Luigi Rizzo f18be5766f Bring in a number of new features, mostly implemented by Michio Honda:
- the VALE switch now support up to 254 destinations per switch,
  unicast or broadcast (multicast goes to all ports).

- we can attach hw interfaces and the host stack to a VALE switch,
  which means we will be able to use it more or less as a native bridge
  (minor tweaks still necessary).
  A 'vale-ctl' program is supplied in tools/tools/netmap
  to attach/detach ports the switch, and list current configuration.

- the lookup function in the VALE switch can be reassigned to
  something else, similar to the pf hooks. This will enable
  attaching the firewall, or other processing functions (e.g. in-kernel
  openvswitch) directly on the netmap port.

The internal API used by device drivers does not change.

Userspace applications should be recompiled because we
bump NETMAP_API as we now use some fields in the struct nmreq
that were previously ignored -- otherwise, data structures
are the same.

Manpages will be committed separately.
2013-05-30 14:07:14 +00:00

3300 lines
90 KiB
C

/*
* Copyright (C) 2011-2013 Matteo Landi, Luigi Rizzo. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#define NM_BRIDGE
/*
* This module supports memory mapped access to network devices,
* see netmap(4).
*
* The module uses a large, memory pool allocated by the kernel
* and accessible as mmapped memory by multiple userspace threads/processes.
* The memory pool contains packet buffers and "netmap rings",
* i.e. user-accessible copies of the interface's queues.
*
* Access to the network card works like this:
* 1. a process/thread issues one or more open() on /dev/netmap, to create
* select()able file descriptor on which events are reported.
* 2. on each descriptor, the process issues an ioctl() to identify
* the interface that should report events to the file descriptor.
* 3. on each descriptor, the process issues an mmap() request to
* map the shared memory region within the process' address space.
* The list of interesting queues is indicated by a location in
* the shared memory region.
* 4. using the functions in the netmap(4) userspace API, a process
* can look up the occupation state of a queue, access memory buffers,
* and retrieve received packets or enqueue packets to transmit.
* 5. using some ioctl()s the process can synchronize the userspace view
* of the queue with the actual status in the kernel. This includes both
* receiving the notification of new packets, and transmitting new
* packets on the output interface.
* 6. select() or poll() can be used to wait for events on individual
* transmit or receive queues (or all queues for a given interface).
*/
#ifdef linux
#include "bsd_glue.h"
static netdev_tx_t linux_netmap_start(struct sk_buff *skb, struct net_device *dev);
#endif /* linux */
#ifdef __APPLE__
#include "osx_glue.h"
#endif /* __APPLE__ */
#ifdef __FreeBSD__
#include <sys/cdefs.h> /* prerequisite */
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/module.h>
#include <sys/errno.h>
#include <sys/param.h> /* defines used in kernel.h */
#include <sys/jail.h>
#include <sys/kernel.h> /* types used in module initialization */
#include <sys/conf.h> /* cdevsw struct */
#include <sys/uio.h> /* uio struct */
#include <sys/sockio.h>
#include <sys/socketvar.h> /* struct socket */
#include <sys/malloc.h>
#include <sys/mman.h> /* PROT_EXEC */
#include <sys/poll.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <vm/vm.h> /* vtophys */
#include <vm/pmap.h> /* vtophys */
#include <sys/socket.h> /* sockaddrs */
#include <machine/bus.h>
#include <sys/selinfo.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/bpf.h> /* BIOCIMMEDIATE */
#include <net/vnet.h>
#include <machine/bus.h> /* bus_dmamap_* */
MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map");
#endif /* __FreeBSD__ */
#include <net/netmap.h>
#include <dev/netmap/netmap_kern.h>
/* XXX the following variables must be deprecated and included in nm_mem */
u_int netmap_total_buffers;
u_int netmap_buf_size;
char *netmap_buffer_base; /* address of an invalid buffer */
/* user-controlled variables */
int netmap_verbose;
static int netmap_no_timestamp; /* don't timestamp on rxsync */
SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args");
SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
int netmap_mitigate = 1;
SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, "");
int netmap_no_pendintr = 1;
SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr,
CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets.");
int netmap_txsync_retry = 2;
SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW,
&netmap_txsync_retry, 0 , "Number of txsync loops in bridge's flush.");
int netmap_drop = 0; /* debugging */
int netmap_flags = 0; /* debug flags */
int netmap_fwd = 0; /* force transparent mode */
SYSCTL_INT(_dev_netmap, OID_AUTO, drop, CTLFLAG_RW, &netmap_drop, 0 , "");
SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , "");
SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0 , "");
#ifdef NM_BRIDGE /* support for netmap virtual switch, called VALE */
/*
* system parameters (most of them in netmap_kern.h)
* NM_NAME prefix for switch port names, default "vale"
* NM_MAXPORTS number of ports
* NM_BRIDGES max number of switches in the system.
* XXX should become a sysctl or tunable
*
* Switch ports are named valeX:Y where X is the switch name and Y
* is the port. If Y matches a physical interface name, the port is
* connected to a physical device.
*
* Unlike physical interfaces, switch ports use their own memory region
* for rings and buffers.
* The virtual interfaces use per-queue lock instead of core lock.
* In the tx loop, we aggregate traffic in batches to make all operations
* faster. The batch size is NM_BDG_BATCH
*/
#define NM_BDG_MAXRINGS 16 /* XXX unclear how many. */
#define NM_BRIDGE_RINGSIZE 1024 /* in the device */
#define NM_BDG_HASH 1024 /* forwarding table entries */
#define NM_BDG_BATCH 1024 /* entries in the forwarding buffer */
#define NM_BRIDGES 8 /* number of bridges */
int netmap_bridge = NM_BDG_BATCH; /* bridge batch size */
SYSCTL_INT(_dev_netmap, OID_AUTO, bridge, CTLFLAG_RW, &netmap_bridge, 0 , "");
#ifdef linux
#define refcount_acquire(_a) atomic_add(1, (atomic_t *)_a)
#define refcount_release(_a) atomic_dec_and_test((atomic_t *)_a)
#else /* !linux */
#ifdef __FreeBSD__
#include <sys/endian.h>
#include <sys/refcount.h>
#endif /* __FreeBSD__ */
#define prefetch(x) __builtin_prefetch(x)
#endif /* !linux */
/*
* These are used to handle reference counters for bridge ports.
*/
#define ADD_BDG_REF(ifp) refcount_acquire(&NA(ifp)->na_bdg_refcount)
#define DROP_BDG_REF(ifp) refcount_release(&NA(ifp)->na_bdg_refcount)
static void bdg_netmap_attach(struct netmap_adapter *);
static int bdg_netmap_reg(struct ifnet *ifp, int onoff);
static int kern_netmap_regif(struct nmreq *nmr);
/* per-tx-queue entry */
struct nm_bdg_fwd { /* forwarding entry for a bridge */
void *buf;
uint32_t ft_dst; /* dst port */
uint16_t ft_len; /* src len */
uint16_t ft_next; /* next packet to same destination */
};
/* We need to build a list of buffers going to each destination.
* Each buffer is in one entry of struct nm_bdg_fwd, we use ft_next
* to build the list, and struct nm_bdg_q below for the queue.
* The structure should compact because potentially we have a lot
* of destinations.
*/
struct nm_bdg_q {
uint16_t bq_head;
uint16_t bq_tail;
};
struct nm_hash_ent {
uint64_t mac; /* the top 2 bytes are the epoch */
uint64_t ports;
};
/*
* Interfaces for a bridge are all in bdg_ports[].
* The array has fixed size, an empty entry does not terminate
* the search. But lookups only occur on attach/detach so we
* don't mind if they are slow.
*
* The bridge is non blocking on the transmit ports.
*
* bdg_lock protects accesses to the bdg_ports array.
* This is a rw lock (or equivalent).
*/
struct nm_bridge {
int namelen; /* 0 means free */
/* XXX what is the proper alignment/layout ? */
NM_RWLOCK_T bdg_lock; /* protects bdg_ports */
struct netmap_adapter *bdg_ports[NM_BDG_MAXPORTS];
char basename[IFNAMSIZ];
/*
* The function to decide the destination port.
* It returns either of an index of the destination port,
* NM_BDG_BROADCAST to broadcast this packet, or NM_BDG_NOPORT not to
* forward this packet. ring_nr is the source ring index, and the
* function may overwrite this value to forward this packet to a
* different ring index.
* This function must be set by netmap_bdgctl().
*/
bdg_lookup_fn_t nm_bdg_lookup;
/* the forwarding table, MAC+ports */
struct nm_hash_ent ht[NM_BDG_HASH];
};
struct nm_bridge nm_bridges[NM_BRIDGES];
NM_LOCK_T netmap_bridge_mutex;
/* other OS will have these macros defined in their own glue code. */
#ifdef __FreeBSD__
#define BDG_LOCK() mtx_lock(&netmap_bridge_mutex)
#define BDG_UNLOCK() mtx_unlock(&netmap_bridge_mutex)
#define BDG_WLOCK(b) rw_wlock(&(b)->bdg_lock)
#define BDG_WUNLOCK(b) rw_wunlock(&(b)->bdg_lock)
#define BDG_RLOCK(b) rw_rlock(&(b)->bdg_lock)
#define BDG_RUNLOCK(b) rw_runlock(&(b)->bdg_lock)
/* set/get variables. OS-specific macros may wrap these
* assignments into read/write lock or similar
*/
#define BDG_SET_VAR(lval, p) (lval = p)
#define BDG_GET_VAR(lval) (lval)
#define BDG_FREE(p) free(p, M_DEVBUF)
#endif /* __FreeBSD__ */
static __inline int
nma_is_vp(struct netmap_adapter *na)
{
return na->nm_register == bdg_netmap_reg;
}
static __inline int
nma_is_host(struct netmap_adapter *na)
{
return na->nm_register == NULL;
}
static __inline int
nma_is_hw(struct netmap_adapter *na)
{
/* In case of sw adapter, nm_register is NULL */
return !nma_is_vp(na) && !nma_is_host(na);
}
/*
* Regarding holding a NIC, if the NIC is owned by the kernel
* (i.e., bridge), neither another bridge nor user can use it;
* if the NIC is owned by a user, only users can share it.
* Evaluation must be done under NMA_LOCK().
*/
#define NETMAP_OWNED_BY_KERN(ifp) (!nma_is_vp(NA(ifp)) && NA(ifp)->na_bdg)
#define NETMAP_OWNED_BY_ANY(ifp) \
(NETMAP_OWNED_BY_KERN(ifp) || (NA(ifp)->refcount > 0))
/*
* NA(ifp)->bdg_port port index
*/
// XXX only for multiples of 64 bytes, non overlapped.
static inline void
pkt_copy(void *_src, void *_dst, int l)
{
uint64_t *src = _src;
uint64_t *dst = _dst;
if (unlikely(l >= 1024)) {
bcopy(src, dst, l);
return;
}
for (; likely(l > 0); l-=64) {
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
}
}
/*
* locate a bridge among the existing ones.
* a ':' in the name terminates the bridge name. Otherwise, just NM_NAME.
