|
|
pmap->pm_count++;
|
|
simple_unlock(&pmap->pm_lock);
|
|
}
|
|
}
|
|
|
|
#define PV_FREELIST_MIN ((NBPG / sizeof (struct pv_entry)) / 2)
|
|
|
|
/*
|
|
* Data for the pv entry allocation mechanism
|
|
*/
|
|
int pv_freelistcnt;
|
|
pv_entry_t pv_freelist;
|
|
vm_offset_t pvva;
|
|
int npvvapg;
|
|
|
|
/*
|
|
* free the pv_entry back to the free list
|
|
*/
|
|
inline static void
|
|
free_pv_entry(pv)
|
|
pv_entry_t pv;
|
|
{
|
|
if (!pv)
|
|
return;
|
|
++pv_freelistcnt;
|
|
pv->pv_next = pv_freelist;
|
|
pv_freelist = pv;
|
|
}
|
|
|
|
/*
|
|
* get a new pv_entry, allocating a block from the system
|
|
* when needed.
|
|
* the memory allocation is performed bypassing the malloc code
|
|
* because of the possibility of allocations at interrupt time.
|
|
*/
|
|
static inline pv_entry_t
|
|
get_pv_entry()
|
|
{
|
|
pv_entry_t tmp;
|
|
|
|
/*
|
|
* get more pv_entry pages if needed
|
|
*/
|
|
if (pv_freelistcnt < PV_FREELIST_MIN || pv_freelist == 0) {
|
|
pmap_alloc_pv_entry();
|
|
}
|
|
/*
|
|
* get a pv_entry off of the free list
|
|
*/
|
|
--pv_freelistcnt;
|
|
tmp = pv_freelist;
|
|
pv_freelist = tmp->pv_next;
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
* this *strange* allocation routine *statistically* eliminates the
|
|
* *possibility* of a malloc failure (*FATAL*) for a pv_entry_t data structure.
|
|
* also -- this code is MUCH MUCH faster than the malloc equiv...
|
|
*/
|
|
static void
|
|
pmap_alloc_pv_entry()
|
|
{
|
|
/*
|
|
* do we have any pre-allocated map-pages left?
|
|
*/
|
|
if (npvvapg) {
|
|
vm_page_t m;
|
|
|
|
/*
|
|
* we do this to keep recursion away
|
|
*/
|
|
pv_freelistcnt += PV_FREELIST_MIN;
|
|
/*
|
|
* allocate a physical page out of the vm system
|
|
*/
|
|
m = vm_page_alloc(kernel_object,
|
|
pvva - vm_map_min(kernel_map), VM_ALLOC_INTERRUPT);
|
|
if (m) {
|
|
int newentries;
|
|
int i;
|
|
pv_entry_t entry;
|
|
|
|
newentries = (NBPG / sizeof(struct pv_entry));
|
|
/*
|
|
* wire the page
|
|
*/
|
|
vm_page_wire(m);
|
|
m->flags &= ~PG_BUSY;
|
|
/*
|
|
* let the kernel see it
|
|
*/
|
|
pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
|
|
|
|
entry = (pv_entry_t) pvva;
|
|
/*
|
|
* update the allocation pointers
|
|
*/
|
|
pvva += NBPG;
|
|
--npvvapg;
|
|
|
|
/*
|
|
* free the entries into the free list
|
|
*/
|
|
for (i = 0; i < newentries; i++) {
|
|
free_pv_entry(entry);
|
|
entry++;
|
|
}
|
|
}
|
|
pv_freelistcnt -= PV_FREELIST_MIN;
|
|
}
|
|
if (!pv_freelist)
|
|
panic("get_pv_entry: cannot get a pv_entry_t");
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* init the pv_entry allocation system
|
|
*/
|
|
#define PVSPERPAGE 64
|
|
void
|
|
init_pv_entries(npg)
|
|
int npg;
|
|
{
|
|
/*
|
|
* allocate enough kvm space for PVSPERPAGE entries per page (lots)
|
|
* kvm space is fairly cheap, be generous!!! (the system can panic if
|
|
* this is too small.)
|
|
*/
|
|
npvvapg = ((npg * PVSPERPAGE) * sizeof(struct pv_entry) + NBPG - 1) / NBPG;
|
|
pvva = kmem_alloc_pageable(kernel_map, npvvapg * NBPG);
|
|
/*
|
|
* get the first batch of entries
|
|
*/
|
|
free_pv_entry(get_pv_entry());
|
|
}
|
|
|
|
static pt_entry_t *
|
|
get_pt_entry(pmap)
|
|
pmap_t pmap;
|
|
{
|
|
vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
|
|
|
|
/* are we current address space or kernel? */
|
|
if (pmap == kernel_pmap || frame == ((int) PTDpde & PG_FRAME)) {
|
|
return PTmap;
|
|
}
|
|
/* otherwise, we are alternate address space */
|
|
if (frame != ((int) APTDpde & PG_FRAME)) {
|
|
APTDpde = pmap->pm_pdir[PTDPTDI];
|
|
pmap_update();
|
|
}
|
|
return APTmap;
|
|
}
|
|
|
|
/*
|
|
* If it is the first entry on the list, it is actually
|
|
* in the header and we must copy the following entry up
|
|
* to the header. Otherwise we must search the list for
|
|
* the entry. In either case we free the now unused entry.
|
|
*/
|
|
void
|
|
pmap_remove_entry(pmap, pv, va)
|
|
struct pmap *pmap;
|
|
pv_entry_t pv;
|
|
vm_offset_t va;
|
|
{
|
|
pv_entry_t npv;
|
|
int s;
|
|
|
|
s = splhigh();
|
|
if (pmap == pv->pv_pmap && va == pv->pv_va) {
|
|
npv = pv->pv_next;
|
|
if (npv) {
|
|
*pv = *npv;
|
|
free_pv_entry(npv);
|
|
} else {
|
|
pv->pv_pmap = NULL;
|
|
}
|
|
} else {
|
|
for (npv = pv->pv_next; npv; npv = npv->pv_next) {
|
|
if (pmap == npv->pv_pmap && va == npv->pv_va) {
|
|
break;
|
|
}
|
|
pv = npv;
|
|
}
|
|
if (npv) {
|
|
pv->pv_next = npv->pv_next;
|
|
free_pv_entry(npv);
|
|
}
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Remove the given range of addresses from the specified map.
