freebsd-nq/sys/dev/ata/chipsets/ata-promise.c
2010-01-27 06:28:16 +00:00

1233 lines
39 KiB
C

/*-
* Copyright (c) 1998 - 2008 Søren Schmidt <sos@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ata.h"
#include <sys/param.h>
#include <sys/module.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ata.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sema.h>
#include <sys/taskqueue.h>
#include <vm/uma.h>
#include <machine/stdarg.h>
#include <machine/resource.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/ata/ata-all.h>
#include <dev/ata/ata-pci.h>
#include <ata_if.h>
/* local prototypes */
static int ata_promise_chipinit(device_t dev);
static int ata_promise_ch_attach(device_t dev);
static int ata_promise_status(device_t dev);
static int ata_promise_dmastart(struct ata_request *request);
static int ata_promise_dmastop(struct ata_request *request);
static void ata_promise_dmareset(device_t dev);
static int ata_promise_setmode(device_t dev, int target, int mode);
static int ata_promise_tx2_ch_attach(device_t dev);
static int ata_promise_tx2_status(device_t dev);
static int ata_promise_mio_ch_attach(device_t dev);
static int ata_promise_mio_ch_detach(device_t dev);
static void ata_promise_mio_intr(void *data);
static int ata_promise_mio_status(device_t dev);
static int ata_promise_mio_command(struct ata_request *request);
static void ata_promise_mio_reset(device_t dev);
static int ata_promise_mio_pm_read(device_t dev, int port, int reg, u_int32_t *result);
static int ata_promise_mio_pm_write(device_t dev, int port, int reg, u_int32_t result);
static u_int32_t ata_promise_mio_softreset(device_t dev, int port);
static void ata_promise_mio_dmainit(device_t dev);
static void ata_promise_mio_setprd(void *xsc, bus_dma_segment_t *segs, int nsegs, int error);
static int ata_promise_mio_setmode(device_t dev, int target, int mode);
static int ata_promise_mio_getrev(device_t dev, int target);
static void ata_promise_sx4_intr(void *data);
static int ata_promise_sx4_command(struct ata_request *request);
static int ata_promise_apkt(u_int8_t *bytep, struct ata_request *request);
static void ata_promise_queue_hpkt(struct ata_pci_controller *ctlr, u_int32_t hpkt);
static void ata_promise_next_hpkt(struct ata_pci_controller *ctlr);
/* misc defines */
#define PR_OLD 0
#define PR_NEW 1
#define PR_TX 2
#define PR_MIO 3
#define PR_TX4 0x01
#define PR_SX4X 0x02
#define PR_SX6K 0x04
#define PR_PATA 0x08
#define PR_CMBO 0x10
#define PR_CMBO2 0x20
#define PR_SATA 0x40
#define PR_SATA2 0x80
/*
* Promise chipset support functions
*/
#define ATA_PDC_APKT_OFFSET 0x00000010
#define ATA_PDC_HPKT_OFFSET 0x00000040
#define ATA_PDC_ASG_OFFSET 0x00000080
#define ATA_PDC_LSG_OFFSET 0x000000c0
#define ATA_PDC_HSG_OFFSET 0x00000100
#define ATA_PDC_CHN_OFFSET 0x00000400
#define ATA_PDC_BUF_BASE 0x00400000
#define ATA_PDC_BUF_OFFSET 0x00100000
#define ATA_PDC_MAX_HPKT 8
#define ATA_PDC_WRITE_REG 0x00
#define ATA_PDC_WRITE_CTL 0x0e
#define ATA_PDC_WRITE_END 0x08
#define ATA_PDC_WAIT_NBUSY 0x10
#define ATA_PDC_WAIT_READY 0x18
#define ATA_PDC_1B 0x20
#define ATA_PDC_2B 0x40
struct host_packet {
u_int32_t addr;
TAILQ_ENTRY(host_packet) chain;
};
struct ata_promise_sx4 {
struct mtx mtx;
TAILQ_HEAD(, host_packet) queue;
int busy;
};
static int
ata_promise_probe(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(dev);
struct ata_chip_id *idx;
static struct ata_chip_id ids[] =
{{ ATA_PDC20246, 0, PR_OLD, 0x00, ATA_UDMA2, "PDC20246" },
{ ATA_PDC20262, 0, PR_NEW, 0x00, ATA_UDMA4, "PDC20262" },
{ ATA_PDC20263, 0, PR_NEW, 0x00, ATA_UDMA4, "PDC20263" },
{ ATA_PDC20265, 0, PR_NEW, 0x00, ATA_UDMA5, "PDC20265" },
{ ATA_PDC20267, 0, PR_NEW, 0x00, ATA_UDMA5, "PDC20267" },
{ ATA_PDC20268, 0, PR_TX, PR_TX4, ATA_UDMA5, "PDC20268" },
{ ATA_PDC20269, 0, PR_TX, 0x00, ATA_UDMA6, "PDC20269" },
{ ATA_PDC20270, 0, PR_TX, PR_TX4, ATA_UDMA5, "PDC20270" },
{ ATA_PDC20271, 0, PR_TX, 0x00, ATA_UDMA6, "PDC20271" },
{ ATA_PDC20275, 0, PR_TX, 0x00, ATA_UDMA6, "PDC20275" },
{ ATA_PDC20276, 0, PR_TX, PR_SX6K, ATA_UDMA6, "PDC20276" },
{ ATA_PDC20277, 0, PR_TX, 0x00, ATA_UDMA6, "PDC20277" },
{ ATA_PDC20318, 0, PR_MIO, PR_SATA, ATA_SA150, "PDC20318" },
{ ATA_PDC20319, 0, PR_MIO, PR_SATA, ATA_SA150, "PDC20319" },
