freebsd-nq/sys/amd64/amd64/local_apic.c
Jung-uk Kim 5113aa0af3 Introduce cpu_vendor_id and replace a lot of strcmp(cpu_vendor, "...").
Reviewed by:	jhb, peter (early amd64 version)
2008-11-26 19:25:13 +00:00

1248 lines
31 KiB
C

/*-
* Copyright (c) 2003 John Baldwin <jhb@FreeBSD.org>
* Copyright (c) 1996, by Steve Passe
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. The name of the developer may NOT be used to endorse or promote products
* derived from this software without specific prior written permission.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Local APIC support on Pentium and later processors.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_hwpmc_hooks.h"
#include "opt_kdtrace.h"
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/smp.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/apicreg.h>
#include <machine/cpu.h>
#include <machine/cputypes.h>
#include <machine/frame.h>
#include <machine/intr_machdep.h>
#include <machine/apicvar.h>
#include <machine/md_var.h>
#include <machine/smp.h>
#include <machine/specialreg.h>
#ifdef DDB
#include <sys/interrupt.h>
#include <ddb/ddb.h>
#endif
#ifdef KDTRACE_HOOKS
#include <sys/dtrace_bsd.h>
cyclic_clock_func_t lapic_cyclic_clock_func[MAXCPU];
#endif
/* Sanity checks on IDT vectors. */
CTASSERT(APIC_IO_INTS + APIC_NUM_IOINTS == APIC_TIMER_INT);
CTASSERT(APIC_TIMER_INT < APIC_LOCAL_INTS);
CTASSERT(APIC_LOCAL_INTS == 240);
CTASSERT(IPI_STOP < APIC_SPURIOUS_INT);
/* Magic IRQ values for the timer and syscalls. */
#define IRQ_TIMER (NUM_IO_INTS + 1)
#define IRQ_SYSCALL (NUM_IO_INTS + 2)
/*
* Support for local APICs. Local APICs manage interrupts on each
* individual processor as opposed to I/O APICs which receive interrupts
* from I/O devices and then forward them on to the local APICs.
*
* Local APICs can also send interrupts to each other thus providing the
* mechanism for IPIs.
*/
struct lvt {
u_int lvt_edgetrigger:1;
u_int lvt_activehi:1;
u_int lvt_masked:1;
u_int lvt_active:1;
u_int lvt_mode:16;
u_int lvt_vector:8;
};
struct lapic {
struct lvt la_lvts[LVT_MAX + 1];
u_int la_id:8;
u_int la_cluster:4;
u_int la_cluster_id:2;
u_int la_present:1;
u_long *la_timer_count;
u_long la_hard_ticks;
u_long la_stat_ticks;
u_long la_prof_ticks;
} static lapics[MAX_APIC_ID + 1];
/* XXX: should thermal be an NMI? */
/* Global defaults for local APIC LVT entries. */
static struct lvt lvts[LVT_MAX + 1] = {
{ 1, 1, 1, 1, APIC_LVT_DM_EXTINT, 0 }, /* LINT0: masked ExtINT */
{ 1, 1, 0, 1, APIC_LVT_DM_NMI, 0 }, /* LINT1: NMI */
{ 1, 1, 1, 1, APIC_LVT_DM_FIXED, APIC_TIMER_INT }, /* Timer */
{ 1, 1, 1, 1, APIC_LVT_DM_FIXED, APIC_ERROR_INT }, /* Error */
{ 1, 1, 0, 1, APIC_LVT_DM_NMI, 0 }, /* PMC */
{ 1, 1, 1, 1, APIC_LVT_DM_FIXED, APIC_THERMAL_INT }, /* Thermal */
};
static inthand_t *ioint_handlers[] = {
NULL, /* 0 - 31 */
IDTVEC(apic_isr1), /* 32 - 63 */
IDTVEC(apic_isr2), /* 64 - 95 */
IDTVEC(apic_isr3), /* 96 - 127 */
IDTVEC(apic_isr4), /* 128 - 159 */
IDTVEC(apic_isr5), /* 160 - 191 */
IDTVEC(apic_isr6), /* 192 - 223 */
IDTVEC(apic_isr7), /* 224 - 255 */
};
/* Include IDT_SYSCALL to make indexing easier. */
static u_int ioint_irqs[APIC_NUM_IOINTS + 1];
static u_int32_t lapic_timer_divisors[] = {
APIC_TDCR_1, APIC_TDCR_2, APIC_TDCR_4, APIC_TDCR_8, APIC_TDCR_16,
APIC_TDCR_32, APIC_TDCR_64, APIC_TDCR_128
};
extern inthand_t IDTVEC(rsvd);
volatile lapic_t *lapic;
vm_paddr_t lapic_paddr;
static u_long lapic_timer_divisor, lapic_timer_period, lapic_timer_hz;