|
|
*
|
|
* It is assumed that the start and end are properly
|
|
* rounded to the page size.
|
|
*/
|
|
void
|
|
pmap_remove(pmap, sva, eva)
|
|
struct pmap *pmap;
|
|
register vm_offset_t sva;
|
|
register vm_offset_t eva;
|
|
{
|
|
register pt_entry_t *ptp, *ptq;
|
|
vm_offset_t pa;
|
|
register pv_entry_t pv;
|
|
vm_offset_t va;
|
|
vm_page_t m;
|
|
pt_entry_t oldpte;
|
|
|
|
if (pmap == NULL)
|
|
return;
|
|
|
|
ptp = get_pt_entry(pmap);
|
|
|
|
/*
|
|
* special handling of removing one page. a very
|
|
* common operation and easy to short circuit some
|
|
* code.
|
|
*/
|
|
if ((sva + NBPG) == eva) {
|
|
|
|
if (*pmap_pde(pmap, sva) == 0)
|
|
return;
|
|
|
|
ptq = ptp + i386_btop(sva);
|
|
|
|
if (!*ptq)
|
|
return;
|
|
/*
|
|
* Update statistics
|
|
*/
|
|
if (pmap_pte_w(ptq))
|
|
pmap->pm_stats.wired_count--;
|
|
pmap->pm_stats.resident_count--;
|
|
|
|
pa = pmap_pte_pa(ptq);
|
|
oldpte = *ptq;
|
|
*ptq = 0;
|
|
|
|
if (pmap_is_managed(pa)) {
|
|
if ((int) oldpte & PG_M) {
|
|
if ((sva < USRSTACK || sva >= KERNBASE) ||
|
|
(sva >= USRSTACK && sva < USRSTACK + (UPAGES * NBPG))) {
|
|
if (sva < clean_sva || sva >= clean_eva) {
|
|
PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
|
|
}
|
|
}
|
|
}
|
|
pv = pa_to_pvh(pa);
|
|
pmap_remove_entry(pmap, pv, sva);
|
|
}
|
|
pmap_unuse_pt(pmap, sva);
|
|
pmap_update();
|
|
return;
|
|
}
|
|
sva = i386_btop(sva);
|
|
eva = i386_btop(eva);
|
|
|
|
while (sva < eva) {
|
|
/*
|
|
* Weed out invalid mappings. Note: we assume that the page
|
|
* directory table is always allocated, and in kernel virtual.
|
|
*/
|
|
|
|
if (*pmap_pde(pmap, i386_ptob(sva)) == 0) {
|
|
/* We can race ahead here, straight to next pde.. */
|
|
sva = ((sva + NPTEPG) & ~(NPTEPG - 1));
|
|
continue;
|
|
}
|
|
ptq = ptp + sva;
|
|
|
|
/*
|
|
* search for page table entries, use string operations that
|
|
* are much faster than explicitly scanning when page tables
|
|
* are not fully populated.
|
|
*/
|
|
if (*ptq == 0) {
|
|
vm_offset_t pdnxt = ((sva + NPTEPG) & ~(NPTEPG - 1));
|
|
vm_offset_t nscan = pdnxt - sva;
|
|
int found = 0;
|
|
|
|
if ((nscan + sva) > eva)
|
|
nscan = eva - sva;
|
|
|
|
asm("xorl %%eax,%%eax;cld;repe;scasl;jz 1f;incl %%eax;1:;" :
|
|
"=D"(ptq), "=a"(found) : "c"(nscan), "0"(ptq) : "cx");
|
|
|
|
if (!found) {
|
|
sva = pdnxt;
|
|
continue;
|
|
}
|
|
ptq -= 1;
|
|
|
|
sva = ptq - ptp;
|
|
}
|
|
/*
|
|
* Update statistics
|
|
*/
|
|
oldpte = *ptq;
|
|
if (((int) oldpte) & PG_W)
|
|
pmap->pm_stats.wired_count--;
|
|
pmap->pm_stats.resident_count--;
|
|
|
|
/*
|
|
* Invalidate the PTEs. XXX: should cluster them up and
|
|
* invalidate as many as possible at once.
|
|
*/
|
|
*ptq = 0;
|
|
|
|
va = i386_ptob(sva);
|
|
|
|
/*
|
|
* Remove from the PV table (raise IPL since we may be called
|
|
* at interrupt time).
|
|
*/
|
|
pa = ((int) oldpte) & PG_FRAME;
|
|
if (!pmap_is_managed(pa)) {
|
|
pmap_unuse_pt(pmap, va);
|
|
++sva;
|
|
continue;
|
|
}
|
|
if ((int) oldpte & PG_M) {
|
|
if ((va < USRSTACK || va >= KERNBASE) ||
|
|
(va >= USRSTACK && va < USRSTACK + (UPAGES * NBPG))) {
|
|
if (va < clean_sva || va >= clean_eva) {
|
|
PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
|
|
}
|
|
}
|
|
}
|
|
pv = pa_to_pvh(pa);
|
|
pmap_remove_entry(pmap, pv, va);
|
|
pmap_unuse_pt(pmap, va);
|
|
++sva;
|
|
}
|
|
pmap_update();
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_remove_all
|
|
* Function:
|
|
* Removes this physical page from
|
|
* all physical maps in which it resides.
|
|
* Reflects back modify bits to the pager.
|
|
*
|
|
* Notes:
|
|
* Original versions of this routine were very
|
|
* inefficient because they iteratively called
|
|
* pmap_remove (slow...)