{ ATA_PDC20371, 0, PR_MIO, PR_CMBO, ATA_SA150, "PDC20371" },
{ ATA_PDC20375, 0, PR_MIO, PR_CMBO, ATA_SA150, "PDC20375" },
{ ATA_PDC20376, 0, PR_MIO, PR_CMBO, ATA_SA150, "PDC20376" },
{ ATA_PDC20377, 0, PR_MIO, PR_CMBO, ATA_SA150, "PDC20377" },
{ ATA_PDC20378, 0, PR_MIO, PR_CMBO, ATA_SA150, "PDC20378" },
{ ATA_PDC20379, 0, PR_MIO, PR_CMBO, ATA_SA150, "PDC20379" },
{ ATA_PDC20571, 0, PR_MIO, PR_CMBO2, ATA_SA150, "PDC20571" },
{ ATA_PDC20575, 0, PR_MIO, PR_CMBO2, ATA_SA150, "PDC20575" },
{ ATA_PDC20579, 0, PR_MIO, PR_CMBO2, ATA_SA150, "PDC20579" },
{ ATA_PDC20771, 0, PR_MIO, PR_CMBO2, ATA_SA300, "PDC20771" },
{ ATA_PDC40775, 0, PR_MIO, PR_CMBO2, ATA_SA300, "PDC40775" },
{ ATA_PDC20617, 0, PR_MIO, PR_PATA, ATA_UDMA6, "PDC20617" },
{ ATA_PDC20618, 0, PR_MIO, PR_PATA, ATA_UDMA6, "PDC20618" },
{ ATA_PDC20619, 0, PR_MIO, PR_PATA, ATA_UDMA6, "PDC20619" },
{ ATA_PDC20620, 0, PR_MIO, PR_PATA, ATA_UDMA6, "PDC20620" },
{ ATA_PDC20621, 0, PR_MIO, PR_SX4X, ATA_UDMA5, "PDC20621" },
{ ATA_PDC20622, 0, PR_MIO, PR_SX4X, ATA_SA150, "PDC20622" },
{ ATA_PDC40518, 0, PR_MIO, PR_SATA2, ATA_SA150, "PDC40518" },
{ ATA_PDC40519, 0, PR_MIO, PR_SATA2, ATA_SA150, "PDC40519" },
{ ATA_PDC40718, 0, PR_MIO, PR_SATA2, ATA_SA300, "PDC40718" },
{ ATA_PDC40719, 0, PR_MIO, PR_SATA2, ATA_SA300, "PDC40719" },
{ ATA_PDC40779, 0, PR_MIO, PR_SATA2, ATA_SA300, "PDC40779" },
{ 0, 0, 0, 0, 0, 0}};
char buffer[64];
uintptr_t devid = 0;
if (pci_get_vendor(dev) != ATA_PROMISE_ID)
return ENXIO;
if (!(idx = ata_match_chip(dev, ids)))
return ENXIO;
/* if we are on a SuperTrak SX6000 dont attach */
if ((idx->cfg2 & PR_SX6K) && pci_get_class(GRANDPARENT(dev))==PCIC_BRIDGE &&
!BUS_READ_IVAR(device_get_parent(GRANDPARENT(dev)),
GRANDPARENT(dev), PCI_IVAR_DEVID, &devid) &&
devid == ATA_I960RM)
return ENXIO;
strcpy(buffer, "Promise ");
strcat(buffer, idx->text);
/* if we are on a FastTrak TX4, adjust the interrupt resource */
if ((idx->cfg2 & PR_TX4) && pci_get_class(GRANDPARENT(dev))==PCIC_BRIDGE &&
!BUS_READ_IVAR(device_get_parent(GRANDPARENT(dev)),
GRANDPARENT(dev), PCI_IVAR_DEVID, &devid) &&
((devid == ATA_DEC_21150) || (devid == ATA_DEC_21150_1))) {
static long start = 0, end = 0;
if (pci_get_slot(dev) == 1) {
bus_get_resource(dev, SYS_RES_IRQ, 0, &start, &end);
strcat(buffer, " (channel 0+1)");
}
else if (pci_get_slot(dev) == 2 && start && end) {
bus_set_resource(dev, SYS_RES_IRQ, 0, start, end);
strcat(buffer, " (channel 2+3)");
}
else {
start = end = 0;
}
}
sprintf(buffer, "%s %s controller", buffer, ata_mode2str(idx->max_dma));
device_set_desc_copy(dev, buffer);
ctlr->chip = idx;
ctlr->chipinit = ata_promise_chipinit;
return (BUS_PROBE_DEFAULT);
}
static int
ata_promise_chipinit(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(dev);
int stat_reg;
if (ata_setup_interrupt(dev, ata_generic_intr))
return ENXIO;
switch (ctlr->chip->cfg1) {
case PR_NEW:
/* setup clocks */
ATA_OUTB(ctlr->r_res1, 0x11, ATA_INB(ctlr->r_res1, 0x11) | 0x0a);
/* FALLTHROUGH */
case PR_OLD:
/* enable burst mode */
ATA_OUTB(ctlr->r_res1, 0x1f, ATA_INB(ctlr->r_res1, 0x1f) | 0x01);
ctlr->ch_attach = ata_promise_ch_attach;
ctlr->ch_detach = ata_pci_ch_detach;
ctlr->setmode = ata_promise_setmode;
return 0;
case PR_TX:
ctlr->ch_attach = ata_promise_tx2_ch_attach;
ctlr->ch_detach = ata_pci_ch_detach;
ctlr->setmode = ata_promise_setmode;
return 0;
case PR_MIO:
ctlr->r_type1 = SYS_RES_MEMORY;
ctlr->r_rid1 = PCIR_BAR(4);
if (!(ctlr->r_res1 = bus_alloc_resource_any(dev, ctlr->r_type1,
&ctlr->r_rid1, RF_ACTIVE)))
goto failnfree;
ctlr->r_type2 = SYS_RES_MEMORY;
ctlr->r_rid2 = PCIR_BAR(3);
if (!(ctlr->r_res2 = bus_alloc_resource_any(dev, ctlr->r_type2,
&ctlr->r_rid2, RF_ACTIVE)))
goto failnfree;
if (ctlr->chip->cfg2 == PR_SX4X) {
struct ata_promise_sx4 *hpkt;
u_int32_t dimm = ATA_INL(ctlr->r_res2, 0x000c0080);
if (bus_teardown_intr(dev, ctlr->r_irq, ctlr->handle) ||
bus_setup_intr(dev, ctlr->r_irq, ATA_INTR_FLAGS, NULL,
ata_promise_sx4_intr, ctlr, &ctlr->handle)) {
device_printf(dev, "unable to setup interrupt\n");
goto failnfree;
}
/* print info about cache memory */
device_printf(dev, "DIMM size %dMB @ 0x%08x%s\n",
(((dimm >> 16) & 0xff)-((dimm >> 24) & 0xff)+1) << 4,
((dimm >> 24) & 0xff),
ATA_INL(ctlr->r_res2, 0x000c0088) & (1<<16) ?