static void lapic_enable(void);
static void lapic_resume(struct pic *pic);
static void lapic_timer_enable_intr(void);
static void lapic_timer_oneshot(u_int count);
static void lapic_timer_periodic(u_int count);
static void lapic_timer_set_divisor(u_int divisor);
static uint32_t lvt_mode(struct lapic *la, u_int pin, uint32_t value);
struct pic lapic_pic = { .pic_resume = lapic_resume };
static uint32_t
lvt_mode(struct lapic *la, u_int pin, uint32_t value)
{
struct lvt *lvt;
KASSERT(pin <= LVT_MAX, ("%s: pin %u out of range", __func__, pin));
if (la->la_lvts[pin].lvt_active)
lvt = &la->la_lvts[pin];
else
lvt = &lvts[pin];
value &= ~(APIC_LVT_M | APIC_LVT_TM | APIC_LVT_IIPP | APIC_LVT_DM |
APIC_LVT_VECTOR);
if (lvt->lvt_edgetrigger == 0)
value |= APIC_LVT_TM;
if (lvt->lvt_activehi == 0)
value |= APIC_LVT_IIPP_INTALO;
if (lvt->lvt_masked)
value |= APIC_LVT_M;
value |= lvt->lvt_mode;
switch (lvt->lvt_mode) {
case APIC_LVT_DM_NMI:
case APIC_LVT_DM_SMI:
case APIC_LVT_DM_INIT:
case APIC_LVT_DM_EXTINT:
if (!lvt->lvt_edgetrigger) {
printf("lapic%u: Forcing LINT%u to edge trigger\n",
la->la_id, pin);
value |= APIC_LVT_TM;
}
/* Use a vector of 0. */
break;
case APIC_LVT_DM_FIXED:
value |= lvt->lvt_vector;
break;
default:
panic("bad APIC LVT delivery mode: %#x\n", value);
}
return (value);
}
/*
* Map the local APIC and setup necessary interrupt vectors.
*/
void
lapic_init(vm_paddr_t addr)
{
/* Map the local APIC and setup the spurious interrupt handler. */
KASSERT(trunc_page(addr) == addr,
("local APIC not aligned on a page boundary"));
lapic = pmap_mapdev(addr, sizeof(lapic_t));
lapic_paddr = addr;
setidt(APIC_SPURIOUS_INT, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
/* Perform basic initialization of the BSP's local APIC. */
lapic_enable();
ioint_irqs[IDT_SYSCALL - APIC_IO_INTS] = IRQ_SYSCALL;
/* Set BSP's per-CPU local APIC ID. */
PCPU_SET(apic_id, lapic_id());
/* Local APIC timer interrupt. */
setidt(APIC_TIMER_INT, IDTVEC(timerint), SDT_SYSIGT, SEL_KPL, 0);
ioint_irqs[APIC_TIMER_INT - APIC_IO_INTS] = IRQ_TIMER;
/* XXX: error/thermal interrupts */
}
/*
* Create a local APIC instance.
*/
void
lapic_create(u_int apic_id, int boot_cpu)
{
int i;
if (apic_id > MAX_APIC_ID) {
printf("APIC: Ignoring local APIC with ID %d\n", apic_id);
if (boot_cpu)
panic("Can't ignore BSP");
return;
}
KASSERT(!lapics[apic_id].la_present, ("duplicate local APIC %u",
apic_id));
/*
* Assume no local LVT overrides and a cluster of 0 and
* intra-cluster ID of 0.
*/
lapics[apic_id].la_present = 1;
lapics[apic_id].la_id = apic_id;
for (i = 0; i < LVT_MAX; i++) {
lapics[apic_id].la_lvts[i] = lvts[i];
lapics[apic_id].la_lvts[i].lvt_active = 0;
}
#ifdef SMP
cpu_add(apic_id, boot_cpu);
#endif
}
/*
* Dump contents of local APIC registers
*/
void
lapic_dump(const char* str)
{
printf("cpu%d %s:\n", PCPU_GET(cpuid), str);
printf(" ID: 0x%08x VER: 0x%08x LDR: 0x%08x DFR: 0x%08x\n",
lapic->id, lapic->version, lapic->ldr, lapic->dfr);
printf(" lint0: 0x%08x lint1: 0x%08x TPR: 0x%08x SVR: 0x%08x\n",
lapic->lvt_lint0, lapic->lvt_lint1, lapic->tpr, lapic->svr);
printf(" timer: 0x%08x therm: 0x%08x err: 0x%08x pcm: 0x%08x\n",
lapic->lvt_timer, lapic->lvt_thermal, lapic->lvt_error,
lapic->lvt_pcint);
}
void
lapic_setup(int boot)
{
struct lapic *la;
u_int32_t maxlvt;
register_t eflags;
char buf[MAXCOMLEN + 1];
la = &lapics[lapic_id()];
KASSERT(la->la_present, ("missing APIC structure"));
eflags = intr_disable();
maxlvt = (lapic->version & APIC_VER_MAXLVT) >> MAXLVTSHIFT;
