5291 lines
137 KiB
C
5291 lines
137 KiB
C
/* Subroutines used for code generation on the DEC Alpha.
|
||
Copyright (C) 1992, 93-98, 1999 Free Software Foundation, Inc.
|
||
Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
/* $FreeBSD$ */
|
||
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "rtl.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "real.h"
|
||
#include "insn-config.h"
|
||
#include "conditions.h"
|
||
#include "insn-flags.h"
|
||
#include "output.h"
|
||
#include "insn-attr.h"
|
||
#include "flags.h"
|
||
#include "recog.h"
|
||
#include "reload.h"
|
||
#include "tree.h"
|
||
#include "expr.h"
|
||
#include "obstack.h"
|
||
#include "except.h"
|
||
#include "function.h"
|
||
#include "toplev.h"
|
||
|
||
/* External data. */
|
||
extern char *version_string;
|
||
extern int rtx_equal_function_value_matters;
|
||
|
||
/* Specify which cpu to schedule for. */
|
||
|
||
enum processor_type alpha_cpu;
|
||
static const char * const alpha_cpu_name[] =
|
||
{
|
||
"ev4", "ev5", "ev6"
|
||
};
|
||
|
||
/* Specify how accurate floating-point traps need to be. */
|
||
|
||
enum alpha_trap_precision alpha_tp;
|
||
|
||
/* Specify the floating-point rounding mode. */
|
||
|
||
enum alpha_fp_rounding_mode alpha_fprm;
|
||
|
||
/* Specify which things cause traps. */
|
||
|
||
enum alpha_fp_trap_mode alpha_fptm;
|
||
|
||
/* Strings decoded into the above options. */
|
||
|
||
const char *alpha_cpu_string; /* -mcpu= */
|
||
const char *alpha_tp_string; /* -mtrap-precision=[p|s|i] */
|
||
const char *alpha_fprm_string; /* -mfp-rounding-mode=[n|m|c|d] */
|
||
const char *alpha_fptm_string; /* -mfp-trap-mode=[n|u|su|sui] */
|
||
const char *alpha_mlat_string; /* -mmemory-latency= */
|
||
|
||
/* Save information from a "cmpxx" operation until the branch or scc is
|
||
emitted. */
|
||
|
||
rtx alpha_compare_op0, alpha_compare_op1;
|
||
int alpha_compare_fp_p;
|
||
|
||
/* Define the information needed to modify the epilogue for EH. */
|
||
|
||
rtx alpha_eh_epilogue_sp_ofs;
|
||
|
||
/* Non-zero if inside of a function, because the Alpha asm can't
|
||
handle .files inside of functions. */
|
||
|
||
static int inside_function = FALSE;
|
||
|
||
/* If non-null, this rtx holds the return address for the function. */
|
||
|
||
static rtx alpha_return_addr_rtx;
|
||
|
||
/* The number of cycles of latency we should assume on memory reads. */
|
||
|
||
int alpha_memory_latency = 3;
|
||
|
||
/* Whether the function needs the GP. */
|
||
|
||
static int alpha_function_needs_gp;
|
||
|
||
/* The alias set for prologue/epilogue register save/restore. */
|
||
|
||
static int alpha_sr_alias_set;
|
||
|
||
/* Declarations of static functions. */
|
||
static void alpha_set_memflags_1
|
||
PROTO((rtx, int, int, int));
|
||
static rtx alpha_emit_set_const_1
|
||
PROTO((rtx, enum machine_mode, HOST_WIDE_INT, int));
|
||
static void alpha_expand_unaligned_load_words
|
||
PROTO((rtx *out_regs, rtx smem, HOST_WIDE_INT words, HOST_WIDE_INT ofs));
|
||
static void alpha_expand_unaligned_store_words
|
||
PROTO((rtx *out_regs, rtx smem, HOST_WIDE_INT words, HOST_WIDE_INT ofs));
|
||
static void alpha_sa_mask
|
||
PROTO((unsigned long *imaskP, unsigned long *fmaskP));
|
||
static int alpha_does_function_need_gp
|
||
PROTO((void));
|
||
|
||
int zap_mask
|
||
PROTO((HOST_WIDE_INT));
|
||
rtx alpha_emit_set_long_const
|
||
PROTO((rtx, HOST_WIDE_INT, HOST_WIDE_INT));
|
||
void alpha_expand_unaligned_load
|
||
PROTO((rtx, rtx, HOST_WIDE_INT, HOST_WIDE_INT, int));
|
||
void alpha_expand_unaligned_store
|
||
PROTO((rtx, rtx, HOST_WIDE_INT, HOST_WIDE_INT));
|
||
|
||
/* Get the number of args of a function in one of two ways. */
|
||
#ifdef OPEN_VMS
|
||
#define NUM_ARGS current_function_args_info.num_args
|
||
#else
|
||
#define NUM_ARGS current_function_args_info
|
||
#endif
|
||
|
||
#define REG_PV 27
|
||
#define REG_RA 26
|
||
|
||
/* Parse target option strings. */
|
||
|
||
void
|
||
override_options ()
|
||
{
|
||
alpha_tp = ALPHA_TP_PROG;
|
||
alpha_fprm = ALPHA_FPRM_NORM;
|
||
alpha_fptm = ALPHA_FPTM_N;
|
||
|
||
if (TARGET_IEEE)
|
||
{
|
||
alpha_tp = ALPHA_TP_INSN;
|
||
alpha_fptm = ALPHA_FPTM_SU;
|
||
}
|
||
|
||
if (TARGET_IEEE_WITH_INEXACT)
|
||
{
|
||
alpha_tp = ALPHA_TP_INSN;
|
||
alpha_fptm = ALPHA_FPTM_SUI;
|
||
}
|
||
|
||
if (alpha_tp_string)
|
||
{
|
||
if (! strcmp (alpha_tp_string, "p"))
|
||
alpha_tp = ALPHA_TP_PROG;
|
||
else if (! strcmp (alpha_tp_string, "f"))
|
||
alpha_tp = ALPHA_TP_FUNC;
|
||
else if (! strcmp (alpha_tp_string, "i"))
|
||
alpha_tp = ALPHA_TP_INSN;
|
||
else
|
||
error ("bad value `%s' for -mtrap-precision switch", alpha_tp_string);
|
||
}
|
||
|
||
if (alpha_fprm_string)
|
||
{
|
||
if (! strcmp (alpha_fprm_string, "n"))
|
||
alpha_fprm = ALPHA_FPRM_NORM;
|
||
else if (! strcmp (alpha_fprm_string, "m"))
|
||
alpha_fprm = ALPHA_FPRM_MINF;
|
||
else if (! strcmp (alpha_fprm_string, "c"))
|
||
alpha_fprm = ALPHA_FPRM_CHOP;
|
||
else if (! strcmp (alpha_fprm_string,"d"))
|
||
alpha_fprm = ALPHA_FPRM_DYN;
|
||
else
|
||
error ("bad value `%s' for -mfp-rounding-mode switch",
|
||
alpha_fprm_string);
|
||
}
|
||
|
||
if (alpha_fptm_string)
|
||
{
|
||
if (strcmp (alpha_fptm_string, "n") == 0)
|
||
alpha_fptm = ALPHA_FPTM_N;
|
||
else if (strcmp (alpha_fptm_string, "u") == 0)
|
||
alpha_fptm = ALPHA_FPTM_U;
|
||
else if (strcmp (alpha_fptm_string, "su") == 0)
|
||
alpha_fptm = ALPHA_FPTM_SU;
|
||
else if (strcmp (alpha_fptm_string, "sui") == 0)
|
||
alpha_fptm = ALPHA_FPTM_SUI;
|
||
else
|
||
error ("bad value `%s' for -mfp-trap-mode switch", alpha_fptm_string);
|
||
}
|
||
|
||
alpha_cpu
|
||
= TARGET_CPU_DEFAULT & MASK_CPU_EV6 ? PROCESSOR_EV6
|
||
: (TARGET_CPU_DEFAULT & MASK_CPU_EV5 ? PROCESSOR_EV5 : PROCESSOR_EV4);
|
||
|
||
if (alpha_cpu_string)
|
||
{
|
||
if (! strcmp (alpha_cpu_string, "ev4")
|
||
|| ! strcmp (alpha_cpu_string, "21064"))
|
||
{
|
||
alpha_cpu = PROCESSOR_EV4;
|
||
target_flags &= ~ (MASK_BWX | MASK_MAX | MASK_FIX | MASK_CIX);
|
||
}
|
||
else if (! strcmp (alpha_cpu_string, "ev5")
|
||
|| ! strcmp (alpha_cpu_string, "21164"))
|
||
{
|
||
alpha_cpu = PROCESSOR_EV5;
|
||
target_flags &= ~ (MASK_BWX | MASK_MAX | MASK_FIX | MASK_CIX);
|
||
}
|
||
else if (! strcmp (alpha_cpu_string, "ev56")
|
||
|| ! strcmp (alpha_cpu_string, "21164a"))
|
||
{
|
||
alpha_cpu = PROCESSOR_EV5;
|
||
target_flags |= MASK_BWX;
|
||
target_flags &= ~ (MASK_MAX | MASK_FIX | MASK_CIX);
|
||
}
|
||
else if (! strcmp (alpha_cpu_string, "pca56")
|
||
|| ! strcmp (alpha_cpu_string, "21164PC")
|
||
|| ! strcmp (alpha_cpu_string, "21164pc"))
|
||
{
|
||
alpha_cpu = PROCESSOR_EV5;
|
||
target_flags |= MASK_BWX | MASK_MAX;
|
||
target_flags &= ~ (MASK_FIX | MASK_CIX);
|
||
}
|
||
else if (! strcmp (alpha_cpu_string, "ev6")
|
||
|| ! strcmp (alpha_cpu_string, "21264"))
|
||
{
|
||
alpha_cpu = PROCESSOR_EV6;
|
||
target_flags |= MASK_BWX | MASK_MAX | MASK_FIX;
|
||
target_flags &= ~ (MASK_CIX);
|
||
}
|
||
else
|
||
error ("bad value `%s' for -mcpu switch", alpha_cpu_string);
|
||
}
|
||
|
||
/* Do some sanity checks on the above options. */
|
||
|
||
if ((alpha_fptm == ALPHA_FPTM_SU || alpha_fptm == ALPHA_FPTM_SUI)
|
||
&& alpha_tp != ALPHA_TP_INSN && alpha_cpu != PROCESSOR_EV6)
|
||
{
|
||
warning ("fp software completion requires -mtrap-precision=i");
|
||
alpha_tp = ALPHA_TP_INSN;
|
||
}
|
||
|
||
if (TARGET_FLOAT_VAX)
|
||
{
|
||
if (alpha_fprm == ALPHA_FPRM_MINF || alpha_fprm == ALPHA_FPRM_DYN)
|
||
{
|
||
warning ("rounding mode not supported for VAX floats");
|
||
alpha_fprm = ALPHA_FPRM_NORM;
|
||
}
|
||
if (alpha_fptm == ALPHA_FPTM_SUI)
|
||
{
|
||
warning ("trap mode not supported for VAX floats");
|
||
alpha_fptm = ALPHA_FPTM_SU;
|
||
}
|
||
}
|
||
|
||
{
|
||
char *end;
|
||
int lat;
|
||
|
||
if (!alpha_mlat_string)
|
||
alpha_mlat_string = "L1";
|
||
|
||
if (ISDIGIT ((unsigned char)alpha_mlat_string[0])
|
||
&& (lat = strtol (alpha_mlat_string, &end, 10), *end == '\0'))
|
||
;
|
||
else if ((alpha_mlat_string[0] == 'L' || alpha_mlat_string[0] == 'l')
|
||
&& ISDIGIT ((unsigned char)alpha_mlat_string[1])
|
||
&& alpha_mlat_string[2] == '\0')
|
||
{
|
||
static int const cache_latency[][4] =
|
||
{
|
||
{ 3, 30, -1 }, /* ev4 -- Bcache is a guess */
|
||
{ 2, 12, 38 }, /* ev5 -- Bcache from PC164 LMbench numbers */
|
||
{ 3, 13, -1 }, /* ev6 -- Ho hum, doesn't exist yet */
|
||
};
|
||
|
||
lat = alpha_mlat_string[1] - '0';
|
||
if (lat < 0 || lat > 3 || cache_latency[alpha_cpu][lat-1] == -1)
|
||
{
|
||
warning ("L%d cache latency unknown for %s",
|
||
lat, alpha_cpu_name[alpha_cpu]);
|
||
lat = 3;
|
||
}
|
||
else
|
||
lat = cache_latency[alpha_cpu][lat-1];
|
||
}
|
||
else if (! strcmp (alpha_mlat_string, "main"))
|
||
{
|
||
/* Most current memories have about 370ns latency. This is
|
||
a reasonable guess for a fast cpu. */
|
||
lat = 150;
|
||
}
|
||
else
|
||
{
|
||
warning ("bad value `%s' for -mmemory-latency", alpha_mlat_string);
|
||
lat = 3;
|
||
}
|
||
|
||
alpha_memory_latency = lat;
|
||
}
|
||
|
||
/* Default the definition of "small data" to 8 bytes. */
|
||
if (!g_switch_set)
|
||
g_switch_value = 8;
|
||
|
||
/* Acquire a unique set number for our register saves and restores. */
|
||
alpha_sr_alias_set = new_alias_set ();
|
||
}
|
||
|
||
/* Returns 1 if VALUE is a mask that contains full bytes of zero or ones. */
|
||
|
||
int
|
||
zap_mask (value)
|
||
HOST_WIDE_INT value;
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
|
||
i++, value >>= 8)
|
||
if ((value & 0xff) != 0 && (value & 0xff) != 0xff)
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Returns 1 if OP is either the constant zero or a register. If a
|
||
register, it must be in the proper mode unless MODE is VOIDmode. */
|
||
|
||
int
|
||
reg_or_0_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return op == const0_rtx || register_operand (op, mode);
|
||
}
|
||
|
||
/* Return 1 if OP is a constant in the range of 0-63 (for a shift) or
|
||
any register. */
|
||
|
||
int
|
||
reg_or_6bit_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return ((GET_CODE (op) == CONST_INT
|
||
&& (unsigned HOST_WIDE_INT) INTVAL (op) < 64)
|
||
|| register_operand (op, mode));
|
||
}
|
||
|
||
|
||
/* Return 1 if OP is an 8-bit constant or any register. */
|
||
|
||
int
|
||
reg_or_8bit_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return ((GET_CODE (op) == CONST_INT
|
||
&& (unsigned HOST_WIDE_INT) INTVAL (op) < 0x100)
|
||
|| register_operand (op, mode));
|
||
}
|
||
|
||
/* Return 1 if OP is an 8-bit constant. */
|
||
|
||
int
|
||
cint8_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
return ((GET_CODE (op) == CONST_INT
|
||
&& (unsigned HOST_WIDE_INT) INTVAL (op) < 0x100));
|
||
}
|
||
|
||
/* Return 1 if the operand is a valid second operand to an add insn. */
|
||
|
||
int
|
||
add_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == CONST_INT)
|
||
/* Constraints I, J, O and P are covered by K. */
|
||
return (CONST_OK_FOR_LETTER_P (INTVAL (op), 'K')
|
||
|| CONST_OK_FOR_LETTER_P (INTVAL (op), 'L'));
|
||
|
||
return register_operand (op, mode);
|
||
}
|
||
|
||
/* Return 1 if the operand is a valid second operand to a sign-extending
|
||
add insn. */
|
||
|
||
int
|
||
sext_add_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == CONST_INT)
|
||
return (CONST_OK_FOR_LETTER_P (INTVAL (op), 'I')
|
||
|| CONST_OK_FOR_LETTER_P (INTVAL (op), 'O'));
|
||
|
||
return register_operand (op, mode);
|
||
}
|
||
|
||
/* Return 1 if OP is the constant 4 or 8. */
|
||
|
||
int
|
||
const48_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
return (GET_CODE (op) == CONST_INT
|
||
&& (INTVAL (op) == 4 || INTVAL (op) == 8));
|
||
}
|
||
|
||
/* Return 1 if OP is a valid first operand to an AND insn. */
|
||
|
||
int
|
||
and_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode)
|
||
return (zap_mask (CONST_DOUBLE_LOW (op))
|
||
&& zap_mask (CONST_DOUBLE_HIGH (op)));
|
||
|
||
if (GET_CODE (op) == CONST_INT)
|
||
return ((unsigned HOST_WIDE_INT) INTVAL (op) < 0x100
|
||
|| (unsigned HOST_WIDE_INT) ~ INTVAL (op) < 0x100
|
||
|| zap_mask (INTVAL (op)));
|
||
|
||
return register_operand (op, mode);
|
||
}
|
||
|
||
/* Return 1 if OP is a valid first operand to an IOR or XOR insn. */
|
||
|
||
int
|
||
or_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == CONST_INT)
|
||
return ((unsigned HOST_WIDE_INT) INTVAL (op) < 0x100
|
||
|| (unsigned HOST_WIDE_INT) ~ INTVAL (op) < 0x100);
|
||
|
||
return register_operand (op, mode);
|
||
}
|
||
|
||
/* Return 1 if OP is a constant that is the width, in bits, of an integral
|
||
mode smaller than DImode. */
|
||
|
||
int
|
||
mode_width_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
return (GET_CODE (op) == CONST_INT
|
||
&& (INTVAL (op) == 8 || INTVAL (op) == 16
|
||
|| INTVAL (op) == 32 || INTVAL (op) == 64));
|
||
}
|
||
|
||
/* Return 1 if OP is a constant that is the width of an integral machine mode
|
||
smaller than an integer. */
|
||
|
||
int
|
||
mode_mask_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
#if HOST_BITS_PER_WIDE_INT == 32
|
||
if (GET_CODE (op) == CONST_DOUBLE)
|
||
return (CONST_DOUBLE_LOW (op) == -1
|
||
&& (CONST_DOUBLE_HIGH (op) == -1
|
||
|| CONST_DOUBLE_HIGH (op) == 0));
|
||
#else
|
||
if (GET_CODE (op) == CONST_DOUBLE)
|
||
return (CONST_DOUBLE_LOW (op) == -1 && CONST_DOUBLE_HIGH (op) == 0);
|
||
#endif
|
||
|
||
return (GET_CODE (op) == CONST_INT
|
||
&& (INTVAL (op) == 0xff
|
||
|| INTVAL (op) == 0xffff
|
||
|| INTVAL (op) == (HOST_WIDE_INT)0xffffffff
|
||
#if HOST_BITS_PER_WIDE_INT == 64
|
||
|| INTVAL (op) == -1
|
||
#endif
|
||
));
|
||
}
|
||
|
||
/* Return 1 if OP is a multiple of 8 less than 64. */
|
||
|
||
int
|
||
mul8_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
return (GET_CODE (op) == CONST_INT
|
||
&& (unsigned HOST_WIDE_INT) INTVAL (op) < 64
|
||
&& (INTVAL (op) & 7) == 0);
|
||
}
|
||
|
||
/* Return 1 if OP is the constant zero in floating-point. */
|
||
|
||
int
|
||
fp0_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_MODE (op) == mode
|
||
&& GET_MODE_CLASS (mode) == MODE_FLOAT && op == CONST0_RTX (mode));
|
||
}
|
||
|
||
/* Return 1 if OP is the floating-point constant zero or a register. */
|
||
|
||
int
|
||
reg_or_fp0_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return fp0_operand (op, mode) || register_operand (op, mode);
|
||
}
|
||
|
||
/* Return 1 if OP is a hard floating-point register. */
|
||
|
||
int
|
||
hard_fp_register_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return ((GET_CODE (op) == REG && REGNO_REG_CLASS (REGNO (op)) == FLOAT_REGS)
|
||
|| (GET_CODE (op) == SUBREG
|
||
&& hard_fp_register_operand (SUBREG_REG (op), mode)));
|
||
}
|
||
|
||
/* Return 1 if OP is a register or a constant integer. */
|
||
|
||
|
||
int
|
||
reg_or_cint_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_CODE (op) == CONST_INT
|
||
|| register_operand (op, mode));
|
||
}
|
||
|
||
/* Return 1 if OP is something that can be reloaded into a register;
|
||
if it is a MEM, it need not be valid. */
|
||
|
||
int
|
||
some_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
|
||
return 0;
|
||
|
||
switch (GET_CODE (op))
|
||
{
|
||
case REG: case MEM: case CONST_DOUBLE: case CONST_INT: case LABEL_REF:
|
||
case SYMBOL_REF: case CONST:
|
||
return 1;
|
||
|
||
case SUBREG:
|
||
return some_operand (SUBREG_REG (op), VOIDmode);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if OP is a valid operand for the source of a move insn. */
|
||
|
||
int
|
||
input_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
|
||
return 0;
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_FLOAT && GET_MODE (op) != mode)
|
||
return 0;
|
||
|
||
switch (GET_CODE (op))
|
||
{
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
case CONST:
|
||
/* This handles both the Windows/NT and OSF cases. */
|
||
return mode == ptr_mode || mode == DImode;
|
||
|
||
case REG:
|
||
return 1;
|
||
|
||
case SUBREG:
|
||
if (register_operand (op, mode))
|
||
return 1;
|
||
/* ... fall through ... */
|
||
case MEM:
|
||
return ((TARGET_BWX || (mode != HImode && mode != QImode))
|
||
&& general_operand (op, mode));
|
||
|
||
case CONST_DOUBLE:
|
||
return GET_MODE_CLASS (mode) == MODE_FLOAT && op == CONST0_RTX (mode);
|
||
|
||
case CONST_INT:
|
||
return mode == QImode || mode == HImode || add_operand (op, mode);
|
||
|
||
case CONSTANT_P_RTX:
|
||
return 1;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if OP is a SYMBOL_REF for a function known to be in this
|
||
file. */
|
||
|
||
int
|
||
current_file_function_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
return (GET_CODE (op) == SYMBOL_REF
|
||
&& ! profile_flag && ! profile_block_flag
|
||
&& (SYMBOL_REF_FLAG (op)
|
||
|| op == XEXP (DECL_RTL (current_function_decl), 0)));
|
||
}
|
||
|
||
/* Return 1 if OP is a valid operand for the MEM of a CALL insn. */
|
||
|
||
int
|
||
call_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (mode != Pmode)
|
||
return 0;
|
||
|
||
return (GET_CODE (op) == SYMBOL_REF
|
||
|| (GET_CODE (op) == REG
|
||
&& (TARGET_OPEN_VMS || TARGET_WINDOWS_NT || REGNO (op) == 27)));
|
||
}
|
||
|
||
/* Return 1 if OP is a valid Alpha comparison operator. Here we know which
|
||
comparisons are valid in which insn. */
|
||
|
||
int
|
||
alpha_comparison_operator (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
enum rtx_code code = GET_CODE (op);
|
||
|
||
if (mode != GET_MODE (op) || GET_RTX_CLASS (code) != '<')
|
||
return 0;
|
||
|
||
return (code == EQ || code == LE || code == LT
|
||
|| (mode == DImode && (code == LEU || code == LTU)));
|
||
}
|
||
|
||
/* Return 1 if OP is a valid Alpha swapped comparison operator. */
|
||
|
||
int
|
||
alpha_swapped_comparison_operator (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
enum rtx_code code = GET_CODE (op);
|
||
|
||
if (mode != GET_MODE (op) || GET_RTX_CLASS (code) != '<')
|
||
return 0;
|
||
|
||
code = swap_condition (code);
|
||
return (code == EQ || code == LE || code == LT
|
||
|| (mode == DImode && (code == LEU || code == LTU)));
|
||
}
|
||
|
||
/* Return 1 if OP is a signed comparison operation. */
|
||
|
||
int
|
||
signed_comparison_operator (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
switch (GET_CODE (op))
|
||
{
|
||
case EQ: case NE: case LE: case LT: case GE: case GT:
|
||
return 1;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if this is a divide or modulus operator. */
|
||
|
||
int
|
||
divmod_operator (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
switch (GET_CODE (op))
|
||
{
|
||
case DIV: case MOD: case UDIV: case UMOD:
|
||
return 1;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if this memory address is a known aligned register plus
|
||
a constant. It must be a valid address. This means that we can do
|
||
this as an aligned reference plus some offset.