* We assume that this is called with a name of at least NM_NAME chars.
*/
static struct nm_bridge *
nm_find_bridge(const char *name, int create)
{
int i, l, namelen;
struct nm_bridge *b = NULL;
namelen = strlen(NM_NAME); /* base length */
l = strlen(name); /* actual length */
for (i = namelen + 1; i < l; i++) {
if (name[i] == ':') {
namelen = i;
break;
}
}
if (namelen >= IFNAMSIZ)
namelen = IFNAMSIZ;
ND("--- prefix is '%.*s' ---", namelen, name);
BDG_LOCK();
/* lookup the name, remember empty slot if there is one */
for (i = 0; i < NM_BRIDGES; i++) {
struct nm_bridge *x = nm_bridges + i;
if (x->namelen == 0) {
if (create && b == NULL)
b = x; /* record empty slot */
} else if (x->namelen != namelen) {
continue;
} else if (strncmp(name, x->basename, namelen) == 0) {
ND("found '%.*s' at %d", namelen, name, i);
b = x;
break;
}
}
if (i == NM_BRIDGES && b) { /* name not found, can create entry */
strncpy(b->basename, name, namelen);
b->namelen = namelen;
/* set the default function */
b->nm_bdg_lookup = netmap_bdg_learning;
/* reset the MAC address table */
bzero(b->ht, sizeof(struct nm_hash_ent) * NM_BDG_HASH);
}
BDG_UNLOCK();
return b;
}
/*
* Free the forwarding tables for rings attached to switch ports.
*/
static void
nm_free_bdgfwd(struct netmap_adapter *na)
{
int nrings, i;
struct netmap_kring *kring;
nrings = nma_is_vp(na) ? na->num_tx_rings : na->num_rx_rings;
kring = nma_is_vp(na) ? na->tx_rings : na->rx_rings;
for (i = 0; i < nrings; i++) {
if (kring[i].nkr_ft) {
free(kring[i].nkr_ft, M_DEVBUF);
kring[i].nkr_ft = NULL; /* protect from freeing twice */
}
}
if (nma_is_hw(na))
nm_free_bdgfwd(SWNA(na->ifp));
}
/*
* Allocate the forwarding tables for the rings attached to the bridge ports.
*/
static int
nm_alloc_bdgfwd(struct netmap_adapter *na)
{
int nrings, l, i, num_dstq;
struct netmap_kring *kring;
/* all port:rings + broadcast */
num_dstq = NM_BDG_MAXPORTS * NM_BDG_MAXRINGS + 1;
l = sizeof(struct nm_bdg_fwd) * NM_BDG_BATCH;
l += sizeof(struct nm_bdg_q) * num_dstq;
l += sizeof(uint16_t) * NM_BDG_BATCH;
nrings = nma_is_vp(na) ? na->num_tx_rings : na->num_rx_rings;
kring = nma_is_vp(na) ? na->tx_rings : na->rx_rings;
for (i = 0; i < nrings; i++) {
struct nm_bdg_fwd *ft;
struct nm_bdg_q *dstq;
int j;
ft = malloc(l, M_DEVBUF, M_NOWAIT | M_ZERO);
if (!ft) {
nm_free_bdgfwd(na);
return ENOMEM;
}
dstq = (struct nm_bdg_q *)(ft + NM_BDG_BATCH);
for (j = 0; j < num_dstq; j++)
dstq[j].bq_head = dstq[j].bq_tail = NM_BDG_BATCH;
kring[i].nkr_ft = ft;
}
if (nma_is_hw(na))
nm_alloc_bdgfwd(SWNA(na->ifp));
return 0;
}
#endif /* NM_BRIDGE */
/*
* Fetch configuration from the device, to cope with dynamic
* reconfigurations after loading the module.
*/
static int
netmap_update_config(struct netmap_adapter *na)
{
struct ifnet *ifp = na->ifp;
u_int txr, txd, rxr, rxd;
txr = txd = rxr = rxd = 0;
if (na->nm_config) {
na->nm_config(ifp, &txr, &txd, &rxr, &rxd);
} else {
/* take whatever we had at init time */
txr = na->num_tx_rings;
txd = na->num_tx_desc;
rxr = na->num_rx_rings;
rxd = na->num_rx_desc;
}
if (na->num_tx_rings == txr && na->num_tx_desc == txd &&
na->num_rx_rings == rxr && na->num_rx_desc == rxd)
return 0; /* nothing changed */
if (netmap_verbose || na->refcount > 0) {
D("stored config %s: txring %d x %d, rxring %d x %d",
ifp->if_xname,
na->num_tx_rings, na->num_tx_desc,
na->num_rx_rings, na->num_rx_desc);
D("new config %s: txring %d x %d, rxring %d x %d",
ifp->if_xname, txr, txd, rxr, rxd);
}
if (na->refcount == 0) {
D("configuration changed (but fine)");
na->num_tx_rings = txr;
na->num_tx_desc = txd;
na->num_rx_rings = rxr;
na->num_rx_desc = rxd;
return 0;
}
D("configuration changed while active, this is bad...");
return 1;
}
/*------------- memory allocator -----------------*/
#include "netmap_mem2.c"
/*------------ end of memory allocator ----------*/
/* Structure associated to each thread which registered an interface.
*
* The first 4 fields of this structure are written by NIOCREGIF and
* read by poll() and NIOC?XSYNC.
* There is low contention among writers (actually, a correct user program
* should have no contention among writers) and among writers and readers,
* so we use a single global lock to protect the structure initialization.
* Since initialization involves the allocation of memory, we reuse the memory
* allocator lock.
* Read access to the structure is lock free. Readers must check that
* np_nifp is not NULL before using the other fields.
* If np_nifp is NULL initialization has not been performed, so they should
* return an error to userlevel.
*
* The ref_done field is used to regulate access to the refcount in the
* memory allocator. The refcount must be incremented at most once for
* each open("/dev/netmap"). The increment is performed by the first
* function that calls netmap_get_memory() (currently called by
* mmap(), NIOCGINFO and NIOCREGIF).
* If the refcount is incremented, it is then decremented when the
* private structure is destroyed.
*/
struct netmap_priv_d {
struct netmap_if * volatile np_nifp; /* netmap interface descriptor. */
struct ifnet *np_ifp; /* device for which we hold a reference */
int np_ringid; /* from the ioctl */
u_int np_qfirst, np_qlast; /* range of rings to scan */
uint16_t np_txpoll;
unsigned long ref_done; /* use with NMA_LOCK held */
};
static int
netmap_get_memory(struct netmap_priv_d* p)
{
int error = 0;
NMA_LOCK();
if (!p->ref_done) {
error = netmap_memory_finalize();
if (!error)
p->ref_done = 1;
}
NMA_UNLOCK();
return error;
}
/*
* File descriptor's private data destructor.
*
* Call nm_register(ifp,0) to stop netmap mode on the interface and
* revert to normal operation. We expect that np_ifp has not gone.
*/
/* call with NMA_LOCK held */
static void
netmap_dtor_locked(void *data)
{
struct netmap_priv_d *priv = data;
struct ifnet *ifp = priv->np_ifp;
struct netmap_adapter *na = NA(ifp);
struct netmap_if *nifp = priv->np_nifp;
na->refcount--;
if (na->refcount <= 0) { /* last instance */
u_int i, j, lim;
if (netmap_verbose)
D("deleting last instance for %s", ifp->if_xname);
/*
* (TO CHECK) This function is only called
* when the last reference to this file descriptor goes
* away. This means we cannot have any pending poll()
* or interrupt routine operating on the structure.
*/
na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */
/* Wake up any sleeping threads. netmap_poll will
* then return POLLERR
*/
for (i = 0; i < na->num_tx_rings + 1; i++)
selwakeuppri(&na->tx_rings[i].si, PI_NET);
for (i = 0; i < na->num_rx_rings + 1; i++)
selwakeuppri(&na->rx_rings[i].si, PI_NET);
selwakeuppri(&na->tx_si, PI_NET);
selwakeuppri(&na->rx_si, PI_NET);
#ifdef NM_BRIDGE
nm_free_bdgfwd(na);
#endif /* NM_BRIDGE */
/* release all buffers */
for (i = 0; i < na->num_tx_rings + 1; i++) {
struct netmap_ring *ring = na->tx_rings[i].ring;
lim = na->tx_rings[i].nkr_num_slots;
for (j = 0; j < lim; j++)
netmap_free_buf(nifp, ring->slot[j].buf_idx);
/* knlist_destroy(&na->tx_rings[i].si.si_note); */
mtx_destroy(&na->tx_rings[i].q_lock);
}
for (i = 0; i < na->num_rx_rings + 1; i++) {
struct netmap_ring *ring = na->rx_rings[i].ring;
lim = na->rx_rings[i].nkr_num_slots;
for (j = 0; j < lim; j++)
netmap_free_buf(nifp, ring->slot[j].buf_idx);
/* knlist_destroy(&na->rx_rings[i].si.si_note); */
mtx_destroy(&na->rx_rings[i].q_lock);
}
/* XXX kqueue(9) needed; these will mirror knlist_init. */
/* knlist_destroy(&na->tx_si.si_note); */
/* knlist_destroy(&na->rx_si.si_note); */
netmap_free_rings(na);
if (nma_is_hw(na))
SWNA(ifp)->tx_rings = SWNA(ifp)->rx_rings = NULL;
}
netmap_if_free(nifp);
}
/* we assume netmap adapter exists */
static void
nm_if_rele(struct ifnet *ifp)
{
#ifndef NM_BRIDGE
if_rele(ifp);
#else /* NM_BRIDGE */
int i, full = 0, is_hw;
struct nm_bridge *b;
struct netmap_adapter *na;
/* I can be called not only for get_ifp()-ed references where netmap's
* capability is guaranteed, but also for non-netmap-capable NICs.
*/
if (!NETMAP_CAPABLE(ifp) || !NA(ifp)->na_bdg) {
if_rele(ifp);
return;
}
if (!DROP_BDG_REF(ifp))
return;
na = NA(ifp);
b = na->na_bdg;
is_hw = nma_is_hw(na);
BDG_WLOCK(b);
ND("want to disconnect %s from the bridge", ifp->if_xname);
full = 0;
/* remove the entry from the bridge, also check
* if there are any leftover interfaces
* XXX we should optimize this code, e.g. going directly
* to na->bdg_port, and having a counter of ports that
* are connected. But it is not in a critical path.