/* Initialize the TPR to allow all interrupts. */
lapic_set_tpr(0);
/* Setup spurious vector and enable the local APIC. */
lapic_enable();
/* Program LINT[01] LVT entries. */
lapic->lvt_lint0 = lvt_mode(la, LVT_LINT0, lapic->lvt_lint0);
lapic->lvt_lint1 = lvt_mode(la, LVT_LINT1, lapic->lvt_lint1);
#ifdef HWPMC_HOOKS
/* Program the PMC LVT entry if present. */
if (maxlvt >= LVT_PMC)
lapic->lvt_pcint = lvt_mode(la, LVT_PMC, lapic->lvt_pcint);
#endif
/* Program timer LVT and setup handler. */
lapic->lvt_timer = lvt_mode(la, LVT_TIMER, lapic->lvt_timer);
if (boot) {
snprintf(buf, sizeof(buf), "cpu%d: timer", PCPU_GET(cpuid));
intrcnt_add(buf, &la->la_timer_count);
}
/* We don't setup the timer during boot on the BSP until later. */
if (!(boot && PCPU_GET(cpuid) == 0)) {
KASSERT(lapic_timer_period != 0, ("lapic%u: zero divisor",
lapic_id()));
lapic_timer_set_divisor(lapic_timer_divisor);
lapic_timer_periodic(lapic_timer_period);
lapic_timer_enable_intr();
}
/* XXX: Error and thermal LVTs */
if (cpu_vendor_id == CPU_VENDOR_AMD) {
/*
* Detect the presence of C1E capability mostly on latest
* dual-cores (or future) k8 family. This feature renders
* the local APIC timer dead, so we disable it by reading
* the Interrupt Pending Message register and clearing both
* C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
*
* Reference:
* "BIOS and Kernel Developer's Guide for AMD NPT
* Family 0Fh Processors"
* #32559 revision 3.00
*/
if ((cpu_id & 0x00000f00) == 0x00000f00 &&
(cpu_id & 0x0fff0000) >= 0x00040000) {
uint64_t msr;
msr = rdmsr(0xc0010055);
if (msr & 0x18000000)
wrmsr(0xc0010055, msr & ~0x18000000ULL);
}
}
intr_restore(eflags);
}
/*
* Called by cpu_initclocks() on the BSP to setup the local APIC timer so
* that it can drive hardclock, statclock, and profclock. This function
* returns true if it is able to use the local APIC timer to drive the
* clocks and false if it is not able.
*/
int
lapic_setup_clock(void)
{
u_long value;
/* Can't drive the timer without a local APIC. */
if (lapic == NULL)
return (0);
/* Start off with a divisor of 2 (power on reset default). */
lapic_timer_divisor = 2;
/* Try to calibrate the local APIC timer. */
do {
lapic_timer_set_divisor(lapic_timer_divisor);
lapic_timer_oneshot(APIC_TIMER_MAX_COUNT);
DELAY(2000000);
value = APIC_TIMER_MAX_COUNT - lapic->ccr_timer;
if (value != APIC_TIMER_MAX_COUNT)
break;
lapic_timer_divisor <<= 1;
} while (lapic_timer_divisor <= 128);
if (lapic_timer_divisor > 128)
panic("lapic: Divisor too big");
value /= 2;
if (bootverbose)
printf("lapic: Divisor %lu, Frequency %lu hz\n",
lapic_timer_divisor, value);
/*
* We want to run stathz in the neighborhood of 128hz. We would
* like profhz to run as often as possible, so we let it run on
* each clock tick. We try to honor the requested 'hz' value as
* much as possible.
*
* If 'hz' is above 1500, then we just let the lapic timer
* (and profhz) run at hz. If 'hz' is below 1500 but above
* 750, then we let the lapic timer run at 2 * 'hz'. If 'hz'
* is below 750 then we let the lapic timer run at 4 * 'hz'.
*/
if (hz >= 1500)
lapic_timer_hz = hz;
else if (hz >= 750)
lapic_timer_hz = hz * 2;
else
lapic_timer_hz = hz * 4;
if (lapic_timer_hz < 128)
stathz = lapic_timer_hz;
else
stathz = lapic_timer_hz / (lapic_timer_hz / 128);
profhz = lapic_timer_hz;
lapic_timer_period = value / lapic_timer_hz;
/*
* Start up the timer on the BSP. The APs will kick off their
* timer during lapic_setup().
