freebsd-nq/sys/mips/nlm/xlp_machdep.c
Jayachandran C. 301b961c3e Broadcom XLP updates for the new firmware
Support few more versions of board firmware.  In case the security
block is disabled, enable it at boot. Also increase the excluded
memory region to cover the area used by the firmware to initialize
devices.
2013-01-24 14:33:25 +00:00

738 lines
17 KiB
C

/*-
* Copyright 2003-2011 Netlogic Microsystems (Netlogic). All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY Netlogic Microsystems ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* NETLOGIC_BSD */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include "opt_platform.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/rtprio.h>
#include <sys/systm.h>
#include <sys/interrupt.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/random.h>
#include <sys/cons.h> /* cinit() */
#include <sys/kdb.h>
#include <sys/reboot.h>
#include <sys/queue.h>
#include <sys/smp.h>
#include <sys/timetc.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#include <machine/cpu.h>
#include <machine/cpufunc.h>
#include <machine/cpuinfo.h>
#include <machine/tlb.h>
#include <machine/cpuregs.h>
#include <machine/frame.h>
#include <machine/hwfunc.h>
#include <machine/md_var.h>
#include <machine/asm.h>
#include <machine/pmap.h>
#include <machine/trap.h>
#include <machine/clock.h>
#include <machine/fls64.h>
#include <machine/intr_machdep.h>
#include <machine/smp.h>
#include <mips/nlm/hal/mips-extns.h>
#include <mips/nlm/hal/haldefs.h>
#include <mips/nlm/hal/iomap.h>
#include <mips/nlm/hal/sys.h>
#include <mips/nlm/hal/pic.h>
#include <mips/nlm/hal/uart.h>
#include <mips/nlm/hal/mmu.h>
#include <mips/nlm/hal/bridge.h>
#include <mips/nlm/hal/cpucontrol.h>
#include <mips/nlm/hal/cop2.h>
#include <mips/nlm/clock.h>
#include <mips/nlm/interrupt.h>
#include <mips/nlm/board.h>
#include <mips/nlm/xlp.h>
#include <mips/nlm/msgring.h>
#ifdef FDT
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/openfirm.h>
#endif
/* 4KB static data aread to keep a copy of the bootload env until
the dynamic kenv is setup */
char boot1_env[4096];
uint64_t xlp_cpu_frequency;
uint64_t xlp_io_base = MIPS_PHYS_TO_DIRECT_UNCACHED(XLP_DEFAULT_IO_BASE);
int xlp_ncores;
int xlp_threads_per_core;
uint32_t xlp_hw_thread_mask;
int xlp_cpuid_to_hwtid[MAXCPU];
int xlp_hwtid_to_cpuid[MAXCPU];
uint64_t xlp_pic_base;
static int xlp_mmuval;
extern uint32_t _end;
extern char XLPResetEntry[], XLPResetEntryEnd[];
static void
xlp_setup_core(void)
{
uint64_t reg;
reg = nlm_mfcr(LSU_DEFEATURE);
/* Enable Unaligned and L2HPE */
reg |= (1 << 30) | (1 << 23);
/*
* Experimental : Enable SUE
* Speculative Unmap Enable. Enable speculative L2 cache request for
* unmapped access.