* In NIC's case, index of sw na is always higher than hw na
*/
for (i = 0; i < NM_BDG_MAXPORTS; i++) {
struct netmap_adapter *tmp = BDG_GET_VAR(b->bdg_ports[i]);
if (tmp == na) {
/* disconnect from bridge */
BDG_SET_VAR(b->bdg_ports[i], NULL);
na->na_bdg = NULL;
if (is_hw && SWNA(ifp)->na_bdg) {
/* disconnect sw adapter too */
int j = SWNA(ifp)->bdg_port;
BDG_SET_VAR(b->bdg_ports[j], NULL);
SWNA(ifp)->na_bdg = NULL;
}
} else if (tmp != NULL) {
full = 1;
}
}
BDG_WUNLOCK(b);
if (full == 0) {
ND("marking bridge %d as free", b - nm_bridges);
b->namelen = 0;
b->nm_bdg_lookup = NULL;
}
if (na->na_bdg) { /* still attached to the bridge */
D("ouch, cannot find ifp to remove");
} else if (is_hw) {
if_rele(ifp);
} else {
bzero(na, sizeof(*na));
free(na, M_DEVBUF);
bzero(ifp, sizeof(*ifp));
free(ifp, M_DEVBUF);
}
#endif /* NM_BRIDGE */
}
static void
netmap_dtor(void *data)
{
struct netmap_priv_d *priv = data;
struct ifnet *ifp = priv->np_ifp;
NMA_LOCK();
if (ifp) {
struct netmap_adapter *na = NA(ifp);
if (na->na_bdg)
BDG_WLOCK(na->na_bdg);
na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
netmap_dtor_locked(data);
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
if (na->na_bdg)
BDG_WUNLOCK(na->na_bdg);
nm_if_rele(ifp); /* might also destroy *na */
}
if (priv->ref_done) {
netmap_memory_deref();
}
NMA_UNLOCK();
bzero(priv, sizeof(*priv)); /* XXX for safety */
free(priv, M_DEVBUF);
}
#ifdef __FreeBSD__
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/uma.h>
/*
* In order to track whether pages are still mapped, we hook into
* the standard cdev_pager and intercept the constructor and
* destructor.
* XXX but then ? Do we really use the information ?
* Need to investigate.
*/
static struct cdev_pager_ops saved_cdev_pager_ops;
static int
netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
vm_ooffset_t foff, struct ucred *cred, u_short *color)
{
if (netmap_verbose)
D("first mmap for %p", handle);
return saved_cdev_pager_ops.cdev_pg_ctor(handle,
size, prot, foff, cred, color);
}
static void
netmap_dev_pager_dtor(void *handle)
{
saved_cdev_pager_ops.cdev_pg_dtor(handle);
ND("ready to release memory for %p", handle);
}
static struct cdev_pager_ops netmap_cdev_pager_ops = {
.cdev_pg_ctor = netmap_dev_pager_ctor,
.cdev_pg_dtor = netmap_dev_pager_dtor,
.cdev_pg_fault = NULL,
};
// XXX check whether we need netmap_mmap_single _and_ netmap_mmap
static int
netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
vm_size_t objsize, vm_object_t *objp, int prot)
{
vm_object_t obj;
ND("cdev %p foff %jd size %jd objp %p prot %d", cdev,
(intmax_t )*foff, (intmax_t )objsize, objp, prot);
obj = vm_pager_allocate(OBJT_DEVICE, cdev, objsize, prot, *foff,
curthread->td_ucred);
ND("returns obj %p", obj);
if (obj == NULL)
return EINVAL;
if (saved_cdev_pager_ops.cdev_pg_fault == NULL) {
ND("initialize cdev_pager_ops");
saved_cdev_pager_ops = *(obj->un_pager.devp.ops);
netmap_cdev_pager_ops.cdev_pg_fault =
saved_cdev_pager_ops.cdev_pg_fault;
};
obj->un_pager.devp.ops = &netmap_cdev_pager_ops;
*objp = obj;
return 0;
}
#endif /* __FreeBSD__ */
/*
* mmap(2) support for the "netmap" device.
*
* Expose all the memory previously allocated by our custom memory
* allocator: this way the user has only to issue a single mmap(2), and
* can work on all the data structures flawlessly.
*
* Return 0 on success, -1 otherwise.
*/
#ifdef __FreeBSD__
static int
netmap_mmap(__unused struct cdev *dev,
#if __FreeBSD_version < 900000
vm_offset_t offset, vm_paddr_t *paddr, int nprot
#else
vm_ooffset_t offset, vm_paddr_t *paddr, int nprot,
__unused vm_memattr_t *memattr
#endif
)
{
int error = 0;
struct netmap_priv_d *priv;
if (nprot & PROT_EXEC)
return (-1); // XXX -1 or EINVAL ?
error = devfs_get_cdevpriv((void **)&priv);
if (error == EBADF) { /* called on fault, memory is initialized */
ND(5, "handling fault at ofs 0x%x", offset);
error = 0;
} else if (error == 0) /* make sure memory is set */
error = netmap_get_memory(priv);
if (error)
return (error);
ND("request for offset 0x%x", (uint32_t)offset);
*paddr = netmap_ofstophys(offset);
return (*paddr ? 0 : ENOMEM);
}
static int
netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
if (netmap_verbose)
D("dev %p fflag 0x%x devtype %d td %p",
dev, fflag, devtype, td);
return 0;
}
static int
netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
struct netmap_priv_d *priv;
int error;
priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (priv == NULL)
return ENOMEM;
error = devfs_set_cdevpriv(priv, netmap_dtor);
if (error)
return error;
return 0;
}
#endif /* __FreeBSD__ */
/*
* Handlers for synchronization of the queues from/to the host.
* Netmap has two operating modes:
* - in the default mode, the rings connected to the host stack are
* just another ring pair managed by userspace;
* - in transparent mode (XXX to be defined) incoming packets
* (from the host or the NIC) are marked as NS_FORWARD upon
* arrival, and the user application has a chance to reset the
* flag for packets that should be dropped.
* On the RXSYNC or poll(), packets in RX rings between
* kring->nr_kcur and ring->cur with NS_FORWARD still set are moved
* to the other side.
* The transfer NIC --> host is relatively easy, just encapsulate
* into mbufs and we are done. The host --> NIC side is slightly
* harder because there might not be room in the tx ring so it
* might take a while before releasing the buffer.
*/
/*
* pass a chain of buffers to the host stack as coming from 'dst'
*/
static void
netmap_send_up(struct ifnet *dst, struct mbuf *head)
{
struct mbuf *m;
/* send packets up, outside the lock */
while ((m = head) != NULL) {
head = head->m_nextpkt;
m->m_nextpkt = NULL;
if (netmap_verbose & NM_VERB_HOST)
D("sending up pkt %p size %d", m, MBUF_LEN(m));
NM_SEND_UP(dst, m);
}
}
struct mbq {
struct mbuf *head;
struct mbuf *tail;
int count;
};
/*
* put a copy of the buffers marked NS_FORWARD into an mbuf chain.
* Run from hwcur to cur - reserved
*/
static void
netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force)
{
/* Take packets from hwcur to cur-reserved and pass them up.
* In case of no buffers we give up. At the end of the loop,
* the queue is drained in all cases.
* XXX handle reserved
*/
int k = kring->ring->cur - kring->ring->reserved;
u_int n, lim = kring->nkr_num_slots - 1;
struct mbuf *m, *tail = q->tail;
if (k < 0)
k = k + kring->nkr_num_slots;
for (n = kring->nr_hwcur; n != k;) {
struct netmap_slot *slot = &kring->ring->slot[n];
n = (n == lim) ? 0 : n + 1;
if ((slot->flags & NS_FORWARD) == 0 && !force)
continue;
if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) {
D("bad pkt at %d len %d", n, slot->len);
continue;
}
slot->flags &= ~NS_FORWARD; // XXX needed ?
m = m_devget(NMB(slot), slot->len, 0, kring->na->ifp, NULL);
if (m == NULL)
break;
if (tail)
tail->m_nextpkt = m;
else
q->head = m;
tail = m;
q->count++;
m->m_nextpkt = NULL;
}
q->tail = tail;
}
/*
* called under main lock to send packets from the host to the NIC
* The host ring has packets from nr_hwcur to (cur - reserved)
* to be sent down. We scan the tx rings, which have just been
* flushed so nr_hwcur == cur. Pushing packets down means
* increment cur and decrement avail.
* XXX to be verified
*/
static void
netmap_sw_to_nic(struct netmap_adapter *na)
{
struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
struct netmap_kring *k1 = &na->tx_rings[0];
int i, howmany, src_lim, dst_lim;
howmany = kring->nr_hwavail; /* XXX otherwise cur - reserved - nr_hwcur */
src_lim = kring->nkr_num_slots;
for (i = 0; howmany > 0 && i < na->num_tx_rings; i++, k1++) {
ND("%d packets left to ring %d (space %d)", howmany, i, k1->nr_hwavail);
dst_lim = k1->nkr_num_slots;
while (howmany > 0 && k1->ring->avail > 0) {
struct netmap_slot *src, *dst, tmp;
src = &kring->ring->slot[kring->nr_hwcur];
dst = &k1->ring->slot[k1->ring->cur];
tmp = *src;
src->buf_idx = dst->buf_idx;
src->flags = NS_BUF_CHANGED;
dst->buf_idx = tmp.buf_idx;
dst->len = tmp.len;
dst->flags = NS_BUF_CHANGED;
ND("out len %d buf %d from %d to %d",
dst->len, dst->buf_idx,
kring->nr_hwcur, k1->ring->cur);
if (++kring->nr_hwcur >= src_lim)
kring->nr_hwcur = 0;
howmany--;
kring->nr_hwavail--;
if (++k1->ring->cur >= dst_lim)
k1->ring->cur = 0;
k1->ring->avail--;
}
kring->ring->cur = kring->nr_hwcur; // XXX
k1++;
}
}
/*
* netmap_sync_to_host() passes packets up. We are called from a
* system call in user process context, and the only contention
* can be among multiple user threads erroneously calling
* this routine concurrently.
*/
static void
netmap_sync_to_host(struct netmap_adapter *na)
{
struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings];
struct netmap_ring *ring = kring->ring;
u_int k, lim = kring->nkr_num_slots - 1;
struct mbq q = { NULL, NULL };
k = ring->cur;
if (k > lim) {
netmap_ring_reinit(kring);
return;
}
// na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0);
/* Take packets from hwcur to cur and pass them up.
* In case of no buffers we give up. At the end of the loop,
* the queue is drained in all cases.
*/
netmap_grab_packets(kring, &q, 1);
kring->nr_hwcur = k;
kring->nr_hwavail = ring->avail = lim;
// na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0);
netmap_send_up(na->ifp, q.head);
}
/* SWNA(ifp)->txrings[0] is always NA(ifp)->txrings[NA(ifp)->num_txrings] */
static int
netmap_bdg_to_host(struct ifnet *ifp, u_int ring_nr, int do_lock)
{
(void)ring_nr;
(void)do_lock;
netmap_sync_to_host(NA(ifp));
return 0;
}
/*
* rxsync backend for packets coming from the host stack.
* They have been put in the queue by netmap_start() so we
* need to protect access to the kring using a lock.
*
* This routine also does the selrecord if called from the poll handler
* (we know because td != NULL).
*
* NOTE: on linux, selrecord() is defined as a macro and uses pwait
* as an additional hidden argument.
*/
static void
netmap_sync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait)
{
struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
struct netmap_ring *ring = kring->ring;
u_int j, n, lim = kring->nkr_num_slots;
u_int k = ring->cur, resvd = ring->reserved;
(void)pwait; /* disable unused warnings */
na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0);
if (k >= lim) {
netmap_ring_reinit(kring);
return;
}
/* new packets are already set in nr_hwavail */
/* skip past packets that userspace has released */
j = kring->nr_hwcur;
if (resvd > 0) {
if (resvd + ring->avail >= lim + 1) {
D("XXX invalid reserve/avail %d %d", resvd, ring->avail);
ring->reserved = resvd = 0; // XXX panic...