*/
lapic_timer_periodic(lapic_timer_period);
lapic_timer_enable_intr();
return (1);
}
void
lapic_disable(void)
{
uint32_t value;
/* Software disable the local APIC. */
value = lapic->svr;
value &= ~APIC_SVR_SWEN;
lapic->svr = value;
}
static void
lapic_enable(void)
{
u_int32_t value;
/* Program the spurious vector to enable the local APIC. */
value = lapic->svr;
value &= ~(APIC_SVR_VECTOR | APIC_SVR_FOCUS);
value |= (APIC_SVR_FEN | APIC_SVR_SWEN | APIC_SPURIOUS_INT);
lapic->svr = value;
}
/* Reset the local APIC on the BSP during resume. */
static void
lapic_resume(struct pic *pic)
{
lapic_setup(0);
}
int
lapic_id(void)
{
KASSERT(lapic != NULL, ("local APIC is not mapped"));
return (lapic->id >> APIC_ID_SHIFT);
}
int
lapic_intr_pending(u_int vector)
{
volatile u_int32_t *irr;
/*
* The IRR registers are an array of 128-bit registers each of
* which only describes 32 interrupts in the low 32 bits.. Thus,
* we divide the vector by 32 to get the 128-bit index. We then
* multiply that index by 4 to get the equivalent index from
* treating the IRR as an array of 32-bit registers. Finally, we
* modulus the vector by 32 to determine the individual bit to
* test.
*/
irr = &lapic->irr0;
return (irr[(vector / 32) * 4] & 1 << (vector % 32));
}
void
lapic_set_logical_id(u_int apic_id, u_int cluster, u_int cluster_id)
{
struct lapic *la;
KASSERT(lapics[apic_id].la_present, ("%s: APIC %u doesn't exist",
__func__, apic_id));
KASSERT(cluster <= APIC_MAX_CLUSTER, ("%s: cluster %u too big",
__func__, cluster));
KASSERT(cluster_id <= APIC_MAX_INTRACLUSTER_ID,
("%s: intra cluster id %u too big", __func__, cluster_id));
la = &lapics[apic_id];
la->la_cluster = cluster;
la->la_cluster_id = cluster_id;
}
int
lapic_set_lvt_mask(u_int apic_id, u_int pin, u_char masked)
{
if (pin > LVT_MAX)
return (EINVAL);
if (apic_id == APIC_ID_ALL) {
lvts[pin].lvt_masked = masked;
if (bootverbose)
printf("lapic:");
} else {
KASSERT(lapics[apic_id].la_present,
("%s: missing APIC %u", __func__, apic_id));
lapics[apic_id].la_lvts[pin].lvt_masked = masked;
lapics[apic_id].la_lvts[pin].lvt_active = 1;
if (bootverbose)
printf("lapic%u:", apic_id);
}
if (bootverbose)
printf(" LINT%u %s\n", pin, masked ? "masked" : "unmasked");
return (0);
}
int
lapic_set_lvt_mode(u_int apic_id, u_int pin, u_int32_t mode)
{
struct lvt *lvt;
if (pin > LVT_MAX)
return (EINVAL);
if (apic_id == APIC_ID_ALL) {
lvt = &lvts[pin];
if (bootverbose)
printf("lapic:");
} else {
KASSERT(lapics[apic_id].la_present,
("%s: missing APIC %u", __func__, apic_id));
lvt = &lapics[apic_id].la_lvts[pin];
lvt->lvt_active = 1;
if (bootverbose)
printf("lapic%u:", apic_id);
}
lvt->lvt_mode = mode;
switch (mode) {
case APIC_LVT_DM_NMI:
case APIC_LVT_DM_SMI:
case APIC_LVT_DM_INIT:
case APIC_LVT_DM_EXTINT:
lvt->lvt_edgetrigger = 1;
lvt->lvt_activehi = 1;
if (mode == APIC_LVT_DM_EXTINT)
lvt->lvt_masked = 1;
else
lvt->lvt_masked = 0;
break;
default:
panic("Unsupported delivery mode: 0x%x\n", mode);
}
if (bootverbose) {
printf(" Routing ");
switch (mode) {
case APIC_LVT_DM_NMI:
printf("NMI");
break;
case APIC_LVT_DM_SMI:
printf("SMI");
break;
case APIC_LVT_DM_INIT:
printf("INIT");
break;
case APIC_LVT_DM_EXTINT:
printf("ExtINT");
break;
}
printf(" -> LINT%u\n", pin);
}
return (0);
}
int
lapic_set_lvt_polarity(u_int apic_id, u_int pin, enum intr_polarity pol)
{
if (pin > LVT_MAX || pol == INTR_POLARITY_CONFORM)
return (EINVAL);
if (apic_id == APIC_ID_ALL) {
lvts[pin].lvt_activehi = (pol == INTR_POLARITY_HIGH);
if (bootverbose)
printf("lapic:");
} else {
KASSERT(lapics[apic_id].la_present,
("%s: missing APIC %u", __func__, apic_id));
lapics[apic_id].la_lvts[pin].lvt_active = 1;
lapics[apic_id].la_lvts[pin].lvt_activehi =
(pol == INTR_POLARITY_HIGH);
if (bootverbose)
printf("lapic%u:", apic_id);
}
if (bootverbose)
printf(" LINT%u polarity: %s\n", pin,
pol == INTR_POLARITY_HIGH ? "high" : "low");
return (0);
}
int
lapic_set_lvt_triggermode(u_int apic_id, u_int pin, enum intr_trigger trigger)
{
if (pin > LVT_MAX || trigger == INTR_TRIGGER_CONFORM)
return (EINVAL);
if (apic_id == APIC_ID_ALL) {
lvts[pin].lvt_edgetrigger = (trigger == INTR_TRIGGER_EDGE);
if (bootverbose)
printf("lapic:");
} else {
KASSERT(lapics[apic_id].la_present,
("%s: missing APIC %u", __func__, apic_id));
lapics[apic_id].la_lvts[pin].lvt_edgetrigger =
(trigger == INTR_TRIGGER_EDGE);
lapics[apic_id].la_lvts[pin].lvt_active = 1;
if (bootverbose)
printf("lapic%u:", apic_id);
}
if (bootverbose)
printf(" LINT%u trigger: %s\n", pin,
trigger == INTR_TRIGGER_EDGE ? "edge" : "level");
return (0);
}
/*
* Adjust the TPR of the current CPU so that it blocks all interrupts below
* the passed in vector.