|
||
|
||
Take into account what reload will do. */
|
||
|
||
int
|
||
aligned_memory_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
rtx base;
|
||
|
||
if (reload_in_progress)
|
||
{
|
||
rtx tmp = op;
|
||
if (GET_CODE (tmp) == SUBREG)
|
||
tmp = SUBREG_REG (tmp);
|
||
if (GET_CODE (tmp) == REG
|
||
&& REGNO (tmp) >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
op = reg_equiv_memory_loc[REGNO (tmp)];
|
||
if (op == 0)
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
if (GET_CODE (op) != MEM
|
||
|| GET_MODE (op) != mode)
|
||
return 0;
|
||
op = XEXP (op, 0);
|
||
|
||
/* LEGITIMIZE_RELOAD_ADDRESS creates (plus (plus reg const_hi) const_lo)
|
||
sorts of constructs. Dig for the real base register. */
|
||
if (reload_in_progress
|
||
&& GET_CODE (op) == PLUS
|
||
&& GET_CODE (XEXP (op, 0)) == PLUS)
|
||
base = XEXP (XEXP (op, 0), 0);
|
||
else
|
||
{
|
||
if (! memory_address_p (mode, op))
|
||
return 0;
|
||
base = (GET_CODE (op) == PLUS ? XEXP (op, 0) : op);
|
||
}
|
||
|
||
return (GET_CODE (base) == REG
|
||
&& REGNO_POINTER_ALIGN (REGNO (base)) >= 4);
|
||
}
|
||
|
||
/* Similar, but return 1 if OP is a MEM which is not alignable. */
|
||
|
||
int
|
||
unaligned_memory_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
rtx base;
|
||
|
||
if (reload_in_progress)
|
||
{
|
||
rtx tmp = op;
|
||
if (GET_CODE (tmp) == SUBREG)
|
||
tmp = SUBREG_REG (tmp);
|
||
if (GET_CODE (tmp) == REG
|
||
&& REGNO (tmp) >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
op = reg_equiv_memory_loc[REGNO (tmp)];
|
||
if (op == 0)
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
if (GET_CODE (op) != MEM
|
||
|| GET_MODE (op) != mode)
|
||
return 0;
|
||
op = XEXP (op, 0);
|
||
|
||
/* LEGITIMIZE_RELOAD_ADDRESS creates (plus (plus reg const_hi) const_lo)
|
||
sorts of constructs. Dig for the real base register. */
|
||
if (reload_in_progress
|
||
&& GET_CODE (op) == PLUS
|
||
&& GET_CODE (XEXP (op, 0)) == PLUS)
|
||
base = XEXP (XEXP (op, 0), 0);
|
||
else
|
||
{
|
||
if (! memory_address_p (mode, op))
|
||
return 0;
|
||
base = (GET_CODE (op) == PLUS ? XEXP (op, 0) : op);
|
||
}
|
||
|
||
return (GET_CODE (base) == REG
|
||
&& REGNO_POINTER_ALIGN (REGNO (base)) < 4);
|
||
}
|
||
|
||
/* Return 1 if OP is either a register or an unaligned memory location. */
|
||
|
||
int
|
||
reg_or_unaligned_mem_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return register_operand (op, mode) || unaligned_memory_operand (op, mode);
|
||
}
|
||
|
||
/* Return 1 if OP is any memory location. During reload a pseudo matches. */
|
||
|
||
int
|
||
any_memory_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
return (GET_CODE (op) == MEM
|
||
|| (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == REG)
|
||
|| (reload_in_progress && GET_CODE (op) == REG
|
||
&& REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
||
|| (reload_in_progress && GET_CODE (op) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (op)) == REG
|
||
&& REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER));
|
||
}
|
||
|
||
/* Returns 1 if OP is not an eliminable register.
|
||
|
||
This exists to cure a pathological abort in the s8addq (et al) patterns,
|
||
|
||
long foo () { long t; bar(); return (long) &t * 26107; }
|
||
|
||
which run afoul of a hack in reload to cure a (presumably) similar
|
||
problem with lea-type instructions on other targets. But there is
|
||
one of us and many of them, so work around the problem by selectively
|
||
preventing combine from making the optimization. */
|
||
|
||
int
|
||
reg_not_elim_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
rtx inner = op;
|
||
if (GET_CODE (op) == SUBREG)
|
||
inner = SUBREG_REG (op);
|
||
if (inner == frame_pointer_rtx || inner == arg_pointer_rtx)
|
||
return 0;
|
||
|
||
return register_operand (op, mode);
|
||
}
|
||
|
||
/* Return 1 is OP is a memory location that is not a reference (using
|
||
an AND) to an unaligned location. Take into account what reload
|
||
will do. */
|
||
|
||
int
|
||
normal_memory_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode ATTRIBUTE_UNUSED;
|
||
{
|
||
if (reload_in_progress)
|
||
{
|
||
rtx tmp = op;
|
||
if (GET_CODE (tmp) == SUBREG)
|
||
tmp = SUBREG_REG (tmp);
|
||
if (GET_CODE (tmp) == REG
|
||
&& REGNO (tmp) >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
op = reg_equiv_memory_loc[REGNO (tmp)];
|
||
|
||
/* This may not have been assigned an equivalent address if it will
|
||
be eliminated. In that case, it doesn't matter what we do. */
|
||
if (op == 0)
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) != AND;
|
||
}
|
||
|
||
/* Accept a register, but not a subreg of any kind. This allows us to
|
||
avoid pathological cases in reload wrt data movement common in
|
||
int->fp conversion. */
|
||
|
||
int
|
||
reg_no_subreg_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == SUBREG)
|
||
return 0;
|
||
return register_operand (op, mode);
|
||
}
|
||
|
||
/* Return 1 if this function can directly return via $26. */
|
||
|
||
int
|
||
direct_return ()
|
||
{
|
||
return (! TARGET_OPEN_VMS && reload_completed && alpha_sa_size () == 0
|
||
&& get_frame_size () == 0
|
||
&& current_function_outgoing_args_size == 0
|
||
&& current_function_pretend_args_size == 0);
|
||
}
|
||
|
||
/* REF is an alignable memory location. Place an aligned SImode
|
||
reference into *PALIGNED_MEM and the number of bits to shift into
|
||
*PBITNUM. SCRATCH is a free register for use in reloading out
|
||
of range stack slots. */
|
||
|
||
void
|
||
get_aligned_mem (ref, paligned_mem, pbitnum)
|
||
rtx ref;
|
||
rtx *paligned_mem, *pbitnum;
|
||
{
|
||
rtx base;
|
||
HOST_WIDE_INT offset = 0;
|
||
|
||
if (GET_CODE (ref) != MEM)
|
||
abort ();
|
||
|
||
if (reload_in_progress
|
||
&& ! memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
|
||
{
|
||
base = find_replacement (&XEXP (ref, 0));
|
||
|
||
if (! memory_address_p (GET_MODE (ref), base))
|
||
abort ();
|
||
}
|
||
else
|
||
{
|
||
base = XEXP (ref, 0);
|
||
}
|
||
|
||
if (GET_CODE (base) == PLUS)
|
||
offset += INTVAL (XEXP (base, 1)), base = XEXP (base, 0);
|
||
|
||
*paligned_mem = gen_rtx_MEM (SImode, plus_constant (base, offset & ~3));
|
||
MEM_COPY_ATTRIBUTES (*paligned_mem, ref);
|
||
RTX_UNCHANGING_P (*paligned_mem) = RTX_UNCHANGING_P (ref);
|
||
|
||
/* Sadly, we cannot use alias sets here because we may overlap other
|
||
data in a different alias set. */
|
||
/* MEM_ALIAS_SET (*paligned_mem) = MEM_ALIAS_SET (ref); */
|
||
|
||
*pbitnum = GEN_INT ((offset & 3) * 8);
|
||
}
|
||
|
||
/* Similar, but just get the address. Handle the two reload cases.
|
||
Add EXTRA_OFFSET to the address we return. */
|
||
|
||
rtx
|
||
get_unaligned_address (ref, extra_offset)
|
||
rtx ref;
|
||
int extra_offset;
|
||
{
|
||
rtx base;
|
||
HOST_WIDE_INT offset = 0;
|
||
|
||
if (GET_CODE (ref) != MEM)
|
||
abort ();
|
||
|
||
if (reload_in_progress
|
||
&& ! memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
|
||
{
|
||
base = find_replacement (&XEXP (ref, 0));
|
||
|
||
if (! memory_address_p (GET_MODE (ref), base))
|
||
abort ();
|
||
}
|
||
else
|
||
{
|
||
base = XEXP (ref, 0);
|
||
}
|
||
|
||
if (GET_CODE (base) == PLUS)
|
||
offset += INTVAL (XEXP (base, 1)), base = XEXP (base, 0);
|
||
|
||
return plus_constant (base, offset + extra_offset);
|
||
}
|
||
|
||
/* Subfunction of the following function. Update the flags of any MEM
|
||
found in part of X. */
|
||
|
||
static void
|
||
alpha_set_memflags_1 (x, in_struct_p, volatile_p, unchanging_p)
|
||
rtx x;
|
||
int in_struct_p, volatile_p, unchanging_p;
|
||
{
|
||
int i;
|
||
|
||
switch (GET_CODE (x))
|
||
{
|
||
case SEQUENCE:
|
||
case PARALLEL:
|
||
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
|
||
alpha_set_memflags_1 (XVECEXP (x, 0, i), in_struct_p, volatile_p,
|
||
unchanging_p);
|
||
break;
|
||
|
||
case INSN:
|
||
alpha_set_memflags_1 (PATTERN (x), in_struct_p, volatile_p,
|
||
unchanging_p);
|
||
break;
|
||
|
||
case SET:
|
||
alpha_set_memflags_1 (SET_DEST (x), in_struct_p, volatile_p,
|
||
unchanging_p);
|
||
alpha_set_memflags_1 (SET_SRC (x), in_struct_p, volatile_p,
|
||
unchanging_p);
|
||
break;
|
||
|
||
case MEM:
|
||
MEM_IN_STRUCT_P (x) = in_struct_p;
|
||
MEM_VOLATILE_P (x) = volatile_p;
|
||
RTX_UNCHANGING_P (x) = unchanging_p;
|
||
/* Sadly, we cannot use alias sets because the extra aliasing
|
||
produced by the AND interferes. Given that two-byte quantities
|
||
are the only thing we would be able to differentiate anyway,
|
||
there does not seem to be any point in convoluting the early
|
||
out of the alias check. */
|
||
/* MEM_ALIAS_SET (x) = alias_set; */
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Given INSN, which is either an INSN or a SEQUENCE generated to
|
||
perform a memory operation, look for any MEMs in either a SET_DEST or
|
||
a SET_SRC and copy the in-struct, unchanging, and volatile flags from
|
||
REF into each of the MEMs found. If REF is not a MEM, don't do
|
||
anything. */
|
||
|
||
void
|
||
alpha_set_memflags (insn, ref)
|
||
rtx insn;
|
||
rtx ref;
|
||
{
|
||
int in_struct_p, volatile_p, unchanging_p;
|
||
|
||
if (GET_CODE (ref) != MEM)
|
||
return;
|
||
|
||
in_struct_p = MEM_IN_STRUCT_P (ref);
|
||
volatile_p = MEM_VOLATILE_P (ref);
|
||
unchanging_p = RTX_UNCHANGING_P (ref);
|
||
|
||
/* This is only called from alpha.md, after having had something
|
||
generated from one of the insn patterns. So if everything is
|
||
zero, the pattern is already up-to-date. */
|
||
if (! in_struct_p && ! volatile_p && ! unchanging_p)
|
||
return;
|
||
|
||
alpha_set_memflags_1 (insn, in_struct_p, volatile_p, unchanging_p);
|
||
}
|
||
|
||
/* Try to output insns to set TARGET equal to the constant C if it can be
|
||
done in less than N insns. Do all computations in MODE. Returns the place
|
||
where the output has been placed if it can be done and the insns have been
|
||
emitted. If it would take more than N insns, zero is returned and no
|
||
insns and emitted. */
|
||
|
||
rtx
|
||
alpha_emit_set_const (target, mode, c, n)
|
||
rtx target;
|
||
enum machine_mode mode;
|
||
HOST_WIDE_INT c;
|
||
int n;
|
||
{
|
||
rtx pat;
|
||
int i;
|
||
|
||
/* Try 1 insn, then 2, then up to N. */
|
||
for (i = 1; i <= n; i++)
|
||
if ((pat = alpha_emit_set_const_1 (target, mode, c, i)) != 0)
|
||
return pat;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Internal routine for the above to check for N or below insns. */
|
||
|
||
static rtx
|
||
alpha_emit_set_const_1 (target, mode, c, n)
|
||
rtx target;
|
||
enum machine_mode mode;
|
||
HOST_WIDE_INT c;
|
||
int n;
|
||
{
|
||
HOST_WIDE_INT new = c;
|
||
int i, bits;
|
||
/* Use a pseudo if highly optimizing and still generating RTL. */
|
||
rtx subtarget
|
||
= (flag_expensive_optimizations && rtx_equal_function_value_matters
|
||
? 0 : target);
|
||
rtx temp;
|
||
|
||
#if HOST_BITS_PER_WIDE_INT == 64
|
||
/* We are only called for SImode and DImode. If this is SImode, ensure that
|
||
we are sign extended to a full word. This does not make any sense when
|
||
cross-compiling on a narrow machine. */
|
||
|
||
if (mode == SImode)
|
||
c = (c & 0xffffffff) - 2 * (c & 0x80000000);
|
||
#endif
|
||
|
||
/* If this is a sign-extended 32-bit constant, we can do this in at most
|
||
three insns, so do it if we have enough insns left. We always have
|
||
a sign-extended 32-bit constant when compiling on a narrow machine. */
|
||
|
||
if (HOST_BITS_PER_WIDE_INT != 64
|
||
|| c >> 31 == -1 || c >> 31 == 0)
|
||
{
|
||
HOST_WIDE_INT low = (c & 0xffff) - 2 * (c & 0x8000);
|
||
HOST_WIDE_INT tmp1 = c - low;
|
||
HOST_WIDE_INT high
|
||
= ((tmp1 >> 16) & 0xffff) - 2 * ((tmp1 >> 16) & 0x8000);
|
||
HOST_WIDE_INT extra = 0;
|
||
|
||
/* If HIGH will be interpreted as negative but the constant is
|
||
positive, we must adjust it to do two ldha insns. */
|
||
|
||
if ((high & 0x8000) != 0 && c >= 0)
|
||
{
|
||
extra = 0x4000;
|
||
tmp1 -= 0x40000000;
|
||
high = ((tmp1 >> 16) & 0xffff) - 2 * ((tmp1 >> 16) & 0x8000);
|
||
}
|
||
|
||
if (c == low || (low == 0 && extra == 0))
|
||
{
|
||
/* We used to use copy_to_suggested_reg (GEN_INT (c), target, mode)
|
||
but that meant that we can't handle INT_MIN on 32-bit machines
|
||
(like NT/Alpha), because we recurse indefinitely through
|
||
emit_move_insn to gen_movdi. So instead, since we know exactly
|
||
what we want, create it explicitly. */
|
||
|
||
if (target == NULL)
|
||
target = gen_reg_rtx (mode);
|
||
emit_insn (gen_rtx_SET (VOIDmode, target, GEN_INT (c)));
|
||
return target;
|
||
}
|
||
else if (n >= 2 + (extra != 0))
|
||
{
|
||
temp = copy_to_suggested_reg (GEN_INT (low), subtarget, mode);
|
||
|
||
if (extra != 0)
|
||
temp = expand_binop (mode, add_optab, temp, GEN_INT (extra << 16),
|
||
subtarget, 0, OPTAB_WIDEN);
|
||
|
||
return expand_binop (mode, add_optab, temp, GEN_INT (high << 16),
|
||
target, 0, OPTAB_WIDEN);
|
||
}
|
||
}
|
||
|
||
/* If we couldn't do it that way, try some other methods. But if we have
|
||
no instructions left, don't bother. Likewise, if this is SImode and
|
||
we can't make pseudos, we can't do anything since the expand_binop
|
||
and expand_unop calls will widen and try to make pseudos. */
|
||
|
||
if (n == 1
|
||
|| (mode == SImode && ! rtx_equal_function_value_matters))
|
||
return 0;
|
||
|
||
#if HOST_BITS_PER_WIDE_INT == 64
|
||
/* First, see if can load a value into the target that is the same as the
|
||
constant except that all bytes that are 0 are changed to be 0xff. If we
|
||
can, then we can do a ZAPNOT to obtain the desired constant. */
|
||
|
||
for (i = 0; i < 64; i += 8)
|
||
if ((new & ((HOST_WIDE_INT) 0xff << i)) == 0)
|
||
new |= (HOST_WIDE_INT) 0xff << i;
|
||
|
||
/* We are only called for SImode and DImode. If this is SImode, ensure that
|
||
we are sign extended to a full word. */
|
||
|
||
if (mode == SImode)
|
||
new = (new & 0xffffffff) - 2 * (new & 0x80000000);
|
||
|
||
if (new != c
|
||
&& (temp = alpha_emit_set_const (subtarget, mode, new, n - 1)) != 0)
|
||
return expand_binop (mode, and_optab, temp, GEN_INT (c | ~ new),
|
||
target, 0, OPTAB_WIDEN);
|
||
#endif
|
||
|
||
/* Next, see if we can load a related constant and then shift and possibly
|
||
negate it to get the constant we want. Try this once each increasing
|
||
numbers of insns. */
|
||
|
||
for (i = 1; i < n; i++)
|
||
{
|
||
/* First try complementing. */
|
||
if ((temp = alpha_emit_set_const (subtarget, mode, ~ c, i)) != 0)
|
||
return expand_unop (mode, one_cmpl_optab, temp, target, 0);
|
||
|
||
/* Next try to form a constant and do a left shift. We can do this
|
||
if some low-order bits are zero; the exact_log2 call below tells
|
||
us that information. The bits we are shifting out could be any
|
||
value, but here we'll just try the 0- and sign-extended forms of
|
||
the constant. To try to increase the chance of having the same
|
||
constant in more than one insn, start at the highest number of
|
||
bits to shift, but try all possibilities in case a ZAPNOT will
|
||
be useful. */
|
||
|
||
if ((bits = exact_log2 (c & - c)) > 0)
|
||
for (; bits > 0; bits--)
|
||
if ((temp = (alpha_emit_set_const
|
||
(subtarget, mode,
|
||
(unsigned HOST_WIDE_INT) (c >> bits), i))) != 0
|
||
|| ((temp = (alpha_emit_set_const
|
||
(subtarget, mode,
|
||
((unsigned HOST_WIDE_INT) c) >> bits, i)))
|
||
!= 0))
|
||
return expand_binop (mode, ashl_optab, temp, GEN_INT (bits),
|
||
target, 0, OPTAB_WIDEN);
|
||
|
||
/* Now try high-order zero bits. Here we try the shifted-in bits as
|
||
all zero and all ones. Be careful to avoid shifting outside the
|
||
mode and to avoid shifting outside the host wide int size. */
|
||
/* On narrow hosts, don't shift a 1 into the high bit, since we'll
|
||
confuse the recursive call and set all of the high 32 bits. */
|
||
|
||
if ((bits = (MIN (HOST_BITS_PER_WIDE_INT, GET_MODE_SIZE (mode) * 8)
|
||
- floor_log2 (c) - 1 - (HOST_BITS_PER_WIDE_INT < 64))) > 0)
|
||
for (; bits > 0; bits--)
|
||
if ((temp = alpha_emit_set_const (subtarget, mode,
|
||
c << bits, i)) != 0
|
||
|| ((temp = (alpha_emit_set_const
|
||
(subtarget, mode,
|
||
((c << bits) | (((HOST_WIDE_INT) 1 << bits) - 1)),
|
||
i)))
|
||
!= 0))
|
||
return expand_binop (mode, lshr_optab, temp, GEN_INT (bits),
|
||
target, 1, OPTAB_WIDEN);
|
||
|
||
/* Now try high-order 1 bits. We get that with a sign-extension.
|
||
But one bit isn't enough here. Be careful to avoid shifting outside
|
||
the mode and to avoid shifting outside the host wide int size. */
|
||
|
||
if ((bits = (MIN (HOST_BITS_PER_WIDE_INT, GET_MODE_SIZE (mode) * 8)
|
||
- floor_log2 (~ c) - 2)) > 0)
|
||
for (; bits > 0; bits--)
|
||
if ((temp = alpha_emit_set_const (subtarget, mode,
|
||
c << bits, i)) != 0
|
||
|| ((temp = (alpha_emit_set_const
|
||
(subtarget, mode,
|
||
((c << bits) | (((HOST_WIDE_INT) 1 << bits) - 1)),
|
||
i)))
|
||
!= 0))
|
||
return expand_binop (mode, ashr_optab, temp, GEN_INT (bits),
|
||
target, 0, OPTAB_WIDEN);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Having failed to find a 3 insn sequence in alpha_emit_set_const,
|
||
fall back to a straight forward decomposition. We do this to avoid
|
||
exponential run times encountered when looking for longer sequences
|
||
with alpha_emit_set_const. */
|
||
|
||
rtx
|
||
alpha_emit_set_long_const (target, c1, c2)
|
||
rtx target;
|
||
HOST_WIDE_INT c1, c2;
|
||
{
|
||
HOST_WIDE_INT d1, d2, d3, d4;
|
||
|
||
/* Decompose the entire word */
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
if (c2 != -(c1 < 0))
|
||
abort ();
|
||
d1 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
|
||
c1 -= d1;
|
||
d2 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
|
||
c1 = (c1 - d2) >> 32;
|
||
d3 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
|
||
c1 -= d3;
|
||
d4 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
|
||
if (c1 != d4)
|
||
abort ();
|
||
#else
|
||
d1 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
|
||
c1 -= d1;
|
||
d2 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
|
||
if (c1 != d2)
|
||
abort ();
|
||
c2 += (d2 < 0);
|
||
d3 = ((c2 & 0xffff) ^ 0x8000) - 0x8000;
|
||
c2 -= d3;
|
||
d4 = ((c2 & 0xffffffff) ^ 0x80000000) - 0x80000000;
|
||
if (c2 != d4)
|
||
abort ();
|
||
#endif
|
||
|
||
/* Construct the high word */
|
||
if (d4)
|
||
{
|
||
emit_move_insn (target, GEN_INT (d4));
|
||
if (d3)
|
||
emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d3)));
|
||
}
|
||
else
|
||
emit_move_insn (target, GEN_INT (d3));
|
||
|
||
/* Shift it into place */
|
||
emit_move_insn (target, gen_rtx_ASHIFT (DImode, target, GEN_INT (32)));
|
||
|
||
/* Add in the low bits. */
|
||
if (d2)
|
||
emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d2)));
|
||
if (d1)
|
||
emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d1)));
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Generate the comparison for a conditional branch. */
|
||
|
||
rtx
|
||
alpha_emit_conditional_branch (code)
|
||
enum rtx_code code;
|
||
{
|
||
enum rtx_code cmp_code, branch_code;
|
||
enum machine_mode cmp_mode, branch_mode = VOIDmode;
|
||
rtx op0 = alpha_compare_op0, op1 = alpha_compare_op1;
|
||
rtx tem;
|
||
|
||
/* The general case: fold the comparison code to the types of compares
|
||
that we have, choosing the branch as necessary. */
|
||
switch (code)
|
||
{
|
||
case EQ: case LE: case LT: case LEU: case LTU:
|
||
/* We have these compares: */
|
||
cmp_code = code, branch_code = NE;
|
||
break;
|
||
|
||
case NE:
|
||
/* This must be reversed. */
|
||
cmp_code = EQ, branch_code = EQ;
|
||
break;
|
||
|
||
case GE: case GT: case GEU: case GTU:
|
||
/* For FP, we swap them, for INT, we reverse them. */
|
||
if (alpha_compare_fp_p)
|
||
{
|
||
cmp_code = swap_condition (code);
|
||
branch_code = NE;
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
}
|
||
else
|
||
{
|
||
cmp_code = reverse_condition (code);
|
||
branch_code = EQ;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
if (alpha_compare_fp_p)
|
||
{
|
||
cmp_mode = DFmode;
|
||
if (flag_fast_math)
|
||
{
|
||
/* When we are not as concerned about non-finite values, and we
|
||
are comparing against zero, we can branch directly. */
|
||
if (op1 == CONST0_RTX (DFmode))
|
||
cmp_code = NIL, branch_code = code;
|
||
else if (op0 == CONST0_RTX (DFmode))
|
||
{
|
||
/* Undo the swap we probably did just above. */
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
branch_code = swap_condition (cmp_code);
|
||
cmp_code = NIL;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* ??? We mark the the branch mode to be CCmode to prevent the
|
||
compare and branch from being combined, since the compare
|
||
insn follows IEEE rules that the branch does not. */
|
||
branch_mode = CCmode;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
cmp_mode = DImode;
|
||
|
||
/* The following optimizations are only for signed compares. */
|
||
if (code != LEU && code != LTU && code != GEU && code != GTU)
|
||
{
|
||
/* Whee. Compare and branch against 0 directly. */
|
||
if (op1 == const0_rtx)
|
||
cmp_code = NIL, branch_code = code;
|
||
|
||
/* We want to use cmpcc/bcc when we can, since there is a zero delay
|
||
bypass between logicals and br/cmov on EV5. But we don't want to
|
||
force valid immediate constants into registers needlessly. */
|
||
else if (GET_CODE (op1) == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT v = INTVAL (op1), n = -v;
|
||
|
||
if (! CONST_OK_FOR_LETTER_P (v, 'I')
|
||
&& (CONST_OK_FOR_LETTER_P (n, 'K')
|
||
|| CONST_OK_FOR_LETTER_P (n, 'L')))
|
||
{
|
||
cmp_code = PLUS, branch_code = code;
|
||
op1 = GEN_INT (n);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Force op0 into a register. */
|
||
if (GET_CODE (op0) != REG)
|
||
op0 = force_reg (cmp_mode, op0);
|
||
|
||
/* Emit an initial compare instruction, if necessary. */
|
||
tem = op0;
|
||
if (cmp_code != NIL)
|
||
{
|
||
tem = gen_reg_rtx (cmp_mode);
|
||
emit_move_insn (tem, gen_rtx_fmt_ee (cmp_code, cmp_mode, op0, op1));
|
||
}
|
||
|
||
/* Return the branch comparison. */
|
||
return gen_rtx_fmt_ee (branch_code, branch_mode, tem, CONST0_RTX (cmp_mode));
|
||
}
|
||
|
||
|
||
/* Rewrite a comparison against zero CMP of the form
|
||
(CODE (cc0) (const_int 0)) so it can be written validly in
|
||
a conditional move (if_then_else CMP ...).