}
k = (k >= resvd) ? k - resvd : k + lim - resvd;
}
if (j != k) {
n = k >= j ? k - j : k + lim - j;
kring->nr_hwavail -= n;
kring->nr_hwcur = k;
}
k = ring->avail = kring->nr_hwavail - resvd;
if (k == 0 && td)
selrecord(td, &kring->si);
if (k && (netmap_verbose & NM_VERB_HOST))
D("%d pkts from stack", k);
na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0);
}
/*
* get a refcounted reference to an interface.
* Return ENXIO if the interface does not exist, EINVAL if netmap
* is not supported by the interface.
* If successful, hold a reference.
*
* During the NIC is attached to a bridge, reference is managed
* at na->na_bdg_refcount using ADD/DROP_BDG_REF() as well as
* virtual ports. Hence, on the final DROP_BDG_REF(), the NIC
* is detached from the bridge, then ifp's refcount is dropped (this
* is equivalent to that ifp is destroyed in case of virtual ports.
*
* This function uses if_rele() when we want to prevent the NIC from
* being detached from the bridge in error handling. But once refcount
* is acquired by this function, it must be released using nm_if_rele().
*/
static int
get_ifp(struct nmreq *nmr, struct ifnet **ifp)
{
const char *name = nmr->nr_name;
int namelen = strlen(name);
#ifdef NM_BRIDGE
struct ifnet *iter = NULL;
int no_prefix = 0;
do {
struct nm_bridge *b;
struct netmap_adapter *na;
int i, cand = -1, cand2 = -1;
if (strncmp(name, NM_NAME, sizeof(NM_NAME) - 1)) {
no_prefix = 1;
break;
}
b = nm_find_bridge(name, 1 /* create a new one if no exist */ );
if (b == NULL) {
D("no bridges available for '%s'", name);
return (ENXIO);
}
/* Now we are sure that name starts with the bridge's name */
BDG_WLOCK(b);
/* lookup in the local list of ports */
for (i = 0; i < NM_BDG_MAXPORTS; i++) {
na = BDG_GET_VAR(b->bdg_ports[i]);
if (na == NULL) {
if (cand == -1)
cand = i; /* potential insert point */
else if (cand2 == -1)
cand2 = i; /* for host stack */
continue;
}
iter = na->ifp;
/* XXX make sure the name only contains one : */
if (!strcmp(iter->if_xname, name) /* virtual port */ ||
(namelen > b->namelen && !strcmp(iter->if_xname,
name + b->namelen + 1)) /* NIC */) {
ADD_BDG_REF(iter);
ND("found existing interface");
BDG_WUNLOCK(b);
break;
}
}
if (i < NM_BDG_MAXPORTS) /* already unlocked */
break;
if (cand == -1) {
D("bridge full, cannot create new port");
no_port:
BDG_WUNLOCK(b);
*ifp = NULL;
return EINVAL;
}
ND("create new bridge port %s", name);
/*
* create a struct ifnet for the new port.
* The forwarding table is attached to the kring(s).
*/
/*
* try see if there is a matching NIC with this name
* (after the bridge's name)
*/
iter = ifunit_ref(name + b->namelen + 1);
if (!iter) { /* this is a virtual port */
/* Create a temporary NA with arguments, then
* bdg_netmap_attach() will allocate the real one
* and attach it to the ifp
*/
struct netmap_adapter tmp_na;
if (nmr->nr_cmd) /* nr_cmd must be for a NIC */
goto no_port;
bzero(&tmp_na, sizeof(tmp_na));
/* bound checking */
if (nmr->nr_tx_rings < 1)
nmr->nr_tx_rings = 1;
if (nmr->nr_tx_rings > NM_BDG_MAXRINGS)
nmr->nr_tx_rings = NM_BDG_MAXRINGS;
tmp_na.num_tx_rings = nmr->nr_tx_rings;
if (nmr->nr_rx_rings < 1)
nmr->nr_rx_rings = 1;
if (nmr->nr_rx_rings > NM_BDG_MAXRINGS)
nmr->nr_rx_rings = NM_BDG_MAXRINGS;
tmp_na.num_rx_rings = nmr->nr_rx_rings;
iter = malloc(sizeof(*iter), M_DEVBUF, M_NOWAIT | M_ZERO);
if (!iter)
goto no_port;
strcpy(iter->if_xname, name);
tmp_na.ifp = iter;
/* bdg_netmap_attach creates a struct netmap_adapter */
bdg_netmap_attach(&tmp_na);
} else if (NETMAP_CAPABLE(iter)) { /* this is a NIC */
/* cannot attach the NIC that any user or another
* bridge already holds.
*/
if (NETMAP_OWNED_BY_ANY(iter) || cand2 == -1) {
ifunit_rele:
if_rele(iter); /* don't detach from bridge */
goto no_port;
}
/* bind the host stack to the bridge */
if (nmr->nr_arg1 == NETMAP_BDG_HOST) {
BDG_SET_VAR(b->bdg_ports[cand2], SWNA(iter));
SWNA(iter)->bdg_port = cand2;
SWNA(iter)->na_bdg = b;
}
} else /* not a netmap-capable NIC */
goto ifunit_rele;
na = NA(iter);
na->bdg_port = cand;
/* bind the port to the bridge (virtual ports are not active) */
BDG_SET_VAR(b->bdg_ports[cand], na);
na->na_bdg = b;
ADD_BDG_REF(iter);
BDG_WUNLOCK(b);
ND("attaching virtual bridge %p", b);
} while (0);
*ifp = iter;
if (! *ifp)
#endif /* NM_BRIDGE */
*ifp = ifunit_ref(name);
if (*ifp == NULL)
return (ENXIO);
/* can do this if the capability exists and if_pspare[0]
* points to the netmap descriptor.
*/
if (NETMAP_CAPABLE(*ifp)) {
#ifdef NM_BRIDGE
/* Users cannot use the NIC attached to a bridge directly */
if (no_prefix && NETMAP_OWNED_BY_KERN(*ifp)) {
if_rele(*ifp); /* don't detach from bridge */
return EINVAL;
} else
#endif /* NM_BRIDGE */
return 0; /* valid pointer, we hold the refcount */
}
nm_if_rele(*ifp);
return EINVAL; // not NETMAP capable
}
/*
* Error routine called when txsync/rxsync detects an error.
* Can't do much more than resetting cur = hwcur, avail = hwavail.
* Return 1 on reinit.
*
* This routine is only called by the upper half of the kernel.
* It only reads hwcur (which is changed only by the upper half, too)
* and hwavail (which may be changed by the lower half, but only on
* a tx ring and only to increase it, so any error will be recovered
* on the next call). For the above, we don't strictly need to call
* it under lock.
*/
int
netmap_ring_reinit(struct netmap_kring *kring)
{
struct netmap_ring *ring = kring->ring;
u_int i, lim = kring->nkr_num_slots - 1;
int errors = 0;
RD(10, "called for %s", kring->na->ifp->if_xname);
if (ring->cur > lim)
errors++;
for (i = 0; i <= lim; i++) {
u_int idx = ring->slot[i].buf_idx;
u_int len = ring->slot[i].len;
if (idx < 2 || idx >= netmap_total_buffers) {
if (!errors++)
D("bad buffer at slot %d idx %d len %d ", i, idx, len);
ring->slot[i].buf_idx = 0;
ring->slot[i].len = 0;
} else if (len > NETMAP_BUF_SIZE) {
ring->slot[i].len = 0;
if (!errors++)
D("bad len %d at slot %d idx %d",
len, i, idx);
}
}
if (errors) {
int pos = kring - kring->na->tx_rings;
int n = kring->na->num_tx_rings + 1;
RD(10, "total %d errors", errors);
errors++;
RD(10, "%s %s[%d] reinit, cur %d -> %d avail %d -> %d",
kring->na->ifp->if_xname,
pos < n ? "TX" : "RX", pos < n ? pos : pos - n,
ring->cur, kring->nr_hwcur,
ring->avail, kring->nr_hwavail);
ring->cur = kring->nr_hwcur;
ring->avail = kring->nr_hwavail;
}
return (errors ? 1 : 0);
}
/*
* Set the ring ID. For devices with a single queue, a request
* for all rings is the same as a single ring.
*/
static int
netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid)
{
struct ifnet *ifp = priv->np_ifp;
struct netmap_adapter *na = NA(ifp);
u_int i = ringid & NETMAP_RING_MASK;
/* initially (np_qfirst == np_qlast) we don't want to lock */
int need_lock = (priv->np_qfirst != priv->np_qlast);
int lim = na->num_rx_rings;
if (na->num_tx_rings > lim)
lim = na->num_tx_rings;
if ( (ringid & NETMAP_HW_RING) && i >= lim) {
D("invalid ring id %d", i);
return (EINVAL);
}
if (need_lock)
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
priv->np_ringid = ringid;
if (ringid & NETMAP_SW_RING) {
priv->np_qfirst = NETMAP_SW_RING;
priv->np_qlast = 0;
} else if (ringid & NETMAP_HW_RING) {
priv->np_qfirst = i;
priv->np_qlast = i + 1;
} else {
priv->np_qfirst = 0;
priv->np_qlast = NETMAP_HW_RING ;
}
priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1;
if (need_lock)
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
if (netmap_verbose) {
if (ringid & NETMAP_SW_RING)
D("ringid %s set to SW RING", ifp->if_xname);
else if (ringid & NETMAP_HW_RING)
D("ringid %s set to HW RING %d", ifp->if_xname,
priv->np_qfirst);
else
D("ringid %s set to all %d HW RINGS", ifp->if_xname, lim);
}
return 0;
}
/*
* possibly move the interface to netmap-mode.
* If success it returns a pointer to netmap_if, otherwise NULL.
* This must be called with NMA_LOCK held.
*/
static struct netmap_if *
netmap_do_regif(struct netmap_priv_d *priv, struct ifnet *ifp,
uint16_t ringid, int *err)
{
struct netmap_adapter *na = NA(ifp);
struct netmap_if *nifp = NULL;
int i, error;
if (na->na_bdg)
BDG_WLOCK(na->na_bdg);
na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
/* ring configuration may have changed, fetch from the card */
netmap_update_config(na);
priv->np_ifp = ifp; /* store the reference */
error = netmap_set_ringid(priv, ringid);
if (error)
goto out;
nifp = netmap_if_new(ifp->if_xname, na);
if (nifp == NULL) { /* allocation failed */
error = ENOMEM;
} else if (ifp->if_capenable & IFCAP_NETMAP) {
/* was already set */
} else {
/* Otherwise set the card in netmap mode
* and make it use the shared buffers.