|
|
*/
|
|
void
|
|
pmap_remove_all(pa)
|
|
vm_offset_t pa;
|
|
{
|
|
register pv_entry_t pv, npv;
|
|
register pt_entry_t *pte, *ptp;
|
|
vm_offset_t va;
|
|
struct pmap *pmap;
|
|
vm_page_t m;
|
|
int s;
|
|
int anyvalid = 0;
|
|
|
|
/*
|
|
* Not one of ours
|
|
*/
|
|
/*
|
|
* XXX this makes pmap_page_protect(NONE) illegal for non-managed
|
|
* pages!
|
|
*/
|
|
if (!pmap_is_managed(pa))
|
|
return;
|
|
|
|
pa = i386_trunc_page(pa);
|
|
pv = pa_to_pvh(pa);
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
|
|
s = splhigh();
|
|
while (pv->pv_pmap != NULL) {
|
|
pmap = pv->pv_pmap;
|
|
ptp = get_pt_entry(pmap);
|
|
va = pv->pv_va;
|
|
pte = ptp + i386_btop(va);
|
|
if (pmap_pte_w(pte))
|
|
pmap->pm_stats.wired_count--;
|
|
if (*pte) {
|
|
pmap->pm_stats.resident_count--;
|
|
anyvalid++;
|
|
|
|
/*
|
|
* Update the vm_page_t clean and reference bits.
|
|
*/
|
|
if ((int) *pte & PG_M) {
|
|
if ((va < USRSTACK || va >= KERNBASE) ||
|
|
(va >= USRSTACK && va < USRSTACK + (UPAGES * NBPG))) {
|
|
if (va < clean_sva || va >= clean_eva) {
|
|
PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
|
|
}
|
|
}
|
|
}
|
|
*pte = 0;
|
|
pmap_unuse_pt(pmap, va);
|
|
}
|
|
npv = pv->pv_next;
|
|
if (npv) {
|
|
*pv = *npv;
|
|
free_pv_entry(npv);
|
|
} else {
|
|
pv->pv_pmap = NULL;
|
|
}
|
|
}
|
|
splx(s);
|
|
if (anyvalid)
|
|
pmap_update();
|
|
}
|
|
|
|
|
|
/*
|
|
* Set the physical protection on the
|
|
* specified range of this map as requested.
|
|
*/
|
|
void
|
|
pmap_protect(pmap, sva, eva, prot)
|
|
register pmap_t pmap;
|
|
vm_offset_t sva, eva;
|
|
vm_prot_t prot;
|
|
{
|
|
register pt_entry_t *pte;
|
|
register vm_offset_t va;
|
|
int i386prot;
|
|
register pt_entry_t *ptp;
|
|
int evap = i386_btop(eva);
|
|
int anyvalid = 0;;
|
|
|
|
if (pmap == NULL)
|
|
return;
|
|
|
|
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
|
|
pmap_remove(pmap, sva, eva);
|
|
return;
|
|
}
|
|
if (prot & VM_PROT_WRITE)
|
|
return;
|
|
|
|
ptp = get_pt_entry(pmap);
|
|
|
|
va = sva;
|
|
while (va < eva) {
|
|
int found = 0;
|
|
int svap;
|
|
vm_offset_t nscan;
|
|
|
|
/*
|
|
* Page table page is not allocated. Skip it, we don't want to
|
|
* force allocation of unnecessary PTE pages just to set the
|
|
* protection.
|
|
*/
|
|
if (!*pmap_pde(pmap, va)) {
|
|
/* XXX: avoid address wrap around */
|
|
nextpde:
|
|
if (va >= i386_trunc_pdr((vm_offset_t) - 1))
|
|
break;
|
|
va = i386_round_pdr(va + PAGE_SIZE);
|
|
continue;
|
|
}
|
|
pte = ptp + i386_btop(va);
|
|
|
|
if (*pte == 0) {
|
|
/*
|
|
* scan for a non-empty pte
|
|
*/
|
|
svap = pte - ptp;
|
|
nscan = ((svap + NPTEPG) & ~(NPTEPG - 1)) - svap;
|
|
|
|
if (nscan + svap > evap)
|
|
nscan = evap - svap;
|
|
|
|
found = 0;
|
|
if (nscan)
|
|
asm("xorl %%eax,%%eax;cld;repe;scasl;jz 1f;incl %%eax;1:;" :
|
|
"=D"(pte), "=a"(found) : "c"(nscan), "0"(pte) : "cx");
|
|
|
|
if (!found)
|
|
goto nextpde;
|
|
|
|
pte -= 1;
|
|
svap = pte - ptp;
|
|
|
|
va = i386_ptob(svap);
|
|
}
|
|
anyvalid++;
|
|
|
|
i386prot = pte_prot(pmap, prot);
|
|
if (va < UPT_MAX_ADDRESS) {
|
|
i386prot |= PG_u;
|
|
if (va >= UPT_MIN_ADDRESS)
|
|
i386prot |= PG_RW;
|
|
}
|
|
pmap_pte_set_prot(pte, i386prot);
|
|
va += PAGE_SIZE;
|
|
}
|
|
if (anyvalid)
|
|
pmap_update();
|
|
}
|
|
|
|
/*
|
|
* Insert the given physical page (p) at
|
|
* the specified virtual address (v) in the
|
|
* target physical map with the protection requested.
|
|
*
|
|
* If specified, the page will be wired down, meaning
|
|
* that the related pte can not be reclaimed.
|
|
*
|
|
* NB: This is the only routine which MAY NOT lazy-evaluate
|
|
* or lose information. That is, this routine must actually
|
|
* insert this page into the given map NOW.
|
|
*/
|
|
void
|
|
pmap_enter(pmap, va, pa, prot, wired)
|
|
register pmap_t pmap;
|
|
vm_offset_t va;
|
|
register vm_offset_t pa;
|
|
vm_prot_t prot;
|
|
boolean_t wired;
|
|
{
|
|
register pt_entry_t *pte;
|
|
register pt_entry_t npte;
|
|
vm_offset_t opa;
|
|
int ptevalid = 0;
|
|
|
|
if (pmap == NULL)
|
|
return;
|
|
|
|
va = i386_trunc_page(va);
|
|
pa = i386_trunc_page(pa);
|
|
if (va > VM_MAX_KERNEL_ADDRESS)
|
|
panic("pmap_enter: toobig");
|
|
|
|
/*
|
|
* Page Directory table entry not valid, we need a new PT page
|
|
*/
|
|
if (*pmap_pde(pmap, va) == 0) {
|
|
printf("kernel page directory invalid pdir=0x%x, va=0x%x\n", pmap->pm_pdir[PTDPTDI], va);
|
|
panic("invalid kernel page directory");
|
|
}
|
|
pte = pmap_pte(pmap, va);
|
|
opa = pmap_pte_pa(pte);
|
|
|
|
/*
|
|
* Mapping has not changed, must be protection or wiring change.
