df38ada293
With various firmware files used by graphics and wireless drivers we are exceeding the current 32 character module name (file path in kldxref) length. In order to overcome this issue bump it to the maximum path length for the next version. To be able to MFC provide backward compat support for another version of the struct as the offsets for the second half change due to the array size increase. MAXMODNAME being defined to MAXPATHLEN needs param.h to be included first. With only 7 modules (or LinuxKPI module.h) not doing that adjust them rather than including param.h in module.h [1]. Reported by: Greg V (greg unrelenting.technology) Sponsored by: The FreeBSD Foundation Suggested by: imp [1] MFC after: 10 days Reviewed by: imp (and others to different level) Differential Revision: https://reviews.freebsd.org/D32383
603 lines
16 KiB
C
603 lines
16 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 2007-2009 Google Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following disclaimer
|
|
* in the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Google Inc. nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Copyright (C) 2005 Csaba Henk.
|
|
* All rights reserved.
|
|
*
|
|
* Copyright (c) 2019 The FreeBSD Foundation
|
|
*
|
|
* Portions of this software were developed by BFF Storage Systems, LLC under
|
|
* sponsorship from the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/module.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/sdt.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/poll.h>
|
|
#include <sys/selinfo.h>
|
|
|
|
#include "fuse.h"
|
|
#include "fuse_internal.h"
|
|
#include "fuse_ipc.h"
|
|
|
|
#include <compat/linux/linux_errno.h>
|
|
#include <compat/linux/linux_errno.inc>
|
|
|
|
SDT_PROVIDER_DECLARE(fusefs);
|
|
/*
|
|
* Fuse trace probe:
|
|
* arg0: verbosity. Higher numbers give more verbose messages
|
|
* arg1: Textual message
|
|
*/
|
|
SDT_PROBE_DEFINE2(fusefs, , device, trace, "int", "char*");
|
|
|
|
static struct cdev *fuse_dev;
|
|
|
|
static d_kqfilter_t fuse_device_filter;
|
|
static d_open_t fuse_device_open;
|
|
static d_poll_t fuse_device_poll;
|
|
static d_read_t fuse_device_read;
|
|
static d_write_t fuse_device_write;
|
|
|
|
static struct cdevsw fuse_device_cdevsw = {
|
|
.d_kqfilter = fuse_device_filter,
|
|
.d_open = fuse_device_open,
|
|
.d_name = "fuse",
|
|
.d_poll = fuse_device_poll,
|
|
.d_read = fuse_device_read,
|
|
.d_write = fuse_device_write,
|
|
.d_version = D_VERSION,
|
|
};
|
|
|
|
static int fuse_device_filt_read(struct knote *kn, long hint);
|
|
static int fuse_device_filt_write(struct knote *kn, long hint);
|
|
static void fuse_device_filt_detach(struct knote *kn);
|
|
|
|
struct filterops fuse_device_rfiltops = {
|
|
.f_isfd = 1,
|
|
.f_detach = fuse_device_filt_detach,
|
|
.f_event = fuse_device_filt_read,
|
|
};
|
|
|
|
struct filterops fuse_device_wfiltops = {
|
|
.f_isfd = 1,
|
|
.f_event = fuse_device_filt_write,
|
|
};
|
|
|
|
/****************************
|
|
*
|
|
* >>> Fuse device op defs
|
|
*
|
|
****************************/
|
|
|
|
static void
|
|
fdata_dtor(void *arg)
|
|
{
|
|
struct fuse_data *fdata;
|
|
struct fuse_ticket *tick;
|
|
|
|
fdata = arg;
|
|
if (fdata == NULL)
|
|
return;
|
|
|
|
fdata_set_dead(fdata);
|
|
|
|
FUSE_LOCK();
|
|
fuse_lck_mtx_lock(fdata->aw_mtx);
|
|
/* wakup poll()ers */
|
|
selwakeuppri(&fdata->ks_rsel, PZERO + 1);
|
|
/* Don't let syscall handlers wait in vain */
|
|