|
||
If both of the operands that set cc0 are non-zero we must emit
|
||
an insn to perform the compare (it can't be done within
|
||
the conditional move). */
|
||
rtx
|
||
alpha_emit_conditional_move (cmp, mode)
|
||
rtx cmp;
|
||
enum machine_mode mode;
|
||
{
|
||
enum rtx_code code = GET_CODE (cmp);
|
||
enum rtx_code cmov_code = NE;
|
||
rtx op0 = alpha_compare_op0;
|
||
rtx op1 = alpha_compare_op1;
|
||
enum machine_mode cmp_mode
|
||
= (GET_MODE (op0) == VOIDmode ? DImode : GET_MODE (op0));
|
||
enum machine_mode cmp_op_mode = alpha_compare_fp_p ? DFmode : DImode;
|
||
enum machine_mode cmov_mode = VOIDmode;
|
||
rtx tem;
|
||
|
||
if (alpha_compare_fp_p != FLOAT_MODE_P (mode))
|
||
return 0;
|
||
|
||
/* We may be able to use a conditional move directly.
|
||
This avoids emitting spurious compares. */
|
||
if (signed_comparison_operator (cmp, cmp_op_mode)
|
||
&& (!alpha_compare_fp_p || flag_fast_math)
|
||
&& (op0 == CONST0_RTX (cmp_mode) || op1 == CONST0_RTX (cmp_mode)))
|
||
return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
|
||
|
||
/* We can't put the comparison insides a conditional move;
|
||
emit a compare instruction and put that inside the
|
||
conditional move. Make sure we emit only comparisons we have;
|
||
swap or reverse as necessary. */
|
||
|
||
switch (code)
|
||
{
|
||
case EQ: case LE: case LT: case LEU: case LTU:
|
||
/* We have these compares: */
|
||
break;
|
||
|
||
case NE:
|
||
/* This must be reversed. */
|
||
code = reverse_condition (code);
|
||
cmov_code = EQ;
|
||
break;
|
||
|
||
case GE: case GT: case GEU: case GTU:
|
||
/* These must be swapped. Make sure the new first operand is in
|
||
a register. */
|
||
code = swap_condition (code);
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
op0 = force_reg (cmp_mode, op0);
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* ??? We mark the branch mode to be CCmode to prevent the compare
|
||
and cmov from being combined, since the compare insn follows IEEE
|
||
rules that the cmov does not. */
|
||
if (alpha_compare_fp_p && !flag_fast_math)
|
||
cmov_mode = CCmode;
|
||
|
||
tem = gen_reg_rtx (cmp_op_mode);
|
||
emit_move_insn (tem, gen_rtx_fmt_ee (code, cmp_op_mode, op0, op1));
|
||
return gen_rtx_fmt_ee (cmov_code, cmov_mode, tem, CONST0_RTX (cmp_op_mode));
|
||
}
|
||
|
||
/* Use ext[wlq][lh] as the Architecture Handbook describes for extracting
|
||
unaligned data:
|
||
|
||
unsigned: signed:
|
||
word: ldq_u r1,X(r11) ldq_u r1,X(r11)
|
||
ldq_u r2,X+1(r11) ldq_u r2,X+1(r11)
|
||
lda r3,X(r11) lda r3,X+2(r11)
|
||
extwl r1,r3,r1 extql r1,r3,r1
|
||
extwh r2,r3,r2 extqh r2,r3,r2
|
||
or r1.r2.r1 or r1,r2,r1
|
||
sra r1,48,r1
|
||
|
||
long: ldq_u r1,X(r11) ldq_u r1,X(r11)
|
||
ldq_u r2,X+3(r11) ldq_u r2,X+3(r11)
|
||
lda r3,X(r11) lda r3,X(r11)
|
||
extll r1,r3,r1 extll r1,r3,r1
|
||
extlh r2,r3,r2 extlh r2,r3,r2
|
||
or r1.r2.r1 addl r1,r2,r1
|
||
|
||
quad: ldq_u r1,X(r11)
|
||
ldq_u r2,X+7(r11)
|
||
lda r3,X(r11)
|
||
extql r1,r3,r1
|
||
extqh r2,r3,r2
|
||
or r1.r2.r1
|
||
*/
|
||
|
||
void
|
||
alpha_expand_unaligned_load (tgt, mem, size, ofs, sign)
|
||
rtx tgt, mem;
|
||
HOST_WIDE_INT size, ofs;
|
||
int sign;
|
||
{
|
||
rtx meml, memh, addr, extl, exth;
|
||
enum machine_mode mode;
|
||
|
||
meml = gen_reg_rtx (DImode);
|
||
memh = gen_reg_rtx (DImode);
|
||
addr = gen_reg_rtx (DImode);
|
||
extl = gen_reg_rtx (DImode);
|
||
exth = gen_reg_rtx (DImode);
|
||
|
||
emit_move_insn (meml,
|
||
change_address (mem, DImode,
|
||
gen_rtx_AND (DImode,
|
||
plus_constant (XEXP (mem, 0),
|
||
ofs),
|
||
GEN_INT (-8))));
|
||
|
||
emit_move_insn (memh,
|
||
change_address (mem, DImode,
|
||
gen_rtx_AND (DImode,
|
||
plus_constant (XEXP (mem, 0),
|
||
ofs + size - 1),
|
||
GEN_INT (-8))));
|
||
|
||
if (sign && size == 2)
|
||
{
|
||
emit_move_insn (addr, plus_constant (XEXP (mem, 0), ofs+2));
|
||
|
||
emit_insn (gen_extxl (extl, meml, GEN_INT (64), addr));
|
||
emit_insn (gen_extqh (exth, memh, addr));
|
||
|
||
/* We must use tgt here for the target. Alpha-vms port fails if we use
|
||
addr for the target, because addr is marked as a pointer and combine
|
||
knows that pointers are always sign-extended 32 bit values. */
|
||
addr = expand_binop (DImode, ior_optab, extl, exth, tgt, 1, OPTAB_WIDEN);
|
||
addr = expand_binop (DImode, ashr_optab, addr, GEN_INT (48),
|
||
addr, 1, OPTAB_WIDEN);
|
||
}
|
||
else
|
||
{
|
||
emit_move_insn (addr, plus_constant (XEXP (mem, 0), ofs));
|
||
emit_insn (gen_extxl (extl, meml, GEN_INT (size*8), addr));
|
||
switch (size)
|
||
{
|
||
case 2:
|
||
emit_insn (gen_extwh (exth, memh, addr));
|
||
mode = HImode;
|
||
break;
|
||
|
||
case 4:
|
||
emit_insn (gen_extlh (exth, memh, addr));
|
||
mode = SImode;
|
||
break;
|
||
|
||
case 8:
|
||
emit_insn (gen_extqh (exth, memh, addr));
|
||
mode = DImode;
|
||
break;
|
||
default:
|
||
abort();
|
||
}
|
||
|
||
addr = expand_binop (mode, ior_optab, gen_lowpart (mode, extl),
|
||
gen_lowpart (mode, exth), gen_lowpart (mode, tgt),
|
||
sign, OPTAB_WIDEN);
|
||
}
|
||
|
||
if (addr != tgt)
|
||
emit_move_insn (tgt, gen_lowpart(GET_MODE (tgt), addr));
|
||
}
|
||
|
||
/* Similarly, use ins and msk instructions to perform unaligned stores. */
|
||
|
||
void
|
||
alpha_expand_unaligned_store (dst, src, size, ofs)
|
||
rtx dst, src;
|
||
HOST_WIDE_INT size, ofs;
|
||
{
|
||
rtx dstl, dsth, addr, insl, insh, meml, memh;
|
||
|
||
dstl = gen_reg_rtx (DImode);
|
||
dsth = gen_reg_rtx (DImode);
|
||
insl = gen_reg_rtx (DImode);
|
||
insh = gen_reg_rtx (DImode);
|
||
|
||
meml = change_address (dst, DImode,
|
||
gen_rtx_AND (DImode,
|
||
plus_constant (XEXP (dst, 0), ofs),
|
||
GEN_INT (-8)));
|
||
memh = change_address (dst, DImode,
|
||
gen_rtx_AND (DImode,
|
||
plus_constant (XEXP (dst, 0),
|
||
ofs+size-1),
|
||
GEN_INT (-8)));
|
||
|
||
emit_move_insn (dsth, memh);
|
||
emit_move_insn (dstl, meml);
|
||
addr = copy_addr_to_reg (plus_constant (XEXP (dst, 0), ofs));
|
||
|
||
if (src != const0_rtx)
|
||
{
|
||
emit_insn (gen_insxh (insh, gen_lowpart (DImode, src),
|
||
GEN_INT (size*8), addr));
|
||
|
||
switch (size)
|
||
{
|
||
case 2:
|
||
emit_insn (gen_inswl (insl, gen_lowpart (HImode, src), addr));
|
||
break;
|
||
case 4:
|
||
emit_insn (gen_insll (insl, gen_lowpart (SImode, src), addr));
|
||
break;
|
||
case 8:
|
||
emit_insn (gen_insql (insl, src, addr));
|
||
break;
|
||
}
|
||
}
|
||
|
||
emit_insn (gen_mskxh (dsth, dsth, GEN_INT (size*8), addr));
|
||
|
||
switch (size)
|
||
{
|
||
case 2:
|
||
emit_insn (gen_mskxl (dstl, dstl, GEN_INT (0xffff), addr));
|
||
break;
|
||
case 4:
|
||
emit_insn (gen_mskxl (dstl, dstl, GEN_INT (0xffffffff), addr));
|
||
break;
|
||
case 8:
|
||
{
|
||
#if HOST_BITS_PER_WIDE_INT == 32
|
||
rtx msk = immed_double_const (0xffffffff, 0xffffffff, DImode);
|
||
#else
|
||
rtx msk = immed_double_const (0xffffffffffffffff, 0, DImode);
|
||
#endif
|
||
emit_insn (gen_mskxl (dstl, dstl, msk, addr));
|
||
}
|
||
break;
|
||
}
|
||
|
||
if (src != const0_rtx)
|
||
{
|
||
dsth = expand_binop (DImode, ior_optab, insh, dsth, dsth, 0, OPTAB_WIDEN);
|
||
dstl = expand_binop (DImode, ior_optab, insl, dstl, dstl, 0, OPTAB_WIDEN);
|
||
}
|
||
|
||
/* Must store high before low for degenerate case of aligned. */
|
||
emit_move_insn (memh, dsth);
|
||
emit_move_insn (meml, dstl);
|
||
}
|
||
|
||
/* The block move code tries to maximize speed by separating loads and
|
||
stores at the expense of register pressure: we load all of the data
|
||
before we store it back out. There are two secondary effects worth
|
||
mentioning, that this speeds copying to/from aligned and unaligned
|
||
buffers, and that it makes the code significantly easier to write. */
|
||
|
||
#define MAX_MOVE_WORDS 8
|
||
|
||
/* Load an integral number of consecutive unaligned quadwords. */
|
||
|
||
static void
|
||
alpha_expand_unaligned_load_words (out_regs, smem, words, ofs)
|
||
rtx *out_regs;
|
||
rtx smem;
|
||
HOST_WIDE_INT words, ofs;
|
||
{
|
||
rtx const im8 = GEN_INT (-8);
|
||
rtx const i64 = GEN_INT (64);
|
||
rtx ext_tmps[MAX_MOVE_WORDS], data_regs[MAX_MOVE_WORDS+1];
|
||
rtx sreg, areg;
|
||
HOST_WIDE_INT i;
|
||
|
||
/* Generate all the tmp registers we need. */
|
||
for (i = 0; i < words; ++i)
|
||
{
|
||
data_regs[i] = out_regs[i];
|
||
ext_tmps[i] = gen_reg_rtx (DImode);
|
||
}
|
||
data_regs[words] = gen_reg_rtx (DImode);
|
||
|
||
if (ofs != 0)
|
||
smem = change_address (smem, GET_MODE (smem),
|
||
plus_constant (XEXP (smem, 0), ofs));
|
||
|
||
/* Load up all of the source data. */
|
||
for (i = 0; i < words; ++i)
|
||
{
|
||
emit_move_insn (data_regs[i],
|
||
change_address (smem, DImode,
|
||
gen_rtx_AND (DImode,
|
||
plus_constant (XEXP(smem,0),
|
||
8*i),
|
||
im8)));
|
||
}
|
||
emit_move_insn (data_regs[words],
|
||
change_address (smem, DImode,
|
||
gen_rtx_AND (DImode,
|
||
plus_constant (XEXP(smem,0),
|
||
8*words - 1),
|
||
im8)));
|
||
|
||
/* Extract the half-word fragments. Unfortunately DEC decided to make
|
||
extxh with offset zero a noop instead of zeroing the register, so
|
||
we must take care of that edge condition ourselves with cmov. */
|
||
|
||
sreg = copy_addr_to_reg (XEXP (smem, 0));
|
||
areg = expand_binop (DImode, and_optab, sreg, GEN_INT (7), NULL,
|
||
1, OPTAB_WIDEN);
|
||
for (i = 0; i < words; ++i)
|
||
{
|
||
emit_insn (gen_extxl (data_regs[i], data_regs[i], i64, sreg));
|
||
|
||
emit_insn (gen_extqh (ext_tmps[i], data_regs[i+1], sreg));
|
||
emit_insn (gen_rtx_SET (VOIDmode, ext_tmps[i],
|
||
gen_rtx_IF_THEN_ELSE (DImode,
|
||
gen_rtx_EQ (DImode, areg,
|
||
const0_rtx),
|
||
const0_rtx, ext_tmps[i])));
|
||
}
|
||
|
||
/* Merge the half-words into whole words. */
|
||
for (i = 0; i < words; ++i)
|
||
{
|
||
out_regs[i] = expand_binop (DImode, ior_optab, data_regs[i],
|
||
ext_tmps[i], data_regs[i], 1, OPTAB_WIDEN);
|
||
}
|
||
}
|
||
|
||
/* Store an integral number of consecutive unaligned quadwords. DATA_REGS
|
||
may be NULL to store zeros. */
|
||
|
||
static void
|
||
alpha_expand_unaligned_store_words (data_regs, dmem, words, ofs)
|
||
rtx *data_regs;
|
||
rtx dmem;
|
||
HOST_WIDE_INT words, ofs;
|
||
{
|
||
rtx const im8 = GEN_INT (-8);
|
||
rtx const i64 = GEN_INT (64);
|
||
#if HOST_BITS_PER_WIDE_INT == 32
|
||
rtx const im1 = immed_double_const (0xffffffff, 0xffffffff, DImode);
|
||
#else
|
||
rtx const im1 = immed_double_const (0xffffffffffffffff, 0, DImode);
|
||
#endif
|
||
rtx ins_tmps[MAX_MOVE_WORDS];
|
||
rtx st_tmp_1, st_tmp_2, dreg;
|
||
rtx st_addr_1, st_addr_2;
|
||
HOST_WIDE_INT i;
|
||
|
||
/* Generate all the tmp registers we need. */
|
||
if (data_regs != NULL)
|
||
for (i = 0; i < words; ++i)
|
||
ins_tmps[i] = gen_reg_rtx(DImode);
|
||
st_tmp_1 = gen_reg_rtx(DImode);
|
||
st_tmp_2 = gen_reg_rtx(DImode);
|
||
|
||
if (ofs != 0)
|
||
dmem = change_address (dmem, GET_MODE (dmem),
|
||
plus_constant (XEXP (dmem, 0), ofs));
|
||
|
||
|
||
st_addr_2 = change_address (dmem, DImode,
|
||
gen_rtx_AND (DImode,
|
||
plus_constant (XEXP(dmem,0),
|
||
words*8 - 1),
|
||
im8));
|
||
st_addr_1 = change_address (dmem, DImode,
|
||
gen_rtx_AND (DImode,
|
||
XEXP (dmem, 0),
|
||
im8));
|
||
|
||
/* Load up the destination end bits. */
|
||
emit_move_insn (st_tmp_2, st_addr_2);
|
||
emit_move_insn (st_tmp_1, st_addr_1);
|
||
|
||
/* Shift the input data into place. */
|
||
dreg = copy_addr_to_reg (XEXP (dmem, 0));
|
||
if (data_regs != NULL)
|
||
{
|
||
for (i = words-1; i >= 0; --i)
|
||
{
|
||
emit_insn (gen_insxh (ins_tmps[i], data_regs[i], i64, dreg));
|
||
emit_insn (gen_insql (data_regs[i], data_regs[i], dreg));
|
||
}
|
||
for (i = words-1; i > 0; --i)
|
||
{
|
||
ins_tmps[i-1] = expand_binop (DImode, ior_optab, data_regs[i],
|
||
ins_tmps[i-1], ins_tmps[i-1], 1,
|
||
OPTAB_WIDEN);
|
||
}
|
||
}
|
||
|
||
/* Split and merge the ends with the destination data. */
|
||
emit_insn (gen_mskxh (st_tmp_2, st_tmp_2, i64, dreg));
|
||
emit_insn (gen_mskxl (st_tmp_1, st_tmp_1, im1, dreg));
|
||
|
||
if (data_regs != NULL)
|
||
{
|
||
st_tmp_2 = expand_binop (DImode, ior_optab, st_tmp_2, ins_tmps[words-1],
|
||
st_tmp_2, 1, OPTAB_WIDEN);
|
||
st_tmp_1 = expand_binop (DImode, ior_optab, st_tmp_1, data_regs[0],
|
||
st_tmp_1, 1, OPTAB_WIDEN);
|
||
}
|
||
|
||
/* Store it all. */
|
||
emit_move_insn (st_addr_2, st_tmp_2);
|
||
for (i = words-1; i > 0; --i)
|
||
{
|
||
emit_move_insn (change_address (dmem, DImode,
|
||
gen_rtx_AND (DImode,
|
||
plus_constant(XEXP (dmem,0),
|
||
i*8),
|
||
im8)),
|
||
data_regs ? ins_tmps[i-1] : const0_rtx);
|
||
}
|
||
emit_move_insn (st_addr_1, st_tmp_1);
|
||
}
|
||
|
||
|
||
/* Expand string/block move operations.
|
||
|
||
operands[0] is the pointer to the destination.
|
||
operands[1] is the pointer to the source.
|
||
operands[2] is the number of bytes to move.
|
||
operands[3] is the alignment. */
|
||
|
||
int
|
||
alpha_expand_block_move (operands)
|
||
rtx operands[];
|
||
{
|
||
rtx bytes_rtx = operands[2];
|
||
rtx align_rtx = operands[3];
|
||
HOST_WIDE_INT orig_bytes = INTVAL (bytes_rtx);
|
||
HOST_WIDE_INT bytes = orig_bytes;
|
||
HOST_WIDE_INT src_align = INTVAL (align_rtx);
|
||
HOST_WIDE_INT dst_align = src_align;
|
||
rtx orig_src = operands[1];
|
||
rtx orig_dst = operands[0];
|
||
rtx data_regs[2*MAX_MOVE_WORDS+16];
|
||
rtx tmp;
|
||
int i, words, ofs, nregs = 0;
|
||
|
||
if (bytes <= 0)
|
||
return 1;
|
||
if (bytes > MAX_MOVE_WORDS*8)
|
||
return 0;
|
||
|
||
/* Look for additional alignment information from recorded register info. */
|
||
|
||
tmp = XEXP (orig_src, 0);
|
||
if (GET_CODE (tmp) == REG)
|
||
{
|
||
if (REGNO_POINTER_ALIGN (REGNO (tmp)) > src_align)
|
||
src_align = REGNO_POINTER_ALIGN (REGNO (tmp));
|
||
}
|
||
else if (GET_CODE (tmp) == PLUS
|
||
&& GET_CODE (XEXP (tmp, 0)) == REG
|
||
&& GET_CODE (XEXP (tmp, 1)) == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
|
||
int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
|
||
|
||
if (a > src_align)
|
||
{
|
||
if (a >= 8 && c % 8 == 0)
|
||
src_align = 8;
|
||
else if (a >= 4 && c % 4 == 0)
|
||
src_align = 4;
|
||
else if (a >= 2 && c % 2 == 0)
|
||
src_align = 2;
|
||
}
|
||
}
|
||
|
||
tmp = XEXP (orig_dst, 0);
|
||
if (GET_CODE (tmp) == REG)
|
||
{
|
||
if (REGNO_POINTER_ALIGN (REGNO (tmp)) > dst_align)
|
||
dst_align = REGNO_POINTER_ALIGN (REGNO (tmp));
|
||
}
|
||
else if (GET_CODE (tmp) == PLUS
|
||
&& GET_CODE (XEXP (tmp, 0)) == REG
|
||
&& GET_CODE (XEXP (tmp, 1)) == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
|
||
int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
|
||
|
||
if (a > dst_align)
|
||
{
|
||
if (a >= 8 && c % 8 == 0)
|
||
dst_align = 8;
|
||
else if (a >= 4 && c % 4 == 0)
|
||
dst_align = 4;
|
||
else if (a >= 2 && c % 2 == 0)
|
||
dst_align = 2;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Load the entire block into registers.