*/
reg |= (1ull << 31);
/* Clear S1RCM - A0 errata */
reg &= ~0xeull;
nlm_mtcr(LSU_DEFEATURE, reg);
reg = nlm_mfcr(SCHED_DEFEATURE);
/* Experimental: Disable BRU accepting ALU ops - A0 errata */
reg |= (1 << 24);
nlm_mtcr(SCHED_DEFEATURE, reg);
}
static void
xlp_setup_mmu(void)
{
uint32_t pagegrain;
if (nlm_threadid() == 0) {
nlm_setup_extended_pagemask(0);
nlm_large_variable_tlb_en(1);
nlm_extended_tlb_en(1);
nlm_mmu_setup(0, 0, 0);
}
/* Enable no-read, no-exec, large-physical-address */
pagegrain = mips_rd_pagegrain();
pagegrain |= (1 << 31) | /* RIE */
(1 << 30) | /* XIE */
(1 << 29); /* ELPA */
mips_wr_pagegrain(pagegrain);
}
static void
xlp_enable_blocks(void)
{
uint64_t sysbase;
int i;
for (i = 0; i < XLP_MAX_NODES; i++) {
if (!nlm_dev_exists(XLP_IO_SYS_OFFSET(i)))
continue;
sysbase = nlm_get_sys_regbase(i);
nlm_sys_enable_block(sysbase, DFS_DEVICE_RSA);
}
}
static void
xlp_parse_mmu_options(void)
{
uint64_t sysbase;
uint32_t cpu_map = xlp_hw_thread_mask;
uint32_t core0_thr_mask, core_thr_mask, cpu_rst_mask;
int i, j, k;
#ifdef SMP
if (cpu_map == 0)
cpu_map = 0xffffffff;
#else /* Uniprocessor! */
if (cpu_map == 0)
cpu_map = 0x1;
else if (cpu_map != 0x1) {
printf("WARNING: Starting uniprocessor kernel on cpumask [0x%lx]!\n"
"WARNING: Other CPUs will be unused.\n", (u_long)cpu_map);
cpu_map = 0x1;
}
#endif
xlp_ncores = 1;
core0_thr_mask = cpu_map & 0xf;
switch (core0_thr_mask) {
case 1:
xlp_threads_per_core = 1;
xlp_mmuval = 0;
break;
case 3:
xlp_threads_per_core = 2;
xlp_mmuval = 2;
break;
case 0xf:
xlp_threads_per_core = 4;
xlp_mmuval = 3;
break;
default:
goto unsupp;
}
/* Try to find the enabled cores from SYS block */
sysbase = nlm_get_sys_regbase(0);
cpu_rst_mask = nlm_read_sys_reg(sysbase, SYS_CPU_RESET) & 0xff;
/* XLP 416 does not report this correctly, fix */
if (nlm_processor_id() == CHIP_PROCESSOR_ID_XLP_416)
cpu_rst_mask = 0xe;
/* Take out cores which do not exist on chip */
for (i = 1; i < XLP_MAX_CORES; i++) {
if ((cpu_rst_mask & (1 << i)) == 0)
cpu_map &= ~(0xfu << (4 * i));
}
/* Verify other cores' CPU masks */
for (i = 1; i < XLP_MAX_CORES; i++) {
core_thr_mask = (cpu_map >> (4 * i)) & 0xf;
if (core_thr_mask == 0)
continue;
if (core_thr_mask != core0_thr_mask)
goto unsupp;
xlp_ncores++;
}
xlp_hw_thread_mask = cpu_map;
/* setup hardware processor id to cpu id mapping */
for (i = 0; i< MAXCPU; i++)
xlp_cpuid_to_hwtid[i] =
xlp_hwtid_to_cpuid[i] = -1;
for (i = 0, k = 0; i < XLP_MAX_CORES; i++) {
if (((cpu_map >> (i * 4)) & 0xf) == 0)
continue;
for (j = 0; j < xlp_threads_per_core; j++) {
xlp_cpuid_to_hwtid[k] = i * 4 + j;
xlp_hwtid_to_cpuid[i * 4 + j] = k;
k++;
}
}
return;
unsupp:
printf("ERROR : Unsupported CPU mask [use 1,2 or 4 threads per core].\n"
"\tcore0 thread mask [%lx], boot cpu mask [%lx].\n",
(u_long)core0_thr_mask, (u_long)cpu_map);
panic("Invalid CPU mask - halting.\n");
return;
}
/* Parse cmd line args as env - copied from ar71xx */
static void
xlp_parse_bootargs(char *cmdline)
{
char *n, *v;
while ((v = strsep(&cmdline, " \n")) != NULL) {
if (*v == '\0')
continue;
if (*v == '-') {
while (*v != '\0') {
v++;
switch (*v) {
case 'a': boothowto |= RB_ASKNAME; break;
case 'd': boothowto |= RB_KDB; break;
case 'g': boothowto |= RB_GDB; break;
case 's': boothowto |= RB_SINGLE; break;
case 'v': boothowto |= RB_VERBOSE; break;
}
}
} else {
n = strsep(&v, "=");
if (v == NULL)
setenv(n, "1");
else
setenv(n, v);
}
}
}
#ifdef FDT
static void
xlp_bootargs_init(__register_t arg)
{
char buf[2048]; /* early stack is big enough */
void *dtbp;
phandle_t chosen;
ihandle_t mask;
dtbp = (void *)(intptr_t)arg;
#if defined(FDT_DTB_STATIC)
/*
* In case the device tree blob was not passed as argument try
* to use the statically embedded one.