while ((tick = fuse_aw_pop(fdata))) {
|
|
fuse_lck_mtx_lock(tick->tk_aw_mtx);
|
|
fticket_set_answered(tick);
|
|
tick->tk_aw_errno = ENOTCONN;
|
|
wakeup(tick);
|
|
fuse_lck_mtx_unlock(tick->tk_aw_mtx);
|
|
FUSE_ASSERT_AW_DONE(tick);
|
|
fuse_ticket_drop(tick);
|
|
}
|
|
fuse_lck_mtx_unlock(fdata->aw_mtx);
|
|
|
|
/* Cleanup unsent operations */
|
|
fuse_lck_mtx_lock(fdata->ms_mtx);
|
|
while ((tick = fuse_ms_pop(fdata))) {
|
|
fuse_ticket_drop(tick);
|
|
}
|
|
fuse_lck_mtx_unlock(fdata->ms_mtx);
|
|
FUSE_UNLOCK();
|
|
|
|
fdata_trydestroy(fdata);
|
|
}
|
|
|
|
static int
|
|
fuse_device_filter(struct cdev *dev, struct knote *kn)
|
|
{
|
|
struct fuse_data *data;
|
|
int error;
|
|
|
|
error = devfs_get_cdevpriv((void **)&data);
|
|
|
|
if (error == 0 && kn->kn_filter == EVFILT_READ) {
|
|
kn->kn_fop = &fuse_device_rfiltops;
|
|
kn->kn_hook = data;
|
|
knlist_add(&data->ks_rsel.si_note, kn, 0);
|
|
error = 0;
|
|
} else if (error == 0 && kn->kn_filter == EVFILT_WRITE) {
|
|
kn->kn_fop = &fuse_device_wfiltops;
|
|
error = 0;
|
|
} else if (error == 0) {
|
|
error = EINVAL;
|
|
kn->kn_data = error;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
fuse_device_filt_detach(struct knote *kn)
|
|
{
|
|
struct fuse_data *data;
|
|
|
|
data = (struct fuse_data*)kn->kn_hook;
|
|
MPASS(data != NULL);
|
|
knlist_remove(&data->ks_rsel.si_note, kn, 0);
|
|
kn->kn_hook = NULL;
|
|
}
|
|
|
|
static int
|
|
fuse_device_filt_read(struct knote *kn, long hint)
|
|
{
|
|
struct fuse_data *data;
|
|
int ready;
|
|
|
|
data = (struct fuse_data*)kn->kn_hook;
|
|
MPASS(data != NULL);
|
|
|
|
mtx_assert(&data->ms_mtx, MA_OWNED);
|
|
if (fdata_get_dead(data)) {
|
|
kn->kn_flags |= EV_EOF;
|
|
kn->kn_fflags = ENODEV;
|
|
kn->kn_data = 1;
|
|
ready = 1;
|
|
} else if (STAILQ_FIRST(&data->ms_head)) {
|
|
MPASS(data->ms_count >= 1);
|
|
kn->kn_data = data->ms_count;
|
|
ready = 1;
|
|
} else {
|
|
ready = 0;
|
|
}
|
|
|
|
return (ready);
|
|
}
|
|
|
|
static int
|
|
fuse_device_filt_write(struct knote *kn, long hint)
|
|
{
|
|
|
|
kn->kn_data = 0;
|
|
|
|
/* The device is always ready to write, so we return 1*/
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Resources are set up on a per-open basis
|
|
*/
|
|
static int
|
|
fuse_device_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
|
|
{
|
|
struct fuse_data *fdata;
|
|
int error;
|
|
|
|
SDT_PROBE2(fusefs, , device, trace, 1, "device open");
|
|
|
|
fdata = fdata_alloc(dev, td->td_ucred);
|
|
error = devfs_set_cdevpriv(fdata, fdata_dtor);
|
|
if (error != 0)
|
|
fdata_trydestroy(fdata);
|
|
else
|
|
SDT_PROBE2(fusefs, , device, trace, 1, "device open success");
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
fuse_device_poll(struct cdev *dev, int events, struct thread *td)
|
|
{
|
|
struct fuse_data *data;
|
|
int error, revents = 0;
|
|
|
|
error = devfs_get_cdevpriv((void **)&data);
|
|
if (error != 0)
|
|
return (events &
|
|
(POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM));
|
|
|
|
if (events & (POLLIN | POLLRDNORM)) {
|
|
fuse_lck_mtx_lock(data->ms_mtx);
|
|
if (fdata_get_dead(data) || STAILQ_FIRST(&data->ms_head))
|
|
revents |= events & (POLLIN | POLLRDNORM);
|
|
else
|
|
selrecord(td, &data->ks_rsel);
|
|
fuse_lck_mtx_unlock(data->ms_mtx);
|
|
}
|
|
if (events & (POLLOUT | POLLWRNORM)) {
|
|
revents |= events & (POLLOUT | POLLWRNORM);
|
|
}
|
|
return (revents);
|
|
}
|
|
|
|
/*
|
|
* fuse_device_read hangs on the queue of VFS messages.