" ECC enabled" : "" );
/* adjust cache memory parameters */
ATA_OUTL(ctlr->r_res2, 0x000c000c,
(ATA_INL(ctlr->r_res2, 0x000c000c) & 0xffff0000));
/* setup host packet controls */
hpkt = malloc(sizeof(struct ata_promise_sx4),
M_TEMP, M_NOWAIT | M_ZERO);
mtx_init(&hpkt->mtx, "ATA promise HPKT lock", NULL, MTX_DEF);
TAILQ_INIT(&hpkt->queue);
hpkt->busy = 0;
ctlr->chipset_data = hpkt;
ctlr->ch_attach = ata_promise_mio_ch_attach;
ctlr->ch_detach = ata_promise_mio_ch_detach;
ctlr->reset = ata_promise_mio_reset;
ctlr->setmode = ata_promise_setmode;
ctlr->channels = 4;
return 0;
}
/* mio type controllers need an interrupt intercept */
if (bus_teardown_intr(dev, ctlr->r_irq, ctlr->handle) ||
bus_setup_intr(dev, ctlr->r_irq, ATA_INTR_FLAGS, NULL,
ata_promise_mio_intr, ctlr, &ctlr->handle)) {
device_printf(dev, "unable to setup interrupt\n");
goto failnfree;
}
switch (ctlr->chip->cfg2) {
case PR_PATA:
ctlr->channels = ((ATA_INL(ctlr->r_res2, 0x48) & 0x01) > 0) +
((ATA_INL(ctlr->r_res2, 0x48) & 0x02) > 0) + 2;
goto sata150;
case PR_CMBO:
ctlr->channels = 3;
goto sata150;
case PR_SATA:
ctlr->channels = 4;
sata150:
stat_reg = 0x6c;
break;
case PR_CMBO2:
ctlr->channels = 3;
goto sataii;
case PR_SATA2:
default:
ctlr->channels = 4;
sataii:
stat_reg = 0x60;
break;
}
/* prime fake interrupt register */
ctlr->chipset_data = (void *)(uintptr_t)0xffffffff;
/* clear SATA status and unmask interrupts */
ATA_OUTL(ctlr->r_res2, stat_reg, 0x000000ff);
/* enable "long burst length" on gen2 chips */
if ((ctlr->chip->cfg2 == PR_SATA2) || (ctlr->chip->cfg2 == PR_CMBO2))
ATA_OUTL(ctlr->r_res2, 0x44, ATA_INL(ctlr->r_res2, 0x44) | 0x2000);
ctlr->ch_attach = ata_promise_mio_ch_attach;
ctlr->ch_detach = ata_promise_mio_ch_detach;
ctlr->reset = ata_promise_mio_reset;
ctlr->setmode = ata_promise_mio_setmode;
ctlr->getrev = ata_promise_mio_getrev;
return 0;
}
failnfree:
if (ctlr->r_res2)
bus_release_resource(dev, ctlr->r_type2, ctlr->r_rid2, ctlr->r_res2);
if (ctlr->r_res1)
bus_release_resource(dev, ctlr->r_type1, ctlr->r_rid1, ctlr->r_res1);
return ENXIO;
}
static int
ata_promise_ch_attach(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
if (ata_pci_ch_attach(dev))
return ENXIO;
if (ctlr->chip->cfg1 == PR_NEW) {
ch->dma.start = ata_promise_dmastart;
ch->dma.stop = ata_promise_dmastop;
ch->dma.reset = ata_promise_dmareset;
}
ch->hw.status = ata_promise_status;
ch->flags |= ATA_NO_ATAPI_DMA;
ch->flags |= ATA_CHECKS_CABLE;
return 0;
}
static int
ata_promise_status(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
if (ATA_INL(ctlr->r_res1, 0x1c) & (ch->unit ? 0x00004000 : 0x00000400)) {
return ata_pci_status(dev);
}
return 0;
}
static int
ata_promise_dmastart(struct ata_request *request)
{
struct ata_pci_controller *ctlr=device_get_softc(device_get_parent(request->parent));
struct ata_channel *ch = device_get_softc(request->parent);
if (request->flags & ATA_R_48BIT) {
ATA_OUTB(ctlr->r_res1, 0x11,
ATA_INB(ctlr->r_res1, 0x11) | (ch->unit ? 0x08 : 0x02));
ATA_OUTL(ctlr->r_res1, ch->unit ? 0x24 : 0x20,
((request->flags & ATA_R_READ) ? 0x05000000 : 0x06000000) |
(request->bytecount >> 1));
}
ATA_IDX_OUTB(ch, ATA_BMSTAT_PORT, (ATA_IDX_INB(ch, ATA_BMSTAT_PORT) |
(ATA_BMSTAT_INTERRUPT | ATA_BMSTAT_ERROR)));
ATA_IDX_OUTL(ch, ATA_BMDTP_PORT, request->dma->sg_bus);
ATA_IDX_OUTB(ch, ATA_BMCMD_PORT,
((request->flags & ATA_R_READ) ? ATA_BMCMD_WRITE_READ : 0) |
ATA_BMCMD_START_STOP);
ch->dma.flags |= ATA_DMA_ACTIVE;
return 0;
}
static int
ata_promise_dmastop(struct ata_request *request)
{
struct ata_pci_controller *ctlr=device_get_softc(device_get_parent(request->parent));
struct ata_channel *ch = device_get_softc(request->parent);
int error;
if (request->flags & ATA_R_48BIT) {
ATA_OUTB(ctlr->r_res1, 0x11,
ATA_INB(ctlr->r_res1, 0x11) & ~(ch->unit ? 0x08 : 0x02));
ATA_OUTL(ctlr->r_res1, ch->unit ? 0x24 : 0x20, 0);
}
error = ATA_IDX_INB(ch, ATA_BMSTAT_PORT);
ATA_IDX_OUTB(ch, ATA_BMCMD_PORT,
ATA_IDX_INB(ch, ATA_BMCMD_PORT) & ~ATA_BMCMD_START_STOP);
ATA_IDX_OUTB(ch, ATA_BMSTAT_PORT, ATA_BMSTAT_INTERRUPT | ATA_BMSTAT_ERROR);
ch->dma.flags &= ~ATA_DMA_ACTIVE;
return error;
}
static void