*/
if (dtbp == NULL)
dtbp = &fdt_static_dtb;
#endif
if (OF_install(OFW_FDT, 0) == FALSE)
while (1);
if (OF_init((void *)dtbp) != 0)
while (1);
if (fdt_immr_addr(xlp_io_base) != 0)
while (1);
OF_interpret("perform-fixup", 0);
chosen = OF_finddevice("/chosen");
if (OF_getprop(chosen, "cpumask", &mask, sizeof(mask)) != -1) {
xlp_hw_thread_mask = mask;
}
if (OF_getprop(chosen, "bootargs", buf, sizeof(buf)) != -1)
xlp_parse_bootargs(buf);
}
#else
/*
* arg is a pointer to the environment block, the format of the block is
* a=xyz\0b=pqr\0\0
*/
static void
xlp_bootargs_init(__register_t arg)
{
char buf[2048]; /* early stack is big enough */
char *p, *v, *n;
uint32_t mask;
/*
* provide backward compat for passing cpu mask as arg
*/
if (arg & 1) {
xlp_hw_thread_mask = arg;
return;
}
p = (void *)(intptr_t)arg;
while (*p != '\0') {
strlcpy(buf, p, sizeof(buf));
v = buf;
n = strsep(&v, "=");
if (v == NULL)
setenv(n, "1");
else
setenv(n, v);
p += strlen(p) + 1;
}
/* CPU mask can be passed thru env */
if (getenv_uint("cpumask", &mask) != 0)
xlp_hw_thread_mask = mask;
/* command line argument */
v = getenv("bootargs");
if (v != NULL) {
strlcpy(buf, v, sizeof(buf));
xlp_parse_bootargs(buf);
freeenv(v);
}
}
#endif
static void
mips_init(void)
{
init_param1();
init_param2(physmem);
mips_cpu_init();
cpuinfo.cache_coherent_dma = TRUE;
pmap_bootstrap();
mips_proc0_init();
mutex_init();
#ifdef DDB
kdb_init();
if (boothowto & RB_KDB) {
kdb_enter("Boot flags requested debugger", NULL);
}
#endif
}
unsigned int
platform_get_timecount(struct timecounter *tc __unused)
{
uint64_t count = nlm_pic_read_timer(xlp_pic_base, PIC_CLOCK_TIMER);
return (unsigned int)~count;
}
static void
xlp_pic_init(void)
{
struct timecounter pic_timecounter = {
platform_get_timecount, /* get_timecount */
0, /* no poll_pps */
~0U, /* counter_mask */
XLP_IO_CLK, /* frequency */
"XLRPIC", /* name */
2000, /* quality (adjusted in code) */
};
int i;
int maxirt;
xlp_pic_base = nlm_get_pic_regbase(0); /* TOOD: Add other nodes */
maxirt = nlm_read_reg(nlm_get_pic_pcibase(nlm_nodeid()),
XLP_PCI_DEVINFO_REG0);
printf("Initializing PIC...@%jx %d IRTs\n", (uintmax_t)xlp_pic_base,
maxirt);
/* Bind all PIC irqs to cpu 0 */
for (i = 0; i < maxirt; i++)
nlm_pic_write_irt(xlp_pic_base, i, 0, 0, 1, 0,
1, 0, 0x1);
nlm_pic_set_timer(xlp_pic_base, PIC_CLOCK_TIMER, ~0ULL, 0, 0);
platform_timecounter = &pic_timecounter;
}
#if defined(__mips_n32) || defined(__mips_n64) /* PHYSADDR_64_BIT */
#ifdef XLP_SIM
#define XLP_MEM_LIM 0x200000000ULL
#else
#define XLP_MEM_LIM 0x10000000000ULL
#endif
#else
#define XLP_MEM_LIM 0xfffff000UL
#endif
static vm_paddr_t xlp_mem_excl[] = {
0, 0, /* for kernel image region, see xlp_mem_init */
0x0c000000, 0x14000000, /* uboot area, cms queue and other stuff */
0x1fc00000, 0x1fd00000, /* reset vec */
0x1e000000, 0x1e200000, /* poe buffers */
};
static int
mem_exclude_add(vm_paddr_t *avail, vm_paddr_t mstart, vm_paddr_t mend)
{