|
|
* When it's notified that there is a new one, it picks that and
|
|
* passes up to the daemon
|
|
*/
|
|
int
|
|
fuse_device_read(struct cdev *dev, struct uio *uio, int ioflag)
|
|
{
|
|
int err;
|
|
struct fuse_data *data;
|
|
struct fuse_ticket *tick;
|
|
void *buf;
|
|
int buflen;
|
|
|
|
SDT_PROBE2(fusefs, , device, trace, 1, "fuse device read");
|
|
|
|
err = devfs_get_cdevpriv((void **)&data);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
fuse_lck_mtx_lock(data->ms_mtx);
|
|
again:
|
|
if (fdata_get_dead(data)) {
|
|
SDT_PROBE2(fusefs, , device, trace, 2,
|
|
"we know early on that reader should be kicked so we "
|
|
"don't wait for news");
|
|
fuse_lck_mtx_unlock(data->ms_mtx);
|
|
return (ENODEV);
|
|
}
|
|
if (!(tick = fuse_ms_pop(data))) {
|
|
/* check if we may block */
|
|
if (ioflag & O_NONBLOCK) {
|
|
/* get outa here soon */
|
|
fuse_lck_mtx_unlock(data->ms_mtx);
|
|
return (EAGAIN);
|
|
} else {
|
|
err = msleep(data, &data->ms_mtx, PCATCH, "fu_msg", 0);
|
|
if (err != 0) {
|
|
fuse_lck_mtx_unlock(data->ms_mtx);
|
|
return (fdata_get_dead(data) ? ENODEV : err);
|
|
}
|
|
tick = fuse_ms_pop(data);
|
|
}
|
|
}
|
|
if (!tick) {
|
|
/*
|
|
* We can get here if fuse daemon suddenly terminates,
|
|
* eg, by being hit by a SIGKILL
|
|
* -- and some other cases, too, tho not totally clear, when
|
|
* (cv_signal/wakeup_one signals the whole process ?)
|
|
*/
|
|
SDT_PROBE2(fusefs, , device, trace, 1, "no message on thread");
|
|
goto again;
|
|
}
|
|
fuse_lck_mtx_unlock(data->ms_mtx);
|
|
|
|
if (fdata_get_dead(data)) {
|
|
/*
|
|
* somebody somewhere -- eg., umount routine --
|
|
* wants this liaison finished off
|
|
*/
|
|
SDT_PROBE2(fusefs, , device, trace, 2,
|
|
"reader is to be sacked");
|
|
if (tick) {
|
|
SDT_PROBE2(fusefs, , device, trace, 2, "weird -- "
|
|
"\"kick\" is set tho there is message");
|
|
FUSE_ASSERT_MS_DONE(tick);
|
|
fuse_ticket_drop(tick);
|
|
}
|
|
return (ENODEV); /* This should make the daemon get off
|
|
* of us */
|
|
}
|
|
SDT_PROBE2(fusefs, , device, trace, 1,
|
|
"fuse device read message successfully");
|
|
|
|
buf = tick->tk_ms_fiov.base;
|
|
buflen = tick->tk_ms_fiov.len;
|
|
|
|
/*
|
|
* Why not ban mercilessly stupid daemons who can't keep up
|
|
* with us? (There is no much use of a partial read here...)
|
|
*/
|
|
/*
|
|
* XXX note that in such cases Linux FUSE throws EIO at the
|
|
* syscall invoker and stands back to the message queue. The
|
|
* rationale should be made clear (and possibly adopt that
|
|
* behaviour). Keeping the current scheme at least makes
|
|
* fallacy as loud as possible...