|
||
*/
|
||
|
||
if (GET_CODE (XEXP (orig_src, 0)) == ADDRESSOF)
|
||
{
|
||
enum machine_mode mode;
|
||
tmp = XEXP (XEXP (orig_src, 0), 0);
|
||
|
||
/* Don't use the existing register if we're reading more than
|
||
is held in the register. Nor if there is not a mode that
|
||
handles the exact size. */
|
||
mode = mode_for_size (bytes * BITS_PER_UNIT, MODE_INT, 1);
|
||
if (mode != BLKmode
|
||
&& GET_MODE_SIZE (GET_MODE (tmp)) >= bytes)
|
||
{
|
||
if (mode == TImode)
|
||
{
|
||
data_regs[nregs] = gen_lowpart (DImode, tmp);
|
||
data_regs[nregs+1] = gen_highpart (DImode, tmp);
|
||
nregs += 2;
|
||
}
|
||
else
|
||
data_regs[nregs++] = gen_lowpart (mode, tmp);
|
||
goto src_done;
|
||
}
|
||
|
||
/* No appropriate mode; fall back on memory. */
|
||
orig_src = change_address (orig_src, GET_MODE (orig_src),
|
||
copy_addr_to_reg (XEXP (orig_src, 0)));
|
||
}
|
||
|
||
ofs = 0;
|
||
if (src_align >= 8 && bytes >= 8)
|
||
{
|
||
words = bytes / 8;
|
||
|
||
for (i = 0; i < words; ++i)
|
||
data_regs[nregs+i] = gen_reg_rtx(DImode);
|
||
|
||
for (i = 0; i < words; ++i)
|
||
{
|
||
emit_move_insn (data_regs[nregs+i],
|
||
change_address (orig_src, DImode,
|
||
plus_constant (XEXP (orig_src, 0),
|
||
ofs + i*8)));
|
||
}
|
||
|
||
nregs += words;
|
||
bytes -= words * 8;
|
||
ofs += words * 8;
|
||
}
|
||
if (src_align >= 4 && bytes >= 4)
|
||
{
|
||
words = bytes / 4;
|
||
|
||
for (i = 0; i < words; ++i)
|
||
data_regs[nregs+i] = gen_reg_rtx(SImode);
|
||
|
||
for (i = 0; i < words; ++i)
|
||
{
|
||
emit_move_insn (data_regs[nregs+i],
|
||
change_address (orig_src, SImode,
|
||
plus_constant (XEXP (orig_src, 0),
|
||
ofs + i*4)));
|
||
}
|
||
|
||
nregs += words;
|
||
bytes -= words * 4;
|
||
ofs += words * 4;
|
||
}
|
||
if (bytes >= 16)
|
||
{
|
||
words = bytes / 8;
|
||
|
||
for (i = 0; i < words+1; ++i)
|
||
data_regs[nregs+i] = gen_reg_rtx(DImode);
|
||
|
||
alpha_expand_unaligned_load_words (data_regs + nregs, orig_src,
|
||
words, ofs);
|
||
|
||
nregs += words;
|
||
bytes -= words * 8;
|
||
ofs += words * 8;
|
||
}
|
||
if (!TARGET_BWX && bytes >= 8)
|
||
{
|
||
data_regs[nregs++] = tmp = gen_reg_rtx (DImode);
|
||
alpha_expand_unaligned_load (tmp, orig_src, 8, ofs, 0);
|
||
bytes -= 8;
|
||
ofs += 8;
|
||
}
|
||
if (!TARGET_BWX && bytes >= 4)
|
||
{
|
||
data_regs[nregs++] = tmp = gen_reg_rtx (SImode);
|
||
alpha_expand_unaligned_load (tmp, orig_src, 4, ofs, 0);
|
||
bytes -= 4;
|
||
ofs += 4;
|
||
}
|
||
if (bytes >= 2)
|
||
{
|
||
if (src_align >= 2)
|
||
{
|
||
do {
|
||
data_regs[nregs++] = tmp = gen_reg_rtx (HImode);
|
||
emit_move_insn (tmp,
|
||
change_address (orig_src, HImode,
|
||
plus_constant (XEXP (orig_src, 0),
|
||
ofs)));
|
||
bytes -= 2;
|
||
ofs += 2;
|
||
} while (bytes >= 2);
|
||
}
|
||
else if (!TARGET_BWX)
|
||
{
|
||
data_regs[nregs++] = tmp = gen_reg_rtx (HImode);
|
||
alpha_expand_unaligned_load (tmp, orig_src, 2, ofs, 0);
|
||
bytes -= 2;
|
||
ofs += 2;
|
||
}
|
||
}
|
||
while (bytes > 0)
|
||
{
|
||
data_regs[nregs++] = tmp = gen_reg_rtx (QImode);
|
||
emit_move_insn (tmp,
|
||
change_address (orig_src, QImode,
|
||
plus_constant (XEXP (orig_src, 0),
|
||
ofs)));
|
||
bytes -= 1;
|
||
ofs += 1;
|
||
}
|
||
src_done:
|
||
|
||
if (nregs > (int)(sizeof(data_regs)/sizeof(*data_regs)))
|
||
abort();
|
||
|
||
/*
|
||
* Now save it back out again.
|
||
*/
|
||
|
||
i = 0, ofs = 0;
|
||
|
||
if (GET_CODE (XEXP (orig_dst, 0)) == ADDRESSOF)
|
||
{
|
||
enum machine_mode mode;
|
||
tmp = XEXP (XEXP (orig_dst, 0), 0);
|
||
|
||
mode = mode_for_size (orig_bytes * BITS_PER_UNIT, MODE_INT, 1);
|
||
if (GET_MODE (tmp) == mode)
|
||
{
|
||
if (nregs == 1)
|
||
{
|
||
emit_move_insn (tmp, data_regs[0]);
|
||
i = 1;
|
||
goto dst_done;
|
||
}
|
||
else if (nregs == 2 && mode == TImode)
|
||
{
|
||
/* Undo the subregging done above when copying between
|
||
two TImode registers. */
|
||
if (GET_CODE (data_regs[0]) == SUBREG
|
||
&& GET_MODE (SUBREG_REG (data_regs[0])) == TImode)
|
||
{
|
||
emit_move_insn (tmp, SUBREG_REG (data_regs[0]));
|
||
}
|
||
else
|
||
{
|
||
rtx seq;
|
||
|
||
start_sequence ();
|
||
emit_move_insn (gen_lowpart (DImode, tmp), data_regs[0]);
|
||
emit_move_insn (gen_highpart (DImode, tmp), data_regs[1]);
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_no_conflict_block (seq, tmp, data_regs[0],
|
||
data_regs[1], NULL_RTX);
|
||
}
|
||
|
||
i = 2;
|
||
goto dst_done;
|
||
}
|
||
}
|
||
|
||
/* ??? If nregs > 1, consider reconstructing the word in regs. */
|
||
/* ??? Optimize mode < dst_mode with strict_low_part. */
|
||
|
||
/* No appropriate mode; fall back on memory. We can speed things
|
||
up by recognizing extra alignment information. */
|
||
orig_dst = change_address (orig_dst, GET_MODE (orig_dst),
|
||
copy_addr_to_reg (XEXP (orig_dst, 0)));
|
||
dst_align = GET_MODE_SIZE (GET_MODE (tmp));
|
||
}
|
||
|
||
/* Write out the data in whatever chunks reading the source allowed. */
|
||
if (dst_align >= 8)
|
||
{
|
||
while (i < nregs && GET_MODE (data_regs[i]) == DImode)
|
||
{
|
||
emit_move_insn (change_address (orig_dst, DImode,
|
||
plus_constant (XEXP (orig_dst, 0),
|
||
ofs)),
|
||
data_regs[i]);
|
||
ofs += 8;
|
||
i++;
|
||
}
|
||
}
|
||
if (dst_align >= 4)
|
||
{
|
||
/* If the source has remaining DImode regs, write them out in
|
||
two pieces. */
|
||
while (i < nregs && GET_MODE (data_regs[i]) == DImode)
|
||
{
|
||
tmp = expand_binop (DImode, lshr_optab, data_regs[i], GEN_INT (32),
|
||
NULL_RTX, 1, OPTAB_WIDEN);
|
||
|
||
emit_move_insn (change_address (orig_dst, SImode,
|
||
plus_constant (XEXP (orig_dst, 0),
|
||
ofs)),
|
||
gen_lowpart (SImode, data_regs[i]));
|
||
emit_move_insn (change_address (orig_dst, SImode,
|
||
plus_constant (XEXP (orig_dst, 0),
|
||
ofs+4)),
|
||
gen_lowpart (SImode, tmp));
|
||
ofs += 8;
|
||
i++;
|
||
}
|
||
|
||
while (i < nregs && GET_MODE (data_regs[i]) == SImode)
|
||
{
|
||
emit_move_insn (change_address(orig_dst, SImode,
|
||
plus_constant (XEXP (orig_dst, 0),
|
||
ofs)),
|
||
data_regs[i]);
|
||
ofs += 4;
|
||
i++;
|
||
}
|
||
}
|
||
if (i < nregs && GET_MODE (data_regs[i]) == DImode)
|
||
{
|
||
/* Write out a remaining block of words using unaligned methods. */
|
||
|
||
for (words = 1; i+words < nregs ; ++words)
|
||
if (GET_MODE (data_regs[i+words]) != DImode)
|
||
break;
|
||
|
||
if (words == 1)
|
||
alpha_expand_unaligned_store (orig_dst, data_regs[i], 8, ofs);
|
||
else
|
||
alpha_expand_unaligned_store_words (data_regs+i, orig_dst, words, ofs);
|
||
|
||
i += words;
|
||
ofs += words * 8;
|
||
}
|
||
|
||
/* Due to the above, this won't be aligned. */
|
||
/* ??? If we have more than one of these, consider constructing full
|
||
words in registers and using alpha_expand_unaligned_store_words. */
|
||
while (i < nregs && GET_MODE (data_regs[i]) == SImode)
|
||
{
|
||
alpha_expand_unaligned_store (orig_dst, data_regs[i], 4, ofs);
|
||
ofs += 4;
|
||
i++;
|
||
}
|
||
|
||
if (dst_align >= 2)
|
||
while (i < nregs && GET_MODE (data_regs[i]) == HImode)
|
||
{
|
||
emit_move_insn (change_address (orig_dst, HImode,
|
||
plus_constant (XEXP (orig_dst, 0),
|
||
ofs)),
|
||
data_regs[i]);
|
||
i++;
|
||
ofs += 2;
|
||
}
|
||
else
|
||
while (i < nregs && GET_MODE (data_regs[i]) == HImode)
|
||
{
|
||
alpha_expand_unaligned_store (orig_dst, data_regs[i], 2, ofs);
|
||
i++;
|
||
ofs += 2;
|
||
}
|
||
while (i < nregs && GET_MODE (data_regs[i]) == QImode)
|
||
{
|
||
emit_move_insn (change_address (orig_dst, QImode,
|
||
plus_constant (XEXP (orig_dst, 0),
|
||
ofs)),
|
||
data_regs[i]);
|
||
i++;
|
||
ofs += 1;
|
||
}
|
||
dst_done:
|
||
|
||
if (i != nregs)
|
||
abort();
|
||
|
||
return 1;
|
||
}
|
||
|
||
int
|
||
alpha_expand_block_clear (operands)
|
||
rtx operands[];
|
||
{
|
||
rtx bytes_rtx = operands[1];
|
||
rtx align_rtx = operands[2];
|
||
HOST_WIDE_INT bytes = INTVAL (bytes_rtx);
|
||
HOST_WIDE_INT align = INTVAL (align_rtx);
|
||
rtx orig_dst = operands[0];
|
||
rtx tmp;
|
||
HOST_WIDE_INT i, words, ofs = 0;
|
||
|
||
if (bytes <= 0)
|
||
return 1;
|
||
if (bytes > MAX_MOVE_WORDS*8)
|
||
return 0;
|
||
|
||
/* Look for stricter alignment. */
|
||
|
||
tmp = XEXP (orig_dst, 0);
|
||
if (GET_CODE (tmp) == REG)
|
||
{
|
||
if (REGNO_POINTER_ALIGN (REGNO (tmp)) > align)
|
||
align = REGNO_POINTER_ALIGN (REGNO (tmp));
|
||
}
|
||
else if (GET_CODE (tmp) == PLUS
|
||
&& GET_CODE (XEXP (tmp, 0)) == REG
|
||
&& GET_CODE (XEXP (tmp, 1)) == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
|
||
int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
|
||
|
||
if (a > align)
|
||
{
|
||
if (a >= 8 && c % 8 == 0)
|
||
align = 8;
|
||
else if (a >= 4 && c % 4 == 0)
|
||
align = 4;
|
||
else if (a >= 2 && c % 2 == 0)
|
||
align = 2;
|
||
}
|
||
}
|
||
else if (GET_CODE (tmp) == ADDRESSOF)
|
||
{
|
||
enum machine_mode mode;
|
||
|
||
mode = mode_for_size (bytes * BITS_PER_UNIT, MODE_INT, 1);
|
||
if (GET_MODE (XEXP (tmp, 0)) == mode)
|
||
{
|
||
emit_move_insn (XEXP (tmp, 0), const0_rtx);
|
||
return 1;
|
||
}
|
||
|
||
/* No appropriate mode; fall back on memory. */
|
||
orig_dst = change_address (orig_dst, GET_MODE (orig_dst),
|
||
copy_addr_to_reg (tmp));
|
||
align = GET_MODE_SIZE (GET_MODE (XEXP (tmp, 0)));
|
||
}
|
||
|
||
/* Handle a block of contiguous words first. */
|
||
|
||
if (align >= 8 && bytes >= 8)
|
||
{
|
||
words = bytes / 8;
|
||
|
||
for (i = 0; i < words; ++i)
|
||
{
|
||
emit_move_insn (change_address(orig_dst, DImode,
|
||
plus_constant (XEXP (orig_dst, 0),
|
||
ofs + i*8)),
|
||
const0_rtx);
|
||
}
|
||
|
||
bytes -= words * 8;
|
||
ofs += words * 8;
|
||
}
|
||
if (align >= 4 && bytes >= 4)
|
||
{
|
||
words = bytes / 4;
|
||
|
||
for (i = 0; i < words; ++i)
|
||
{
|
||
emit_move_insn (change_address (orig_dst, SImode,
|
||
plus_constant (XEXP (orig_dst, 0),
|
||
ofs + i*4)),
|
||
const0_rtx);
|
||
}
|
||
|
||
bytes -= words * 4;
|
||
ofs += words * 4;
|
||
}
|
||
if (bytes >= 16)
|
||
{
|
||
words = bytes / 8;
|
||
|
||
alpha_expand_unaligned_store_words (NULL, orig_dst, words, ofs);
|
||
|
||
bytes -= words * 8;
|
||
ofs += words * 8;
|
||
}
|
||
|
||
/* Next clean up any trailing pieces. We know from the contiguous
|
||
block move that there are no aligned SImode or DImode hunks left. */
|
||
|
||
if (!TARGET_BWX && bytes >= 8)
|
||
{
|
||
alpha_expand_unaligned_store (orig_dst, const0_rtx, 8, ofs);
|
||
bytes -= 8;
|
||
ofs += 8;
|
||
}
|
||
if (!TARGET_BWX && bytes >= 4)
|
||
{
|
||
alpha_expand_unaligned_store (orig_dst, const0_rtx, 4, ofs);
|
||
bytes -= 4;
|
||
ofs += 4;
|
||
}
|
||
if (bytes >= 2)
|
||
{
|
||
if (align >= 2)
|
||
{
|
||
do {
|
||
emit_move_insn (change_address (orig_dst, HImode,
|
||
plus_constant (XEXP (orig_dst, 0),
|
||
ofs)),
|
||
const0_rtx);
|
||
bytes -= 2;
|
||
ofs += 2;
|
||
} while (bytes >= 2);
|
||
}
|
||
else if (!TARGET_BWX)
|
||
{
|
||
alpha_expand_unaligned_store (orig_dst, const0_rtx, 2, ofs);
|
||
bytes -= 2;
|
||
ofs += 2;
|
||
}
|
||
}
|
||
while (bytes > 0)
|
||
{
|
||
emit_move_insn (change_address (orig_dst, QImode,
|
||
plus_constant (XEXP (orig_dst, 0),
|
||
ofs)),
|
||
const0_rtx);
|
||
bytes -= 1;
|
||
ofs += 1;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Adjust the cost of a scheduling dependency. Return the new cost of
|
||
a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
|
||
|
||
int
|
||
alpha_adjust_cost (insn, link, dep_insn, cost)
|
||
rtx insn;
|
||
rtx link;
|
||
rtx dep_insn;
|
||
int cost;
|
||
{
|
||
rtx set, set_src;
|
||
enum attr_type insn_type, dep_insn_type;
|
||
|
||
/* If the dependence is an anti-dependence, there is no cost. For an
|
||
output dependence, there is sometimes a cost, but it doesn't seem
|
||
worth handling those few cases. */
|
||
|
||
if (REG_NOTE_KIND (link) != 0)
|
||
return 0;
|
||
|
||
/* If we can't recognize the insns, we can't really do anything. */
|
||
if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)
|
||
return cost;
|
||
|
||
insn_type = get_attr_type (insn);
|
||
dep_insn_type = get_attr_type (dep_insn);
|
||
|
||
/* Bring in the user-defined memory latency. */
|
||
if (dep_insn_type == TYPE_ILD
|
||
|| dep_insn_type == TYPE_FLD
|
||
|| dep_insn_type == TYPE_LDSYM)
|
||
cost += alpha_memory_latency-1;
|
||
|
||
switch (alpha_cpu)
|
||
{
|
||
case PROCESSOR_EV4:
|
||
/* On EV4, if INSN is a store insn and DEP_INSN is setting the data
|
||
being stored, we can sometimes lower the cost. */
|
||
|
||
if ((insn_type == TYPE_IST || insn_type == TYPE_FST)
|
||
&& (set = single_set (dep_insn)) != 0
|
||
&& GET_CODE (PATTERN (insn)) == SET
|
||
&& rtx_equal_p (SET_DEST (set), SET_SRC (PATTERN (insn))))
|
||
{
|
||
switch (dep_insn_type)
|
||
{
|
||
case TYPE_ILD:
|
||
case TYPE_FLD:
|
||
/* No savings here. */
|
||
return cost;
|
||
|
||
case TYPE_IMUL:
|
||
/* In these cases, we save one cycle. */
|
||
return cost - 1;
|
||
|
||
default:
|
||
/* In all other cases, we save two cycles. */
|
||
return MAX (0, cost - 2);
|
||
}
|
||
}
|
||
|
||
/* Another case that needs adjustment is an arithmetic or logical
|
||
operation. It's cost is usually one cycle, but we default it to
|
||
two in the MD file. The only case that it is actually two is
|
||
for the address in loads, stores, and jumps. */
|
||
|
||
if (dep_insn_type == TYPE_IADD || dep_insn_type == TYPE_ILOG)
|
||
{
|
||
switch (insn_type)
|
||
{
|
||
case TYPE_ILD:
|
||
case TYPE_IST:
|
||
case TYPE_FLD:
|
||
case TYPE_FST:
|
||
case TYPE_JSR:
|
||
return cost;
|
||
default:
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* The final case is when a compare feeds into an integer branch;
|
||
the cost is only one cycle in that case. */
|
||
|
||
if (dep_insn_type == TYPE_ICMP && insn_type == TYPE_IBR)
|
||
return 1;
|
||
break;
|
||
|
||
case PROCESSOR_EV5:
|
||
/* And the lord DEC saith: "A special bypass provides an effective
|
||
latency of 0 cycles for an ICMP or ILOG insn producing the test
|
||
operand of an IBR or ICMOV insn." */
|
||
|
||
if ((dep_insn_type == TYPE_ICMP || dep_insn_type == TYPE_ILOG)
|
||
&& (set = single_set (dep_insn)) != 0)
|
||
{
|
||
/* A branch only has one input. This must be it. */
|
||
if (insn_type == TYPE_IBR)
|
||
return 0;
|
||
/* A conditional move has three, make sure it is the test. */
|
||
if (insn_type == TYPE_ICMOV
|
||
&& GET_CODE (set_src = PATTERN (insn)) == SET
|
||
&& GET_CODE (set_src = SET_SRC (set_src)) == IF_THEN_ELSE
|
||
&& rtx_equal_p (SET_DEST (set), XEXP (set_src, 0)))
|
||
return 0;
|
||
}
|
||
|
||
/* "The multiplier is unable to receive data from IEU bypass paths.