int nreg = sizeof(xlp_mem_excl)/sizeof(xlp_mem_excl[0]);
int i, pos;
pos = 0;
for (i = 0; i < nreg; i += 2) {
if (mstart > xlp_mem_excl[i + 1])
continue;
if (mstart < xlp_mem_excl[i]) {
avail[pos++] = mstart;
if (mend < xlp_mem_excl[i])
avail[pos++] = mend;
else
avail[pos++] = xlp_mem_excl[i];
}
mstart = xlp_mem_excl[i + 1];
if (mend <= mstart)
break;
}
if (mstart < mend) {
avail[pos++] = mstart;
avail[pos++] = mend;
}
return (pos);
}
static void
xlp_mem_init(void)
{
vm_paddr_t physsz, tmp;
uint64_t bridgebase, base, lim, val;
int i, j, k, n;
/* update kernel image area in exclude regions */
tmp = (vm_paddr_t)MIPS_KSEG0_TO_PHYS(&_end);
tmp = round_page(tmp) + 0x20000; /* round up */
xlp_mem_excl[1] = tmp;
printf("Memory (from DRAM BARs):\n");
bridgebase = nlm_get_bridge_regbase(0); /* TODO: Add other nodes */
physsz = 0;
for (i = 0, j = 0; i < 8; i++) {
val = nlm_read_bridge_reg(bridgebase, BRIDGE_DRAM_BAR(i));
val = (val >> 12) & 0xfffff;
base = val << 20;
val = nlm_read_bridge_reg(bridgebase, BRIDGE_DRAM_LIMIT(i));
val = (val >> 12) & 0xfffff;
if (val == 0) /* BAR not enabled */
continue;
lim = (val + 1) << 20;
printf(" BAR %d: %#jx - %#jx : ", i, (intmax_t)base,
(intmax_t)lim);
if (lim <= base) {
printf("\tskipped - malformed %#jx -> %#jx\n",
(intmax_t)base, (intmax_t)lim);
continue;
} else if (base >= XLP_MEM_LIM) {
printf(" skipped - outside usable limit %#jx.\n",
(intmax_t)XLP_MEM_LIM);
continue;
} else if (lim >= XLP_MEM_LIM) {
lim = XLP_MEM_LIM;
printf(" truncated to %#jx.\n", (intmax_t)XLP_MEM_LIM);
} else
printf(" usable\n");
/* exclude unusable regions from BAR and add rest */
n = mem_exclude_add(&phys_avail[j], base, lim);
for (k = j; k < j + n; k += 2) {
physsz += phys_avail[k + 1] - phys_avail[k];
printf("\tMem[%d]: %#jx - %#jx\n", k/2,
(intmax_t)phys_avail[k], (intmax_t)phys_avail[k+1]);
}
j = k;
}
/* setup final entry with 0 */
phys_avail[j] = phys_avail[j + 1] = 0;
/* copy phys_avail to dump_avail */
for (i = 0; i <= j + 1; i++)
dump_avail[i] = phys_avail[i];
realmem = physmem = btoc(physsz);
}
void
platform_start(__register_t a0 __unused,
__register_t a1 __unused,
__register_t a2 __unused,
__register_t a3 __unused)
{
/* Initialize pcpu stuff */
mips_pcpu0_init();
/* initialize console so that we have printf */
boothowto |= (RB_SERIAL | RB_MULTIPLE); /* Use multiple consoles */
init_static_kenv(boot1_env, sizeof(boot1_env));
xlp_bootargs_init(a0);
/* clockrate used by delay, so initialize it here */
xlp_cpu_frequency = xlp_get_cpu_frequency(0, 0);
cpu_clock = xlp_cpu_frequency / 1000000;
mips_timer_early_init(xlp_cpu_frequency);
/* Init console please */
cninit();
/* Early core init and fixes for errata */
xlp_setup_core();
xlp_parse_mmu_options();
xlp_mem_init();
bcopy(XLPResetEntry, (void *)MIPS_RESET_EXC_VEC,
XLPResetEntryEnd - XLPResetEntry);
#ifdef SMP
/*
* We will enable the other threads in core 0 here
* so that the TLB and cache info is correct when
* mips_init runs
*/
xlp_enable_threads(xlp_mmuval);
#endif