|
|
*/
|
|
if (uio->uio_resid < buflen) {
|
|
fdata_set_dead(data);
|
|
SDT_PROBE2(fusefs, , device, trace, 2,
|
|
"daemon is stupid, kick it off...");
|
|
err = ENODEV;
|
|
} else {
|
|
err = uiomove(buf, buflen, uio);
|
|
}
|
|
|
|
FUSE_ASSERT_MS_DONE(tick);
|
|
fuse_ticket_drop(tick);
|
|
|
|
return (err);
|
|
}
|
|
|
|
static inline int
|
|
fuse_ohead_audit(struct fuse_out_header *ohead, struct uio *uio)
|
|
{
|
|
if (uio->uio_resid + sizeof(struct fuse_out_header) != ohead->len) {
|
|
SDT_PROBE2(fusefs, , device, trace, 1,
|
|
"Format error: body size "
|
|
"differs from size claimed by header");
|
|
return (EINVAL);
|
|
}
|
|
if (uio->uio_resid && ohead->unique != 0 && ohead->error) {
|
|
SDT_PROBE2(fusefs, , device, trace, 1,
|
|
"Format error: non zero error but message had a body");
|
|
return (EINVAL);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
SDT_PROBE_DEFINE1(fusefs, , device, fuse_device_write_notify,
|
|
"struct fuse_out_header*");
|
|
SDT_PROBE_DEFINE1(fusefs, , device, fuse_device_write_missing_ticket,
|
|
"uint64_t");
|
|
SDT_PROBE_DEFINE1(fusefs, , device, fuse_device_write_found,
|
|
"struct fuse_ticket*");
|
|
/*
|
|
* fuse_device_write first reads the header sent by the daemon.
|
|
* If that's OK, looks up ticket/callback node by the unique id seen in header.
|
|
* If the callback node contains a handler function, the uio is passed over
|
|
* that.
|
|
*/
|
|
static int
|
|
fuse_device_write(struct cdev *dev, struct uio *uio, int ioflag)
|
|
{
|
|
struct fuse_out_header ohead;
|
|
int err = 0;
|
|
struct fuse_data *data;
|
|
struct mount *mp;
|
|
struct fuse_ticket *tick, *itick, *x_tick;
|
|
int found = 0;
|
|
|
|
err = devfs_get_cdevpriv((void **)&data);
|
|
if (err != 0)
|
|
return (err);
|
|
mp = data->mp;
|
|
|
|
if (uio->uio_resid < sizeof(struct fuse_out_header)) {
|
|
SDT_PROBE2(fusefs, , device, trace, 1,
|
|
"fuse_device_write got less than a header!");
|
|
fdata_set_dead(data);
|
|
return (EINVAL);
|
|
}
|
|
if ((err = uiomove(&ohead, sizeof(struct fuse_out_header), uio)) != 0)
|
|
return (err);
|
|
|
|
if (data->linux_errnos != 0 && ohead.error != 0) {
|
|
err = -ohead.error;
|
|
if (err < 0 || err >= nitems(linux_to_bsd_errtbl))
|
|
return (EINVAL);
|
|
|
|
/* '-', because it will get flipped again below */
|
|
ohead.error = -linux_to_bsd_errtbl[err];
|
|
}
|
|
|
|
/*
|
|
* We check header information (which is redundant) and compare it
|
|
* with what we see. If we see some inconsistency we discard the
|
|
* whole answer and proceed on as if it had never existed. In
|
|
* particular, no pretender will be woken up, regardless the
|
|
* "unique" value in the header.
|
|
*/
|
|
if ((err = fuse_ohead_audit(&ohead, uio))) {
|
|
fdata_set_dead(data);
|
|
return (err);
|
|
}
|
|
/* Pass stuff over to callback if there is one installed */
|
|
|
|
/* Looking for ticket with the unique id of header */
|
|
fuse_lck_mtx_lock(data->aw_mtx);
|
|
TAILQ_FOREACH_SAFE(tick, &data->aw_head, tk_aw_link,
|
|
x_tick) {
|
|
if (tick->tk_unique == ohead.unique) {
|
|
SDT_PROBE1(fusefs, , device, fuse_device_write_found,
|
|
tick);
|
|
found = 1;
|
|
fuse_aw_remove(tick);
|
|
break;
|
|
}
|
|
}
|
|
if (found && tick->irq_unique > 0) {
|
|
/*
|
|
* Discard the FUSE_INTERRUPT ticket that tried to interrupt
|
|
* this operation
|
|
*/
|
|
TAILQ_FOREACH_SAFE(itick, &data->aw_head, tk_aw_link,
|
|
x_tick) {
|
|
if (itick->tk_unique == tick->irq_unique) {
|
|
fuse_aw_remove(itick);
|
|
fuse_ticket_drop(itick);
|
|
break;
|
|
}
|
|
}
|
|
tick->irq_unique = 0;
|
|
}
|
|
fuse_lck_mtx_unlock(data->aw_mtx);
|
|
|
|
if (found) {
|
|
if (tick->tk_aw_handler) {
|
|
/*
|
|
* We found a callback with proper handler. In this
|
|
* case the out header will be 0wnd by the callback,
|
|
* so the fun of freeing that is left for her.