|
||
The instruction issues at the expected time, but its latency is
|
||
increased by the time it takes for the input data to become
|
||
available to the multiplier" -- which happens in pipeline stage
|
||
six, when results are comitted to the register file. */
|
||
|
||
if (insn_type == TYPE_IMUL)
|
||
{
|
||
switch (dep_insn_type)
|
||
{
|
||
/* These insns produce their results in pipeline stage five. */
|
||
case TYPE_ILD:
|
||
case TYPE_ICMOV:
|
||
case TYPE_IMUL:
|
||
case TYPE_MVI:
|
||
return cost + 1;
|
||
|
||
/* Other integer insns produce results in pipeline stage four. */
|
||
default:
|
||
return cost + 2;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case PROCESSOR_EV6:
|
||
/* There is additional latency to move the result of (most) FP
|
||
operations anywhere but the FP register file. */
|
||
|
||
if ((insn_type == TYPE_FST || insn_type == TYPE_FTOI)
|
||
&& (dep_insn_type == TYPE_FADD ||
|
||
dep_insn_type == TYPE_FMUL ||
|
||
dep_insn_type == TYPE_FCMOV))
|
||
return cost + 2;
|
||
|
||
break;
|
||
}
|
||
|
||
/* Otherwise, return the default cost. */
|
||
return cost;
|
||
}
|
||
|
||
/* Functions to save and restore alpha_return_addr_rtx. */
|
||
|
||
struct machine_function
|
||
{
|
||
rtx ra_rtx;
|
||
};
|
||
|
||
static void
|
||
alpha_save_machine_status (p)
|
||
struct function *p;
|
||
{
|
||
struct machine_function *machine =
|
||
(struct machine_function *) xmalloc (sizeof (struct machine_function));
|
||
|
||
p->machine = machine;
|
||
machine->ra_rtx = alpha_return_addr_rtx;
|
||
}
|
||
|
||
static void
|
||
alpha_restore_machine_status (p)
|
||
struct function *p;
|
||
{
|
||
struct machine_function *machine = p->machine;
|
||
|
||
alpha_return_addr_rtx = machine->ra_rtx;
|
||
|
||
free (machine);
|
||
p->machine = (struct machine_function *)0;
|
||
}
|
||
|
||
/* Do anything needed before RTL is emitted for each function. */
|
||
|
||
void
|
||
alpha_init_expanders ()
|
||
{
|
||
alpha_return_addr_rtx = NULL_RTX;
|
||
alpha_eh_epilogue_sp_ofs = NULL_RTX;
|
||
|
||
/* Arrange to save and restore machine status around nested functions. */
|
||
save_machine_status = alpha_save_machine_status;
|
||
restore_machine_status = alpha_restore_machine_status;
|
||
}
|
||
|
||
/* Start the ball rolling with RETURN_ADDR_RTX. */
|
||
|
||
rtx
|
||
alpha_return_addr (count, frame)
|
||
int count;
|
||
rtx frame ATTRIBUTE_UNUSED;
|
||
{
|
||
rtx init;
|
||
|
||
if (count != 0)
|
||
return const0_rtx;
|
||
|
||
if (alpha_return_addr_rtx)
|
||
return alpha_return_addr_rtx;
|
||
|
||
/* No rtx yet. Invent one, and initialize it from $26 in the prologue. */
|
||
alpha_return_addr_rtx = gen_reg_rtx (Pmode);
|
||
init = gen_rtx_SET (VOIDmode, alpha_return_addr_rtx,
|
||
gen_rtx_REG (Pmode, REG_RA));
|
||
|
||
/* Emit the insn to the prologue with the other argument copies. */
|
||
push_topmost_sequence ();
|
||
emit_insn_after (init, get_insns ());
|
||
pop_topmost_sequence ();
|
||
|
||
return alpha_return_addr_rtx;
|
||
}
|
||
|
||
static int
|
||
alpha_ra_ever_killed ()
|
||
{
|
||
rtx top;
|
||
|
||
#ifdef ASM_OUTPUT_MI_THUNK
|
||
if (current_function_is_thunk)
|
||
return 0;
|
||
#endif
|
||
if (!alpha_return_addr_rtx)
|
||
return regs_ever_live[REG_RA];
|
||
|
||
push_topmost_sequence ();
|
||
top = get_insns ();
|
||
pop_topmost_sequence ();
|
||
|
||
return reg_set_between_p (gen_rtx_REG (Pmode, REG_RA), top, NULL_RTX);
|
||
}
|
||
|
||
|
||
/* Print an operand. Recognize special options, documented below. */
|
||
|
||
void
|
||
print_operand (file, x, code)
|
||
FILE *file;
|
||
rtx x;
|
||
char code;
|
||
{
|
||
int i;
|
||
|
||
switch (code)
|
||
{
|
||
case '&':
|
||
/* Generates fp-rounding mode suffix: nothing for normal, 'c' for
|
||
chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
|
||
mode. alpha_fprm controls which suffix is generated. */
|
||
switch (alpha_fprm)
|
||
{
|
||
case ALPHA_FPRM_NORM:
|
||
break;
|
||
case ALPHA_FPRM_MINF:
|
||
fputc ('m', file);
|
||
break;
|
||
case ALPHA_FPRM_CHOP:
|
||
fputc ('c', file);
|
||
break;
|
||
case ALPHA_FPRM_DYN:
|
||
fputc ('d', file);
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case '\'':
|
||
/* Generates trap-mode suffix for instructions that accept the su
|
||
suffix only (cmpt et al). */
|
||
if (alpha_tp == ALPHA_TP_INSN)
|
||
fputs ("su", file);
|
||
break;
|
||
|
||
case '`':
|
||
/* Generates trap-mode suffix for instructions that accept the
|
||
v and sv suffix. The only instruction that needs this is cvtql. */
|
||
switch (alpha_fptm)
|
||
{
|
||
case ALPHA_FPTM_N:
|
||
break;
|
||
case ALPHA_FPTM_U:
|
||
fputs ("v", file);
|
||
break;
|
||
case ALPHA_FPTM_SU:
|
||
case ALPHA_FPTM_SUI:
|
||
fputs ("sv", file);
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case '(':
|
||
/* Generates trap-mode suffix for instructions that accept the
|
||
v, sv, and svi suffix. The only instruction that needs this
|
||
is cvttq. */
|
||
switch (alpha_fptm)
|
||
{
|
||
case ALPHA_FPTM_N:
|
||
break;
|
||
case ALPHA_FPTM_U:
|
||
fputs ("v", file);
|
||
break;
|
||
case ALPHA_FPTM_SU:
|
||
fputs ("sv", file);
|
||
break;
|
||
case ALPHA_FPTM_SUI:
|
||
fputs ("svi", file);
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case ')':
|
||
/* Generates trap-mode suffix for instructions that accept the u, su,
|
||
and sui suffix. This is the bulk of the IEEE floating point
|
||
instructions (addt et al). */
|
||
switch (alpha_fptm)
|
||
{
|
||
case ALPHA_FPTM_N:
|
||
break;
|
||
case ALPHA_FPTM_U:
|
||
fputc ('u', file);
|
||
break;
|
||
case ALPHA_FPTM_SU:
|
||
fputs ("su", file);
|
||
break;
|
||
case ALPHA_FPTM_SUI:
|
||
fputs ("sui", file);
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case '+':
|
||
/* Generates trap-mode suffix for instructions that accept the sui
|
||
suffix (cvtqt and cvtqs). */
|
||
switch (alpha_fptm)
|
||
{
|
||
case ALPHA_FPTM_N:
|
||
case ALPHA_FPTM_U:
|
||
case ALPHA_FPTM_SU: /* cvtqt/cvtqs can't cause underflow */
|
||
break;
|
||
case ALPHA_FPTM_SUI:
|
||
fputs ("sui", file);
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case ',':
|
||
/* Generates single precision instruction suffix. */
|
||
fprintf (file, "%c", (TARGET_FLOAT_VAX ? 'f' : 's'));
|
||
break;
|
||
|
||
case '-':
|
||
/* Generates double precision instruction suffix. */
|
||
fprintf (file, "%c", (TARGET_FLOAT_VAX ? 'g' : 't'));
|
||
break;
|
||
|
||
case 'r':
|
||
/* If this operand is the constant zero, write it as "$31". */
|
||
if (GET_CODE (x) == REG)
|
||
fprintf (file, "%s", reg_names[REGNO (x)]);
|
||
else if (x == CONST0_RTX (GET_MODE (x)))
|
||
fprintf (file, "$31");
|
||
else
|
||
output_operand_lossage ("invalid %%r value");
|
||
|
||
break;
|
||
|
||
case 'R':
|
||
/* Similar, but for floating-point. */
|
||
if (GET_CODE (x) == REG)
|
||
fprintf (file, "%s", reg_names[REGNO (x)]);
|
||
else if (x == CONST0_RTX (GET_MODE (x)))
|
||
fprintf (file, "$f31");
|
||
else
|
||
output_operand_lossage ("invalid %%R value");
|
||
|
||
break;
|
||
|
||
case 'N':
|
||
/* Write the 1's complement of a constant. */
|
||
if (GET_CODE (x) != CONST_INT)
|
||
output_operand_lossage ("invalid %%N value");
|
||
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~ INTVAL (x));
|
||
break;
|
||
|
||
case 'P':
|
||
/* Write 1 << C, for a constant C. */
|
||
if (GET_CODE (x) != CONST_INT)
|
||
output_operand_lossage ("invalid %%P value");
|
||
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT) 1 << INTVAL (x));
|
||
break;
|
||
|
||
case 'h':
|
||
/* Write the high-order 16 bits of a constant, sign-extended. */
|
||
if (GET_CODE (x) != CONST_INT)
|
||
output_operand_lossage ("invalid %%h value");
|
||
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) >> 16);
|
||
break;
|
||
|
||
case 'L':
|
||
/* Write the low-order 16 bits of a constant, sign-extended. */
|
||
if (GET_CODE (x) != CONST_INT)
|
||
output_operand_lossage ("invalid %%L value");
|
||
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC,
|
||
(INTVAL (x) & 0xffff) - 2 * (INTVAL (x) & 0x8000));
|
||
break;
|
||
|
||
case 'm':
|
||
/* Write mask for ZAP insn. */
|
||
if (GET_CODE (x) == CONST_DOUBLE)
|
||
{
|
||
HOST_WIDE_INT mask = 0;
|
||
HOST_WIDE_INT value;
|
||
|
||
value = CONST_DOUBLE_LOW (x);
|
||
for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
|
||
i++, value >>= 8)
|
||
if (value & 0xff)
|
||
mask |= (1 << i);
|
||
|
||
value = CONST_DOUBLE_HIGH (x);
|
||
for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
|
||
i++, value >>= 8)
|
||
if (value & 0xff)
|
||
mask |= (1 << (i + sizeof (int)));
|
||
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC, mask & 0xff);
|
||
}
|
||
|
||
else if (GET_CODE (x) == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT mask = 0, value = INTVAL (x);
|
||
|
||
for (i = 0; i < 8; i++, value >>= 8)
|
||
if (value & 0xff)
|
||
mask |= (1 << i);
|
||
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC, mask);
|
||
}
|
||
else
|
||
output_operand_lossage ("invalid %%m value");
|
||
break;
|
||
|
||
case 'M':
|
||
/* 'b', 'w', 'l', or 'q' as the value of the constant. */
|
||
if (GET_CODE (x) != CONST_INT
|
||
|| (INTVAL (x) != 8 && INTVAL (x) != 16
|
||
&& INTVAL (x) != 32 && INTVAL (x) != 64))
|
||
output_operand_lossage ("invalid %%M value");
|
||
|
||
fprintf (file, "%s",
|
||
(INTVAL (x) == 8 ? "b"
|
||
: INTVAL (x) == 16 ? "w"
|
||
: INTVAL (x) == 32 ? "l"
|
||
: "q"));
|
||
break;
|
||
|
||
case 'U':
|
||
/* Similar, except do it from the mask. */
|
||
if (GET_CODE (x) == CONST_INT && INTVAL (x) == 0xff)
|
||
fprintf (file, "b");
|
||
else if (GET_CODE (x) == CONST_INT && INTVAL (x) == 0xffff)
|
||
fprintf (file, "w");
|
||
else if (GET_CODE (x) == CONST_INT && INTVAL (x) == 0xffffffff)
|
||
fprintf (file, "l");
|
||
#if HOST_BITS_PER_WIDE_INT == 32
|
||
else if (GET_CODE (x) == CONST_DOUBLE
|
||
&& CONST_DOUBLE_HIGH (x) == 0
|
||
&& CONST_DOUBLE_LOW (x) == -1)
|
||
fprintf (file, "l");
|
||
else if (GET_CODE (x) == CONST_DOUBLE
|
||
&& CONST_DOUBLE_HIGH (x) == -1
|
||
&& CONST_DOUBLE_LOW (x) == -1)
|
||
fprintf (file, "q");
|
||
#else
|
||
else if (GET_CODE (x) == CONST_INT && INTVAL (x) == -1)
|
||
fprintf (file, "q");
|
||
else if (GET_CODE (x) == CONST_DOUBLE
|
||
&& CONST_DOUBLE_HIGH (x) == 0
|
||
&& CONST_DOUBLE_LOW (x) == -1)
|
||
fprintf (file, "q");
|
||
#endif
|
||
else
|
||
output_operand_lossage ("invalid %%U value");
|
||
break;
|
||
|
||
case 's':
|
||
/* Write the constant value divided by 8. */
|
||
if (GET_CODE (x) != CONST_INT
|
||
&& (unsigned HOST_WIDE_INT) INTVAL (x) >= 64
|
||
&& (INTVAL (x) & 7) != 8)
|
||
output_operand_lossage ("invalid %%s value");
|
||
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) / 8);
|
||
break;
|
||
|
||
case 'S':
|
||
/* Same, except compute (64 - c) / 8 */
|
||
|
||
if (GET_CODE (x) != CONST_INT
|
||
&& (unsigned HOST_WIDE_INT) INTVAL (x) >= 64
|
||
&& (INTVAL (x) & 7) != 8)
|
||
output_operand_lossage ("invalid %%s value");
|
||
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC, (64 - INTVAL (x)) / 8);
|
||
break;
|
||
|
||
case 'C': case 'D': case 'c': case 'd':
|
||
/* Write out comparison name. */
|
||
{
|
||
enum rtx_code c = GET_CODE (x);
|
||
|
||
if (GET_RTX_CLASS (c) != '<')
|
||
output_operand_lossage ("invalid %%C value");
|
||
|
||
if (code == 'D')
|
||
c = reverse_condition (c);
|
||
else if (code == 'c')
|
||
c = swap_condition (c);
|
||
else if (code == 'd')
|
||
c = swap_condition (reverse_condition (c));
|
||
|
||
if (c == LEU)
|
||
fprintf (file, "ule");
|
||
else if (c == LTU)
|
||
fprintf (file, "ult");
|
||
else
|
||
fprintf (file, "%s", GET_RTX_NAME (c));
|
||
}
|
||
break;
|
||
|
||
case 'E':
|
||
/* Write the divide or modulus operator. */
|
||
switch (GET_CODE (x))
|
||
{
|
||
case DIV:
|
||
fprintf (file, "div%s", GET_MODE (x) == SImode ? "l" : "q");
|
||
break;
|
||
case UDIV:
|
||
fprintf (file, "div%su", GET_MODE (x) == SImode ? "l" : "q");
|
||
break;
|
||
case MOD:
|
||
fprintf (file, "rem%s", GET_MODE (x) == SImode ? "l" : "q");
|
||
break;
|
||
case UMOD:
|
||
fprintf (file, "rem%su", GET_MODE (x) == SImode ? "l" : "q");
|
||
break;
|
||
default:
|
||
output_operand_lossage ("invalid %%E value");
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case 'A':
|
||
/* Write "_u" for unaligned access. */
|
||
if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == AND)
|
||
fprintf (file, "_u");
|
||
break;
|
||
|
||
case 0:
|
||
if (GET_CODE (x) == REG)
|
||
fprintf (file, "%s", reg_names[REGNO (x)]);
|
||
else if (GET_CODE (x) == MEM)
|
||
output_address (XEXP (x, 0));
|
||
else
|
||
output_addr_const (file, x);
|
||
break;
|
||
|
||
default:
|
||
output_operand_lossage ("invalid %%xn code");
|
||
}
|
||
}
|
||
|
||
void
|
||
print_operand_address (file, addr)
|
||
FILE *file;
|
||
rtx addr;
|
||
{
|
||
int basereg = 31;
|
||
HOST_WIDE_INT offset = 0;
|
||
|
||
if (GET_CODE (addr) == AND)
|
||
addr = XEXP (addr, 0);
|
||
|
||
if (GET_CODE (addr) == PLUS
|
||
&& GET_CODE (XEXP (addr, 1)) == CONST_INT)
|
||
{
|
||
offset = INTVAL (XEXP (addr, 1));
|
||
addr = XEXP (addr, 0);
|
||
}
|
||
if (GET_CODE (addr) == REG)
|
||
basereg = REGNO (addr);
|
||
else if (GET_CODE (addr) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (addr)) == REG)
|
||
basereg = REGNO (SUBREG_REG (addr)) + SUBREG_WORD (addr);
|
||
else if (GET_CODE (addr) == CONST_INT)
|
||
offset = INTVAL (addr);
|
||
else
|
||
abort ();
|
||
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC, offset);
|
||
fprintf (file, "($%d)", basereg);
|
||
}
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline at
|
||
TRAMP. FNADDR is an RTX for the address of the function's pure
|
||
code. CXT is an RTX for the static chain value for the function.
|
||
|
||
The three offset parameters are for the individual template's
|
||
layout. A JMPOFS < 0 indicates that the trampoline does not
|
||
contain instructions at all.
|
||
|
||
We assume here that a function will be called many more times than
|
||
its address is taken (e.g., it might be passed to qsort), so we
|
||
take the trouble to initialize the "hint" field in the JMP insn.
|
||
Note that the hint field is PC (new) + 4 * bits 13:0. */
|
||
|
||
void
|
||
alpha_initialize_trampoline (tramp, fnaddr, cxt, fnofs, cxtofs, jmpofs)
|
||
rtx tramp, fnaddr, cxt;
|
||
int fnofs, cxtofs, jmpofs;
|
||
{
|
||
rtx temp, temp1, addr;
|
||
/* VMS really uses DImode pointers in memory at this point. */
|
||
enum machine_mode mode = TARGET_OPEN_VMS ? Pmode : ptr_mode;
|
||
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
fnaddr = convert_memory_address (mode, fnaddr);
|
||
cxt = convert_memory_address (mode, cxt);
|
||
#endif
|
||
|
||
/* Store function address and CXT. */
|
||
addr = memory_address (mode, plus_constant (tramp, fnofs));
|
||
emit_move_insn (gen_rtx (MEM, mode, addr), fnaddr);
|
||
addr = memory_address (mode, plus_constant (tramp, cxtofs));
|
||
emit_move_insn (gen_rtx (MEM, mode, addr), cxt);
|
||
|
||
/* This has been disabled since the hint only has a 32k range, and in
|
||
no existing OS is the stack within 32k of the text segment. */
|
||
if (0 && jmpofs >= 0)
|
||
{
|
||
/* Compute hint value. */
|
||
temp = force_operand (plus_constant (tramp, jmpofs+4), NULL_RTX);
|
||
temp = expand_binop (DImode, sub_optab, fnaddr, temp, temp, 1,
|
||
OPTAB_WIDEN);
|
||
temp = expand_shift (RSHIFT_EXPR, Pmode, temp,
|
||
build_int_2 (2, 0), NULL_RTX, 1);
|
||
temp = expand_and (gen_lowpart (SImode, temp), GEN_INT (0x3fff), 0);
|
||
|
||
/* Merge in the hint. */
|
||
addr = memory_address (SImode, plus_constant (tramp, jmpofs));
|
||
temp1 = force_reg (SImode, gen_rtx (MEM, SImode, addr));
|
||
temp1 = expand_and (temp1, GEN_INT (0xffffc000), NULL_RTX);
|
||
temp1 = expand_binop (SImode, ior_optab, temp1, temp, temp1, 1,
|
||
OPTAB_WIDEN);
|
||
emit_move_insn (gen_rtx (MEM, SImode, addr), temp1);
|
||
}
|
||
|
||
#ifdef TRANSFER_FROM_TRAMPOLINE
|
||
emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "__enable_execute_stack"),
|
||
0, VOIDmode, 1, addr, Pmode);
|
||
#endif
|
||
|
||
if (jmpofs >= 0)
|
||
emit_insn (gen_imb ());
|
||
}
|
||
|
||
/* Do what is necessary for `va_start'. The argument is ignored;
|
||
We look at the current function to determine if stdarg or varargs
|
||
is used and fill in an initial va_list. A pointer to this constructor
|
||
is returned. */
|
||
|
||
struct rtx_def *
|
||
alpha_builtin_saveregs (arglist)
|
||
tree arglist ATTRIBUTE_UNUSED;
|
||
{
|
||
rtx block, addr, dest, argsize;
|
||
tree fntype = TREE_TYPE (current_function_decl);
|
||
int stdarg = (TYPE_ARG_TYPES (fntype) != 0
|
||
&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
|
||
!= void_type_node));
|
||
|
||
/* Compute the current position into the args, taking into account
|
||
both registers and memory. Both of these are already included in
|
||
NUM_ARGS. */
|
||
|
||
argsize = GEN_INT (NUM_ARGS * UNITS_PER_WORD);
|
||
|
||
/* For Unix, SETUP_INCOMING_VARARGS moves the starting address base up by 48,
|
||
storing fp arg registers in the first 48 bytes, and the integer arg
|
||
registers in the next 48 bytes. This is only done, however, if any
|
||
integer registers need to be stored.
|
||
|
||
If no integer registers need be stored, then we must subtract 48 in
|
||
order to account for the integer arg registers which are counted in
|
||
argsize above, but which are not actually stored on the stack. */
|
||
|
||
if (TARGET_OPEN_VMS)
|
||
addr = plus_constant (virtual_incoming_args_rtx,
|
||
NUM_ARGS <= 5 + stdarg
|
||
? UNITS_PER_WORD : - 6 * UNITS_PER_WORD);
|
||
else
|
||
addr = (NUM_ARGS <= 5 + stdarg
|
||
? plus_constant (virtual_incoming_args_rtx,
|
||
6 * UNITS_PER_WORD)
|
||
: plus_constant (virtual_incoming_args_rtx,
|
||
- (6 * UNITS_PER_WORD)));
|
||
|
||
/* For VMS, we include the argsize, while on Unix, it's handled as
|
||
a separate field. */
|
||
if (TARGET_OPEN_VMS)
|
||
addr = plus_constant (addr, INTVAL (argsize));
|
||
|
||
addr = force_operand (addr, NULL_RTX);
|
||
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
addr = convert_memory_address (ptr_mode, addr);
|
||
#endif
|
||
|
||
if (TARGET_OPEN_VMS)
|
||
return addr;
|
||
else
|
||
{
|
||
/* Allocate the va_list constructor */
|
||
block = assign_stack_local (BLKmode, 2 * UNITS_PER_WORD, BITS_PER_WORD);
|
||
RTX_UNCHANGING_P (block) = 1;
|
||
RTX_UNCHANGING_P (XEXP (block, 0)) = 1;
|
||
|
||
/* Store the address of the first integer register in the __base
|
||
member. */
|
||
|
||
dest = change_address (block, ptr_mode, XEXP (block, 0));
|
||
emit_move_insn (dest, addr);
|
||
|
||
if (current_function_check_memory_usage)
|
||
emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
|
||
dest, ptr_mode,
|
||
GEN_INT (GET_MODE_SIZE (ptr_mode)),
|
||
TYPE_MODE (sizetype),
|
||
GEN_INT (MEMORY_USE_RW),
|
||
TYPE_MODE (integer_type_node));
|
||
|
||
/* Store the argsize as the __va_offset member. */
|
||
dest = change_address (block, TYPE_MODE (integer_type_node),
|
||
plus_constant (XEXP (block, 0),
|
||
POINTER_SIZE/BITS_PER_UNIT));
|
||
emit_move_insn (dest, argsize);
|
||
|
||
if (current_function_check_memory_usage)
|
||
emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
|
||
dest, ptr_mode,
|
||
GEN_INT (GET_MODE_SIZE
|
||
(TYPE_MODE (integer_type_node))),
|
||
TYPE_MODE (sizetype),
|
||
GEN_INT (MEMORY_USE_RW),
|
||
TYPE_MODE (integer_type_node));
|
||
|
||
/* Return the address of the va_list constructor, but don't put it in a
|
||
register. Doing so would fail when not optimizing and produce worse
|
||
code when optimizing. */
|
||
return XEXP (block, 0);
|
||
}
|
||
}
|
||
|
||
/* This page contains routines that are used to determine what the function
|
||
prologue and epilogue code will do and write them out. */
|
||
|
||
/* Compute the size of the save area in the stack. */
|
||
|
||
/* These variables are used for communication between the following functions.
|
||
They indicate various things about the current function being compiled
|
||
that are used to tell what kind of prologue, epilogue and procedure
|
||
descriptior to generate. */
|
||
|
||
/* Nonzero if we need a stack procedure. */
|
||
static int vms_is_stack_procedure;
|
||
|
||
/* Register number (either FP or SP) that is used to unwind the frame. */
|
||
static int vms_unwind_regno;
|
||
|
||
/* Register number used to save FP. We need not have one for RA since
|
||
we don't modify it for register procedures. This is only defined
|
||
for register frame procedures. */
|
||
static int vms_save_fp_regno;
|
||
|
||
/* Register number used to reference objects off our PV. */
|
||
static int vms_base_regno;
|
||
|
||
/* Compute register masks for saved registers. */
|
||
|
||
static void
|
||
alpha_sa_mask (imaskP, fmaskP)
|
||
unsigned long *imaskP;
|
||
unsigned long *fmaskP;
|
||
{
|
||
unsigned long imask = 0;
|
||
unsigned long fmask = 0;
|
||
int i;
|
||
|
||
#ifdef ASM_OUTPUT_MI_THUNK
|
||
if (!current_function_is_thunk)
|
||
#endif
|
||
{
|
||
if (TARGET_OPEN_VMS && vms_is_stack_procedure)
|
||
imask |= (1L << HARD_FRAME_POINTER_REGNUM);
|
||
|
||
/* One for every register we have to save. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (! fixed_regs[i] && ! call_used_regs[i]
|
||
&& regs_ever_live[i] && i != REG_RA)
|
||
{
|
||
if (i < 32)
|
||
imask |= (1L << i);
|
||
else
|
||
fmask |= (1L << (i - 32));
|
||
}
|
||
|
||
if (imask || fmask || alpha_ra_ever_killed ())
|
||
imask |= (1L << REG_RA);
|
||
}
|
||
|
||
*imaskP = imask;
|
||
*fmaskP = fmask;
|
||
}
|
||
|
||
int
|
||
alpha_sa_size ()
|
||
{
|
||
int sa_size = 0;
|
||
int i;
|
||
|
||
#ifdef ASM_OUTPUT_MI_THUNK
|
||
if (current_function_is_thunk)
|
||
sa_size = 0;
|
||
else
|
||
#endif
|
||
{
|
||
/* One for every register we have to save. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (! fixed_regs[i] && ! call_used_regs[i]
|
||
&& regs_ever_live[i] && i != REG_RA)
|
||
sa_size++;
|
||
}
|
||
|
||
if (TARGET_OPEN_VMS)
|
||
{
|
||
/* Start by assuming we can use a register procedure if we don't
|
||
make any calls (REG_RA not used) or need to save any
|
||
registers and a stack procedure if we do. */
|
||
vms_is_stack_procedure = sa_size != 0 || alpha_ra_ever_killed ();
|
||
|
||
/* Decide whether to refer to objects off our PV via FP or PV.
|
||
If we need FP for something else or if we receive a nonlocal
|
||
goto (which expects PV to contain the value), we must use PV.