*/
for (i = 0 ; i < na->num_tx_rings + 1; i++)
mtx_init(&na->tx_rings[i].q_lock, "nm_txq_lock",
MTX_NETWORK_LOCK, MTX_DEF);
for (i = 0 ; i < na->num_rx_rings + 1; i++) {
mtx_init(&na->rx_rings[i].q_lock, "nm_rxq_lock",
MTX_NETWORK_LOCK, MTX_DEF);
}
if (nma_is_hw(na)) {
SWNA(ifp)->tx_rings = &na->tx_rings[na->num_tx_rings];
SWNA(ifp)->rx_rings = &na->rx_rings[na->num_rx_rings];
}
error = na->nm_register(ifp, 1); /* mode on */
#ifdef NM_BRIDGE
if (!error)
error = nm_alloc_bdgfwd(na);
#endif /* NM_BRIDGE */
if (error) {
netmap_dtor_locked(priv);
/* nifp is not yet in priv, so free it separately */
netmap_if_free(nifp);
nifp = NULL;
}
}
out:
*err = error;
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
if (na->na_bdg)
BDG_WUNLOCK(na->na_bdg);
return nifp;
}
/* Process NETMAP_BDG_ATTACH and NETMAP_BDG_DETACH */
static int
kern_netmap_regif(struct nmreq *nmr)
{
struct ifnet *ifp;
struct netmap_if *nifp;
struct netmap_priv_d *npriv;
int error;
npriv = malloc(sizeof(*npriv), M_DEVBUF, M_NOWAIT|M_ZERO);
if (npriv == NULL)
return ENOMEM;
error = netmap_get_memory(npriv);
if (error) {
free_exit:
bzero(npriv, sizeof(*npriv));
free(npriv, M_DEVBUF);
return error;
}
NMA_LOCK();
error = get_ifp(nmr, &ifp);
if (error) { /* no device, or another bridge or user owns the device */
NMA_UNLOCK();
goto free_exit;
} else if (!NETMAP_OWNED_BY_KERN(ifp)) {
/* got reference to a virtual port or direct access to a NIC.
* perhaps specified no bridge's prefix or wrong NIC's name
*/
error = EINVAL;
unref_exit:
nm_if_rele(ifp);
NMA_UNLOCK();
goto free_exit;
}
if (nmr->nr_cmd == NETMAP_BDG_DETACH) {
if (NA(ifp)->refcount == 0) { /* not registered */
error = EINVAL;
goto unref_exit;
}
NMA_UNLOCK();
netmap_dtor(NA(ifp)->na_kpriv); /* unregister */
NA(ifp)->na_kpriv = NULL;
nm_if_rele(ifp); /* detach from the bridge */
goto free_exit;
} else if (NA(ifp)->refcount > 0) { /* already registered */
error = EINVAL;
goto unref_exit;
}
nifp = netmap_do_regif(npriv, ifp, nmr->nr_ringid, &error);
if (!nifp)
goto unref_exit;
wmb(); // XXX do we need it ?
npriv->np_nifp = nifp;
NA(ifp)->na_kpriv = npriv;
NMA_UNLOCK();
D("registered %s to netmap-mode", ifp->if_xname);
return 0;
}
/* CORE_LOCK is not necessary */
static void
netmap_swlock_wrapper(struct ifnet *dev, int what, u_int queueid)
{
struct netmap_adapter *na = SWNA(dev);
switch (what) {
case NETMAP_TX_LOCK:
mtx_lock(&na->tx_rings[queueid].q_lock);
break;
case NETMAP_TX_UNLOCK:
mtx_unlock(&na->tx_rings[queueid].q_lock);
break;
case NETMAP_RX_LOCK:
mtx_lock(&na->rx_rings[queueid].q_lock);
break;
case NETMAP_RX_UNLOCK:
mtx_unlock(&na->rx_rings[queueid].q_lock);
break;
}
}
/* Initialize necessary fields of sw adapter located in right after hw's
* one. sw adapter attaches a pair of sw rings of the netmap-mode NIC.
* It is always activated and deactivated at the same tie with the hw's one.
* Thus we don't need refcounting on the sw adapter.
* Regardless of NIC's feature we use separate lock so that anybody can lock
* me independently from the hw adapter.
* Make sure nm_register is NULL to be handled as FALSE in nma_is_hw
*/
static void
netmap_attach_sw(struct ifnet *ifp)
{
struct netmap_adapter *hw_na = NA(ifp);
struct netmap_adapter *na = SWNA(ifp);
na->ifp = ifp;
na->separate_locks = 1;
na->nm_lock = netmap_swlock_wrapper;
na->num_rx_rings = na->num_tx_rings = 1;
na->num_tx_desc = hw_na->num_tx_desc;
na->num_rx_desc = hw_na->num_rx_desc;
na->nm_txsync = netmap_bdg_to_host;
}
/* exported to kernel callers */
int
netmap_bdg_ctl(struct nmreq *nmr, bdg_lookup_fn_t func)
{
struct nm_bridge *b;
struct netmap_adapter *na;
struct ifnet *iter;
char *name = nmr->nr_name;
int cmd = nmr->nr_cmd, namelen = strlen(name);
int error = 0, i, j;
switch (cmd) {
case NETMAP_BDG_ATTACH:
case NETMAP_BDG_DETACH:
error = kern_netmap_regif(nmr);
break;
case NETMAP_BDG_LIST:
/* this is used to enumerate bridges and ports */
if (namelen) { /* look up indexes of bridge and port */
if (strncmp(name, NM_NAME, strlen(NM_NAME))) {
error = EINVAL;
break;
}
b = nm_find_bridge(name, 0 /* don't create */);
if (!b) {
error = ENOENT;
break;
}
BDG_RLOCK(b);
error = ENOENT;
for (i = 0; i < NM_BDG_MAXPORTS; i++) {
na = BDG_GET_VAR(b->bdg_ports[i]);
if (na == NULL)
continue;
iter = na->ifp;
/* the former and the latter identify a
* virtual port and a NIC, respectively
*/
if (!strcmp(iter->if_xname, name) ||
(namelen > b->namelen &&
!strcmp(iter->if_xname,
name + b->namelen + 1))) {
/* bridge index */
nmr->nr_arg1 = b - nm_bridges;
nmr->nr_arg2 = i; /* port index */
error = 0;
break;
}
}
BDG_RUNLOCK(b);
} else {
/* return the first non-empty entry starting from
* bridge nr_arg1 and port nr_arg2.
*
* Users can detect the end of the same bridge by
* seeing the new and old value of nr_arg1, and can
* detect the end of all the bridge by error != 0
*/
i = nmr->nr_arg1;
j = nmr->nr_arg2;
for (error = ENOENT; error && i < NM_BRIDGES; i++) {
b = nm_bridges + i;
BDG_RLOCK(b);
for (; j < NM_BDG_MAXPORTS; j++) {
na = BDG_GET_VAR(b->bdg_ports[j]);
if (na == NULL)
continue;
iter = na->ifp;
nmr->nr_arg1 = i;
nmr->nr_arg2 = j;
strncpy(name, iter->if_xname, IFNAMSIZ);
error = 0;
break;
}
BDG_RUNLOCK(b);
j = 0; /* following bridges scan from 0 */
}
}
break;
case NETMAP_BDG_LOOKUP_REG:
/* register a lookup function to the given bridge.
* nmr->nr_name may be just bridge's name (including ':'
* if it is not just NM_NAME).
*/
if (!func) {
error = EINVAL;
break;
}
b = nm_find_bridge(name, 0 /* don't create */);
if (!b) {
error = EINVAL;
break;
}
BDG_WLOCK(b);
b->nm_bdg_lookup = func;
BDG_WUNLOCK(b);
break;
default:
D("invalid cmd (nmr->nr_cmd) (0x%x)", cmd);
error = EINVAL;
break;
}
return error;
}
/*
* ioctl(2) support for the "netmap" device.
*
* Following a list of accepted commands:
* - NIOCGINFO
* - SIOCGIFADDR just for convenience
* - NIOCREGIF
* - NIOCUNREGIF
* - NIOCTXSYNC
* - NIOCRXSYNC
*
* Return 0 on success, errno otherwise.
*/
static int
netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data,
int fflag, struct thread *td)
{
struct netmap_priv_d *priv = NULL;
struct ifnet *ifp;
struct nmreq *nmr = (struct nmreq *) data;
struct netmap_adapter *na;
int error;
u_int i, lim;
struct netmap_if *nifp;
(void)dev; /* UNUSED */
(void)fflag; /* UNUSED */
#ifdef linux
#define devfs_get_cdevpriv(pp) \
({ *(struct netmap_priv_d **)pp = ((struct file *)td)->private_data; \
(*pp ? 0 : ENOENT); })
/* devfs_set_cdevpriv cannot fail on linux */
#define devfs_set_cdevpriv(p, fn) \
({ ((struct file *)td)->private_data = p; (p ? 0 : EINVAL); })
#define devfs_clear_cdevpriv() do { \
netmap_dtor(priv); ((struct file *)td)->private_data = 0; \
} while (0)
#endif /* linux */
CURVNET_SET(TD_TO_VNET(td));
error = devfs_get_cdevpriv((void **)&priv);
if (error) {
CURVNET_RESTORE();
/* XXX ENOENT should be impossible, since the priv
* is now created in the open */
return (error == ENOENT ? ENXIO : error);
}
nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; /* truncate name */
switch (cmd) {
case NIOCGINFO: /* return capabilities etc */
if (nmr->nr_version != NETMAP_API) {
D("API mismatch got %d have %d",
nmr->nr_version, NETMAP_API);
nmr->nr_version = NETMAP_API;
error = EINVAL;
break;
}
if (nmr->nr_cmd == NETMAP_BDG_LIST) {
error = netmap_bdg_ctl(nmr, NULL);
break;
}
/* update configuration */
error = netmap_get_memory(priv);
ND("get_memory returned %d", error);
if (error)
break;
/* memsize is always valid */
nmr->nr_memsize = nm_mem.nm_totalsize;
nmr->nr_offset = 0;
nmr->nr_rx_slots = nmr->nr_tx_slots = 0;
if (nmr->nr_name[0] == '\0') /* just get memory info */
break;
/* lock because get_ifp and update_config see na->refcount */
NMA_LOCK();
error = get_ifp(nmr, &ifp); /* get a refcount */
if (error) {
NMA_UNLOCK();
break;
}
na = NA(ifp); /* retrieve netmap_adapter */
netmap_update_config(na);
NMA_UNLOCK();
nmr->nr_rx_rings = na->num_rx_rings;
nmr->nr_tx_rings = na->num_tx_rings;
nmr->nr_rx_slots = na->num_rx_desc;
nmr->nr_tx_slots = na->num_tx_desc;
nm_if_rele(ifp); /* return the refcount */
break;
case NIOCREGIF:
if (nmr->nr_version != NETMAP_API) {
nmr->nr_version = NETMAP_API;
error = EINVAL;
break;
}
/* possibly attach/detach NIC and VALE switch */
i = nmr->nr_cmd;
if (i == NETMAP_BDG_ATTACH || i == NETMAP_BDG_DETACH) {
error = netmap_bdg_ctl(nmr, NULL);
break;
} else if (i != 0) {
D("nr_cmd must be 0 not %d", i);
error = EINVAL;
break;
}
/* ensure allocators are ready */
error = netmap_get_memory(priv);
ND("get_memory returned %d", error);
if (error)
break;
/* protect access to priv from concurrent NIOCREGIF */
NMA_LOCK();
if (priv->np_ifp != NULL) { /* thread already registered */
error = netmap_set_ringid(priv, nmr->nr_ringid);
unlock_out:
NMA_UNLOCK();
break;
}
/* find the interface and a reference */
error = get_ifp(nmr, &ifp); /* keep reference */
if (error)
goto unlock_out;
else if (NETMAP_OWNED_BY_KERN(ifp)) {
nm_if_rele(ifp);
goto unlock_out;
}
nifp = netmap_do_regif(priv, ifp, nmr->nr_ringid, &error);
if (!nifp) { /* reg. failed, release priv and ref */
nm_if_rele(ifp); /* return the refcount */
priv->np_ifp = NULL;
priv->np_nifp = NULL;
goto unlock_out;
}
/* the following assignment is a commitment.