|
|
* (Then, by all chance, she'll just get that's done
|
|
* via ticket_drop(), so no manual mucking
|
|
* around...)
|
|
*/
|
|
SDT_PROBE2(fusefs, , device, trace, 1,
|
|
"pass ticket to a callback");
|
|
/* Sanitize the linuxism of negative errnos */
|
|
ohead.error *= -1;
|
|
memcpy(&tick->tk_aw_ohead, &ohead, sizeof(ohead));
|
|
err = tick->tk_aw_handler(tick, uio);
|
|
} else {
|
|
/* pretender doesn't wanna do anything with answer */
|
|
SDT_PROBE2(fusefs, , device, trace, 1,
|
|
"stuff devalidated, so we drop it");
|
|
}
|
|
|
|
/*
|
|
* As aw_mtx was not held during the callback execution the
|
|
* ticket may have been inserted again. However, this is safe
|
|
* because fuse_ticket_drop() will deal with refcount anyway.
|
|
*/
|
|
fuse_ticket_drop(tick);
|
|
} else if (ohead.unique == 0){
|
|
/* unique == 0 means asynchronous notification */
|
|
SDT_PROBE1(fusefs, , device, fuse_device_write_notify, &ohead);
|
|
switch (ohead.error) {
|
|
case FUSE_NOTIFY_INVAL_ENTRY:
|
|
err = fuse_internal_invalidate_entry(mp, uio);
|
|
break;
|
|
case FUSE_NOTIFY_INVAL_INODE:
|
|
err = fuse_internal_invalidate_inode(mp, uio);
|
|
break;
|
|
case FUSE_NOTIFY_RETRIEVE:
|
|
case FUSE_NOTIFY_STORE:
|
|
/*
|
|
* Unimplemented. I don't know of any file systems
|
|
* that use them, and the protocol isn't sound anyway,
|
|
* since the notification messages don't include the
|
|
* inode's generation number. Without that, it's
|
|
* possible to manipulate the cache of the wrong vnode.
|
|
* Finally, it's not defined what this message should
|
|
* do for a file with dirty cache.
|
|
*/
|
|
case FUSE_NOTIFY_POLL:
|
|
/* Unimplemented. See comments in fuse_vnops */
|
|
default:
|
|
/* Not implemented */
|
|
err = ENOSYS;
|
|
}
|
|
} else {
|
|
/* no callback at all! */
|
|
SDT_PROBE1(fusefs, , device, fuse_device_write_missing_ticket,
|
|
ohead.unique);
|
|
if (ohead.error == -EAGAIN) {
|
|
/*
|
|
* This was probably a response to a FUSE_INTERRUPT
|
|
* operation whose original operation is already
|
|
* complete. We can't store FUSE_INTERRUPT tickets
|
|
* indefinitely because their responses are optional.
|
|
* So we delete them when the original operation
|
|
* completes. And sadly the fuse_header_out doesn't
|
|
* identify the opcode, so we have to guess.
|
|
*/
|
|
err = 0;
|
|
} else {
|
|
err = EINVAL;
|
|
}
|
|
}
|
|
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fuse_device_init(void)
|
|
{
|
|
|
|
fuse_dev = make_dev(&fuse_device_cdevsw, 0, UID_ROOT, GID_OPERATOR,
|
|
S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH, "fuse");
|
|
if (fuse_dev == NULL)
|
|
return (ENOMEM);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
fuse_device_destroy(void)
|
|
{
|
|
|
|
MPASS(fuse_dev != NULL);
|
|
destroy_dev(fuse_dev);
|
|
}
|