/* setup for the startup core */
xlp_setup_mmu();
xlp_enable_blocks();
/* Read/Guess/setup board information */
nlm_board_info_setup();
/* MIPS generic init */
mips_init();
/*
* XLP specific post initialization
* initialize other on chip stuff
*/
xlp_pic_init();
mips_timer_init_params(xlp_cpu_frequency, 0);
}
void
platform_cpu_init()
{
}
void
platform_reset(void)
{
uint64_t sysbase = nlm_get_sys_regbase(0);
nlm_write_sys_reg(sysbase, SYS_CHIP_RESET, 1);
for( ; ; )
__asm __volatile("wait");
}
#ifdef SMP
/*
* XLP threads are started simultaneously when we enable threads, this will
* ensure that the threads are blocked in platform_init_ap, until they are
* ready to proceed to smp_init_secondary()
*/
static volatile int thr_unblock[4];
int
platform_start_ap(int cpuid)
{
uint32_t coremask, val;
uint64_t sysbase = nlm_get_sys_regbase(0);
int hwtid = xlp_cpuid_to_hwtid[cpuid];
int core, thr;
core = hwtid / 4;
thr = hwtid % 4;
if (thr == 0) {
/* First thread in core, do core wake up */
coremask = 1u << core;
/* Enable core clock */
val = nlm_read_sys_reg(sysbase, SYS_CORE_DFS_DIS_CTRL);
val &= ~coremask;
nlm_write_sys_reg(sysbase, SYS_CORE_DFS_DIS_CTRL, val);
/* Remove CPU Reset */
val = nlm_read_sys_reg(sysbase, SYS_CPU_RESET);
val &= ~coremask & 0xff;
nlm_write_sys_reg(sysbase, SYS_CPU_RESET, val);
if (bootverbose)
printf("Waking up core %d ...", core);
/* Poll for CPU to mark itself coherent */
do {
val = nlm_read_sys_reg(sysbase, SYS_CPU_NONCOHERENT_MODE);
} while ((val & coremask) != 0);
if (bootverbose)
printf("Done\n");
} else {
/* otherwise release the threads stuck in platform_init_ap */
thr_unblock[thr] = 1;
}
return (0);
}
void
platform_init_ap(int cpuid)
{
uint32_t stat;
int thr;
/* The first thread has to setup the MMU and enable other threads */
thr = nlm_threadid();
if (thr == 0) {
xlp_setup_core();
xlp_enable_threads(xlp_mmuval);
} else {
/*
* FIXME busy wait here eats too many cycles, especially
* in the core 0 while bootup
*/
while (thr_unblock[thr] == 0)
__asm__ __volatile__ ("nop;nop;nop;nop");
thr_unblock[thr] = 0;
}
xlp_setup_mmu();
stat = mips_rd_status();
KASSERT((stat & MIPS_SR_INT_IE) == 0,
("Interrupts enabled in %s!", __func__));
stat |= MIPS_SR_COP_2_BIT | MIPS_SR_COP_0_BIT;
mips_wr_status(stat);
nlm_write_c0_eimr(0ull);
xlp_enable_irq(IRQ_IPI);
xlp_enable_irq(IRQ_TIMER);
xlp_enable_irq(IRQ_MSGRING);
return;
}
int
platform_ipi_intrnum(void)
{
return (IRQ_IPI);
}
void
platform_ipi_send(int cpuid)
{
nlm_pic_send_ipi(xlp_pic_base, xlp_cpuid_to_hwtid[cpuid],
platform_ipi_intrnum(), 0);
}
void
platform_ipi_clear(void)
{
}
int
platform_processor_id(void)
{
return (xlp_hwtid_to_cpuid[nlm_cpuid()]);
}
void
platform_cpu_mask(cpuset_t *mask)
{
int i, s;
CPU_ZERO(mask);
s = xlp_ncores * xlp_threads_per_core;
for (i = 0; i < s; i++)
CPU_SET(i, mask);
}
struct cpu_group *
platform_smp_topo()
{
return (smp_topo_2level(CG_SHARE_L2, xlp_ncores, CG_SHARE_L1,
xlp_threads_per_core, CG_FLAG_THREAD));
}
#endif