* Readers (i.e., poll and *SYNC) check for
* np_nifp != NULL without locking
*/
wmb(); /* make sure previous writes are visible to all CPUs */
priv->np_nifp = nifp;
NMA_UNLOCK();
/* return the offset of the netmap_if object */
na = NA(ifp); /* retrieve netmap adapter */
nmr->nr_rx_rings = na->num_rx_rings;
nmr->nr_tx_rings = na->num_tx_rings;
nmr->nr_rx_slots = na->num_rx_desc;
nmr->nr_tx_slots = na->num_tx_desc;
nmr->nr_memsize = nm_mem.nm_totalsize;
nmr->nr_offset = netmap_if_offset(nifp);
break;
case NIOCUNREGIF:
// XXX we have no data here ?
D("deprecated, data is %p", nmr);
error = EINVAL;
break;
case NIOCTXSYNC:
case NIOCRXSYNC:
nifp = priv->np_nifp;
if (nifp == NULL) {
error = ENXIO;
break;
}
rmb(); /* make sure following reads are not from cache */
ifp = priv->np_ifp; /* we have a reference */
if (ifp == NULL) {
D("Internal error: nifp != NULL && ifp == NULL");
error = ENXIO;
break;
}
na = NA(ifp); /* retrieve netmap adapter */
if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */
if (cmd == NIOCTXSYNC)
netmap_sync_to_host(na);
else
netmap_sync_from_host(na, NULL, NULL);
break;
}
/* find the last ring to scan */
lim = priv->np_qlast;
if (lim == NETMAP_HW_RING)
lim = (cmd == NIOCTXSYNC) ?
na->num_tx_rings : na->num_rx_rings;
for (i = priv->np_qfirst; i < lim; i++) {
if (cmd == NIOCTXSYNC) {
struct netmap_kring *kring = &na->tx_rings[i];
if (netmap_verbose & NM_VERB_TXSYNC)
D("pre txsync ring %d cur %d hwcur %d",
i, kring->ring->cur,
kring->nr_hwcur);
na->nm_txsync(ifp, i, 1 /* do lock */);
if (netmap_verbose & NM_VERB_TXSYNC)
D("post txsync ring %d cur %d hwcur %d",
i, kring->ring->cur,
kring->nr_hwcur);
} else {
na->nm_rxsync(ifp, i, 1 /* do lock */);
microtime(&na->rx_rings[i].ring->ts);
}
}
break;
#ifdef __FreeBSD__
case BIOCIMMEDIATE:
case BIOCGHDRCMPLT:
case BIOCSHDRCMPLT:
case BIOCSSEESENT:
D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT");
break;
default: /* allow device-specific ioctls */
{
struct socket so;
bzero(&so, sizeof(so));
error = get_ifp(nmr, &ifp); /* keep reference */
if (error)
break;
so.so_vnet = ifp->if_vnet;
// so->so_proto not null.
error = ifioctl(&so, cmd, data, td);
nm_if_rele(ifp);
break;
}
#else /* linux */
default:
error = EOPNOTSUPP;
#endif /* linux */
}
CURVNET_RESTORE();
return (error);
}
/*
* select(2) and poll(2) handlers for the "netmap" device.
*
* Can be called for one or more queues.
* Return true the event mask corresponding to ready events.
* If there are no ready events, do a selrecord on either individual
* selfd or on the global one.
* Device-dependent parts (locking and sync of tx/rx rings)
* are done through callbacks.
*
* On linux, arguments are really pwait, the poll table, and 'td' is struct file *
* The first one is remapped to pwait as selrecord() uses the name as an
* hidden argument.
*/
static int
netmap_poll(struct cdev *dev, int events, struct thread *td)
{
struct netmap_priv_d *priv = NULL;
struct netmap_adapter *na;
struct ifnet *ifp;
struct netmap_kring *kring;
u_int core_lock, i, check_all, want_tx, want_rx, revents = 0;
u_int lim_tx, lim_rx, host_forwarded = 0;
struct mbq q = { NULL, NULL, 0 };
enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */
void *pwait = dev; /* linux compatibility */
(void)pwait;
if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL)
return POLLERR;
if (priv->np_nifp == NULL) {
D("No if registered");
return POLLERR;
}
rmb(); /* make sure following reads are not from cache */
ifp = priv->np_ifp;
// XXX check for deleting() ?
if ( (ifp->if_capenable & IFCAP_NETMAP) == 0)
return POLLERR;
if (netmap_verbose & 0x8000)
D("device %s events 0x%x", ifp->if_xname, events);
want_tx = events & (POLLOUT | POLLWRNORM);
want_rx = events & (POLLIN | POLLRDNORM);
na = NA(ifp); /* retrieve netmap adapter */
lim_tx = na->num_tx_rings;
lim_rx = na->num_rx_rings;
/* how many queues we are scanning */
if (priv->np_qfirst == NETMAP_SW_RING) {
if (priv->np_txpoll || want_tx) {
/* push any packets up, then we are always ready */
netmap_sync_to_host(na);
revents |= want_tx;
}
if (want_rx) {
kring = &na->rx_rings[lim_rx];
if (kring->ring->avail == 0)
netmap_sync_from_host(na, td, dev);
if (kring->ring->avail > 0) {
revents |= want_rx;
}
}
return (revents);
}
/* if we are in transparent mode, check also the host rx ring */
kring = &na->rx_rings[lim_rx];
if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all
&& want_rx
&& (netmap_fwd || kring->ring->flags & NR_FORWARD) ) {
if (kring->ring->avail == 0)
netmap_sync_from_host(na, td, dev);
if (kring->ring->avail > 0)
revents |= want_rx;
}
/*
* check_all is set if the card has more than one queue and
* the client is polling all of them. If true, we sleep on
* the "global" selfd, otherwise we sleep on individual selfd
* (we can only sleep on one of them per direction).
* The interrupt routine in the driver should always wake on
* the individual selfd, and also on the global one if the card
* has more than one ring.
*
* If the card has only one lock, we just use that.
* If the card has separate ring locks, we just use those
* unless we are doing check_all, in which case the whole
* loop is wrapped by the global lock.
* We acquire locks only when necessary: if poll is called
* when buffers are available, we can just return without locks.
*
* rxsync() is only called if we run out of buffers on a POLLIN.
* txsync() is called if we run out of buffers on POLLOUT, or
* there are pending packets to send. The latter can be disabled
* passing NETMAP_NO_TX_POLL in the NIOCREG call.
*/
check_all = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1 || lim_rx > 1);
/*
* core_lock indicates what to do with the core lock.
* The core lock is used when either the card has no individual
* locks, or it has individual locks but we are cheking all
* rings so we need the core lock to avoid missing wakeup events.
*
* It has three possible states:
* NO_CL we don't need to use the core lock, e.g.
* because we are protected by individual locks.
* NEED_CL we need the core lock. In this case, when we
* call the lock routine, move to LOCKED_CL
* to remember to release the lock once done.
* LOCKED_CL core lock is set, so we need to release it.
*/
core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL;
#ifdef NM_BRIDGE
/* the bridge uses separate locks */
if (na->nm_register == bdg_netmap_reg) {
ND("not using core lock for %s", ifp->if_xname);
core_lock = NO_CL;
}
#endif /* NM_BRIDGE */
if (priv->np_qlast != NETMAP_HW_RING) {
lim_tx = lim_rx = priv->np_qlast;
}
/*
* We start with a lock free round which is good if we have
* data available. If this fails, then lock and call the sync
* routines.
*/
for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) {
kring = &na->rx_rings[i];
if (kring->ring->avail > 0) {
revents |= want_rx;
want_rx = 0; /* also breaks the loop */
}
}
for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) {
kring = &na->tx_rings[i];
if (kring->ring->avail > 0) {
revents |= want_tx;
want_tx = 0; /* also breaks the loop */
}
}
/*
* If we to push packets out (priv->np_txpoll) or want_tx is
* still set, we do need to run the txsync calls (on all rings,
* to avoid that the tx rings stall).
*/
if (priv->np_txpoll || want_tx) {
flush_tx:
for (i = priv->np_qfirst; i < lim_tx; i++) {
kring = &na->tx_rings[i];
/*
* Skip the current ring if want_tx == 0
* (we have already done a successful sync on
* a previous ring) AND kring->cur == kring->hwcur
* (there are no pending transmissions for this ring).
*/
if (!want_tx && kring->ring->cur == kring->nr_hwcur)
continue;
if (core_lock == NEED_CL) {
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
core_lock = LOCKED_CL;
}
if (na->separate_locks)
na->nm_lock(ifp, NETMAP_TX_LOCK, i);
if (netmap_verbose & NM_VERB_TXSYNC)
D("send %d on %s %d",
kring->ring->cur,
ifp->if_xname, i);
if (na->nm_txsync(ifp, i, 0 /* no lock */))
revents |= POLLERR;
/* Check avail/call selrecord only if called with POLLOUT */
if (want_tx) {
if (kring->ring->avail > 0) {
/* stop at the first ring. We don't risk
* starvation.
*/
revents |= want_tx;
want_tx = 0;
} else if (!check_all)
selrecord(td, &kring->si);
}
if (na->separate_locks)
na->nm_lock(ifp, NETMAP_TX_UNLOCK, i);
}
}
/*
* now if want_rx is still set we need to lock and rxsync.
* Do it on all rings because otherwise we starve.