|
||
Otherwise, start by assuming we can use FP. */
|
||
vms_base_regno = (frame_pointer_needed
|
||
|| current_function_has_nonlocal_label
|
||
|| vms_is_stack_procedure
|
||
|| current_function_outgoing_args_size
|
||
? REG_PV : HARD_FRAME_POINTER_REGNUM);
|
||
|
||
/* If we want to copy PV into FP, we need to find some register
|
||
in which to save FP. */
|
||
|
||
vms_save_fp_regno = -1;
|
||
if (vms_base_regno == HARD_FRAME_POINTER_REGNUM)
|
||
for (i = 0; i < 32; i++)
|
||
if (! fixed_regs[i] && call_used_regs[i] && ! regs_ever_live[i])
|
||
vms_save_fp_regno = i;
|
||
|
||
if (vms_save_fp_regno == -1)
|
||
vms_base_regno = REG_PV, vms_is_stack_procedure = 1;
|
||
|
||
/* Stack unwinding should be done via FP unless we use it for PV. */
|
||
vms_unwind_regno = (vms_base_regno == REG_PV
|
||
? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
|
||
|
||
/* If this is a stack procedure, allow space for saving FP and RA. */
|
||
if (vms_is_stack_procedure)
|
||
sa_size += 2;
|
||
}
|
||
else
|
||
{
|
||
/* If some registers were saved but not RA, RA must also be saved,
|
||
so leave space for it. */
|
||
if (sa_size != 0 || alpha_ra_ever_killed ())
|
||
sa_size++;
|
||
|
||
/* Our size must be even (multiple of 16 bytes). */
|
||
if (sa_size & 1)
|
||
sa_size++;
|
||
}
|
||
|
||
return sa_size * 8;
|
||
}
|
||
|
||
int
|
||
alpha_pv_save_size ()
|
||
{
|
||
alpha_sa_size ();
|
||
return vms_is_stack_procedure ? 8 : 0;
|
||
}
|
||
|
||
int
|
||
alpha_using_fp ()
|
||
{
|
||
alpha_sa_size ();
|
||
return vms_unwind_regno == HARD_FRAME_POINTER_REGNUM;
|
||
}
|
||
|
||
int
|
||
vms_valid_decl_attribute_p (decl, attributes, identifier, args)
|
||
tree decl ATTRIBUTE_UNUSED;
|
||
tree attributes ATTRIBUTE_UNUSED;
|
||
tree identifier;
|
||
tree args;
|
||
{
|
||
if (is_attribute_p ("overlaid", identifier))
|
||
return (args == NULL_TREE);
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
alpha_does_function_need_gp ()
|
||
{
|
||
rtx insn;
|
||
|
||
/* We never need a GP for Windows/NT or VMS. */
|
||
if (TARGET_WINDOWS_NT || TARGET_OPEN_VMS)
|
||
return 0;
|
||
|
||
#ifdef TARGET_PROFILING_NEEDS_GP
|
||
if (profile_flag)
|
||
return 1;
|
||
#endif
|
||
|
||
#ifdef ASM_OUTPUT_MI_THUNK
|
||
if (current_function_is_thunk)
|
||
return 1;
|
||
#endif
|
||
|
||
/* If we need a GP (we have a LDSYM insn or a CALL_INSN), load it first.
|
||
Even if we are a static function, we still need to do this in case
|
||
our address is taken and passed to something like qsort. */
|
||
|
||
push_topmost_sequence ();
|
||
insn = get_insns ();
|
||
pop_topmost_sequence ();
|
||
|
||
for (; insn; insn = NEXT_INSN (insn))
|
||
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
|
||
&& GET_CODE (PATTERN (insn)) != USE
|
||
&& GET_CODE (PATTERN (insn)) != CLOBBER)
|
||
{
|
||
enum attr_type type = get_attr_type (insn);
|
||
if (type == TYPE_LDSYM || type == TYPE_JSR)
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Write a version stamp. Don't write anything if we are running as a
|
||
cross-compiler. Otherwise, use the versions in /usr/include/stamp.h. */
|
||
|
||
#ifdef HAVE_STAMP_H
|
||
#include <stamp.h>
|
||
#endif
|
||
|
||
void
|
||
alpha_write_verstamp (file)
|
||
FILE *file ATTRIBUTE_UNUSED;
|
||
{
|
||
#ifdef MS_STAMP
|
||
fprintf (file, "\t.verstamp %d %d\n", MS_STAMP, LS_STAMP);
|
||
#endif
|
||
}
|
||
|
||
/* Helper function to set RTX_FRAME_RELATED_P on instructions, including
|
||
sequences. */
|
||
|
||
static rtx
|
||
set_frame_related_p ()
|
||
{
|
||
rtx seq = gen_sequence ();
|
||
end_sequence ();
|
||
|
||
if (GET_CODE (seq) == SEQUENCE)
|
||
{
|
||
int i = XVECLEN (seq, 0);
|
||
while (--i >= 0)
|
||
RTX_FRAME_RELATED_P (XVECEXP (seq, 0, i)) = 1;
|
||
return emit_insn (seq);
|
||
}
|
||
else
|
||
{
|
||
seq = emit_insn (seq);
|
||
RTX_FRAME_RELATED_P (seq) = 1;
|
||
return seq;
|
||
}
|
||
}
|
||
|
||
#define FRP(exp) (start_sequence (), exp, set_frame_related_p ())
|
||
|
||
/* Write function prologue. */
|
||
|
||
/* On vms we have two kinds of functions:
|
||
|
||
- stack frame (PROC_STACK)
|
||
these are 'normal' functions with local vars and which are
|
||
calling other functions
|
||
- register frame (PROC_REGISTER)
|
||
keeps all data in registers, needs no stack
|
||
|
||
We must pass this to the assembler so it can generate the
|
||
proper pdsc (procedure descriptor)
|
||
This is done with the '.pdesc' command.
|
||
|
||
On not-vms, we don't really differentiate between the two, as we can
|
||
simply allocate stack without saving registers. */
|
||
|
||
void
|
||
alpha_expand_prologue ()
|
||
{
|
||
/* Registers to save. */
|
||
unsigned long imask = 0;
|
||
unsigned long fmask = 0;
|
||
/* Stack space needed for pushing registers clobbered by us. */
|
||
HOST_WIDE_INT sa_size;
|
||
/* Complete stack size needed. */
|
||
HOST_WIDE_INT frame_size;
|
||
/* Offset from base reg to register save area. */
|
||
HOST_WIDE_INT reg_offset;
|
||
rtx sa_reg, mem;
|
||
int i;
|
||
|
||
sa_size = alpha_sa_size ();
|
||
|
||
frame_size = get_frame_size ();
|
||
if (TARGET_OPEN_VMS)
|
||
frame_size = ALPHA_ROUND (sa_size
|
||
+ (vms_is_stack_procedure ? 8 : 0)
|
||
+ frame_size
|
||
+ current_function_pretend_args_size);
|
||
else
|
||
frame_size = (ALPHA_ROUND (current_function_outgoing_args_size)
|
||
+ sa_size
|
||
+ ALPHA_ROUND (frame_size
|
||
+ current_function_pretend_args_size));
|
||
|
||
if (TARGET_OPEN_VMS)
|
||
reg_offset = 8;
|
||
else
|
||
reg_offset = ALPHA_ROUND (current_function_outgoing_args_size);
|
||
|
||
alpha_sa_mask (&imask, &fmask);
|
||
|
||
/* Adjust the stack by the frame size. If the frame size is > 4096
|
||
bytes, we need to be sure we probe somewhere in the first and last
|
||
4096 bytes (we can probably get away without the latter test) and
|
||
every 8192 bytes in between. If the frame size is > 32768, we
|
||
do this in a loop. Otherwise, we generate the explicit probe
|
||
instructions.
|
||
|
||
Note that we are only allowed to adjust sp once in the prologue. */
|
||
|
||
if (frame_size <= 32768)
|
||
{
|
||
if (frame_size > 4096)
|
||
{
|
||
int probed = 4096;
|
||
|
||
do
|
||
emit_insn (gen_probe_stack (GEN_INT (-probed)));
|
||
while ((probed += 8192) < frame_size);
|
||
|
||
/* We only have to do this probe if we aren't saving registers. */
|
||
if (sa_size == 0 && probed + 4096 < frame_size)
|
||
emit_insn (gen_probe_stack (GEN_INT (-frame_size)));
|
||
}
|
||
|
||
if (frame_size != 0)
|
||
{
|
||
FRP (emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx,
|
||
GEN_INT (-frame_size))));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Here we generate code to set R22 to SP + 4096 and set R23 to the
|
||
number of 8192 byte blocks to probe. We then probe each block
|
||
in the loop and then set SP to the proper location. If the
|
||
amount remaining is > 4096, we have to do one more probe if we
|
||
are not saving any registers. */
|
||
|
||
HOST_WIDE_INT blocks = (frame_size + 4096) / 8192;
|
||
HOST_WIDE_INT leftover = frame_size + 4096 - blocks * 8192;
|
||
rtx ptr = gen_rtx_REG (DImode, 22);
|
||
rtx count = gen_rtx_REG (DImode, 23);
|
||
rtx seq;
|
||
|
||
emit_move_insn (count, GEN_INT (blocks));
|
||
emit_insn (gen_adddi3 (ptr, stack_pointer_rtx, GEN_INT (4096)));
|
||
|
||
/* Because of the difficulty in emitting a new basic block this
|
||
late in the compilation, generate the loop as a single insn. */
|
||
emit_insn (gen_prologue_stack_probe_loop (count, ptr));
|
||
|
||
if (leftover > 4096 && sa_size == 0)
|
||
{
|
||
rtx last = gen_rtx_MEM (DImode, plus_constant (ptr, -leftover));
|
||
MEM_VOLATILE_P (last) = 1;
|
||
emit_move_insn (last, const0_rtx);
|
||
}
|
||
|
||
if (TARGET_WINDOWS_NT)
|
||
{
|
||
/* For NT stack unwind (done by 'reverse execution'), it's
|
||
not OK to take the result of a loop, even though the value
|
||
is already in ptr, so we reload it via a single operation
|
||
and subtract it to sp.
|
||
|
||
Yes, that's correct -- we have to reload the whole constant
|
||
into a temporary via ldah+lda then subtract from sp. To
|
||
ensure we get ldah+lda, we use a special pattern. */
|
||
|
||
HOST_WIDE_INT lo, hi;
|
||
lo = ((frame_size & 0xffff) ^ 0x8000) - 0x8000;
|
||
hi = frame_size - lo;
|
||
|
||
emit_move_insn (ptr, GEN_INT (hi));
|
||
emit_insn (gen_nt_lda (ptr, GEN_INT (lo)));
|
||
seq = emit_insn (gen_subdi3 (stack_pointer_rtx, stack_pointer_rtx,
|
||
ptr));
|
||
}
|
||
else
|
||
{
|
||
seq = emit_insn (gen_adddi3 (stack_pointer_rtx, ptr,
|
||
GEN_INT (-leftover)));
|
||
}
|
||
|
||
/* This alternative is special, because the DWARF code cannot
|
||
possibly intuit through the loop above. So we invent this
|
||
note it looks at instead. */
|
||
RTX_FRAME_RELATED_P (seq) = 1;
|
||
REG_NOTES (seq)
|
||
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
|
||
gen_rtx_SET (VOIDmode, stack_pointer_rtx,
|
||
gen_rtx_PLUS (Pmode, stack_pointer_rtx,
|
||
GEN_INT (-frame_size))),
|
||
REG_NOTES (seq));
|
||
}
|
||
|
||
/* Cope with very large offsets to the register save area. */
|
||
sa_reg = stack_pointer_rtx;
|
||
if (reg_offset + sa_size > 0x8000)
|
||
{
|
||
int low = ((reg_offset & 0xffff) ^ 0x8000) - 0x8000;
|
||
HOST_WIDE_INT bias;
|
||
|
||
if (low + sa_size <= 0x8000)
|
||
bias = reg_offset - low, reg_offset = low;
|
||
else
|
||
bias = reg_offset, reg_offset = 0;
|
||
|
||
sa_reg = gen_rtx_REG (DImode, 24);
|
||
FRP (emit_insn (gen_adddi3 (sa_reg, stack_pointer_rtx, GEN_INT (bias))));
|
||
}
|
||
|
||
/* Save regs in stack order. Beginning with VMS PV. */
|
||
if (TARGET_OPEN_VMS && vms_is_stack_procedure)
|
||
{
|
||
mem = gen_rtx_MEM (DImode, stack_pointer_rtx);
|
||
MEM_ALIAS_SET (mem) = alpha_sr_alias_set;
|
||
FRP (emit_move_insn (mem, gen_rtx_REG (DImode, REG_PV)));
|
||
}
|
||
|
||
/* Save register RA next. */
|
||
if (imask & (1L << REG_RA))
|
||
{
|
||
mem = gen_rtx_MEM (DImode, plus_constant (sa_reg, reg_offset));
|
||
MEM_ALIAS_SET (mem) = alpha_sr_alias_set;
|
||
FRP (emit_move_insn (mem, gen_rtx_REG (DImode, REG_RA)));
|
||
imask &= ~(1L << REG_RA);
|
||
reg_offset += 8;
|
||
}
|
||
|
||
/* Now save any other registers required to be saved. */
|
||
for (i = 0; i < 32; i++)
|
||
if (imask & (1L << i))
|
||
{
|
||
mem = gen_rtx_MEM (DImode, plus_constant (sa_reg, reg_offset));
|
||
MEM_ALIAS_SET (mem) = alpha_sr_alias_set;
|
||
FRP (emit_move_insn (mem, gen_rtx_REG (DImode, i)));
|
||
reg_offset += 8;
|
||
}
|
||
|
||
for (i = 0; i < 32; i++)
|
||
if (fmask & (1L << i))
|
||
{
|
||
mem = gen_rtx_MEM (DFmode, plus_constant (sa_reg, reg_offset));
|
||
MEM_ALIAS_SET (mem) = alpha_sr_alias_set;
|
||
FRP (emit_move_insn (mem, gen_rtx_REG (DFmode, i+32)));
|
||
reg_offset += 8;
|
||
}
|
||
|
||
if (TARGET_OPEN_VMS)
|
||
{
|
||
if (!vms_is_stack_procedure)
|
||
{
|
||
/* Register frame procedures fave the fp. */
|
||
FRP (emit_move_insn (gen_rtx_REG (DImode, vms_save_fp_regno),
|
||
hard_frame_pointer_rtx));
|
||
}
|
||
|
||
if (vms_base_regno != REG_PV)
|
||
FRP (emit_move_insn (gen_rtx_REG (DImode, vms_base_regno),
|
||
gen_rtx_REG (DImode, REG_PV)));
|
||
|
||
if (vms_unwind_regno == HARD_FRAME_POINTER_REGNUM)
|
||
{
|
||
FRP (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
|
||
}
|
||
|
||
/* If we have to allocate space for outgoing args, do it now. */
|
||
if (current_function_outgoing_args_size != 0)
|
||
{
|
||
FRP (emit_move_insn (stack_pointer_rtx,
|
||
plus_constant (hard_frame_pointer_rtx,
|
||
- ALPHA_ROUND (current_function_outgoing_args_size))));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* If we need a frame pointer, set it from the stack pointer. */
|
||
if (frame_pointer_needed)
|
||
{
|
||
if (TARGET_CAN_FAULT_IN_PROLOGUE)
|
||
FRP (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
|
||
else
|
||
{
|
||
/* This must always be the last instruction in the
|
||
prologue, thus we emit a special move + clobber. */
|
||
FRP (emit_insn (gen_init_fp (hard_frame_pointer_rtx,
|
||
stack_pointer_rtx, sa_reg)));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* The ABIs for VMS and OSF/1 say that while we can schedule insns into
|
||
the prologue, for exception handling reasons, we cannot do this for
|
||
any insn that might fault. We could prevent this for mems with a
|
||
(clobber:BLK (scratch)), but this doesn't work for fp insns. So we
|
||
have to prevent all such scheduling with a blockage.
|
||
|
||
Linux, on the other hand, never bothered to implement OSF/1's
|
||
exception handling, and so doesn't care about such things. Anyone
|
||
planning to use dwarf2 frame-unwind info can also omit the blockage. */
|
||
|
||
if (! TARGET_CAN_FAULT_IN_PROLOGUE)
|
||
emit_insn (gen_blockage ());
|
||
}
|
||
|
||
/* Output the textual info surrounding the prologue. */
|
||
|
||
void
|
||
alpha_start_function (file, fnname, decl)
|
||
FILE *file;
|
||
char *fnname;
|
||
tree decl ATTRIBUTE_UNUSED;
|
||
{
|
||
unsigned long imask = 0;
|
||
unsigned long fmask = 0;
|
||
/* Stack space needed for pushing registers clobbered by us. */
|
||
HOST_WIDE_INT sa_size;
|
||
/* Complete stack size needed. */
|
||
HOST_WIDE_INT frame_size;
|
||
/* Offset from base reg to register save area. */
|
||
HOST_WIDE_INT reg_offset;
|
||
char *entry_label = (char *) alloca (strlen (fnname) + 6);
|
||
int i;
|
||
|
||
sa_size = alpha_sa_size ();
|
||
|
||
frame_size = get_frame_size ();
|
||
if (TARGET_OPEN_VMS)
|
||
frame_size = ALPHA_ROUND (sa_size
|
||
+ (vms_is_stack_procedure ? 8 : 0)
|
||
+ frame_size
|
||
+ current_function_pretend_args_size);
|
||
else
|
||
frame_size = (ALPHA_ROUND (current_function_outgoing_args_size)
|
||
+ sa_size
|
||
+ ALPHA_ROUND (frame_size
|
||
+ current_function_pretend_args_size));
|
||
|
||
if (TARGET_OPEN_VMS)
|
||
reg_offset = 8;
|
||
else
|
||
reg_offset = ALPHA_ROUND (current_function_outgoing_args_size);
|
||
|
||
alpha_sa_mask (&imask, &fmask);
|
||
|
||
/* Ecoff can handle multiple .file directives, so put out file and lineno.
|
||
We have to do that before the .ent directive as we cannot switch
|
||
files within procedures with native ecoff because line numbers are
|
||
linked to procedure descriptors.
|
||
Outputting the lineno helps debugging of one line functions as they
|
||
would otherwise get no line number at all. Please note that we would
|
||
like to put out last_linenum from final.c, but it is not accessible. */
|
||
|
||
if (write_symbols == SDB_DEBUG)
|
||
{
|
||
ASM_OUTPUT_SOURCE_FILENAME (file,
|
||
DECL_SOURCE_FILE (current_function_decl));
|
||
if (debug_info_level != DINFO_LEVEL_TERSE)
|
||
ASM_OUTPUT_SOURCE_LINE (file,
|
||
DECL_SOURCE_LINE (current_function_decl));
|
||
}
|
||
|
||
/* Issue function start and label. */
|
||
if (TARGET_OPEN_VMS || !flag_inhibit_size_directive)
|
||
{
|
||
fputs ("\t.ent ", file);
|
||
assemble_name (file, fnname);
|
||
putc ('\n', file);
|
||
}
|
||
|
||
strcpy (entry_label, fnname);
|
||
if (TARGET_OPEN_VMS)
|
||
strcat (entry_label, "..en");
|
||
ASM_OUTPUT_LABEL (file, entry_label);
|
||
inside_function = TRUE;
|
||
|
||
if (TARGET_OPEN_VMS)
|
||
fprintf (file, "\t.base $%d\n", vms_base_regno);
|
||
|
||
if (!TARGET_OPEN_VMS && TARGET_IEEE_CONFORMANT
|
||
&& !flag_inhibit_size_directive)
|
||
{
|
||
/* Set flags in procedure descriptor to request IEEE-conformant
|
||
math-library routines. The value we set it to is PDSC_EXC_IEEE
|
||
(/usr/include/pdsc.h). */
|
||
fputs ("\t.eflag 48\n", file);
|
||
}
|
||
|
||
/* Set up offsets to alpha virtual arg/local debugging pointer. */
|
||
alpha_auto_offset = -frame_size + current_function_pretend_args_size;
|
||
alpha_arg_offset = -frame_size + 48;
|
||
|
||
/* Describe our frame. If the frame size is larger than an integer,
|
||
print it as zero to avoid an assembler error. We won't be
|
||
properly describing such a frame, but that's the best we can do. */
|
||
if (TARGET_OPEN_VMS)
|
||
{
|
||
fprintf (file, "\t.frame $%d,", vms_unwind_regno);
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC,
|
||
frame_size >= (1l << 31) ? 0 : frame_size);
|
||
fputs (",$26,", file);
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC, reg_offset);
|
||
fputs ("\n", file);
|
||
}
|
||
else if (!flag_inhibit_size_directive)
|
||
{
|
||
fprintf (file, "\t.frame $%d,",
|
||
(frame_pointer_needed
|
||
? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM));
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC,
|
||
frame_size >= (1l << 31) ? 0 : frame_size);
|
||
fprintf (file, ",$26,%d\n", current_function_pretend_args_size);
|
||
}
|
||
|
||
/* Describe which registers were spilled. */
|
||
if (TARGET_OPEN_VMS)
|
||
{
|
||
if (imask)
|
||
/* ??? Does VMS care if mask contains ra? The old code did'nt
|
||
set it, so I don't here. */
|
||
fprintf (file, "\t.mask 0x%lx,0\n", imask & ~(1L << REG_RA));
|
||
if (fmask)
|
||
fprintf (file, "\t.fmask 0x%lx,0\n", fmask);
|
||
if (!vms_is_stack_procedure)
|
||
fprintf (file, "\t.fp_save $%d\n", vms_save_fp_regno);
|
||
}
|
||
else if (!flag_inhibit_size_directive)
|
||
{
|
||
if (imask)
|
||
{
|
||
fprintf (file, "\t.mask 0x%lx,", imask);
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC,
|
||
frame_size >= (1l << 31) ? 0 : reg_offset - frame_size);
|
||
putc ('\n', file);
|
||
|
||
for (i = 0; i < 32; ++i)
|
||
if (imask & (1L << i))
|
||
reg_offset += 8;
|
||
}
|
||
|
||
if (fmask)
|
||
{
|
||
fprintf (file, "\t.fmask 0x%lx,", fmask);
|
||
fprintf (file, HOST_WIDE_INT_PRINT_DEC,
|
||
frame_size >= (1l << 31) ? 0 : reg_offset - frame_size);
|
||
putc ('\n', file);
|
||
}
|
||
}
|
||
|
||
/* Emit GP related things. It is rather unfortunate about the alignment
|
||
issues surrounding a CODE_LABEL that forces us to do the label in
|
||
plain text. */
|
||
if (!TARGET_OPEN_VMS && !TARGET_WINDOWS_NT)
|
||
{
|
||
alpha_function_needs_gp = alpha_does_function_need_gp ();
|
||
if (alpha_function_needs_gp)
|
||
fputs ("\tldgp $29,0($27)\n", file);
|
||
|
||
putc ('$', file);
|
||
assemble_name (file, fnname);
|
||
fputs ("..ng:\n", file);
|
||
}
|
||
|
||
#ifdef OPEN_VMS
|
||
/* Ifdef'ed cause readonly_section and link_section are only
|
||
available then. */
|
||
readonly_section ();
|
||
fprintf (file, "\t.align 3\n");
|
||
assemble_name (file, fnname); fputs ("..na:\n", file);
|
||
fputs ("\t.ascii \"", file);
|
||
assemble_name (file, fnname);
|
||
fputs ("\\0\"\n", file);
|
||
|
||
link_section ();
|
||
fprintf (file, "\t.align 3\n");
|
||
fputs ("\t.name ", file);
|
||
assemble_name (file, fnname);
|
||
fputs ("..na\n", file);
|
||
ASM_OUTPUT_LABEL (file, fnname);
|
||
fprintf (file, "\t.pdesc ");
|
||
assemble_name (file, fnname);
|
||
fprintf (file, "..en,%s\n", vms_is_stack_procedure ? "stack" : "reg");
|
||
alpha_need_linkage (fnname, 1);
|
||
text_section ();
|
||
#endif
|
||
}
|
||
|
||
/* Emit the .prologue note at the scheduled end of the prologue. */
|
||
|
||
void
|
||
output_end_prologue (file)
|
||
FILE *file;
|
||
{
|
||
if (TARGET_OPEN_VMS)
|
||
fputs ("\t.prologue\n", file);
|
||
else if (TARGET_WINDOWS_NT)
|
||
fputs ("\t.prologue 0\n", file);
|
||
else if (!flag_inhibit_size_directive)
|
||
fprintf (file, "\t.prologue %d\n", alpha_function_needs_gp);
|
||
}
|
||
|
||
/* Write function epilogue. */
|
||
|
||
/* ??? At some point we will want to support full unwind, and so will
|
||
need to mark the epilogue as well. At the moment, we just confuse
|
||
dwarf2out. */
|
||
#undef FRP
|
||
#define FRP(exp) exp
|
||
|
||
void
|
||
alpha_expand_epilogue ()
|
||
{
|
||
/* Registers to save. */
|
||
unsigned long imask = 0;
|
||
unsigned long fmask = 0;
|
||
/* Stack space needed for pushing registers clobbered by us. */