|
|
*/
|
|
if (opa == pa) {
|
|
/*
|
|
* Wiring change, just update stats. We don't worry about
|
|
* wiring PT pages as they remain resident as long as there
|
|
* are valid mappings in them. Hence, if a user page is wired,
|
|
* the PT page will be also.
|
|
*/
|
|
if (wired && !pmap_pte_w(pte))
|
|
pmap->pm_stats.wired_count++;
|
|
else if (!wired && pmap_pte_w(pte))
|
|
pmap->pm_stats.wired_count--;
|
|
|
|
goto validate;
|
|
}
|
|
/*
|
|
* Mapping has changed, invalidate old range and fall through to
|
|
* handle validating new mapping.
|
|
*/
|
|
if (opa) {
|
|
pmap_remove(pmap, va, va + PAGE_SIZE);
|
|
}
|
|
/*
|
|
* Enter on the PV list if part of our managed memory Note that we
|
|
* raise IPL while manipulating pv_table since pmap_enter can be
|
|
* called at interrupt time.
|
|
*/
|
|
if (pmap_is_managed(pa)) {
|
|
register pv_entry_t pv, npv;
|
|
int s;
|
|
|
|
pv = pa_to_pvh(pa);
|
|
s = splhigh();
|
|
/*
|
|
* No entries yet, use header as the first entry
|
|
*/
|
|
if (pv->pv_pmap == NULL) {
|
|
pv->pv_va = va;
|
|
pv->pv_pmap = pmap;
|
|
pv->pv_next = NULL;
|
|
}
|
|
/*
|
|
* There is at least one other VA mapping this page. Place
|
|
* this entry after the header.
|
|
*/
|
|
else {
|
|
npv = get_pv_entry();
|
|
npv->pv_va = va;
|
|
npv->pv_pmap = pmap;
|
|
npv->pv_next = pv->pv_next;
|
|
pv->pv_next = npv;
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Increment counters
|
|
*/
|
|
pmap->pm_stats.resident_count++;
|
|
if (wired)
|
|
pmap->pm_stats.wired_count++;
|
|
|
|
validate:
|
|
/*
|
|
* Now validate mapping with desired protection/wiring.
|
|
*/
|
|
npte = (pt_entry_t) ((int) (pa | pte_prot(pmap, prot) | PG_V));
|
|
|
|
/*
|
|
* When forking (copy-on-write, etc): A process will turn off write
|
|
* permissions for any of its writable pages. If the data (object) is
|
|
* only referred to by one process, the processes map is modified
|
|
* directly as opposed to using the object manipulation routine. When
|
|
* using pmap_protect, the modified bits are not kept in the vm_page_t
|
|
* data structure. Therefore, when using pmap_enter in vm_fault to
|
|
* bring back writability of a page, there has been no memory of the
|
|
* modified or referenced bits except at the pte level. this clause
|
|
* supports the carryover of the modified and used (referenced) bits.
|
|
*/
|
|
if (pa == opa)
|
|
(int) npte |= (int) *pte & (PG_M | PG_U);
|
|
|
|
|
|
if (wired)
|
|
(int) npte |= PG_W;
|
|
if (va < UPT_MIN_ADDRESS)
|
|
(int) npte |= PG_u;
|
|
else if (va < UPT_MAX_ADDRESS)
|
|
(int) npte |= PG_u | PG_RW;
|
|
|
|
if (*pte != npte) {
|
|
if (*pte)
|
|
ptevalid++;
|
|
*pte = npte;
|
|
}
|
|
if (ptevalid) {
|
|
pmap_update();
|
|
} else {
|
|
pmap_use_pt(pmap, va);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add a list of wired pages to the kva
|
|
* this routine is only used for temporary
|
|
* kernel mappings that do not need to have
|
|
* page modification or references recorded.
|
|
* Note that old mappings are simply written
|
|
* over. The page *must* be wired.
|
|
*/
|
|
void
|
|
pmap_qenter(va, m, count)
|
|
vm_offset_t va;
|
|
vm_page_t *m;
|
|
int count;
|
|
{
|
|
int i;
|
|
int anyvalid = 0;
|
|
register pt_entry_t *pte;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
pte = vtopte(va + i * NBPG);
|
|
if (*pte)
|
|
anyvalid++;
|
|
*pte = (pt_entry_t) ((int) (VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V | PG_W));
|
|
}
|
|
if (anyvalid)
|
|
pmap_update();
|
|
}
|
|
/*
|
|
* this routine jerks page mappings from the
|
|
* kernel -- it is meant only for temporary mappings.
|
|
*/
|
|
void
|
|
pmap_qremove(va, count)
|
|
vm_offset_t va;
|
|
int count;
|
|
{
|
|
int i;
|
|
register pt_entry_t *pte;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
pte = vtopte(va + i * NBPG);
|
|
*pte = 0;
|
|
}
|
|
pmap_update();
|
|
}
|
|
|
|
/*
|
|
* add a wired page to the kva
|
|
* note that in order for the mapping to take effect -- you
|
|
* should do a pmap_update after doing the pmap_kenter...