*/
if (want_rx) {
for (i = priv->np_qfirst; i < lim_rx; i++) {
kring = &na->rx_rings[i];
if (core_lock == NEED_CL) {
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
core_lock = LOCKED_CL;
}
if (na->separate_locks)
na->nm_lock(ifp, NETMAP_RX_LOCK, i);
if (netmap_fwd ||kring->ring->flags & NR_FORWARD) {
ND(10, "forwarding some buffers up %d to %d",
kring->nr_hwcur, kring->ring->cur);
netmap_grab_packets(kring, &q, netmap_fwd);
}
if (na->nm_rxsync(ifp, i, 0 /* no lock */))
revents |= POLLERR;
if (netmap_no_timestamp == 0 ||
kring->ring->flags & NR_TIMESTAMP) {
microtime(&kring->ring->ts);
}
if (kring->ring->avail > 0)
revents |= want_rx;
else if (!check_all)
selrecord(td, &kring->si);
if (na->separate_locks)
na->nm_lock(ifp, NETMAP_RX_UNLOCK, i);
}
}
if (check_all && revents == 0) { /* signal on the global queue */
if (want_tx)
selrecord(td, &na->tx_si);
if (want_rx)
selrecord(td, &na->rx_si);
}
/* forward host to the netmap ring */
kring = &na->rx_rings[lim_rx];
if (kring->nr_hwavail > 0)
ND("host rx %d has %d packets", lim_rx, kring->nr_hwavail);
if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all
&& (netmap_fwd || kring->ring->flags & NR_FORWARD)
&& kring->nr_hwavail > 0 && !host_forwarded) {
if (core_lock == NEED_CL) {
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
core_lock = LOCKED_CL;
}
netmap_sw_to_nic(na);
host_forwarded = 1; /* prevent another pass */
want_rx = 0;
goto flush_tx;
}
if (core_lock == LOCKED_CL)
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
if (q.head)
netmap_send_up(na->ifp, q.head);
return (revents);
}
/*------- driver support routines ------*/
/*
* default lock wrapper.
*/
static void
netmap_lock_wrapper(struct ifnet *dev, int what, u_int queueid)
{
struct netmap_adapter *na = NA(dev);
switch (what) {
#ifdef linux /* some system do not need lock on register */
case NETMAP_REG_LOCK:
case NETMAP_REG_UNLOCK:
break;
#endif /* linux */
case NETMAP_CORE_LOCK:
mtx_lock(&na->core_lock);
break;
case NETMAP_CORE_UNLOCK:
mtx_unlock(&na->core_lock);
break;
case NETMAP_TX_LOCK:
mtx_lock(&na->tx_rings[queueid].q_lock);
break;
case NETMAP_TX_UNLOCK:
mtx_unlock(&na->tx_rings[queueid].q_lock);
break;
case NETMAP_RX_LOCK:
mtx_lock(&na->rx_rings[queueid].q_lock);
break;
case NETMAP_RX_UNLOCK:
mtx_unlock(&na->rx_rings[queueid].q_lock);
break;
}
}
/*
* Initialize a ``netmap_adapter`` object created by driver on attach.
* We allocate a block of memory with room for a struct netmap_adapter
* plus two sets of N+2 struct netmap_kring (where N is the number
* of hardware rings):
* krings 0..N-1 are for the hardware queues.
* kring N is for the host stack queue
* kring N+1 is only used for the selinfo for all queues.
* Return 0 on success, ENOMEM otherwise.
*
* By default the receive and transmit adapter ring counts are both initialized
* to num_queues. na->num_tx_rings can be set for cards with different tx/rx
* setups.
*/
int
netmap_attach(struct netmap_adapter *arg, int num_queues)
{
struct netmap_adapter *na = NULL;
struct ifnet *ifp = arg ? arg->ifp : NULL;
int len;
if (arg == NULL || ifp == NULL)
goto fail;
len = nma_is_vp(arg) ? sizeof(*na) : sizeof(*na) * 2;
na = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
if (na == NULL)
goto fail;
WNA(ifp) = na;
*na = *arg; /* copy everything, trust the driver to not pass junk */
NETMAP_SET_CAPABLE(ifp);
if (na->num_tx_rings == 0)
na->num_tx_rings = num_queues;
na->num_rx_rings = num_queues;
na->refcount = na->na_single = na->na_multi = 0;
/* Core lock initialized here, others after netmap_if_new. */
mtx_init(&na->core_lock, "netmap core lock", MTX_NETWORK_LOCK, MTX_DEF);
if (na->nm_lock == NULL) {
ND("using default locks for %s", ifp->if_xname);
na->nm_lock = netmap_lock_wrapper;
}
#ifdef linux
if (ifp->netdev_ops) {
ND("netdev_ops %p", ifp->netdev_ops);
/* prepare a clone of the netdev ops */
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 28)
na->nm_ndo.ndo_start_xmit = ifp->netdev_ops;
#else
na->nm_ndo = *ifp->netdev_ops;
#endif
}
na->nm_ndo.ndo_start_xmit = linux_netmap_start;
#endif
if (!nma_is_vp(arg))
netmap_attach_sw(ifp);
D("success for %s", ifp->if_xname);
return 0;
fail:
D("fail, arg %p ifp %p na %p", arg, ifp, na);
netmap_detach(ifp);
return (na ? EINVAL : ENOMEM);
}
/*
* Free the allocated memory linked to the given ``netmap_adapter``
* object.
*/
void
netmap_detach(struct ifnet *ifp)
{
struct netmap_adapter *na = NA(ifp);
if (!na)
return;
mtx_destroy(&na->core_lock);
if (na->tx_rings) { /* XXX should not happen */
D("freeing leftover tx_rings");
free(na->tx_rings, M_DEVBUF);
}
bzero(na, sizeof(*na));
WNA(ifp) = NULL;
free(na, M_DEVBUF);
}
int
nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct netmap_adapter *na, u_int ring_nr);
/* we don't need to lock myself */
static int
bdg_netmap_start(struct ifnet *ifp, struct mbuf *m)
{
struct netmap_adapter *na = SWNA(ifp);
struct nm_bdg_fwd *ft = na->rx_rings[0].nkr_ft;
char *buf = NMB(&na->rx_rings[0].ring->slot[0]);
u_int len = MBUF_LEN(m);
if (!na->na_bdg) /* SWNA is not configured to be attached */
return EBUSY;
m_copydata(m, 0, len, buf);
ft->ft_len = len;
ft->buf = buf;
nm_bdg_flush(ft, 1, na, 0);
/* release the mbuf in either cases of success or failure. As an
* alternative, put the mbuf in a free list and free the list
* only when really necessary.
*/
m_freem(m);
return (0);
}
/*
* Intercept packets from the network stack and pass them
* to netmap as incoming packets on the 'software' ring.
* We are not locked when called.
*/
int
netmap_start(struct ifnet *ifp, struct mbuf *m)
{
struct netmap_adapter *na = NA(ifp);
struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
u_int i, len = MBUF_LEN(m);
u_int error = EBUSY, lim = kring->nkr_num_slots - 1;
struct netmap_slot *slot;
if (netmap_verbose & NM_VERB_HOST)
D("%s packet %d len %d from the stack", ifp->if_xname,
kring->nr_hwcur + kring->nr_hwavail, len);
if (len > NETMAP_BUF_SIZE) { /* too long for us */
D("%s from_host, drop packet size %d > %d", ifp->if_xname,
len, NETMAP_BUF_SIZE);
m_freem(m);
return EINVAL;
}
if (na->na_bdg)
return bdg_netmap_start(ifp, m);
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
if (kring->nr_hwavail >= lim) {
if (netmap_verbose)
D("stack ring %s full\n", ifp->if_xname);
goto done; /* no space */
}
/* compute the insert position */
i = kring->nr_hwcur + kring->nr_hwavail;
if (i > lim)
i -= lim + 1;
slot = &kring->ring->slot[i];
m_copydata(m, 0, len, NMB(slot));
slot->len = len;
slot->flags = kring->nkr_slot_flags;
kring->nr_hwavail++;
if (netmap_verbose & NM_VERB_HOST)
D("wake up host ring %s %d", na->ifp->if_xname, na->num_rx_rings);
selwakeuppri(&kring->si, PI_NET);
error = 0;
done:
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
/* release the mbuf in either cases of success or failure. As an
* alternative, put the mbuf in a free list and free the list
* only when really necessary.
*/
m_freem(m);
return (error);
}
/*
* netmap_reset() is called by the driver routines when reinitializing
* a ring. The driver is in charge of locking to protect the kring.
* If netmap mode is not set just return NULL.
*/
struct netmap_slot *
netmap_reset(struct netmap_adapter *na, enum txrx tx, int n,
u_int new_cur)
{
struct netmap_kring *kring;
int new_hwofs, lim;
if (na == NULL)
return NULL; /* no netmap support here */
if (!(na->ifp->if_capenable & IFCAP_NETMAP))
return NULL; /* nothing to reinitialize */
if (tx == NR_TX) {
if (n >= na->num_tx_rings)
return NULL;
kring = na->tx_rings + n;
new_hwofs = kring->nr_hwcur - new_cur;
} else {
if (n >= na->num_rx_rings)
return NULL;
kring = na->rx_rings + n;
new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur;
}
lim = kring->nkr_num_slots - 1;
if (new_hwofs > lim)
new_hwofs -= lim + 1;
/* Alwayws set the new offset value and realign the ring. */
kring->nkr_hwofs = new_hwofs;
if (tx == NR_TX)
kring->nr_hwavail = kring->nkr_num_slots - 1;
ND(10, "new hwofs %d on %s %s[%d]",
kring->nkr_hwofs, na->ifp->if_xname,
tx == NR_TX ? "TX" : "RX", n);
#if 0 // def linux
/* XXX check that the mappings are correct */
/* need ring_nr, adapter->pdev, direction */
buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE);
if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
D("error mapping rx netmap buffer %d", i);
// XXX fix error handling
}
#endif /* linux */
/*
* Wakeup on the individual and global lock
* We do the wakeup here, but the ring is not yet reconfigured.
* However, we are under lock so there are no races.
*/
selwakeuppri(&kring->si, PI_NET);
selwakeuppri(tx == NR_TX ? &na->tx_si : &na->rx_si, PI_NET);
return kring->ring->slot;
}
/* returns the next position in the ring */
static int
nm_bdg_preflush(struct netmap_adapter *na, u_int ring_nr,
struct netmap_kring *kring, u_int end)
{
struct netmap_ring *ring = kring->ring;
struct nm_bdg_fwd *ft = kring->nkr_ft;
u_int j = kring->nr_hwcur, lim = kring->nkr_num_slots - 1;
u_int ft_i = 0; /* start from 0 */
for (; likely(j != end); j = unlikely(j == lim) ? 0 : j+1) {
struct netmap_slot *slot = &ring->slot[j];
int len = ft[ft_i].ft_len = slot->len;
char *buf = ft[ft_i].buf = NMB(slot);
prefetch(buf);
if (unlikely(len < 14))
continue;
if (unlikely(++ft_i == netmap_bridge))
ft_i = nm_bdg_flush(ft, ft_i, na, ring_nr);
}
if (ft_i)
ft_i = nm_bdg_flush(ft, ft_i, na, ring_nr);
return j;
}
/*
* Pass packets from nic to the bridge. Must be called with
* proper locks on the source interface.
* Note, no user process can access this NIC so we can ignore
* the info in the 'ring'.
*/
static void
netmap_nic_to_bdg(struct ifnet *ifp, u_int ring_nr)
{
struct netmap_adapter *na = NA(ifp);
struct netmap_kring *kring = &na->rx_rings[ring_nr];
struct netmap_ring *ring = kring->ring;
int j, k, lim = kring->nkr_num_slots - 1;
/* fetch packets that have arrived */
na->nm_rxsync(ifp, ring_nr, 0);
/* XXX we don't count reserved, but it should be 0 */
j = kring->nr_hwcur;
k = j + kring->nr_hwavail;
if (k > lim)
k -= lim + 1;
if (k == j && netmap_verbose) {
D("how strange, interrupt with no packets on %s",
ifp->if_xname);
return;
}
j = nm_bdg_preflush(na, ring_nr, kring, k);
/* we consume everything, but we cannot update kring directly
* because the nic may have destroyed the info in the NIC ring.