ata_promise_dmareset(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
ATA_IDX_OUTB(ch, ATA_BMCMD_PORT,
ATA_IDX_INB(ch, ATA_BMCMD_PORT) & ~ATA_BMCMD_START_STOP);
ATA_IDX_OUTB(ch, ATA_BMSTAT_PORT, ATA_BMSTAT_INTERRUPT | ATA_BMSTAT_ERROR);
ch->flags &= ~ATA_DMA_ACTIVE;
}
static int
ata_promise_setmode(device_t dev, int target, int mode)
{
device_t parent = device_get_parent(dev);
struct ata_pci_controller *ctlr = device_get_softc(parent);
struct ata_channel *ch = device_get_softc(dev);
int devno = (ch->unit << 1) + target;
u_int32_t timings[][2] = {
/* PR_OLD PR_NEW mode */
{ 0x004ff329, 0x004fff2f }, /* PIO 0 */
{ 0x004fec25, 0x004ff82a }, /* PIO 1 */
{ 0x004fe823, 0x004ff026 }, /* PIO 2 */
{ 0x004fe622, 0x004fec24 }, /* PIO 3 */
{ 0x004fe421, 0x004fe822 }, /* PIO 4 */
{ 0x004567f3, 0x004acef6 }, /* MWDMA 0 */
{ 0x004467f3, 0x0048cef6 }, /* MWDMA 1 */
{ 0x004367f3, 0x0046cef6 }, /* MWDMA 2 */
{ 0x004367f3, 0x0046cef6 }, /* UDMA 0 */
{ 0x004247f3, 0x00448ef6 }, /* UDMA 1 */
{ 0x004127f3, 0x00436ef6 }, /* UDMA 2 */
{ 0, 0x00424ef6 }, /* UDMA 3 */
{ 0, 0x004127f3 }, /* UDMA 4 */
{ 0, 0x004127f3 } /* UDMA 5 */
};
mode = min(mode, ctlr->chip->max_dma);
switch (ctlr->chip->cfg1) {
case PR_OLD:
case PR_NEW:
if (mode > ATA_UDMA2 && (pci_read_config(parent, 0x50, 2) &
(ch->unit ? 1 << 11 : 1 << 10))) {
ata_print_cable(dev, "controller");
mode = ATA_UDMA2;
}
break;
case PR_TX:
ATA_IDX_OUTB(ch, ATA_BMDEVSPEC_0, 0x0b);
if (mode > ATA_UDMA2 &&
ATA_IDX_INB(ch, ATA_BMDEVSPEC_1) & 0x04) {
ata_print_cable(dev, "controller");
mode = ATA_UDMA2;
}
break;
case PR_MIO:
if (mode > ATA_UDMA2 &&
(ATA_INL(ctlr->r_res2,
(ctlr->chip->cfg2 & PR_SX4X ? 0x000c0260 : 0x0260) +
(ch->unit << 7)) & 0x01000000)) {
ata_print_cable(dev, "controller");
mode = ATA_UDMA2;
}
break;
}
if (ctlr->chip->cfg1 < PR_TX)
pci_write_config(parent, 0x60 + (devno << 2),
timings[ata_mode2idx(mode)][ctlr->chip->cfg1], 4);
return (mode);
}
static int
ata_promise_tx2_ch_attach(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
if (ata_pci_ch_attach(dev))
return ENXIO;
ch->hw.status = ata_promise_tx2_status;
ch->flags |= ATA_CHECKS_CABLE;
return 0;
}
static int
ata_promise_tx2_status(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
ATA_IDX_OUTB(ch, ATA_BMDEVSPEC_0, 0x0b);
if (ATA_IDX_INB(ch, ATA_BMDEVSPEC_1) & 0x20) {
return ata_pci_status(dev);
}
return 0;
}
static int
ata_promise_mio_ch_attach(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
int offset = (ctlr->chip->cfg2 & PR_SX4X) ? 0x000c0000 : 0;
int i;
ata_promise_mio_dmainit(dev);
for (i = ATA_DATA; i <= ATA_COMMAND; i++) {
ch->r_io[i].res = ctlr->r_res2;
ch->r_io[i].offset = offset + 0x0200 + (i << 2) + (ch->unit << 7);
}
ch->r_io[ATA_CONTROL].res = ctlr->r_res2;
ch->r_io[ATA_CONTROL].offset = offset + 0x0238 + (ch->unit << 7);
ch->r_io[ATA_IDX_ADDR].res = ctlr->r_res2;
ata_default_registers(dev);
if ((ctlr->chip->cfg2 & (PR_SATA | PR_SATA2)) ||
((ctlr->chip->cfg2 & (PR_CMBO | PR_CMBO2)) && ch->unit < 2)) {
ch->r_io[ATA_SSTATUS].res = ctlr->r_res2;
ch->r_io[ATA_SSTATUS].offset = 0x400 + (ch->unit << 8);
ch->r_io[ATA_SERROR].res = ctlr->r_res2;
ch->r_io[ATA_SERROR].offset = 0x404 + (ch->unit << 8);
ch->r_io[ATA_SCONTROL].res = ctlr->r_res2;
ch->r_io[ATA_SCONTROL].offset = 0x408 + (ch->unit << 8);
ch->flags |= ATA_NO_SLAVE;
ch->flags |= ATA_SATA;
}
ch->flags |= ATA_USE_16BIT;
ch->flags |= ATA_CHECKS_CABLE;
ata_generic_hw(dev);
if (ctlr->chip->cfg2 & PR_SX4X) {
ch->hw.command = ata_promise_sx4_command;
}
else {
ch->hw.command = ata_promise_mio_command;
ch->hw.status = ata_promise_mio_status;
ch->hw.softreset = ata_promise_mio_softreset;
ch->hw.pm_read = ata_promise_mio_pm_read;
ch->hw.pm_write = ata_promise_mio_pm_write;
}
return 0;
}
static int
ata_promise_mio_ch_detach(device_t dev)
{
ata_dmafini(dev);
return (0);
}
static void
ata_promise_mio_intr(void *data)
{
struct ata_pci_controller *ctlr = data;
struct ata_channel *ch;
u_int32_t vector;
int unit;
/*
* since reading interrupt status register on early "mio" chips
* clears the status bits we cannot read it for each channel later on
* in the generic interrupt routine.