*/
void
lapic_set_tpr(u_int vector)
{
#ifdef CHEAP_TPR
lapic->tpr = vector;
#else
u_int32_t tpr;
tpr = lapic->tpr & ~APIC_TPR_PRIO;
tpr |= vector;
lapic->tpr = tpr;
#endif
}
void
lapic_eoi(void)
{
lapic->eoi = 0;
}
void
lapic_handle_intr(int vector, struct trapframe *frame)
{
struct intsrc *isrc;
if (vector == -1)
panic("Couldn't get vector from ISR!");
isrc = intr_lookup_source(apic_idt_to_irq(vector));
intr_execute_handlers(isrc, frame);
}
void
lapic_handle_timer(struct trapframe *frame)
{
struct lapic *la;
/* Send EOI first thing. */
lapic_eoi();
#if defined(SMP) && !defined(SCHED_ULE)
/*
* Don't do any accounting for the disabled HTT cores, since it
* will provide misleading numbers for the userland.
*
* No locking is necessary here, since even if we loose the race
* when hlt_cpus_mask changes it is not a big deal, really.
*
* Don't do that for ULE, since ULE doesn't consider hlt_cpus_mask
* and unlike other schedulers it actually schedules threads to
* those CPUs.
*/
if ((hlt_cpus_mask & (1 << PCPU_GET(cpuid))) != 0)
return;
#endif
/* Look up our local APIC structure for the tick counters. */
la = &lapics[PCPU_GET(apic_id)];
(*la->la_timer_count)++;
critical_enter();
#ifdef KDTRACE_HOOKS
/*
* If the DTrace hooks are configured and a callback function
* has been registered, then call it to process the high speed
* timers.
*/
int cpu = PCPU_GET(cpuid);
if (lapic_cyclic_clock_func[cpu] != NULL)
(*lapic_cyclic_clock_func[cpu])(frame);
#endif
/* Fire hardclock at hz. */
la->la_hard_ticks += hz;
if (la->la_hard_ticks >= lapic_timer_hz) {
la->la_hard_ticks -= lapic_timer_hz;
if (PCPU_GET(cpuid) == 0)
hardclock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
else
hardclock_cpu(TRAPF_USERMODE(frame));
}
/* Fire statclock at stathz. */
la->la_stat_ticks += stathz;
if (la->la_stat_ticks >= lapic_timer_hz) {
la->la_stat_ticks -= lapic_timer_hz;
statclock(TRAPF_USERMODE(frame));
}
/* Fire profclock at profhz, but only when needed. */
la->la_prof_ticks += profhz;
if (la->la_prof_ticks >= lapic_timer_hz) {
la->la_prof_ticks -= lapic_timer_hz;
if (profprocs != 0)
profclock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
}
critical_exit();
}
static void
lapic_timer_set_divisor(u_int divisor)
{
KASSERT(powerof2(divisor), ("lapic: invalid divisor %u", divisor));
KASSERT(ffs(divisor) <= sizeof(lapic_timer_divisors) /
sizeof(u_int32_t), ("lapic: invalid divisor %u", divisor));
lapic->dcr_timer = lapic_timer_divisors[ffs(divisor) - 1];
}
static void
lapic_timer_oneshot(u_int count)
{
u_int32_t value;
value = lapic->lvt_timer;
value &= ~APIC_LVTT_TM;
value |= APIC_LVTT_TM_ONE_SHOT;
lapic->lvt_timer = value;
lapic->icr_timer = count;
}
static void
lapic_timer_periodic(u_int count)
{
u_int32_t value;
value = lapic->lvt_timer;
value &= ~APIC_LVTT_TM;
value |= APIC_LVTT_TM_PERIODIC;
lapic->lvt_timer = value;
lapic->icr_timer = count;
}
static void
lapic_timer_enable_intr(void)
{
u_int32_t value;
value = lapic->lvt_timer;
value &= ~APIC_LVT_M;
lapic->lvt_timer = value;
}
/* Request a free IDT vector to be used by the specified IRQ. */
u_int
apic_alloc_vector(u_int irq)
{
u_int vector;
KASSERT(irq < NUM_IO_INTS, ("Invalid IRQ %u", irq));
/*
* Search for a free vector. Currently we just use a very simple
* algorithm to find the first free vector.