|
||
HOST_WIDE_INT sa_size;
|
||
/* Complete stack size needed. */
|
||
HOST_WIDE_INT frame_size;
|
||
/* Offset from base reg to register save area. */
|
||
HOST_WIDE_INT reg_offset;
|
||
int fp_is_frame_pointer, fp_offset;
|
||
rtx sa_reg, sa_reg_exp = NULL;
|
||
rtx sp_adj1, sp_adj2, mem;
|
||
int i;
|
||
|
||
sa_size = alpha_sa_size ();
|
||
|
||
frame_size = get_frame_size ();
|
||
if (TARGET_OPEN_VMS)
|
||
frame_size = ALPHA_ROUND (sa_size
|
||
+ (vms_is_stack_procedure ? 8 : 0)
|
||
+ frame_size
|
||
+ current_function_pretend_args_size);
|
||
else
|
||
frame_size = (ALPHA_ROUND (current_function_outgoing_args_size)
|
||
+ sa_size
|
||
+ ALPHA_ROUND (frame_size
|
||
+ current_function_pretend_args_size));
|
||
|
||
if (TARGET_OPEN_VMS)
|
||
reg_offset = 8;
|
||
else
|
||
reg_offset = ALPHA_ROUND (current_function_outgoing_args_size);
|
||
|
||
alpha_sa_mask (&imask, &fmask);
|
||
|
||
fp_is_frame_pointer = ((TARGET_OPEN_VMS && vms_is_stack_procedure)
|
||
|| (!TARGET_OPEN_VMS && frame_pointer_needed));
|
||
|
||
if (sa_size)
|
||
{
|
||
/* If we have a frame pointer, restore SP from it. */
|
||
if ((TARGET_OPEN_VMS
|
||
&& vms_unwind_regno == HARD_FRAME_POINTER_REGNUM)
|
||
|| (!TARGET_OPEN_VMS && frame_pointer_needed))
|
||
{
|
||
FRP (emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx));
|
||
}
|
||
|
||
/* Cope with very large offsets to the register save area. */
|
||
sa_reg = stack_pointer_rtx;
|
||
if (reg_offset + sa_size > 0x8000)
|
||
{
|
||
int low = ((reg_offset & 0xffff) ^ 0x8000) - 0x8000;
|
||
HOST_WIDE_INT bias;
|
||
|
||
if (low + sa_size <= 0x8000)
|
||
bias = reg_offset - low, reg_offset = low;
|
||
else
|
||
bias = reg_offset, reg_offset = 0;
|
||
|
||
sa_reg = gen_rtx_REG (DImode, 22);
|
||
sa_reg_exp = plus_constant (stack_pointer_rtx, bias);
|
||
|
||
FRP (emit_move_insn (sa_reg, sa_reg_exp));
|
||
}
|
||
|
||
/* Restore registers in order, excepting a true frame pointer. */
|
||
|
||
if (! alpha_eh_epilogue_sp_ofs)
|
||
{
|
||
mem = gen_rtx_MEM (DImode, plus_constant(sa_reg, reg_offset));
|
||
MEM_ALIAS_SET (mem) = alpha_sr_alias_set;
|
||
FRP (emit_move_insn (gen_rtx_REG (DImode, REG_RA), mem));
|
||
}
|
||
reg_offset += 8;
|
||
imask &= ~(1L << REG_RA);
|
||
|
||
for (i = 0; i < 32; ++i)
|
||
if (imask & (1L << i))
|
||
{
|
||
if (i == HARD_FRAME_POINTER_REGNUM && fp_is_frame_pointer)
|
||
fp_offset = reg_offset;
|
||
else
|
||
{
|
||
mem = gen_rtx_MEM (DImode, plus_constant(sa_reg, reg_offset));
|
||
MEM_ALIAS_SET (mem) = alpha_sr_alias_set;
|
||
FRP (emit_move_insn (gen_rtx_REG (DImode, i), mem));
|
||
}
|
||
reg_offset += 8;
|
||
}
|
||
|
||
for (i = 0; i < 32; ++i)
|
||
if (fmask & (1L << i))
|
||
{
|
||
mem = gen_rtx_MEM (DFmode, plus_constant(sa_reg, reg_offset));
|
||
MEM_ALIAS_SET (mem) = alpha_sr_alias_set;
|
||
FRP (emit_move_insn (gen_rtx_REG (DFmode, i+32), mem));
|
||
reg_offset += 8;
|
||
}
|
||
}
|
||
|
||
if (frame_size || alpha_eh_epilogue_sp_ofs)
|
||
{
|
||
sp_adj1 = stack_pointer_rtx;
|
||
|
||
if (alpha_eh_epilogue_sp_ofs)
|
||
{
|
||
sp_adj1 = gen_rtx_REG (DImode, 23);
|
||
emit_move_insn (sp_adj1,
|
||
gen_rtx_PLUS (Pmode, stack_pointer_rtx,
|
||
alpha_eh_epilogue_sp_ofs));
|
||
}
|
||
|
||
/* If the stack size is large, begin computation into a temporary
|
||
register so as not to interfere with a potential fp restore,
|
||
which must be consecutive with an SP restore. */
|
||
if (frame_size < 32768)
|
||
sp_adj2 = GEN_INT (frame_size);
|
||
else if (frame_size < 0x40007fffL)
|
||
{
|
||
int low = ((frame_size & 0xffff) ^ 0x8000) - 0x8000;
|
||
|
||
sp_adj2 = plus_constant (sp_adj1, frame_size - low);
|
||
if (sa_reg_exp && rtx_equal_p (sa_reg_exp, sp_adj2))
|
||
sp_adj1 = sa_reg;
|
||
else
|
||
{
|
||
sp_adj1 = gen_rtx_REG (DImode, 23);
|
||
FRP (emit_move_insn (sp_adj1, sp_adj2));
|
||
}
|
||
sp_adj2 = GEN_INT (low);
|
||
}
|
||
else
|
||
{
|
||
rtx tmp = gen_rtx_REG (DImode, 23);
|
||
FRP (sp_adj2 = alpha_emit_set_const (tmp, DImode, frame_size, 3));
|
||
if (!sp_adj2)
|
||
{
|
||
/* We can't drop new things to memory this late, afaik,
|
||
so build it up by pieces. */
|
||
FRP (sp_adj2 = alpha_emit_set_long_const (tmp, frame_size,
|
||
-(frame_size < 0)));
|
||
if (!sp_adj2)
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* From now on, things must be in order. So emit blockages. */
|
||
|
||
/* Restore the frame pointer. */
|
||
if (fp_is_frame_pointer)
|
||
{
|
||
emit_insn (gen_blockage ());
|
||
mem = gen_rtx_MEM (DImode, plus_constant(sa_reg, fp_offset));
|
||
MEM_ALIAS_SET (mem) = alpha_sr_alias_set;
|
||
FRP (emit_move_insn (hard_frame_pointer_rtx, mem));
|
||
}
|
||
else if (TARGET_OPEN_VMS)
|
||
{
|
||
emit_insn (gen_blockage ());
|
||
FRP (emit_move_insn (hard_frame_pointer_rtx,
|
||
gen_rtx_REG (DImode, vms_save_fp_regno)));
|
||
}
|
||
|
||
/* Restore the stack pointer. */
|
||
emit_insn (gen_blockage ());
|
||
FRP (emit_move_insn (stack_pointer_rtx,
|
||
gen_rtx_PLUS (DImode, sp_adj1, sp_adj2)));
|
||
}
|
||
else
|
||
{
|
||
if (TARGET_OPEN_VMS && !vms_is_stack_procedure)
|
||
{
|
||
emit_insn (gen_blockage ());
|
||
FRP (emit_move_insn (hard_frame_pointer_rtx,
|
||
gen_rtx_REG (DImode, vms_save_fp_regno)));
|
||
}
|
||
}
|
||
|
||
/* Return. */
|
||
emit_jump_insn (gen_return_internal ());
|
||
}
|
||
|
||
/* Output the rest of the textual info surrounding the epilogue. */
|
||
|
||
void
|
||
alpha_end_function (file, fnname, decl)
|
||
FILE *file;
|
||
char *fnname;
|
||
tree decl ATTRIBUTE_UNUSED;
|
||
{
|
||
/* End the function. */
|
||
if (!flag_inhibit_size_directive)
|
||
{
|
||
fputs ("\t.end ", file);
|
||
assemble_name (file, fnname);
|
||
putc ('\n', file);
|
||
}
|
||
inside_function = FALSE;
|
||
|
||
/* Show that we know this function if it is called again.
|
||
|
||
Don't do this for global functions in object files destined for a
|
||
shared library because the function may be overridden by the application
|
||
or other libraries. Similarly, don't do this for weak functions. */
|
||
|
||
if (!DECL_WEAK (current_function_decl)
|
||
&& (!flag_pic || !TREE_PUBLIC (current_function_decl)))
|
||
SYMBOL_REF_FLAG (XEXP (DECL_RTL (current_function_decl), 0)) = 1;
|
||
}
|
||
|
||
/* Debugging support. */
|
||
|
||
#include "gstab.h"
|
||
|
||
/* Count the number of sdb related labels are generated (to find block
|
||
start and end boundaries). */
|
||
|
||
int sdb_label_count = 0;
|
||
|
||
/* Next label # for each statement. */
|
||
|
||
static int sym_lineno = 0;
|
||
|
||
/* Count the number of .file directives, so that .loc is up to date. */
|
||
|
||
static int num_source_filenames = 0;
|
||
|
||
/* Name of the file containing the current function. */
|
||
|
||
static const char *current_function_file = "";
|
||
|
||
/* Offsets to alpha virtual arg/local debugging pointers. */
|
||
|
||
long alpha_arg_offset;
|
||
long alpha_auto_offset;
|
||
|
||
/* Emit a new filename to a stream. */
|
||
|
||
void
|
||
alpha_output_filename (stream, name)
|
||
FILE *stream;
|
||
char *name;
|
||
{
|
||
static int first_time = TRUE;
|
||
char ltext_label_name[100];
|
||
|
||
if (first_time)
|
||
{
|
||
first_time = FALSE;
|
||
++num_source_filenames;
|
||
current_function_file = name;
|
||
fprintf (stream, "\t.file\t%d ", num_source_filenames);
|
||
output_quoted_string (stream, name);
|
||
fprintf (stream, "\n");
|
||
if (!TARGET_GAS && write_symbols == DBX_DEBUG)
|
||
fprintf (stream, "\t#@stabs\n");
|
||
}
|
||
|
||
else if (write_symbols == DBX_DEBUG)
|
||
{
|
||
ASM_GENERATE_INTERNAL_LABEL (ltext_label_name, "Ltext", 0);
|
||
fprintf (stream, "%s ", ASM_STABS_OP);
|
||
output_quoted_string (stream, name);
|
||
fprintf (stream, ",%d,0,0,%s\n", N_SOL, <ext_label_name[1]);
|
||
}
|
||
|
||
else if (name != current_function_file
|
||
&& strcmp (name, current_function_file) != 0)
|
||
{
|
||
if (inside_function && ! TARGET_GAS)
|
||
fprintf (stream, "\t#.file\t%d ", num_source_filenames);
|
||
else
|
||
{
|
||
++num_source_filenames;
|
||
current_function_file = name;
|
||
fprintf (stream, "\t.file\t%d ", num_source_filenames);
|
||
}
|
||
|
||
output_quoted_string (stream, name);
|
||
fprintf (stream, "\n");
|
||
}
|
||
}
|
||
|
||
/* Emit a linenumber to a stream. */
|
||
|
||
void
|
||
alpha_output_lineno (stream, line)
|
||
FILE *stream;
|
||
int line;
|
||
{
|
||
if (write_symbols == DBX_DEBUG)
|
||
{
|
||
/* mips-tfile doesn't understand .stabd directives. */
|
||
++sym_lineno;
|
||
fprintf (stream, "$LM%d:\n\t%s %d,0,%d,$LM%d\n",
|
||
sym_lineno, ASM_STABN_OP, N_SLINE, line, sym_lineno);
|
||
}
|
||
else
|
||
fprintf (stream, "\n\t.loc\t%d %d\n", num_source_filenames, line);
|
||
}
|
||
|
||
/* Structure to show the current status of registers and memory. */
|
||
|
||
struct shadow_summary
|
||
{
|
||
struct {
|
||
unsigned long i : 31; /* Mask of int regs */
|
||
unsigned long fp : 31; /* Mask of fp regs */
|
||
unsigned long mem : 1; /* mem == imem | fpmem */
|
||
} used, defd;
|
||
};
|
||
|
||
static void summarize_insn PROTO((rtx, struct shadow_summary *, int));
|
||
static void alpha_handle_trap_shadows PROTO((rtx));
|
||
|
||
/* Summary the effects of expression X on the machine. Update SUM, a pointer
|
||
to the summary structure. SET is nonzero if the insn is setting the
|
||
object, otherwise zero. */
|
||
|
||
static void
|
||
summarize_insn (x, sum, set)
|
||
rtx x;
|
||
struct shadow_summary *sum;
|
||
int set;
|
||
{
|
||
char *format_ptr;
|
||
int i, j;
|
||
|
||
if (x == 0)
|
||
return;
|
||
|
||
switch (GET_CODE (x))
|
||
{
|
||
/* ??? Note that this case would be incorrect if the Alpha had a
|
||
ZERO_EXTRACT in SET_DEST. */
|
||
case SET:
|
||
summarize_insn (SET_SRC (x), sum, 0);
|
||
summarize_insn (SET_DEST (x), sum, 1);
|
||
break;
|
||
|
||
case CLOBBER:
|
||
summarize_insn (XEXP (x, 0), sum, 1);
|
||
break;
|
||
|
||
case USE:
|
||
summarize_insn (XEXP (x, 0), sum, 0);
|
||
break;
|
||
|
||
case ASM_OPERANDS:
|
||
for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
|
||
summarize_insn (ASM_OPERANDS_INPUT (x, i), sum, 0);
|
||
break;
|
||
|
||
case PARALLEL:
|
||
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
|
||
summarize_insn (XVECEXP (x, 0, i), sum, 0);
|
||
break;
|
||
|
||
case SUBREG:
|
||
summarize_insn (SUBREG_REG (x), sum, 0);
|
||
break;
|
||
|
||
case REG:
|
||
{
|
||
int regno = REGNO (x);
|
||
unsigned long mask = 1UL << (regno % 32);
|
||
|
||
if (regno == 31 || regno == 63)
|
||
break;
|
||
|
||
if (set)
|
||
{
|
||
if (regno < 32)
|
||
sum->defd.i |= mask;
|
||
else
|
||
sum->defd.fp |= mask;
|
||
}
|
||
else
|
||
{
|
||
if (regno < 32)
|
||
sum->used.i |= mask;
|
||
else
|
||
sum->used.fp |= mask;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case MEM:
|
||
if (set)
|
||
sum->defd.mem = 1;
|
||
else
|
||
sum->used.mem = 1;
|
||
|
||
/* Find the regs used in memory address computation: */
|
||
summarize_insn (XEXP (x, 0), sum, 0);
|
||
break;
|
||
|
||
case CONST_INT: case CONST_DOUBLE:
|
||
case SYMBOL_REF: case LABEL_REF: case CONST:
|
||
break;
|
||
|
||
/* Handle common unary and binary ops for efficiency. */
|
||
case COMPARE: case PLUS: case MINUS: case MULT: case DIV:
|
||
case MOD: case UDIV: case UMOD: case AND: case IOR:
|
||
case XOR: case ASHIFT: case ROTATE: case ASHIFTRT: case LSHIFTRT:
|
||
case ROTATERT: case SMIN: case SMAX: case UMIN: case UMAX:
|
||
case NE: case EQ: case GE: case GT: case LE:
|
||
case LT: case GEU: case GTU: case LEU: case LTU:
|
||
summarize_insn (XEXP (x, 0), sum, 0);
|
||
summarize_insn (XEXP (x, 1), sum, 0);
|
||
break;
|
||
|
||
case NEG: case NOT: case SIGN_EXTEND: case ZERO_EXTEND:
|
||
case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: case FLOAT:
|
||
case FIX: case UNSIGNED_FLOAT: case UNSIGNED_FIX: case ABS:
|
||
case SQRT: case FFS:
|
||
summarize_insn (XEXP (x, 0), sum, 0);
|
||
break;
|
||
|
||
default:
|
||
format_ptr = GET_RTX_FORMAT (GET_CODE (x));
|
||
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
|
||
switch (format_ptr[i])
|
||
{
|
||
case 'e':
|
||
summarize_insn (XEXP (x, i), sum, 0);
|
||
break;
|
||
|
||
case 'E':
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
summarize_insn (XVECEXP (x, i, j), sum, 0);
|
||
break;
|
||
|
||
case 'i':
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Ensure a sufficient number of `trapb' insns are in the code when
|
||
the user requests code with a trap precision of functions or
|
||
instructions.
|
||
|
||
In naive mode, when the user requests a trap-precision of
|
||
"instruction", a trapb is needed after every instruction that may
|
||
generate a trap. This ensures that the code is resumption safe but
|
||
it is also slow.
|
||
|
||
When optimizations are turned on, we delay issuing a trapb as long
|
||
as possible. In this context, a trap shadow is the sequence of
|
||
instructions that starts with a (potentially) trap generating
|
||
instruction and extends to the next trapb or call_pal instruction
|
||
(but GCC never generates call_pal by itself). We can delay (and
|
||
therefore sometimes omit) a trapb subject to the following
|
||
conditions:
|
||
|
||
(a) On entry to the trap shadow, if any Alpha register or memory
|
||
location contains a value that is used as an operand value by some
|
||
instruction in the trap shadow (live on entry), then no instruction
|
||
in the trap shadow may modify the register or memory location.
|
||
|
||
(b) Within the trap shadow, the computation of the base register
|
||
for a memory load or store instruction may not involve using the
|
||
result of an instruction that might generate an UNPREDICTABLE
|
||
result.
|
||
|
||
(c) Within the trap shadow, no register may be used more than once
|
||
as a destination register. (This is to make life easier for the
|
||
trap-handler.)
|
||
|
||
(d) The trap shadow may not include any branch instructions. */
|
||
|
||
static void
|
||
alpha_handle_trap_shadows (insns)
|
||
rtx insns;
|
||
{
|
||
struct shadow_summary shadow;
|
||
int trap_pending, exception_nesting;
|
||
rtx i, n;
|
||
|
||
trap_pending = 0;
|
||
exception_nesting = 0;
|
||
shadow.used.i = 0;
|
||
shadow.used.fp = 0;
|
||
shadow.used.mem = 0;
|
||
shadow.defd = shadow.used;
|
||
|
||
for (i = insns; i ; i = NEXT_INSN (i))
|
||
{
|
||
if (GET_CODE (i) == NOTE)
|
||
{
|
||
switch (NOTE_LINE_NUMBER (i))
|
||
{
|
||
case NOTE_INSN_EH_REGION_BEG:
|
||
exception_nesting++;
|
||
if (trap_pending)
|
||
goto close_shadow;
|
||
break;
|
||
|
||
case NOTE_INSN_EH_REGION_END:
|
||
exception_nesting--;
|
||
if (trap_pending)
|
||
goto close_shadow;
|
||
break;
|
||
|
||
case NOTE_INSN_EPILOGUE_BEG:
|
||
if (trap_pending && alpha_tp >= ALPHA_TP_FUNC)
|
||
goto close_shadow;
|
||
break;
|
||
}
|
||
}
|
||
else if (trap_pending)
|
||
{
|
||
if (alpha_tp == ALPHA_TP_FUNC)
|
||
{
|
||
if (GET_CODE (i) == JUMP_INSN
|
||
&& GET_CODE (PATTERN (i)) == RETURN)
|
||
goto close_shadow;
|
||
}
|
||
else if (alpha_tp == ALPHA_TP_INSN)
|
||
{
|
||
if (optimize > 0)
|
||
{
|
||
struct shadow_summary sum;
|
||
|
||
sum.used.i = 0;
|
||
sum.used.fp = 0;
|
||
sum.used.mem = 0;
|
||
sum.defd = sum.used;
|
||
|
||
switch (GET_CODE (i))
|
||
{
|
||
case INSN:
|
||
/* Annoyingly, get_attr_trap will abort on these. */
|
||
if (GET_CODE (PATTERN (i)) == USE
|
||
|| GET_CODE (PATTERN (i)) == CLOBBER)
|
||
break;
|
||
|
||
summarize_insn (PATTERN (i), &sum, 0);
|
||
|
||
if ((sum.defd.i & shadow.defd.i)
|
||
|| (sum.defd.fp & shadow.defd.fp))
|
||
{
|
||
/* (c) would be violated */
|
||
goto close_shadow;
|
||
}
|
||
|
||
/* Combine shadow with summary of current insn: */
|
||
shadow.used.i |= sum.used.i;
|
||
shadow.used.fp |= sum.used.fp;
|
||
shadow.used.mem |= sum.used.mem;
|
||
shadow.defd.i |= sum.defd.i;
|
||
shadow.defd.fp |= sum.defd.fp;
|
||
shadow.defd.mem |= sum.defd.mem;
|
||
|
||
if ((sum.defd.i & shadow.used.i)
|
||
|| (sum.defd.fp & shadow.used.fp)
|
||
|| (sum.defd.mem & shadow.used.mem))
|
||
{
|
||
/* (a) would be violated (also takes care of (b)) */
|
||
if (get_attr_trap (i) == TRAP_YES
|
||
&& ((sum.defd.i & sum.used.i)
|
||
|| (sum.defd.fp & sum.used.fp)))
|
||
abort ();
|
||
|
||
goto close_shadow;
|
||
}
|
||
break;
|
||
|
||
case JUMP_INSN:
|
||
case CALL_INSN:
|
||
case CODE_LABEL:
|
||
goto close_shadow;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
close_shadow:
|
||
n = emit_insn_before (gen_trapb (), i);
|
||
PUT_MODE (n, TImode);
|
||
PUT_MODE (i, TImode);
|
||
trap_pending = 0;
|
||
shadow.used.i = 0;
|
||
shadow.used.fp = 0;
|
||
shadow.used.mem = 0;
|
||
shadow.defd = shadow.used;
|
||
}
|
||
}
|
||
}
|
||
|
||
if ((exception_nesting > 0 || alpha_tp >= ALPHA_TP_FUNC)
|
||
&& GET_CODE (i) == INSN
|
||
&& GET_CODE (PATTERN (i)) != USE
|
||
&& GET_CODE (PATTERN (i)) != CLOBBER
|
||
&& get_attr_trap (i) == TRAP_YES)
|
||
{
|
||
if (optimize && !trap_pending)
|
||
summarize_insn (PATTERN (i), &shadow, 0);
|
||
trap_pending = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifdef HAIFA
|
||
/* Alpha can only issue instruction groups simultaneously if they are
|
||
suitibly aligned. This is very processor-specific. */
|
||
|
||
enum alphaev4_pipe {
|
||
EV4_STOP = 0,
|
||
EV4_IB0 = 1,
|
||
EV4_IB1 = 2,
|
||
EV4_IBX = 4
|
||
};
|
||
|
||
enum alphaev5_pipe {
|
||
EV5_STOP = 0,
|
||
EV5_NONE = 1,
|
||
EV5_E01 = 2,
|
||
EV5_E0 = 4,
|
||
EV5_E1 = 8,
|
||
EV5_FAM = 16,
|
||
EV5_FA = 32,
|
||
EV5_FM = 64
|
||
};
|
||
|
||
static enum alphaev4_pipe alphaev4_insn_pipe PROTO((rtx));
|
||
static enum alphaev5_pipe alphaev5_insn_pipe PROTO((rtx));
|
||
static rtx alphaev4_next_group PROTO((rtx, int*, int*));
|
||
static rtx alphaev5_next_group PROTO((rtx, int*, int*));
|
||
static rtx alphaev4_next_nop PROTO((int*));
|
||
static rtx alphaev5_next_nop PROTO((int*));
|
||
|
||
static void alpha_align_insns
|
||
PROTO((rtx, int, rtx (*)(rtx, int*, int*), rtx (*)(int*), int));
|
||
|
||
static enum alphaev4_pipe
|
||
alphaev4_insn_pipe (insn)
|
||
rtx insn;
|
||
{
|
||
if (recog_memoized (insn) < 0)
|
||
return EV4_STOP;
|
||
if (get_attr_length (insn) != 4)
|
||
return EV4_STOP;
|
||
|
||
switch (get_attr_type (insn))
|
||
{
|
||
case TYPE_ILD:
|
||
case TYPE_FLD:
|
||
return EV4_IBX;
|
||
|
||
case TYPE_LDSYM:
|
||
case TYPE_IADD:
|
||
case TYPE_ILOG:
|
||
case TYPE_ICMOV:
|
||
case TYPE_ICMP:
|
||
case TYPE_IST:
|
||
case TYPE_FST:
|
||
case TYPE_SHIFT:
|
||
case TYPE_IMUL:
|
||
case TYPE_FBR:
|
||
return EV4_IB0;
|
||
|
||
case TYPE_MISC:
|
||
case TYPE_IBR:
|
||
case TYPE_JSR:
|
||
case TYPE_FCPYS:
|
||
case TYPE_FCMOV:
|
||
case TYPE_FADD:
|
||
case TYPE_FDIV:
|
||
case TYPE_FMUL:
|
||
return EV4_IB1;
|
||
|
||
default:
|
||
abort();
|
||
}
|
||
}
|
||
|
||
static enum alphaev5_pipe
|
||
alphaev5_insn_pipe (insn)
|
||
rtx insn;
|
||
{
|
||
if (recog_memoized (insn) < 0)
|
||
return EV5_STOP;
|
||
if (get_attr_length (insn) != 4)
|
||
return EV5_STOP;
|
||
|
||
switch (get_attr_type (insn))
|
||
{
|
||
case TYPE_ILD:
|
||
case TYPE_FLD:
|
||
case TYPE_LDSYM:
|
||
case TYPE_IADD:
|
||
case TYPE_ILOG:
|
||
case TYPE_ICMOV:
|
||
case TYPE_ICMP:
|
||
return EV5_E01;
|
||
|
||
case TYPE_IST:
|
||
case TYPE_FST:
|
||
case TYPE_SHIFT:
|
||
case TYPE_IMUL:
|
||
case TYPE_MISC:
|
||
case TYPE_MVI:
|
||
return EV5_E0;
|
||
|
||
case TYPE_IBR:
|
||
case TYPE_JSR:
|
||
return EV5_E1;
|
||
|
||
case TYPE_FCPYS:
|
||
return EV5_FAM;
|
||
|
||
case TYPE_FBR:
|
||
case TYPE_FCMOV:
|
||
case TYPE_FADD:
|
||
case TYPE_FDIV:
|
||
return EV5_FA;
|
||
|
||
case TYPE_FMUL:
|
||
return EV5_FM;
|
||
|
||
default:
|
||
abort();
|
||
}
|
||
}
|
||
|
||
/* IN_USE is a mask of the slots currently filled within the insn group.