*/
vector = ATA_INL(ctlr->r_res2, 0x040);
ATA_OUTL(ctlr->r_res2, 0x040, vector);
ctlr->chipset_data = (void *)(uintptr_t)vector;
for (unit = 0; unit < ctlr->channels; unit++) {
if ((ch = ctlr->interrupt[unit].argument))
ctlr->interrupt[unit].function(ch);
}
ctlr->chipset_data = (void *)(uintptr_t)0xffffffff;
}
static int
ata_promise_mio_status(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
u_int32_t stat_reg, vector, status;
switch (ctlr->chip->cfg2) {
case PR_PATA:
case PR_CMBO:
case PR_SATA:
stat_reg = 0x6c;
break;
case PR_CMBO2:
case PR_SATA2:
default:
stat_reg = 0x60;
break;
}
/* read and acknowledge interrupt */
vector = (uint32_t)(uintptr_t)ctlr->chipset_data;
/* read and clear interface status */
status = ATA_INL(ctlr->r_res2, stat_reg);
ATA_OUTL(ctlr->r_res2, stat_reg, status & (0x00000011 << ch->unit));
/* check for and handle disconnect events */
if (status & (0x00000001 << ch->unit)) {
if (bootverbose)
device_printf(dev, "DISCONNECT requested\n");
taskqueue_enqueue(taskqueue_thread, &ch->conntask);
}
/* check for and handle connect events */
if (status & (0x00000010 << ch->unit)) {
if (bootverbose)
device_printf(dev, "CONNECT requested\n");
taskqueue_enqueue(taskqueue_thread, &ch->conntask);
}
/* do we have any device action ? */
return (vector & (1 << (ch->unit + 1)));
}
static int
ata_promise_mio_command(struct ata_request *request)
{
struct ata_pci_controller *ctlr=device_get_softc(device_get_parent(request->parent));
struct ata_channel *ch = device_get_softc(request->parent);
u_int32_t *wordp = (u_int32_t *)ch->dma.work;
ATA_OUTL(ctlr->r_res2, (ch->unit + 1) << 2, 0x00000001);
if ((ctlr->chip->cfg2 == PR_SATA2) ||
((ctlr->chip->cfg2 == PR_CMBO2) && (ch->unit < 2))) {
/* set portmultiplier port */
ATA_OUTB(ctlr->r_res2, 0x4e8 + (ch->unit << 8), request->unit & 0x0f);
}
/* XXX SOS add ATAPI commands support later */
switch (request->u.ata.command) {
default:
return ata_generic_command(request);
case ATA_READ_DMA:
case ATA_READ_DMA48:
wordp[0] = htole32(0x04 | ((ch->unit + 1) << 16) | (0x00 << 24));
break;
case ATA_WRITE_DMA:
case ATA_WRITE_DMA48:
wordp[0] = htole32(0x00 | ((ch->unit + 1) << 16) | (0x00 << 24));
break;
}
wordp[1] = htole32(request->dma->sg_bus);
wordp[2] = 0;
ata_promise_apkt((u_int8_t*)wordp, request);
ATA_OUTL(ctlr->r_res2, 0x0240 + (ch->unit << 7), ch->dma.work_bus);
return 0;
}
static void
ata_promise_mio_reset(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
struct ata_promise_sx4 *hpktp;
switch (ctlr->chip->cfg2) {
case PR_SX4X:
/* softreset channel ATA module */
hpktp = ctlr->chipset_data;
ATA_OUTL(ctlr->r_res2, 0xc0260 + (ch->unit << 7), ch->unit + 1);
ata_udelay(1000);
ATA_OUTL(ctlr->r_res2, 0xc0260 + (ch->unit << 7),
(ATA_INL(ctlr->r_res2, 0xc0260 + (ch->unit << 7)) &
~0x00003f9f) | (ch->unit + 1));
/* softreset HOST module */ /* XXX SOS what about other outstandings */
mtx_lock(&hpktp->mtx);
ATA_OUTL(ctlr->r_res2, 0xc012c,
(ATA_INL(ctlr->r_res2, 0xc012c) & ~0x00000f9f) | (1 << 11));
DELAY(10);
ATA_OUTL(ctlr->r_res2, 0xc012c,
(ATA_INL(ctlr->r_res2, 0xc012c) & ~0x00000f9f));
hpktp->busy = 0;
mtx_unlock(&hpktp->mtx);
ata_generic_reset(dev);
break;
case PR_PATA:
case PR_CMBO:
case PR_SATA:
if ((ctlr->chip->cfg2 == PR_SATA) ||
((ctlr->chip->cfg2 == PR_CMBO) && (ch->unit < 2))) {
/* mask plug/unplug intr */
ATA_OUTL(ctlr->r_res2, 0x06c, (0x00110000 << ch->unit));
}
/* softreset channels ATA module */
ATA_OUTL(ctlr->r_res2, 0x0260 + (ch->unit << 7), (1 << 11));
ata_udelay(10000);
ATA_OUTL(ctlr->r_res2, 0x0260 + (ch->unit << 7),
(ATA_INL(ctlr->r_res2, 0x0260 + (ch->unit << 7)) &
~0x00003f9f) | (ch->unit + 1));
if ((ctlr->chip->cfg2 == PR_SATA) ||
((ctlr->chip->cfg2 == PR_CMBO) && (ch->unit < 2))) {
if (ata_sata_phy_reset(dev, -1, 1))
ata_generic_reset(dev);
/* reset and enable plug/unplug intr */
ATA_OUTL(ctlr->r_res2, 0x06c, (0x00000011 << ch->unit));
}
else
ata_generic_reset(dev);
break;
case PR_CMBO2:
case PR_SATA2:
if ((ctlr->chip->cfg2 == PR_SATA2) ||
((ctlr->chip->cfg2 == PR_CMBO2) && (ch->unit < 2))) {
/* set portmultiplier port */
//ATA_OUTL(ctlr->r_res2, 0x4e8 + (ch->unit << 8), 0x0f);
/* mask plug/unplug intr */
ATA_OUTL(ctlr->r_res2, 0x060, (0x00110000 << ch->unit));
}
/* softreset channels ATA module */
ATA_OUTL(ctlr->r_res2, 0x0260 + (ch->unit << 7), (1 << 11));