*/
mtx_lock_spin(&icu_lock);
for (vector = 0; vector < APIC_NUM_IOINTS; vector++) {
if (ioint_irqs[vector] != 0)
continue;
ioint_irqs[vector] = irq;
mtx_unlock_spin(&icu_lock);
return (vector + APIC_IO_INTS);
}
mtx_unlock_spin(&icu_lock);
panic("Couldn't find an APIC vector for IRQ %u", irq);
}
/*
* Request 'count' free contiguous IDT vectors to be used by 'count'
* IRQs. 'count' must be a power of two and the vectors will be
* aligned on a boundary of 'align'. If the request cannot be
* satisfied, 0 is returned.
*/
u_int
apic_alloc_vectors(u_int *irqs, u_int count, u_int align)
{
u_int first, run, vector;
KASSERT(powerof2(count), ("bad count"));
KASSERT(powerof2(align), ("bad align"));
KASSERT(align >= count, ("align < count"));
#ifdef INVARIANTS
for (run = 0; run < count; run++)
KASSERT(irqs[run] < NUM_IO_INTS, ("Invalid IRQ %u at index %u",
irqs[run], run));
#endif
/*
* Search for 'count' free vectors. As with apic_alloc_vector(),
* this just uses a simple first fit algorithm.
*/
run = 0;
first = 0;
mtx_lock_spin(&icu_lock);
for (vector = 0; vector < APIC_NUM_IOINTS; vector++) {
/* Vector is in use, end run. */
if (ioint_irqs[vector] != 0) {
run = 0;
first = 0;
continue;
}
/* Start a new run if run == 0 and vector is aligned. */
if (run == 0) {
if ((vector & (align - 1)) != 0)
continue;
first = vector;
}
run++;
/* Keep looping if the run isn't long enough yet. */
if (run < count)
continue;
/* Found a run, assign IRQs and return the first vector. */
for (vector = 0; vector < count; vector++)
ioint_irqs[first + vector] = irqs[vector];
mtx_unlock_spin(&icu_lock);
return (first + APIC_IO_INTS);
}
mtx_unlock_spin(&icu_lock);
printf("APIC: Couldn't find APIC vectors for %u IRQs\n", count);
return (0);
}
void
apic_enable_vector(u_int vector)
{
KASSERT(vector != IDT_SYSCALL, ("Attempt to overwrite syscall entry"));
KASSERT(ioint_handlers[vector / 32] != NULL,
("No ISR handler for vector %u", vector));
setidt(vector, ioint_handlers[vector / 32], SDT_SYSIGT, SEL_KPL, 0);
}
void
apic_disable_vector(u_int vector)
{
KASSERT(vector != IDT_SYSCALL, ("Attempt to overwrite syscall entry"));
KASSERT(ioint_handlers[vector / 32] != NULL,
("No ISR handler for vector %u", vector));
setidt(vector, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
}
/* Release an APIC vector when it's no longer in use. */
void
apic_free_vector(u_int vector, u_int irq)
{
KASSERT(vector >= APIC_IO_INTS && vector != IDT_SYSCALL &&
vector <= APIC_IO_INTS + APIC_NUM_IOINTS,
("Vector %u does not map to an IRQ line", vector));
KASSERT(irq < NUM_IO_INTS, ("Invalid IRQ %u", irq));
KASSERT(ioint_irqs[vector - APIC_IO_INTS] == irq, ("IRQ mismatch"));
mtx_lock_spin(&icu_lock);
ioint_irqs[vector - APIC_IO_INTS] = 0;
mtx_unlock_spin(&icu_lock);
}
/* Map an IDT vector (APIC) to an IRQ (interrupt source). */
u_int
apic_idt_to_irq(u_int vector)
{
KASSERT(vector >= APIC_IO_INTS && vector != IDT_SYSCALL &&
vector <= APIC_IO_INTS + APIC_NUM_IOINTS,
("Vector %u does not map to an IRQ line", vector));
return (ioint_irqs[vector - APIC_IO_INTS]);
}
#ifdef DDB
/*
* Dump data about APIC IDT vector mappings.