|
|
*/
|
|
void
|
|
pmap_kenter(va, pa)
|
|
vm_offset_t va;
|
|
register vm_offset_t pa;
|
|
{
|
|
register pt_entry_t *pte;
|
|
int wasvalid = 0;
|
|
|
|
pte = vtopte(va);
|
|
|
|
if (*pte)
|
|
wasvalid++;
|
|
|
|
*pte = (pt_entry_t) ((int) (pa | PG_RW | PG_V | PG_W));
|
|
|
|
if (wasvalid)
|
|
pmap_update();
|
|
}
|
|
|
|
/*
|
|
* remove a page from the kernel pagetables
|
|
*/
|
|
void
|
|
pmap_kremove(va)
|
|
vm_offset_t va;
|
|
{
|
|
register pt_entry_t *pte;
|
|
|
|
pte = vtopte(va);
|
|
|
|
*pte = (pt_entry_t) 0;
|
|
pmap_update();
|
|
}
|
|
|
|
/*
|
|
* this code makes some *MAJOR* assumptions:
|
|
* 1. Current pmap & pmap exists.
|
|
* 2. Not wired.
|
|
* 3. Read access.
|
|
* 4. No page table pages.
|
|
* 5. Tlbflush is deferred to calling procedure.
|
|
* 6. Page IS managed.
|
|
* but is *MUCH* faster than pmap_enter...
|
|
*/
|
|
|
|
static inline void
|
|
pmap_enter_quick(pmap, va, pa)
|
|
register pmap_t pmap;
|
|
vm_offset_t va;
|
|
register vm_offset_t pa;
|
|
{
|
|
register pt_entry_t *pte;
|
|
register pv_entry_t pv, npv;
|
|
int s;
|
|
|
|
/*
|
|
* Enter on the PV list if part of our managed memory Note that we
|
|
* raise IPL while manipulating pv_table since pmap_enter can be
|
|
* called at interrupt time.
|
|
*/
|
|
|
|
pte = vtopte(va);
|
|
|
|
/* a fault on the page table might occur here */
|
|
if (*pte) {
|
|
pmap_remove(pmap, va, va + PAGE_SIZE);
|
|
}
|
|
pv = pa_to_pvh(pa);
|
|
s = splhigh();
|
|
/*
|
|
* No entries yet, use header as the first entry
|
|
*/
|
|
if (pv->pv_pmap == NULL) {
|
|
pv->pv_pmap = pmap;
|
|
pv->pv_va = va;
|
|
pv->pv_next = NULL;
|
|
}
|
|
/*
|
|
* There is at least one other VA mapping this page. Place this entry
|
|
* after the header.
|
|
*/
|
|
else {
|
|
npv = get_pv_entry();
|
|
npv->pv_va = va;
|
|
npv->pv_pmap = pmap;
|
|
npv->pv_next = pv->pv_next;
|
|
pv->pv_next = npv;
|
|
}
|
|
splx(s);
|
|
|
|
/*
|
|
* Increment counters
|
|
*/
|
|
pmap->pm_stats.resident_count++;
|
|
|
|
/*
|
|
* Now validate mapping with desired protection/wiring.
|
|
*/
|
|
*pte = (pt_entry_t) ((int) (pa | PG_V | PG_u));
|
|
|
|
pmap_use_pt(pmap, va);
|
|
|
|
return;
|
|
}
|
|
|
|
#define MAX_INIT_PT (1024*2048)
|
|
/*
|
|
* pmap_object_init_pt preloads the ptes for a given object
|
|
* into the specified pmap. This eliminates the blast of soft
|
|
* faults on process startup and immediately after an mmap.
|
|
*/
|
|
void
|
|
pmap_object_init_pt(pmap, addr, object, offset, size)
|
|
pmap_t pmap;
|
|
vm_offset_t addr;
|
|
vm_object_t object;
|
|
vm_offset_t offset;
|
|
vm_offset_t size;
|
|
{
|
|
vm_offset_t tmpoff;
|
|
vm_page_t p;
|
|
int bits;
|
|
int objbytes;
|
|
|
|
if (!pmap || ((size > MAX_INIT_PT) &&
|
|
(object->resident_page_count > (MAX_INIT_PT / NBPG)))) {
|
|
return;
|
|
}
|
|
if (!vm_object_lock_try(object))
|
|
return;
|
|
|
|
/*
|
|
* if we are processing a major portion of the object, then scan the
|
|
* entire thing.
|
|
*/
|
|
if (size > (object->size >> 2)) {
|
|
objbytes = size;
|
|
|
|
for (p = object->memq.tqh_first;
|
|
((objbytes > 0) && (p != NULL));
|
|
p = p->listq.tqe_next) {
|
|
|
|
tmpoff = p->offset;
|
|
if (tmpoff < offset) {
|
|
continue;
|
|
}
|
|
tmpoff -= offset;
|
|
if (tmpoff >= size) {
|
|
continue;
|
|
}
|
|
if (((p->flags & (PG_ACTIVE | PG_INACTIVE)) != 0) &&
|
|
((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
|
|
(p->bmapped == 0) &&
|
|
(p->busy == 0) &&
|
|
(p->flags & (PG_BUSY | PG_FICTITIOUS | PG_CACHE)) == 0) {
|
|
vm_page_hold(p);
|
|
p->flags |= PG_MAPPED;
|
|
pmap_enter_quick(pmap, addr + tmpoff, VM_PAGE_TO_PHYS(p));
|
|
vm_page_unhold(p);
|
|
}
|
|
objbytes -= NBPG;
|
|
}
|
|
} else {
|
|
/*
|
|
* else lookup the pages one-by-one.
|
|
*/
|
|
for (tmpoff = 0; tmpoff < size; tmpoff += NBPG) {
|
|
p = vm_page_lookup(object, tmpoff + offset);
|
|
if (p && ((p->flags & (PG_ACTIVE | PG_INACTIVE)) != 0) &&
|
|
(p->bmapped == 0) && (p->busy == 0) &&
|
|
((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
|
|
(p->flags & (PG_BUSY | PG_FICTITIOUS | PG_CACHE)) == 0) {
|
|
vm_page_hold(p);
|
|
p->flags |= PG_MAPPED;
|
|
pmap_enter_quick(pmap, addr + tmpoff, VM_PAGE_TO_PHYS(p));
|
|
vm_page_unhold(p);
|
|
}
|
|
}
|
|
}
|
|
vm_object_unlock(object);
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* pmap_prefault provides a quick way of clustering
|
|
* pagefaults into a processes address space. It is a "cousin"
|
|
* of pmap_object_init_pt, except it runs at page fault time instead
|
|
* of mmap time.