ata_udelay(10000);
ATA_OUTL(ctlr->r_res2, 0x0260 + (ch->unit << 7),
(ATA_INL(ctlr->r_res2, 0x0260 + (ch->unit << 7)) &
~0x00003f9f) | (ch->unit + 1));
if ((ctlr->chip->cfg2 == PR_SATA2) ||
((ctlr->chip->cfg2 == PR_CMBO2) && (ch->unit < 2))) {
/* set PHY mode to "improved" */
ATA_OUTL(ctlr->r_res2, 0x414 + (ch->unit << 8),
(ATA_INL(ctlr->r_res2, 0x414 + (ch->unit << 8)) &
~0x00000003) | 0x00000001);
if (ata_sata_phy_reset(dev, -1, 1)) {
u_int32_t signature = ch->hw.softreset(dev, ATA_PM);
if (1 | bootverbose)
device_printf(dev, "SIGNATURE: %08x\n", signature);
switch (signature >> 16) {
case 0x0000:
ch->devices = ATA_ATA_MASTER;
break;
case 0x9669:
ch->devices = ATA_PORTMULTIPLIER;
ata_pm_identify(dev);
break;
case 0xeb14:
ch->devices = ATA_ATAPI_MASTER;
break;
default: /* SOS XXX */
if (bootverbose)
device_printf(dev,
"No signature, assuming disk device\n");
ch->devices = ATA_ATA_MASTER;
}
if (bootverbose)
device_printf(dev, "promise_mio_reset devices=%08x\n",
ch->devices);
} else
ch->devices = 0;
/* reset and enable plug/unplug intr */
ATA_OUTL(ctlr->r_res2, 0x060, (0x00000011 << ch->unit));
///* set portmultiplier port */
ATA_OUTL(ctlr->r_res2, 0x4e8 + (ch->unit << 8), 0x00);
}
else
ata_generic_reset(dev);
break;
}
}
static int
ata_promise_mio_pm_read(device_t dev, int port, int reg, u_int32_t *result)
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
int timeout = 0;
/* set portmultiplier port */
ATA_OUTB(ctlr->r_res2, 0x4e8 + (ch->unit << 8), 0x0f);
ATA_IDX_OUTB(ch, ATA_FEATURE, reg);
ATA_IDX_OUTB(ch, ATA_DRIVE, port);
ATA_IDX_OUTB(ch, ATA_COMMAND, ATA_READ_PM);
while (timeout < 1000000) {
u_int8_t status = ATA_IDX_INB(ch, ATA_STATUS);
if (!(status & ATA_S_BUSY))
break;
timeout += 1000;
DELAY(1000);
}
if (timeout >= 1000000)
return ATA_E_ABORT;
*result = ATA_IDX_INB(ch, ATA_COUNT) |
(ATA_IDX_INB(ch, ATA_SECTOR) << 8) |
(ATA_IDX_INB(ch, ATA_CYL_LSB) << 16) |
(ATA_IDX_INB(ch, ATA_CYL_MSB) << 24);
return 0;
}
static int
ata_promise_mio_pm_write(device_t dev, int port, int reg, u_int32_t value)
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
int timeout = 0;
/* set portmultiplier port */
ATA_OUTB(ctlr->r_res2, 0x4e8 + (ch->unit << 8), 0x0f);
ATA_IDX_OUTB(ch, ATA_FEATURE, reg);
ATA_IDX_OUTB(ch, ATA_DRIVE, port);
ATA_IDX_OUTB(ch, ATA_COUNT, value & 0xff);
ATA_IDX_OUTB(ch, ATA_SECTOR, (value >> 8) & 0xff);
ATA_IDX_OUTB(ch, ATA_CYL_LSB, (value >> 16) & 0xff);
ATA_IDX_OUTB(ch, ATA_CYL_MSB, (value >> 24) & 0xff);
ATA_IDX_OUTB(ch, ATA_COMMAND, ATA_WRITE_PM);
while (timeout < 1000000) {
u_int8_t status = ATA_IDX_INB(ch, ATA_STATUS);
if (!(status & ATA_S_BUSY))
break;
timeout += 1000;
DELAY(1000);
}
if (timeout >= 1000000)
return ATA_E_ABORT;
return ATA_IDX_INB(ch, ATA_ERROR);
}
/* must be called with ATA channel locked and state_mtx held */
static u_int32_t
ata_promise_mio_softreset(device_t dev, int port)
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
int timeout;
/* set portmultiplier port */
ATA_OUTB(ctlr->r_res2, 0x4e8 + (ch->unit << 8), port & 0x0f);
/* softreset device on this channel */
ATA_IDX_OUTB(ch, ATA_DRIVE, ATA_D_IBM | ATA_D_LBA | ATA_DEV(ATA_MASTER));
DELAY(10);
ATA_IDX_OUTB(ch, ATA_CONTROL, ATA_A_IDS | ATA_A_RESET);
ata_udelay(10000);
ATA_IDX_OUTB(ch, ATA_CONTROL, ATA_A_IDS);
ata_udelay(150000);
ATA_IDX_INB(ch, ATA_ERROR);
/* wait for BUSY to go inactive */
for (timeout = 0; timeout < 100; timeout++) {
u_int8_t err, stat;
err = ATA_IDX_INB(ch, ATA_ERROR);
stat = ATA_IDX_INB(ch, ATA_STATUS);
//if (stat == err && timeout > (stat & ATA_S_BUSY ? 100 : 10))
//break;
if (!(stat & ATA_S_BUSY)) {
//if ((err & 0x7f) == ATA_E_ILI) {
return ATA_IDX_INB(ch, ATA_COUNT) |
(ATA_IDX_INB(ch, ATA_SECTOR) << 8) |
(ATA_IDX_INB(ch, ATA_CYL_LSB) << 16) |
(ATA_IDX_INB(ch, ATA_CYL_MSB) << 24);
//}
//else if (stat & 0x0f) {
//stat |= ATA_S_BUSY;
//}
}
if (!(stat & ATA_S_BUSY) || (stat == 0xff && timeout > 10))
break;
ata_udelay(100000);
}
return -1;
}
static void
ata_promise_mio_dmainit(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
ata_dmainit(dev);
/* note start and stop are not used here */
ch->dma.setprd = ata_promise_mio_setprd;
ch->dma.max_iosize = 65536;
}
#define MAXLASTSGSIZE (32 * sizeof(u_int32_t))
static void
ata_promise_mio_setprd(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