*/
DB_SHOW_COMMAND(apic, db_show_apic)
{
struct intsrc *isrc;
int i, verbose;
u_int irq;
if (strcmp(modif, "vv") == 0)
verbose = 2;
else if (strcmp(modif, "v") == 0)
verbose = 1;
else
verbose = 0;
for (i = 0; i < APIC_NUM_IOINTS + 1 && !db_pager_quit; i++) {
irq = ioint_irqs[i];
if (irq != 0 && irq != IRQ_SYSCALL) {
db_printf("vec 0x%2x -> ", i + APIC_IO_INTS);
if (irq == IRQ_TIMER)
db_printf("lapic timer\n");
else if (irq < NUM_IO_INTS) {
isrc = intr_lookup_source(irq);
if (isrc == NULL || verbose == 0)
db_printf("IRQ %u\n", irq);
else
db_dump_intr_event(isrc->is_event,
verbose == 2);
} else
db_printf("IRQ %u ???\n", irq);
}
}
}
static void
dump_mask(const char *prefix, uint32_t v, int base)
{
int i, first;
first = 1;
for (i = 0; i < 32; i++)
if (v & (1 << i)) {
if (first) {
db_printf("%s:", prefix);
first = 0;
}
db_printf(" %02x", base + i);
}
if (!first)
db_printf("\n");
}
/* Show info from the lapic regs for this CPU. */
DB_SHOW_COMMAND(lapic, db_show_lapic)
{
uint32_t v;
db_printf("lapic ID = %d\n", lapic_id());
v = lapic->version;
db_printf("version = %d.%d\n", (v & APIC_VER_VERSION) >> 4,
v & 0xf);
db_printf("max LVT = %d\n", (v & APIC_VER_MAXLVT) >> MAXLVTSHIFT);
v = lapic->svr;
db_printf("SVR = %02x (%s)\n", v & APIC_SVR_VECTOR,
v & APIC_SVR_ENABLE ? "enabled" : "disabled");
db_printf("TPR = %02x\n", lapic->tpr);
#define dump_field(prefix, index) \
dump_mask(__XSTRING(prefix ## index), lapic->prefix ## index, \
index * 32)
db_printf("In-service Interrupts:\n");
dump_field(isr, 0);
dump_field(isr, 1);
dump_field(isr, 2);
dump_field(isr, 3);
dump_field(isr, 4);
dump_field(isr, 5);
dump_field(isr, 6);
dump_field(isr, 7);
db_printf("TMR Interrupts:\n");
dump_field(tmr, 0);
dump_field(tmr, 1);
dump_field(tmr, 2);
dump_field(tmr, 3);
dump_field(tmr, 4);
dump_field(tmr, 5);
dump_field(tmr, 6);
dump_field(tmr, 7);
db_printf("IRR Interrupts:\n");
dump_field(irr, 0);
dump_field(irr, 1);
dump_field(irr, 2);
dump_field(irr, 3);
dump_field(irr, 4);
dump_field(irr, 5);
dump_field(irr, 6);
dump_field(irr, 7);
#undef dump_field
}
#endif
/*
* APIC probing support code. This includes code to manage enumerators.
*/
static SLIST_HEAD(, apic_enumerator) enumerators =
SLIST_HEAD_INITIALIZER(enumerators);
static struct apic_enumerator *best_enum;
void
apic_register_enumerator(struct apic_enumerator *enumerator)
{
#ifdef INVARIANTS
struct apic_enumerator *apic_enum;
SLIST_FOREACH(apic_enum, &enumerators, apic_next) {
if (apic_enum == enumerator)
panic("%s: Duplicate register of %s", __func__,
enumerator->apic_name);
}
#endif
SLIST_INSERT_HEAD(&enumerators, enumerator, apic_next);
}
/*
* We have to look for CPU's very, very early because certain subsystems
* want to know how many CPU's we have extremely early on in the boot
* process.
*/
static void
apic_init(void *dummy __unused)
{
struct apic_enumerator *enumerator;
int retval, best;
/* Don't probe if APIC mode is disabled. */
if (resource_disabled("apic", 0))
return;
/* First, probe all the enumerators to find the best match. */
best_enum = NULL;
best = 0;
SLIST_FOREACH(enumerator, &enumerators, apic_next) {
retval = enumerator->apic_probe();
if (retval > 0)
continue;
if (best_enum == NULL || best < retval) {
best_enum = enumerator;
best = retval;
}
}
if (best_enum == NULL) {
if (bootverbose)
printf("APIC: Could not find any APICs.\n");
return;
}
if (bootverbose)
printf("APIC: Using the %s enumerator.\n",
best_enum->apic_name);
/* Second, probe the CPU's in the system. */
retval = best_enum->apic_probe_cpus();
if (retval != 0)
printf("%s: Failed to probe CPUs: returned %d\n",
best_enum->apic_name, retval);
}
SYSINIT(apic_init, SI_SUB_TUNABLES - 1, SI_ORDER_SECOND, apic_init, NULL);
/*
* Setup the local APIC. We have to do this prior to starting up the APs
* in the SMP case.
*/
static void
apic_setup_local(void *dummy __unused)
{
int retval;
if (best_enum == NULL)
return;
retval = best_enum->apic_setup_local();
if (retval != 0)
printf("%s: Failed to setup the local APIC: returned %d\n",
best_enum->apic_name, retval);
}
SYSINIT(apic_setup_local, SI_SUB_CPU, SI_ORDER_SECOND, apic_setup_local,
NULL);
/*
* Setup the I/O APICs.