|
|
*/
|
|
#define PFBAK 2
|
|
#define PFFOR 2
|
|
#define PAGEORDER_SIZE (PFBAK+PFFOR)
|
|
|
|
static int pmap_prefault_pageorder[] = {
|
|
-NBPG, NBPG, -2 * NBPG, 2 * NBPG
|
|
};
|
|
|
|
void
|
|
pmap_prefault(pmap, addra, entry, object)
|
|
pmap_t pmap;
|
|
vm_offset_t addra;
|
|
vm_map_entry_t entry;
|
|
vm_object_t object;
|
|
{
|
|
int i;
|
|
vm_offset_t starta, enda;
|
|
vm_offset_t offset, addr;
|
|
vm_page_t m;
|
|
int pageorder_index;
|
|
|
|
if (entry->object.vm_object != object)
|
|
return;
|
|
|
|
if (pmap != &curproc->p_vmspace->vm_pmap)
|
|
return;
|
|
|
|
starta = addra - PFBAK * NBPG;
|
|
if (starta < entry->start) {
|
|
starta = entry->start;
|
|
} else if (starta > addra)
|
|
starta = 0;
|
|
|
|
enda = addra + PFFOR * NBPG;
|
|
if (enda > entry->end)
|
|
enda = entry->end;
|
|
|
|
for (i = 0; i < PAGEORDER_SIZE; i++) {
|
|
vm_object_t lobject;
|
|
pt_entry_t *pte;
|
|
|
|
addr = addra + pmap_prefault_pageorder[i];
|
|
if (addr < starta || addr >= enda)
|
|
continue;
|
|
|
|
pte = vtopte(addr);
|
|
if (*pte)
|
|
continue;
|
|
|
|
offset = (addr - entry->start) + entry->offset;
|
|
lobject = object;
|
|
for (m = vm_page_lookup(lobject, offset);
|
|
(!m && lobject->shadow && !lobject->pager);
|
|
lobject = lobject->shadow) {
|
|
|
|
offset += lobject->shadow_offset;
|
|
m = vm_page_lookup(lobject->shadow, offset);
|
|
}
|
|
|
|
/*
|
|
* give-up when a page is not in memory
|
|
*/
|
|
if (m == NULL)
|
|
break;
|
|
|
|
if (((m->flags & (PG_CACHE | PG_ACTIVE | PG_INACTIVE)) != 0) &&
|
|
((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
|
|
(m->busy == 0) &&
|
|
(m->bmapped == 0) &&
|
|
(m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
|
|
/*
|
|
* test results show that the system is faster when
|
|
* pages are activated.
|
|
*/
|
|
if ((m->flags & PG_ACTIVE) == 0) {
|
|
if( m->flags & PG_CACHE)
|
|
vm_page_deactivate(m);
|
|
else
|
|
vm_page_activate(m);
|
|
}
|
|
vm_page_hold(m);
|
|
m->flags |= PG_MAPPED;
|
|
pmap_enter_quick(pmap, addr, VM_PAGE_TO_PHYS(m));
|
|
vm_page_unhold(m);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Routine: pmap_change_wiring
|
|
* Function: Change the wiring attribute for a map/virtual-address
|
|
* pair.
|
|
* In/out conditions:
|
|
* The mapping must already exist in the pmap.
|
|
*/
|
|
void
|
|
pmap_change_wiring(pmap, va, wired)
|
|
register pmap_t pmap;
|
|
vm_offset_t va;
|
|
boolean_t wired;
|
|
{
|
|
register pt_entry_t *pte;
|
|
|
|
if (pmap == NULL)
|
|
return;
|
|
|
|
pte = pmap_pte(pmap, va);
|
|
|
|
if (wired && !pmap_pte_w(pte))
|
|
pmap->pm_stats.wired_count++;
|
|
else if (!wired && pmap_pte_w(pte))
|
|
pmap->pm_stats.wired_count--;
|
|
|
|
/*
|
|
* Wiring is not a hardware characteristic so there is no need to
|
|
* invalidate TLB.
|
|
*/
|
|
pmap_pte_set_w(pte, wired);
|
|
/*
|
|
* When unwiring, set the modified bit in the pte -- could have been
|
|
* changed by the kernel
|
|
*/
|
|
if (!wired)
|
|
(int) *pte |= PG_M;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Copy the range specified by src_addr/len
|
|
* from the source map to the range dst_addr/len
|
|
* in the destination map.
|
|
*
|
|
* This routine is only advisory and need not do anything.
|
|
*/
|
|
void
|
|
pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
|
|
pmap_t dst_pmap, src_pmap;
|
|
vm_offset_t dst_addr;
|
|
vm_size_t len;
|
|
vm_offset_t src_addr;
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_kernel
|
|
* Function:
|
|
* Returns the physical map handle for the kernel.
|
|
*/
|
|
pmap_t
|
|
pmap_kernel()
|
|
{
|
|
return (kernel_pmap);
|
|
}
|
|
|
|
/*
|
|
* pmap_zero_page zeros the specified (machine independent)
|
|
* page by mapping the page into virtual memory and using
|
|
* bzero to clear its contents, one machine dependent page
|
|
* at a time.
|
|
*/
|
|
void
|
|
pmap_zero_page(phys)
|
|
vm_offset_t phys;
|
|
{
|
|
if (*(int *) CMAP2)
|
|
panic("pmap_zero_page: CMAP busy");
|
|
|
|
*(int *) CMAP2 = PG_V | PG_KW | i386_trunc_page(phys);
|
|
bzero(CADDR2, NBPG);
|
|
|
|
*(int *) CMAP2 = 0;
|
|
pmap_update();
|
|
}
|
|
|
|
/*
|
|
* pmap_copy_page copies the specified (machine independent)
|
|
* page by mapping the page into virtual memory and using
|
|
* bcopy to copy the page, one machine dependent page at a
|
|
* time.