{
struct ata_dmasetprd_args *args = xsc;
struct ata_dma_prdentry *prd = args->dmatab;
int i;
if ((args->error = error))
return;
for (i = 0; i < nsegs; i++) {
prd[i].addr = htole32(segs[i].ds_addr);
prd[i].count = htole32(segs[i].ds_len);
}
if (segs[i - 1].ds_len > MAXLASTSGSIZE) {
//printf("split last SG element of %u\n", segs[i - 1].ds_len);
prd[i - 1].count = htole32(segs[i - 1].ds_len - MAXLASTSGSIZE);
prd[i].count = htole32(MAXLASTSGSIZE);
prd[i].addr = htole32(segs[i - 1].ds_addr +
(segs[i - 1].ds_len - MAXLASTSGSIZE));
nsegs++;
i++;
}
prd[i - 1].count |= htole32(ATA_DMA_EOT);
KASSERT(nsegs <= ATA_DMA_ENTRIES, ("too many DMA segment entries\n"));
args->nsegs = nsegs;
}
static int
ata_promise_mio_setmode(device_t dev, int target, int mode)
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
if ( (ctlr->chip->cfg2 == PR_SATA) ||
((ctlr->chip->cfg2 == PR_CMBO) && (ch->unit < 2)) ||
(ctlr->chip->cfg2 == PR_SATA2) ||
((ctlr->chip->cfg2 == PR_CMBO2) && (ch->unit < 2)))
mode = ata_sata_setmode(dev, target, mode);
else
mode = ata_promise_setmode(dev, target, mode);
return (mode);
}
static int
ata_promise_mio_getrev(device_t dev, int target)
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
if ( (ctlr->chip->cfg2 == PR_SATA) ||
((ctlr->chip->cfg2 == PR_CMBO) && (ch->unit < 2)) ||
(ctlr->chip->cfg2 == PR_SATA2) ||
((ctlr->chip->cfg2 == PR_CMBO2) && (ch->unit < 2)))
return (ata_sata_getrev(dev, target));
else
return (0);
}
static void
ata_promise_sx4_intr(void *data)
{
struct ata_pci_controller *ctlr = data;
struct ata_channel *ch;
u_int32_t vector = ATA_INL(ctlr->r_res2, 0x000c0480);
int unit;
for (unit = 0; unit < ctlr->channels; unit++) {
if (vector & (1 << (unit + 1)))
if ((ch = ctlr->interrupt[unit].argument))
ctlr->interrupt[unit].function(ch);
if (vector & (1 << (unit + 5)))
if ((ch = ctlr->interrupt[unit].argument))
ata_promise_queue_hpkt(ctlr,
htole32((ch->unit * ATA_PDC_CHN_OFFSET) +
ATA_PDC_HPKT_OFFSET));
if (vector & (1 << (unit + 9))) {
ata_promise_next_hpkt(ctlr);
if ((ch = ctlr->interrupt[unit].argument))
ctlr->interrupt[unit].function(ch);
}
if (vector & (1 << (unit + 13))) {
ata_promise_next_hpkt(ctlr);
if ((ch = ctlr->interrupt[unit].argument))
ATA_OUTL(ctlr->r_res2, 0x000c0240 + (ch->unit << 7),
htole32((ch->unit * ATA_PDC_CHN_OFFSET) +
ATA_PDC_APKT_OFFSET));
}
}
}
static int
ata_promise_sx4_command(struct ata_request *request)
{
device_t gparent = device_get_parent(request->parent);
struct ata_pci_controller *ctlr = device_get_softc(gparent);
struct ata_channel *ch = device_get_softc(request->parent);
struct ata_dma_prdentry *prd;
caddr_t window = rman_get_virtual(ctlr->r_res1);
u_int32_t *wordp;
int i, idx, length = 0;
/* XXX SOS add ATAPI commands support later */
switch (request->u.ata.command) {
default:
return -1;
case ATA_ATA_IDENTIFY:
case ATA_READ:
case ATA_READ48:
case ATA_READ_MUL:
case ATA_READ_MUL48:
case ATA_WRITE:
case ATA_WRITE48:
case ATA_WRITE_MUL:
case ATA_WRITE_MUL48:
ATA_OUTL(ctlr->r_res2, 0x000c0400 + ((ch->unit + 1) << 2), 0x00000001);
return ata_generic_command(request);
case ATA_SETFEATURES:
case ATA_FLUSHCACHE:
case ATA_FLUSHCACHE48:
case ATA_SLEEP:
case ATA_SET_MULTI:
wordp = (u_int32_t *)
(window + (ch->unit * ATA_PDC_CHN_OFFSET) + ATA_PDC_APKT_OFFSET);
wordp[0] = htole32(0x08 | ((ch->unit + 1)<<16) | (0x00 << 24));
wordp[1] = 0;
wordp[2] = 0;
ata_promise_apkt((u_int8_t *)wordp, request);
ATA_OUTL(ctlr->r_res2, 0x000c0484, 0x00000001);
ATA_OUTL(ctlr->r_res2, 0x000c0400 + ((ch->unit + 1) << 2), 0x00000001);
ATA_OUTL(ctlr->r_res2, 0x000c0240 + (ch->unit << 7),
htole32((ch->unit * ATA_PDC_CHN_OFFSET)+ATA_PDC_APKT_OFFSET));
return 0;
case ATA_READ_DMA:
case ATA_READ_DMA48:
case ATA_WRITE_DMA:
case ATA_WRITE_DMA48:
prd = request->dma->sg;
wordp = (u_int32_t *)
(window + (ch->unit * ATA_PDC_CHN_OFFSET) + ATA_PDC_HSG_OFFSET);
i = idx = 0;
do {
wordp[idx++] = prd[i].addr;
wordp[idx++] = prd[i].count;
length += (prd[i].count & ~ATA_DMA_EOT);
} while (!(prd[i++].count & ATA_DMA_EOT));
wordp = (u_int32_t *)
(window + (ch->unit * ATA_PDC_CHN_OFFSET) + ATA_PDC_LSG_OFFSET);
wordp[0] = htole32((ch->unit * ATA_PDC_BUF_OFFSET) + ATA_PDC_BUF_BASE);
wordp[1] = htole32(request->bytecount | ATA_DMA_EOT);
wordp = (u_int32_t *)
(window + (ch->unit * ATA_PDC_CHN_OFFSET) + ATA_PDC_ASG_OFFSET);