*/
static void
apic_setup_io(void *dummy __unused)
{
int retval;
if (best_enum == NULL)
return;
retval = best_enum->apic_setup_io();
if (retval != 0)
printf("%s: Failed to setup I/O APICs: returned %d\n",
best_enum->apic_name, retval);
/*
* Finish setting up the local APIC on the BSP once we know how to
* properly program the LINT pins.
*/
lapic_setup(1);
intr_register_pic(&lapic_pic);
if (bootverbose)
lapic_dump("BSP");
/* Enable the MSI "pic". */
msi_init();
}
SYSINIT(apic_setup_io, SI_SUB_INTR, SI_ORDER_SECOND, apic_setup_io, NULL);
#ifdef SMP
/*
* Inter Processor Interrupt functions. The lapic_ipi_*() functions are
* private to the sys/amd64 code. The public interface for the rest of the
* kernel is defined in mp_machdep.c.
*/
int
lapic_ipi_wait(int delay)
{
int x, incr;
/*
* Wait delay loops for IPI to be sent. This is highly bogus
* since this is sensitive to CPU clock speed. If delay is
* -1, we wait forever.
*/
if (delay == -1) {
incr = 0;
delay = 1;
} else
incr = 1;
for (x = 0; x < delay; x += incr) {
if ((lapic->icr_lo & APIC_DELSTAT_MASK) == APIC_DELSTAT_IDLE)
return (1);
ia32_pause();
}
return (0);
}
void
lapic_ipi_raw(register_t icrlo, u_int dest)
{
register_t value, eflags;
/* XXX: Need more sanity checking of icrlo? */
KASSERT(lapic != NULL, ("%s called too early", __func__));
KASSERT((dest & ~(APIC_ID_MASK >> APIC_ID_SHIFT)) == 0,
("%s: invalid dest field", __func__));
KASSERT((icrlo & APIC_ICRLO_RESV_MASK) == 0,
("%s: reserved bits set in ICR LO register", __func__));
/* Set destination in ICR HI register if it is being used. */
eflags = intr_disable();
if ((icrlo & APIC_DEST_MASK) == APIC_DEST_DESTFLD) {
value = lapic->icr_hi;
value &= ~APIC_ID_MASK;
value |= dest << APIC_ID_SHIFT;
lapic->icr_hi = value;
}
/* Program the contents of the IPI and dispatch it. */
value = lapic->icr_lo;
value &= APIC_ICRLO_RESV_MASK;
value |= icrlo;
lapic->icr_lo = value;
intr_restore(eflags);
}
#define BEFORE_SPIN 1000000
#ifdef DETECT_DEADLOCK
#define AFTER_SPIN 1000
#endif
void
lapic_ipi_vectored(u_int vector, int dest)
{
register_t icrlo, destfield;
KASSERT((vector & ~APIC_VECTOR_MASK) == 0,
("%s: invalid vector %d", __func__, vector));
icrlo = vector | APIC_DELMODE_FIXED | APIC_DESTMODE_PHY |
APIC_LEVEL_DEASSERT | APIC_TRIGMOD_EDGE;
destfield = 0;
switch (dest) {
case APIC_IPI_DEST_SELF:
icrlo |= APIC_DEST_SELF;
break;
case APIC_IPI_DEST_ALL:
icrlo |= APIC_DEST_ALLISELF;
break;
case APIC_IPI_DEST_OTHERS:
icrlo |= APIC_DEST_ALLESELF;
break;
default:
KASSERT((dest & ~(APIC_ID_MASK >> APIC_ID_SHIFT)) == 0,
("%s: invalid destination 0x%x", __func__, dest));
destfield = dest;
}
/* Wait for an earlier IPI to finish. */
if (!lapic_ipi_wait(BEFORE_SPIN)) {
if (panicstr != NULL)
return;
else
panic("APIC: Previous IPI is stuck");
}
lapic_ipi_raw(icrlo, destfield);
#ifdef DETECT_DEADLOCK
/* Wait for IPI to be delivered. */
if (!lapic_ipi_wait(AFTER_SPIN)) {
#ifdef needsattention
/*
* XXX FIXME:
*
* The above function waits for the message to actually be
* delivered. It breaks out after an arbitrary timeout
* since the message should eventually be delivered (at
* least in theory) and that if it wasn't we would catch
* the failure with the check above when the next IPI is
* sent.
*
* We could skip this wait entirely, EXCEPT it probably
* protects us from other routines that assume that the
* message was delivered and acted upon when this function
* returns.
*/
printf("APIC: IPI might be stuck\n");
#else /* !needsattention */
/* Wait until mesage is sent without a timeout. */
while (lapic->icr_lo & APIC_DELSTAT_PEND)
ia32_pause();
#endif /* needsattention */
}
#endif /* DETECT_DEADLOCK */
}
#endif /* SMP */