|
|
*/
|
|
void
|
|
pmap_copy_page(src, dst)
|
|
vm_offset_t src;
|
|
vm_offset_t dst;
|
|
{
|
|
if (*(int *) CMAP1 || *(int *) CMAP2)
|
|
panic("pmap_copy_page: CMAP busy");
|
|
|
|
*(int *) CMAP1 = PG_V | PG_KW | i386_trunc_page(src);
|
|
*(int *) CMAP2 = PG_V | PG_KW | i386_trunc_page(dst);
|
|
|
|
#if __GNUC__ > 1
|
|
memcpy(CADDR2, CADDR1, NBPG);
|
|
#else
|
|
bcopy(CADDR1, CADDR2, NBPG);
|
|
#endif
|
|
*(int *) CMAP1 = 0;
|
|
*(int *) CMAP2 = 0;
|
|
pmap_update();
|
|
}
|
|
|
|
|
|
/*
|
|
* Routine: pmap_pageable
|
|
* Function:
|
|
* Make the specified pages (by pmap, offset)
|
|
* pageable (or not) as requested.
|
|
*
|
|
* A page which is not pageable may not take
|
|
* a fault; therefore, its page table entry
|
|
* must remain valid for the duration.
|
|
*
|
|
* This routine is merely advisory; pmap_enter
|
|
* will specify that these pages are to be wired
|
|
* down (or not) as appropriate.
|
|
*/
|
|
void
|
|
pmap_pageable(pmap, sva, eva, pageable)
|
|
pmap_t pmap;
|
|
vm_offset_t sva, eva;
|
|
boolean_t pageable;
|
|
{
|
|
}
|
|
|
|
/*
|
|
* this routine returns true if a physical page resides
|
|
* in the given pmap.
|
|
*/
|
|
boolean_t
|
|
pmap_page_exists(pmap, pa)
|
|
pmap_t pmap;
|
|
vm_offset_t pa;
|
|
{
|
|
register pv_entry_t pv;
|
|
int s;
|
|
|
|
if (!pmap_is_managed(pa))
|
|
return FALSE;
|
|
|
|
pv = pa_to_pvh(pa);
|
|
s = splhigh();
|
|
|
|
/*
|
|
* Not found, check current mappings returning immediately if found.
|
|
*/
|
|
if (pv->pv_pmap != NULL) {
|
|
for (; pv; pv = pv->pv_next) {
|
|
if (pv->pv_pmap == pmap) {
|
|
splx(s);
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
splx(s);
|
|
return (FALSE);
|
|
}
|
|
|
|
/*
|
|
* pmap_testbit tests bits in pte's
|
|
* note that the testbit/changebit routines are inline,
|
|
* and a lot of things compile-time evaluate.
|
|
*/
|
|
static __inline boolean_t
|
|
pmap_testbit(pa, bit)
|
|
register vm_offset_t pa;
|
|
int bit;
|
|
{
|
|
register pv_entry_t pv;
|
|
pt_entry_t *pte;
|
|
int s;
|
|
|
|
if (!pmap_is_managed(pa))
|
|
return FALSE;
|
|
|
|
pv = pa_to_pvh(pa);
|
|
s = splhigh();
|
|
|
|
/*
|
|
* Not found, check current mappings returning immediately if found.
|
|
*/
|
|
if (pv->pv_pmap != NULL) {
|
|
for (; pv; pv = pv->pv_next) {
|
|
/*
|
|
* if the bit being tested is the modified bit, then
|
|
* mark UPAGES as always modified, and ptes as never
|
|
* modified.
|
|
*/
|
|
if (bit & PG_U) {
|
|
if ((pv->pv_va >= clean_sva) && (pv->pv_va < clean_eva)) {
|
|
continue;
|
|
}
|
|
}
|
|
if (bit & PG_M) {
|
|
if (pv->pv_va >= USRSTACK) {
|
|
if (pv->pv_va >= clean_sva && pv->pv_va < clean_eva) {
|
|
continue;
|
|
}
|
|
if (pv->pv_va < USRSTACK + (UPAGES * NBPG)) {
|
|
splx(s);
|
|
return TRUE;
|
|
} else if (pv->pv_va < KERNBASE) {
|
|
splx(s);
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
if (!pv->pv_pmap) {
|
|
printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
|
|
continue;
|
|
}
|
|
pte = pmap_pte(pv->pv_pmap, pv->pv_va);
|
|
if ((int) *pte & bit) {
|
|
splx(s);
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
splx(s);
|
|
return (FALSE);
|
|
}
|
|
|
|
/*
|
|
* this routine is used to modify bits in ptes
|
|
*/
|
|
static __inline void
|
|
pmap_changebit(pa, bit, setem)
|
|
vm_offset_t pa;
|
|
int bit;
|
|
boolean_t setem;
|
|
{
|
|
register pv_entry_t pv;
|
|
register pt_entry_t *pte, npte;
|
|
vm_offset_t va;
|
|
int s;
|
|
|
|
if (!pmap_is_managed(pa))
|
|
return;
|
|
|
|
pv = pa_to_pvh(pa);
|
|
s = splhigh();
|
|
|
|
/*
|
|
* Loop over all current mappings setting/clearing as appropos If
|
|
* setting RO do we need to clear the VAC?
|
|
*/
|
|
if (pv->pv_pmap != NULL) {
|
|
for (; pv; pv = pv->pv_next) {
|
|
va = pv->pv_va;
|
|
|
|
/*
|
|
* don't write protect pager mappings
|
|
*/
|
|
if (!setem && (bit == PG_RW)) {
|
|
if (va >= clean_sva && va < clean_eva)
|
|
continue;
|
|
}
|
|
if (!pv->pv_pmap) {
|
|
printf("Null pmap (cb) at va: 0x%lx\n", va);
|
|
continue;
|
|
}
|
|
pte = pmap_pte(pv->pv_pmap, va);
|
|
if (setem)
|
|
(int) npte = (int) *pte | bit;
|
|
else
|
|
(int) npte = (int) *pte & ~bit;
|
|
*pte = npte;
|
|
}
|
|
}
|
|
splx(s);
|
|
pmap_update();
|
|
}
|
|
|
|
/*
|
|
* pmap_page_protect:
|
|
*
|
|
* Lower the permission for all mappings to a given page.