wordp[0] = htole32((ch->unit * ATA_PDC_BUF_OFFSET) + ATA_PDC_BUF_BASE);
wordp[1] = htole32(request->bytecount | ATA_DMA_EOT);
wordp = (u_int32_t *)
(window + (ch->unit * ATA_PDC_CHN_OFFSET) + ATA_PDC_HPKT_OFFSET);
if (request->flags & ATA_R_READ)
wordp[0] = htole32(0x14 | ((ch->unit+9)<<16) | ((ch->unit+5)<<24));
if (request->flags & ATA_R_WRITE)
wordp[0] = htole32(0x00 | ((ch->unit+13)<<16) | (0x00<<24));
wordp[1] = htole32((ch->unit * ATA_PDC_CHN_OFFSET)+ATA_PDC_HSG_OFFSET);
wordp[2] = htole32((ch->unit * ATA_PDC_CHN_OFFSET)+ATA_PDC_LSG_OFFSET);
wordp[3] = 0;
wordp = (u_int32_t *)
(window + (ch->unit * ATA_PDC_CHN_OFFSET) + ATA_PDC_APKT_OFFSET);
if (request->flags & ATA_R_READ)
wordp[0] = htole32(0x04 | ((ch->unit+5)<<16) | (0x00<<24));
if (request->flags & ATA_R_WRITE)
wordp[0] = htole32(0x10 | ((ch->unit+1)<<16) | ((ch->unit+13)<<24));
wordp[1] = htole32((ch->unit * ATA_PDC_CHN_OFFSET)+ATA_PDC_ASG_OFFSET);
wordp[2] = 0;
ata_promise_apkt((u_int8_t *)wordp, request);
ATA_OUTL(ctlr->r_res2, 0x000c0484, 0x00000001);
if (request->flags & ATA_R_READ) {
ATA_OUTL(ctlr->r_res2, 0x000c0400 + ((ch->unit+5)<<2), 0x00000001);
ATA_OUTL(ctlr->r_res2, 0x000c0400 + ((ch->unit+9)<<2), 0x00000001);
ATA_OUTL(ctlr->r_res2, 0x000c0240 + (ch->unit << 7),
htole32((ch->unit * ATA_PDC_CHN_OFFSET) + ATA_PDC_APKT_OFFSET));
}
if (request->flags & ATA_R_WRITE) {
ATA_OUTL(ctlr->r_res2, 0x000c0400 + ((ch->unit+1)<<2), 0x00000001);
ATA_OUTL(ctlr->r_res2, 0x000c0400 + ((ch->unit+13)<<2), 0x00000001);
ata_promise_queue_hpkt(ctlr,
htole32((ch->unit * ATA_PDC_CHN_OFFSET) + ATA_PDC_HPKT_OFFSET));
}
return 0;
}
}
static int
ata_promise_apkt(u_int8_t *bytep, struct ata_request *request)
{
int i = 12;
bytep[i++] = ATA_PDC_1B | ATA_PDC_WRITE_REG | ATA_PDC_WAIT_NBUSY|ATA_DRIVE;
bytep[i++] = ATA_D_IBM | ATA_D_LBA | ATA_DEV(request->unit);
bytep[i++] = ATA_PDC_1B | ATA_PDC_WRITE_CTL;
bytep[i++] = ATA_A_4BIT;
if (request->flags & ATA_R_48BIT) {
bytep[i++] = ATA_PDC_2B | ATA_PDC_WRITE_REG | ATA_FEATURE;
bytep[i++] = request->u.ata.feature >> 8;
bytep[i++] = request->u.ata.feature;
bytep[i++] = ATA_PDC_2B | ATA_PDC_WRITE_REG | ATA_COUNT;
bytep[i++] = request->u.ata.count >> 8;
bytep[i++] = request->u.ata.count;
bytep[i++] = ATA_PDC_2B | ATA_PDC_WRITE_REG | ATA_SECTOR;
bytep[i++] = request->u.ata.lba >> 24;
bytep[i++] = request->u.ata.lba;
bytep[i++] = ATA_PDC_2B | ATA_PDC_WRITE_REG | ATA_CYL_LSB;
bytep[i++] = request->u.ata.lba >> 32;
bytep[i++] = request->u.ata.lba >> 8;
bytep[i++] = ATA_PDC_2B | ATA_PDC_WRITE_REG | ATA_CYL_MSB;
bytep[i++] = request->u.ata.lba >> 40;
bytep[i++] = request->u.ata.lba >> 16;
bytep[i++] = ATA_PDC_1B | ATA_PDC_WRITE_REG | ATA_DRIVE;
bytep[i++] = ATA_D_LBA | ATA_DEV(request->unit);
}
else {
bytep[i++] = ATA_PDC_1B | ATA_PDC_WRITE_REG | ATA_FEATURE;
bytep[i++] = request->u.ata.feature;
bytep[i++] = ATA_PDC_1B | ATA_PDC_WRITE_REG | ATA_COUNT;
bytep[i++] = request->u.ata.count;
bytep[i++] = ATA_PDC_1B | ATA_PDC_WRITE_REG | ATA_SECTOR;
bytep[i++] = request->u.ata.lba;
bytep[i++] = ATA_PDC_1B | ATA_PDC_WRITE_REG | ATA_CYL_LSB;
bytep[i++] = request->u.ata.lba >> 8;
bytep[i++] = ATA_PDC_1B | ATA_PDC_WRITE_REG | ATA_CYL_MSB;
bytep[i++] = request->u.ata.lba >> 16;
bytep[i++] = ATA_PDC_1B | ATA_PDC_WRITE_REG | ATA_DRIVE;
bytep[i++] = ATA_D_LBA | ATA_D_IBM | ATA_DEV(request->unit) |
((request->u.ata.lba >> 24)&0xf);
}
bytep[i++] = ATA_PDC_1B | ATA_PDC_WRITE_END | ATA_COMMAND;
bytep[i++] = request->u.ata.command;
return i;
}
static void
ata_promise_queue_hpkt(struct ata_pci_controller *ctlr, u_int32_t hpkt)
{
struct ata_promise_sx4 *hpktp = ctlr->chipset_data;
mtx_lock(&hpktp->mtx);
if (hpktp->busy) {
struct host_packet *hp =
malloc(sizeof(struct host_packet), M_TEMP, M_NOWAIT | M_ZERO);
hp->addr = hpkt;
TAILQ_INSERT_TAIL(&hpktp->queue, hp, chain);
}
else {
hpktp->busy = 1;
ATA_OUTL(ctlr->r_res2, 0x000c0100, hpkt);
}
mtx_unlock(&hpktp->mtx);
}
static void
ata_promise_next_hpkt(struct ata_pci_controller *ctlr)
{
struct ata_promise_sx4 *hpktp = ctlr->chipset_data;
struct host_packet *hp;
mtx_lock(&hpktp->mtx);
if ((hp = TAILQ_FIRST(&hpktp->queue))) {
TAILQ_REMOVE(&hpktp->queue, hp, chain);
ATA_OUTL(ctlr->r_res2, 0x000c0100, hp->addr);
free(hp, M_TEMP);
}
else
hpktp->busy = 0;
mtx_unlock(&hpktp->mtx);
}
ATA_DECLARE_DRIVER(ata_promise);