|
||
The mask bits come from alphaev4_pipe above. If EV4_IBX is set, then
|
||
the insn in EV4_IB0 can be swapped by the hardware into EV4_IB1.
|
||
|
||
LEN is, of course, the length of the group in bytes. */
|
||
|
||
static rtx
|
||
alphaev4_next_group (insn, pin_use, plen)
|
||
rtx insn;
|
||
int *pin_use, *plen;
|
||
{
|
||
int len, in_use;
|
||
|
||
len = in_use = 0;
|
||
|
||
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i'
|
||
|| GET_CODE (PATTERN (insn)) == CLOBBER
|
||
|| GET_CODE (PATTERN (insn)) == USE)
|
||
goto next_and_done;
|
||
|
||
while (1)
|
||
{
|
||
enum alphaev4_pipe pipe;
|
||
|
||
pipe = alphaev4_insn_pipe (insn);
|
||
switch (pipe)
|
||
{
|
||
case EV4_STOP:
|
||
/* Force complex instructions to start new groups. */
|
||
if (in_use)
|
||
goto done;
|
||
|
||
/* If this is a completely unrecognized insn, its an asm.
|
||
We don't know how long it is, so record length as -1 to
|
||
signal a needed realignment. */
|
||
if (recog_memoized (insn) < 0)
|
||
len = -1;
|
||
else
|
||
len = get_attr_length (insn);
|
||
goto next_and_done;
|
||
|
||
case EV4_IBX:
|
||
if (in_use & EV4_IB0)
|
||
{
|
||
if (in_use & EV4_IB1)
|
||
goto done;
|
||
in_use |= EV4_IB1;
|
||
}
|
||
else
|
||
in_use |= EV4_IB0 | EV4_IBX;
|
||
break;
|
||
|
||
case EV4_IB0:
|
||
if (in_use & EV4_IB0)
|
||
{
|
||
if (!(in_use & EV4_IBX) || (in_use & EV4_IB1))
|
||
goto done;
|
||
in_use |= EV4_IB1;
|
||
}
|
||
in_use |= EV4_IB0;
|
||
break;
|
||
|
||
case EV4_IB1:
|
||
if (in_use & EV4_IB1)
|
||
goto done;
|
||
in_use |= EV4_IB1;
|
||
break;
|
||
|
||
default:
|
||
abort();
|
||
}
|
||
len += 4;
|
||
|
||
/* Haifa doesn't do well scheduling branches. */
|
||
if (GET_CODE (insn) == JUMP_INSN)
|
||
goto next_and_done;
|
||
|
||
next:
|
||
insn = next_nonnote_insn (insn);
|
||
|
||
if (!insn || GET_RTX_CLASS (GET_CODE (insn)) != 'i')
|
||
goto done;
|
||
|
||
/* Let Haifa tell us where it thinks insn group boundaries are. */
|
||
if (GET_MODE (insn) == TImode)
|
||
goto done;
|
||
|
||
if (GET_CODE (insn) == CLOBBER || GET_CODE (insn) == USE)
|
||
goto next;
|
||
}
|
||
|
||
next_and_done:
|
||
insn = next_nonnote_insn (insn);
|
||
|
||
done:
|
||
*plen = len;
|
||
*pin_use = in_use;
|
||
return insn;
|
||
}
|
||
|
||
/* IN_USE is a mask of the slots currently filled within the insn group.
|
||
The mask bits come from alphaev5_pipe above. If EV5_E01 is set, then
|
||
the insn in EV5_E0 can be swapped by the hardware into EV5_E1.
|
||
|
||
LEN is, of course, the length of the group in bytes. */
|
||
|
||
static rtx
|
||
alphaev5_next_group (insn, pin_use, plen)
|
||
rtx insn;
|
||
int *pin_use, *plen;
|
||
{
|
||
int len, in_use;
|
||
|
||
len = in_use = 0;
|
||
|
||
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i'
|
||
|| GET_CODE (PATTERN (insn)) == CLOBBER
|
||
|| GET_CODE (PATTERN (insn)) == USE)
|
||
goto next_and_done;
|
||
|
||
while (1)
|
||
{
|
||
enum alphaev5_pipe pipe;
|
||
|
||
pipe = alphaev5_insn_pipe (insn);
|
||
switch (pipe)
|
||
{
|
||
case EV5_STOP:
|
||
/* Force complex instructions to start new groups. */
|
||
if (in_use)
|
||
goto done;
|
||
|
||
/* If this is a completely unrecognized insn, its an asm.
|
||
We don't know how long it is, so record length as -1 to
|
||
signal a needed realignment. */
|
||
if (recog_memoized (insn) < 0)
|
||
len = -1;
|
||
else
|
||
len = get_attr_length (insn);
|
||
goto next_and_done;
|
||
|
||
/* ??? Most of the places below, we would like to abort, as
|
||
it would indicate an error either in Haifa, or in the
|
||
scheduling description. Unfortunately, Haifa never
|
||
schedules the last instruction of the BB, so we don't
|
||
have an accurate TI bit to go off. */
|
||
case EV5_E01:
|
||
if (in_use & EV5_E0)
|
||
{
|
||
if (in_use & EV5_E1)
|
||
goto done;
|
||
in_use |= EV5_E1;
|
||
}
|
||
else
|
||
in_use |= EV5_E0 | EV5_E01;
|
||
break;
|
||
|
||
case EV5_E0:
|
||
if (in_use & EV5_E0)
|
||
{
|
||
if (!(in_use & EV5_E01) || (in_use & EV5_E1))
|
||
goto done;
|
||
in_use |= EV5_E1;
|
||
}
|
||
in_use |= EV5_E0;
|
||
break;
|
||
|
||
case EV5_E1:
|
||
if (in_use & EV5_E1)
|
||
goto done;
|
||
in_use |= EV5_E1;
|
||
break;
|
||
|
||
case EV5_FAM:
|
||
if (in_use & EV5_FA)
|
||
{
|
||
if (in_use & EV5_FM)
|
||
goto done;
|
||
in_use |= EV5_FM;
|
||
}
|
||
else
|
||
in_use |= EV5_FA | EV5_FAM;
|
||
break;
|
||
|
||
case EV5_FA:
|
||
if (in_use & EV5_FA)
|
||
goto done;
|
||
in_use |= EV5_FA;
|
||
break;
|
||
|
||
case EV5_FM:
|
||
if (in_use & EV5_FM)
|
||
goto done;
|
||
in_use |= EV5_FM;
|
||
break;
|
||
|
||
case EV5_NONE:
|
||
break;
|
||
|
||
default:
|
||
abort();
|
||
}
|
||
len += 4;
|
||
|
||
/* Haifa doesn't do well scheduling branches. */
|
||
/* ??? If this is predicted not-taken, slotting continues, except
|
||
that no more IBR, FBR, or JSR insns may be slotted. */
|
||
if (GET_CODE (insn) == JUMP_INSN)
|
||
goto next_and_done;
|
||
|
||
next:
|
||
insn = next_nonnote_insn (insn);
|
||
|
||
if (!insn || GET_RTX_CLASS (GET_CODE (insn)) != 'i')
|
||
goto done;
|
||
|
||
/* Let Haifa tell us where it thinks insn group boundaries are. */
|
||
if (GET_MODE (insn) == TImode)
|
||
goto done;
|
||
|
||
if (GET_CODE (insn) == CLOBBER || GET_CODE (insn) == USE)
|
||
goto next;
|
||
}
|
||
|
||
next_and_done:
|
||
insn = next_nonnote_insn (insn);
|
||
|
||
done:
|
||
*plen = len;
|
||
*pin_use = in_use;
|
||
return insn;
|
||
}
|
||
|
||
static rtx
|
||
alphaev4_next_nop (pin_use)
|
||
int *pin_use;
|
||
{
|
||
int in_use = *pin_use;
|
||
rtx nop;
|
||
|
||
if (!(in_use & EV4_IB0))
|
||
{
|
||
in_use |= EV4_IB0;
|
||
nop = gen_nop ();
|
||
}
|
||
else if ((in_use & (EV4_IBX|EV4_IB1)) == EV4_IBX)
|
||
{
|
||
in_use |= EV4_IB1;
|
||
nop = gen_nop ();
|
||
}
|
||
else if (TARGET_FP && !(in_use & EV4_IB1))
|
||
{
|
||
in_use |= EV4_IB1;
|
||
nop = gen_fnop ();
|
||
}
|
||
else
|
||
nop = gen_unop ();
|
||
|
||
*pin_use = in_use;
|
||
return nop;
|
||
}
|
||
|
||
static rtx
|
||
alphaev5_next_nop (pin_use)
|
||
int *pin_use;
|
||
{
|
||
int in_use = *pin_use;
|
||
rtx nop;
|
||
|
||
if (!(in_use & EV5_E1))
|
||
{
|
||
in_use |= EV5_E1;
|
||
nop = gen_nop ();
|
||
}
|
||
else if (TARGET_FP && !(in_use & EV5_FA))
|
||
{
|
||
in_use |= EV5_FA;
|
||
nop = gen_fnop ();
|
||
}
|
||
else if (TARGET_FP && !(in_use & EV5_FM))
|
||
{
|
||
in_use |= EV5_FM;
|
||
nop = gen_fnop ();
|
||
}
|
||
else
|
||
nop = gen_unop ();
|
||
|
||
*pin_use = in_use;
|
||
return nop;
|
||
}
|
||
|
||
/* The instruction group alignment main loop. */
|
||
|
||
static void
|
||
alpha_align_insns (insns, max_align, next_group, next_nop, gp_in_use)
|
||
rtx insns;
|
||
int max_align;
|
||
rtx (*next_group) PROTO((rtx, int*, int*));
|
||
rtx (*next_nop) PROTO((int*));
|
||
int gp_in_use;
|
||
{
|
||
/* ALIGN is the known alignment for the insn group. */
|
||
int align;
|
||
/* OFS is the offset of the current insn in the insn group. */
|
||
int ofs;
|
||
int prev_in_use, in_use, len;
|
||
rtx i, next;
|
||
|
||
/* Let shorten branches care for assigning alignments to code labels. */
|
||
shorten_branches (insns);
|
||
|
||
align = (FUNCTION_BOUNDARY/BITS_PER_UNIT < max_align
|
||
? FUNCTION_BOUNDARY/BITS_PER_UNIT : max_align);
|
||
|
||
/* Account for the initial GP load, which happens before the scheduled
|
||
prologue we emitted as RTL. */
|
||
ofs = prev_in_use = 0;
|
||
if (alpha_does_function_need_gp())
|
||
{
|
||
ofs = 8 & (align - 1);
|
||
prev_in_use = gp_in_use;
|
||
}
|
||
|
||
i = insns;
|
||
if (GET_CODE (i) == NOTE)
|
||
i = next_nonnote_insn (i);
|
||
|
||
while (i)
|
||
{
|
||
next = (*next_group)(i, &in_use, &len);
|
||
|
||
/* When we see a label, resync alignment etc. */
|
||
if (GET_CODE (i) == CODE_LABEL)
|
||
{
|
||
int new_align = 1 << label_to_alignment (i);
|
||
if (new_align >= align)
|
||
{
|
||
align = new_align < max_align ? new_align : max_align;
|
||
ofs = 0;
|
||
}
|
||
else if (ofs & (new_align-1))
|
||
ofs = (ofs | (new_align-1)) + 1;
|
||
if (len != 0)
|
||
abort();
|
||
}
|
||
|
||
/* Handle complex instructions special. */
|
||
else if (in_use == 0)
|
||
{
|
||
/* Asms will have length < 0. This is a signal that we have
|
||
lost alignment knowledge. Assume, however, that the asm
|
||
will not mis-align instructions. */
|
||
if (len < 0)
|
||
{
|
||
ofs = 0;
|
||
align = 4;
|
||
len = 0;
|
||
}
|
||
}
|
||
|
||
/* If the known alignment is smaller than the recognized insn group,
|
||
realign the output. */
|
||
else if (align < len)
|
||
{
|
||
int new_log_align = len > 8 ? 4 : 3;
|
||
rtx where;
|
||
|
||
where = prev_nonnote_insn (i);
|
||
if (!where || GET_CODE (where) != CODE_LABEL)
|
||
where = i;
|
||
|
||
emit_insn_before (gen_realign (GEN_INT (new_log_align)), where);
|
||
align = 1 << new_log_align;
|
||
ofs = 0;
|
||
}
|
||
|
||
/* If the group won't fit in the same INT16 as the previous,
|
||
we need to add padding to keep the group together. Rather
|
||
than simply leaving the insn filling to the assembler, we
|
||
can make use of the knowledge of what sorts of instructions
|
||
were issued in the previous group to make sure that all of
|
||
the added nops are really free. */
|
||
else if (ofs + len > align)
|
||
{
|
||
int nop_count = (align - ofs) / 4;
|
||
rtx where;
|
||
|
||
/* Insert nops before labels and branches to truely merge the
|
||
execution of the nops with the previous instruction group. */
|
||
where = prev_nonnote_insn (i);
|
||
if (where)
|
||
{
|
||
if (GET_CODE (where) == CODE_LABEL)
|
||
{
|
||
rtx where2 = prev_nonnote_insn (where);
|
||
if (where2 && GET_CODE (where2) == JUMP_INSN)
|
||
where = where2;
|
||
}
|
||
else if (GET_CODE (where) != JUMP_INSN)
|
||
where = i;
|
||
}
|
||
else
|
||
where = i;
|
||
|
||
do
|
||
emit_insn_before ((*next_nop)(&prev_in_use), where);
|
||
while (--nop_count);
|
||
ofs = 0;
|
||
}
|
||
|
||
ofs = (ofs + len) & (align - 1);
|
||
prev_in_use = in_use;
|
||
i = next;
|
||
}
|
||
}
|
||
#endif /* HAIFA */
|
||
|
||
/* Machine dependant reorg pass. */
|
||
|
||
void
|
||
alpha_reorg (insns)
|
||
rtx insns;
|
||
{
|
||
if (alpha_tp != ALPHA_TP_PROG || flag_exceptions)
|
||
alpha_handle_trap_shadows (insns);
|
||
|
||
#ifdef HAIFA
|
||
/* Due to the number of extra trapb insns, don't bother fixing up
|
||
alignment when trap precision is instruction. Moreover, we can
|
||
only do our job when sched2 is run and Haifa is our scheduler. */
|
||
if (optimize && !optimize_size
|
||
&& alpha_tp != ALPHA_TP_INSN
|
||
&& flag_schedule_insns_after_reload)
|
||
{
|
||
if (alpha_cpu == PROCESSOR_EV4)
|
||
alpha_align_insns (insns, 8, alphaev4_next_group,
|
||
alphaev4_next_nop, EV4_IB0);
|
||
else if (alpha_cpu == PROCESSOR_EV5)
|
||
alpha_align_insns (insns, 16, alphaev5_next_group,
|
||
alphaev5_next_nop, EV5_E01 | EV5_E0);
|
||
}
|
||
#endif
|
||
}
|
||
|
||
|
||
/* Check a floating-point value for validity for a particular machine mode. */
|
||
|
||
static char * const float_strings[] =
|
||
{
|
||
/* These are for FLOAT_VAX. */
|
||
"1.70141173319264430e+38", /* 2^127 (2^24 - 1) / 2^24 */
|
||
"-1.70141173319264430e+38",
|
||
"2.93873587705571877e-39", /* 2^-128 */
|
||
"-2.93873587705571877e-39",
|
||
/* These are for the default broken IEEE mode, which traps
|
||
on infinity or denormal numbers. */
|
||
"3.402823466385288598117e+38", /* 2^128 (1 - 2^-24) */
|
||
"-3.402823466385288598117e+38",
|
||
"1.1754943508222875079687e-38", /* 2^-126 */
|
||
"-1.1754943508222875079687e-38",
|
||
};
|
||
|
||
static REAL_VALUE_TYPE float_values[8];
|
||
static int inited_float_values = 0;
|
||
|
||
int
|
||
check_float_value (mode, d, overflow)
|
||
enum machine_mode mode;
|
||
REAL_VALUE_TYPE *d;
|
||
int overflow ATTRIBUTE_UNUSED;
|
||
{
|
||
|
||
if (TARGET_IEEE || TARGET_IEEE_CONFORMANT || TARGET_IEEE_WITH_INEXACT)
|
||
return 0;
|
||
|
||
if (inited_float_values == 0)
|
||
{
|
||
int i;
|
||
for (i = 0; i < 8; i++)
|
||
float_values[i] = REAL_VALUE_ATOF (float_strings[i], DFmode);
|
||
|
||
inited_float_values = 1;
|
||
}
|
||
|
||
if (mode == SFmode)
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
REAL_VALUE_TYPE *fvptr;
|
||
|
||
if (TARGET_FLOAT_VAX)
|
||
fvptr = &float_values[0];
|
||
else
|
||
fvptr = &float_values[4];
|
||
|
||
bcopy ((char *) d, (char *) &r, sizeof (REAL_VALUE_TYPE));
|
||
if (REAL_VALUES_LESS (fvptr[0], r))
|
||
{
|
||
bcopy ((char *) &fvptr[0], (char *) d,
|
||
sizeof (REAL_VALUE_TYPE));
|
||
return 1;
|
||
}
|
||
else if (REAL_VALUES_LESS (r, fvptr[1]))
|
||
{
|
||
bcopy ((char *) &fvptr[1], (char *) d,
|
||
sizeof (REAL_VALUE_TYPE));
|
||
return 1;
|
||
}
|
||
else if (REAL_VALUES_LESS (dconst0, r)
|
||
&& REAL_VALUES_LESS (r, fvptr[2]))
|
||
{
|
||
bcopy ((char *) &dconst0, (char *) d, sizeof (REAL_VALUE_TYPE));
|
||
return 1;
|
||
}
|
||
else if (REAL_VALUES_LESS (r, dconst0)
|
||
&& REAL_VALUES_LESS (fvptr[3], r))
|
||
{
|
||
bcopy ((char *) &dconst0, (char *) d, sizeof (REAL_VALUE_TYPE));
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
#if OPEN_VMS
|
||
|
||
/* Return the VMS argument type corresponding to MODE. */
|
||
|
||
enum avms_arg_type
|
||
alpha_arg_type (mode)
|
||
enum machine_mode mode;
|
||
{
|
||
switch (mode)
|
||
{
|
||
case SFmode:
|
||
return TARGET_FLOAT_VAX ? FF : FS;
|
||
case DFmode:
|
||
return TARGET_FLOAT_VAX ? FD : FT;
|
||
default:
|
||
return I64;
|
||
}
|
||
}
|
||
|
||
/* Return an rtx for an integer representing the VMS Argument Information
|
||
register value. */
|
||
|
||
struct rtx_def *
|
||
alpha_arg_info_reg_val (cum)
|
||
CUMULATIVE_ARGS cum;
|
||
{
|
||
unsigned HOST_WIDE_INT regval = cum.num_args;
|
||
int i;
|
||
|
||
for (i = 0; i < 6; i++)
|
||
regval |= ((int) cum.atypes[i]) << (i * 3 + 8);
|
||
|
||
return GEN_INT (regval);
|
||
}
|
||
|
||
/* Structure to collect function names for final output
|
||
in link section. */
|
||
|
||
enum links_kind {KIND_UNUSED, KIND_LOCAL, KIND_EXTERN};
|
||
|
||
|
||
struct alpha_links {
|
||
struct alpha_links *next;
|
||
char *name;
|
||
enum links_kind kind;
|
||
};
|
||
|
||
static struct alpha_links *alpha_links_base = 0;
|
||
|
||
/* Make (or fake) .linkage entry for function call.
|
||
|
||
IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
|
||
|
||
void
|
||
alpha_need_linkage (name, is_local)
|
||
char *name;
|
||
int is_local;
|
||
{
|
||
rtx x;
|
||
struct alpha_links *lptr, *nptr;
|
||
|
||
if (name[0] == '*')
|
||
name++;
|
||
|
||
/* Is this name already defined ? */
|
||
|
||
for (lptr = alpha_links_base; lptr; lptr = lptr->next)
|
||
if (strcmp (lptr->name, name) == 0)
|
||
{
|
||
if (is_local)
|
||
{
|
||
/* Defined here but external assumed. */
|
||
if (lptr->kind == KIND_EXTERN)
|
||
lptr->kind = KIND_LOCAL;
|
||
}
|
||
else
|
||
{
|
||
/* Used here but unused assumed. */
|
||
if (lptr->kind == KIND_UNUSED)
|
||
lptr->kind = KIND_LOCAL;
|
||
}
|
||
return;
|
||
}
|
||
|
||
nptr = (struct alpha_links *) xmalloc (sizeof (struct alpha_links));
|
||
nptr->next = alpha_links_base;
|
||
nptr->name = xstrdup (name);
|
||
|
||
/* Assume external if no definition. */
|
||
nptr->kind = (is_local ? KIND_UNUSED : KIND_EXTERN);
|
||
|
||
/* Ensure we have an IDENTIFIER so assemble_name can mark is used. */
|
||
get_identifier (name);
|
||
|
||
alpha_links_base = nptr;
|
||
|
||
return;
|
||
}
|
||
|
||
|
||
void
|
||
alpha_write_linkage (stream)
|
||
FILE *stream;
|
||
{
|
||
struct alpha_links *lptr, *nptr;
|
||
|
||
readonly_section ();
|
||
|
||
fprintf (stream, "\t.align 3\n");
|
||
|
||
for (lptr = alpha_links_base; lptr; lptr = nptr)
|
||
{
|
||
nptr = lptr->next;
|
||
|
||
if (lptr->kind == KIND_UNUSED
|
||
|| ! TREE_SYMBOL_REFERENCED (get_identifier (lptr->name)))
|
||
continue;
|
||
|
||
fprintf (stream, "$%s..lk:\n", lptr->name);
|
||
if (lptr->kind == KIND_LOCAL)
|
||
{
|
||
/* Local and used, build linkage pair. */
|
||
fprintf (stream, "\t.quad %s..en\n", lptr->name);
|
||
fprintf (stream, "\t.quad %s\n", lptr->name);
|
||
}
|
||
else
|
||
/* External and used, request linkage pair. */
|
||
fprintf (stream, "\t.linkage %s\n", lptr->name);
|
||
}
|
||
}
|
||
|
||
#else
|
||
|
||
void
|
||
alpha_need_linkage (name, is_local)
|
||
char *name ATTRIBUTE_UNUSED;
|
||
int is_local ATTRIBUTE_UNUSED;
|
||
{
|
||
}
|
||
|
||
#endif /* OPEN_VMS */
|