|
|
*/
|
|
void
|
|
pmap_page_protect(phys, prot)
|
|
vm_offset_t phys;
|
|
vm_prot_t prot;
|
|
{
|
|
if ((prot & VM_PROT_WRITE) == 0) {
|
|
if (prot & (VM_PROT_READ | VM_PROT_EXECUTE))
|
|
pmap_changebit(phys, PG_RW, FALSE);
|
|
else
|
|
pmap_remove_all(phys);
|
|
}
|
|
}
|
|
|
|
vm_offset_t
|
|
pmap_phys_address(ppn)
|
|
int ppn;
|
|
{
|
|
return (i386_ptob(ppn));
|
|
}
|
|
|
|
/*
|
|
* pmap_is_referenced:
|
|
*
|
|
* Return whether or not the specified physical page was referenced
|
|
* by any physical maps.
|
|
*/
|
|
boolean_t
|
|
pmap_is_referenced(vm_offset_t pa)
|
|
{
|
|
return pmap_testbit((pa), PG_U);
|
|
}
|
|
|
|
/*
|
|
* pmap_is_modified:
|
|
*
|
|
* Return whether or not the specified physical page was modified
|
|
* in any physical maps.
|
|
*/
|
|
boolean_t
|
|
pmap_is_modified(vm_offset_t pa)
|
|
{
|
|
return pmap_testbit((pa), PG_M);
|
|
}
|
|
|
|
/*
|
|
* Clear the modify bits on the specified physical page.
|
|
*/
|
|
void
|
|
pmap_clear_modify(vm_offset_t pa)
|
|
{
|
|
pmap_changebit((pa), PG_M, FALSE);
|
|
}
|
|
|
|
/*
|
|
* pmap_clear_reference:
|
|
*
|
|
* Clear the reference bit on the specified physical page.
|
|
*/
|
|
void
|
|
pmap_clear_reference(vm_offset_t pa)
|
|
{
|
|
pmap_changebit((pa), PG_U, FALSE);
|
|
}
|
|
|
|
/*
|
|
* Routine: pmap_copy_on_write
|
|
* Function:
|
|
* Remove write privileges from all
|
|
* physical maps for this physical page.
|
|
*/
|
|
void
|
|
pmap_copy_on_write(vm_offset_t pa)
|
|
{
|
|
pmap_changebit((pa), PG_RW, FALSE);
|
|
}
|
|
|
|
/*
|
|
* Miscellaneous support routines follow
|
|
*/
|
|
|
|
void
|
|
i386_protection_init()
|
|
{
|
|
register int *kp, prot;
|
|
|
|
kp = protection_codes;
|
|
for (prot = 0; prot < 8; prot++) {
|
|
switch (prot) {
|
|
case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
|
|
/*
|
|
* Read access is also 0. There isn't any execute bit,
|
|
* so just make it readable.
|
|
*/
|
|
case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
|
|
case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
|
|
case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
|
|
*kp++ = 0;
|
|
break;
|
|
case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
|
|
case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
|
|
case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
|
|
case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
|
|
*kp++ = PG_RW;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map a set of physical memory pages into the kernel virtual
|
|
* address space. Return a pointer to where it is mapped. This
|
|
* routine is intended to be used for mapping device memory,
|
|
* NOT real memory. The non-cacheable bits are set on each
|
|
* mapped page.
|
|
*/
|
|
void *
|
|
pmap_mapdev(pa, size)
|
|
vm_offset_t pa;
|
|
vm_size_t size;
|
|
{
|
|
vm_offset_t va, tmpva;
|
|
pt_entry_t *pte;
|
|
|
|
pa = trunc_page(pa);
|
|
size = roundup(size, PAGE_SIZE);
|
|
|
|
va = kmem_alloc_pageable(kernel_map, size);
|
|
if (!va)
|
|
panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
|
|
|
|
for (tmpva = va; size > 0;) {
|
|
pte = vtopte(tmpva);
|
|
*pte = (pt_entry_t) ((int) (pa | PG_RW | PG_V | PG_N));
|
|
size -= PAGE_SIZE;
|
|
tmpva += PAGE_SIZE;
|
|
pa += PAGE_SIZE;
|
|
}
|
|
pmap_update();
|
|
|
|
return ((void *) va);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
/* print address space of pmap*/
|
|
void
|
|
pads(pm)
|
|
pmap_t pm;
|
|
{
|
|
unsigned va, i, j;
|
|
pt_entry_t *ptep;
|
|
|
|
if (pm == kernel_pmap)
|
|
return;
|
|
for (i = 0; i < 1024; i++)
|
|
if (pm->pm_pdir[i])
|
|
for (j = 0; j < 1024; j++) {
|
|
va = (i << PD_SHIFT) + (j << PG_SHIFT);
|
|
if (pm == kernel_pmap && va < KERNBASE)
|
|
continue;
|
|
if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
|
|
continue;
|
|
ptep = pmap_pte(pm, va);
|
|
if (pmap_pte_v(ptep))
|
|
printf("%x:%x ", va, *(int *) ptep);
|
|
};
|
|
|
|
}
|
|
|
|
void
|
|
pmap_pvdump(pa)
|
|
vm_offset_t pa;
|
|
{
|
|
register pv_entry_t pv;
|
|
|
|
printf("pa %x", pa);
|
|
for (pv = pa_to_pvh(pa); pv; pv = pv->pv_next) {
|
|
#ifdef used_to_be
|
|
printf(" -> pmap %x, va %x, flags %x",
|
|
pv->pv_pmap, pv->pv_va, pv->pv_flags);
|
|
#endif
|
|
printf(" -> pmap %x, va %x",
|
|
pv->pv_pmap, pv->pv_va);
|
|
pads(pv->pv_pmap);
|
|
}
|
|
printf(" ");
|
|
}
|
|
#endif
|