* So we need to call rxsync again to restore it.
*/
ring->cur = j;
ring->avail = 0;
na->nm_rxsync(ifp, ring_nr, 0);
return;
}
/*
* Default functions to handle rx/tx interrupts
* we have 4 cases:
* 1 ring, single lock:
* lock(core); wake(i=0); unlock(core)
* N rings, single lock:
* lock(core); wake(i); wake(N+1) unlock(core)
* 1 ring, separate locks: (i=0)
* lock(i); wake(i); unlock(i)
* N rings, separate locks:
* lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core)
* work_done is non-null on the RX path.
*
* The 'q' argument also includes flag to tell whether the queue is
* already locked on enter, and whether it should remain locked on exit.
* This helps adapting to different defaults in drivers and OSes.
*/
int
netmap_rx_irq(struct ifnet *ifp, int q, int *work_done)
{
struct netmap_adapter *na;
struct netmap_kring *r;
NM_SELINFO_T *main_wq;
int locktype, unlocktype, nic_to_bridge, lock;
if (!(ifp->if_capenable & IFCAP_NETMAP))
return 0;
lock = q & (NETMAP_LOCKED_ENTER | NETMAP_LOCKED_EXIT);
q = q & NETMAP_RING_MASK;
ND(5, "received %s queue %d", work_done ? "RX" : "TX" , q);
na = NA(ifp);
if (na->na_flags & NAF_SKIP_INTR) {
ND("use regular interrupt");
return 0;
}
if (work_done) { /* RX path */
if (q >= na->num_rx_rings)
return 0; // not a physical queue
r = na->rx_rings + q;
r->nr_kflags |= NKR_PENDINTR;
main_wq = (na->num_rx_rings > 1) ? &na->rx_si : NULL;
/* set a flag if the NIC is attached to a VALE switch */
nic_to_bridge = (na->na_bdg != NULL);
locktype = NETMAP_RX_LOCK;
unlocktype = NETMAP_RX_UNLOCK;
} else { /* TX path */
if (q >= na->num_tx_rings)
return 0; // not a physical queue
r = na->tx_rings + q;
main_wq = (na->num_tx_rings > 1) ? &na->tx_si : NULL;
work_done = &q; /* dummy */
nic_to_bridge = 0;
locktype = NETMAP_TX_LOCK;
unlocktype = NETMAP_TX_UNLOCK;
}
if (na->separate_locks) {
if (!(lock & NETMAP_LOCKED_ENTER))
na->nm_lock(ifp, locktype, q);
/* If a NIC is attached to a bridge, flush packets
* (and no need to wakeup anyone). Otherwise, wakeup
* possible processes waiting for packets.
*/
if (nic_to_bridge)
netmap_nic_to_bdg(ifp, q);
else
selwakeuppri(&r->si, PI_NET);
na->nm_lock(ifp, unlocktype, q);
if (main_wq && !nic_to_bridge) {
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
selwakeuppri(main_wq, PI_NET);
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
}
/* lock the queue again if requested */
if (lock & NETMAP_LOCKED_EXIT)
na->nm_lock(ifp, locktype, q);
} else {
if (!(lock & NETMAP_LOCKED_ENTER))
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
if (nic_to_bridge)
netmap_nic_to_bdg(ifp, q);
else {
selwakeuppri(&r->si, PI_NET);
if (main_wq)
selwakeuppri(main_wq, PI_NET);
}
if (!(lock & NETMAP_LOCKED_EXIT))
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
}
*work_done = 1; /* do not fire napi again */
return 1;
}
#ifdef linux /* linux-specific routines */
/*
* Remap linux arguments into the FreeBSD call.
* - pwait is the poll table, passed as 'dev';
* If pwait == NULL someone else already woke up before. We can report
* events but they are filtered upstream.
* If pwait != NULL, then pwait->key contains the list of events.
* - events is computed from pwait as above.
* - file is passed as 'td';
*/
static u_int
linux_netmap_poll(struct file * file, struct poll_table_struct *pwait)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
int events = POLLIN | POLLOUT; /* XXX maybe... */
#elif LINUX_VERSION_CODE < KERNEL_VERSION(3,4,0)
int events = pwait ? pwait->key : POLLIN | POLLOUT;
#else /* in 3.4.0 field 'key' was renamed to '_key' */
int events = pwait ? pwait->_key : POLLIN | POLLOUT;
#endif
return netmap_poll((void *)pwait, events, (void *)file);
}
static int
linux_netmap_mmap(struct file *f, struct vm_area_struct *vma)
{
int lut_skip, i, j;
int user_skip = 0;
struct lut_entry *l_entry;
int error = 0;
unsigned long off, tomap;
/*
* vma->vm_start: start of mapping user address space
* vma->vm_end: end of the mapping user address space
* vma->vm_pfoff: offset of first page in the device
*/
// XXX security checks
error = netmap_get_memory(f->private_data);
ND("get_memory returned %d", error);
if (error)
return -error;
off = vma->vm_pgoff << PAGE_SHIFT; /* offset in bytes */
tomap = vma->vm_end - vma->vm_start;
for (i = 0; i < NETMAP_POOLS_NR; i++) { /* loop through obj_pools */
const struct netmap_obj_pool *p = &nm_mem.pools[i];
/*
* In each pool memory is allocated in clusters
* of size _clustsize, each containing clustentries
* entries. For each object k we already store the
* vtophys mapping in lut[k] so we use that, scanning
* the lut[] array in steps of clustentries,
* and we map each cluster (not individual pages,
* it would be overkill -- XXX slow ? 20130415).
*/
/*
* We interpret vm_pgoff as an offset into the whole
* netmap memory, as if all clusters where contiguous.
*/
for (lut_skip = 0, j = 0; j < p->_numclusters; j++, lut_skip += p->clustentries) {
unsigned long paddr, mapsize;
if (p->_clustsize <= off) {
off -= p->_clustsize;
continue;
}
l_entry = &p->lut[lut_skip]; /* first obj in the cluster */
paddr = l_entry->paddr + off;
mapsize = p->_clustsize - off;
off = 0;
if (mapsize > tomap)
mapsize = tomap;
ND("remap_pfn_range(%lx, %lx, %lx)",
vma->vm_start + user_skip,
paddr >> PAGE_SHIFT, mapsize);
if (remap_pfn_range(vma, vma->vm_start + user_skip,
paddr >> PAGE_SHIFT, mapsize,
vma->vm_page_prot))
return -EAGAIN; // XXX check return value
user_skip += mapsize;
tomap -= mapsize;
if (tomap == 0)
goto done;
}
}
done:
return 0;
}
static netdev_tx_t
linux_netmap_start(struct sk_buff *skb, struct net_device *dev)
{
netmap_start(dev, skb);
return (NETDEV_TX_OK);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37) // XXX was 38
#define LIN_IOCTL_NAME .ioctl
int
linux_netmap_ioctl(struct inode *inode, struct file *file, u_int cmd, u_long data /* arg */)
#else
#define LIN_IOCTL_NAME .unlocked_ioctl
long
linux_netmap_ioctl(struct file *file, u_int cmd, u_long data /* arg */)
#endif
{
int ret;
struct nmreq nmr;
bzero(&nmr, sizeof(nmr));
if (data && copy_from_user(&nmr, (void *)data, sizeof(nmr) ) != 0)
return -EFAULT;
ret = netmap_ioctl(NULL, cmd, (caddr_t)&nmr, 0, (void *)file);
if (data && copy_to_user((void*)data, &nmr, sizeof(nmr) ) != 0)
return -EFAULT;
return -ret;
}
static int
netmap_release(struct inode *inode, struct file *file)
{
(void)inode; /* UNUSED */
if (file->private_data)
netmap_dtor(file->private_data);
return (0);
}
static int
linux_netmap_open(struct inode *inode, struct file *file)
{
struct netmap_priv_d *priv;
(void)inode; /* UNUSED */
priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (priv == NULL)
return -ENOMEM;
file->private_data = priv;
return (0);
}
static struct file_operations netmap_fops = {
.owner = THIS_MODULE,
.open = linux_netmap_open,
.mmap = linux_netmap_mmap,
LIN_IOCTL_NAME = linux_netmap_ioctl,
.poll = linux_netmap_poll,
.release = netmap_release,
};
static struct miscdevice netmap_cdevsw = { /* same name as FreeBSD */
MISC_DYNAMIC_MINOR,
"netmap",
&netmap_fops,
};
static int netmap_init(void);
static void netmap_fini(void);
/* Errors have negative values on linux */
static int linux_netmap_init(void)
{
return -netmap_init();
}
module_init(linux_netmap_init);
module_exit(netmap_fini);
/* export certain symbols to other modules */
EXPORT_SYMBOL(netmap_attach); // driver attach routines
EXPORT_SYMBOL(netmap_detach); // driver detach routines
EXPORT_SYMBOL(netmap_ring_reinit); // ring init on error
EXPORT_SYMBOL(netmap_buffer_lut);
EXPORT_SYMBOL(netmap_total_buffers); // index check
EXPORT_SYMBOL(netmap_buffer_base);
EXPORT_SYMBOL(netmap_reset); // ring init routines
EXPORT_SYMBOL(netmap_buf_size);
EXPORT_SYMBOL(netmap_rx_irq); // default irq handler
EXPORT_SYMBOL(netmap_no_pendintr); // XXX mitigation - should go away
EXPORT_SYMBOL(netmap_bdg_ctl); // bridge configuration routine
EXPORT_SYMBOL(netmap_bdg_learning); // the default lookup function
MODULE_AUTHOR("http://info.iet.unipi.it/~luigi/netmap/");
MODULE_DESCRIPTION("The netmap packet I/O framework");
MODULE_LICENSE("Dual BSD/GPL"); /* the code here is all BSD. */
#else /* __FreeBSD__ */
static struct cdevsw netmap_cdevsw = {
.d_version = D_VERSION,
.d_name = "netmap",
.d_open = netmap_open,
.d_mmap = netmap_mmap,
.d_mmap_single = netmap_mmap_single,
.d_ioctl = netmap_ioctl,
.d_poll = netmap_poll,
.d_close = netmap_close,
};
#endif /* __FreeBSD__ */
#ifdef NM_BRIDGE
/*
*---- support for virtual bridge -----
*/
/* ----- FreeBSD if_bridge hash function ------- */
/*
* The following hash function is adapted from "Hash Functions" by Bob Jenkins
* ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
*
* http://www.burtleburtle.net/bob/hash/spooky.html
*/
#define mix(a, b, c) \
do { \
a -= b; a -= c; a ^= (c >> 13); \
b -= c; b -= a; b ^= (a << 8); \
c -= a; c -= b; c ^= (b >> 13); \
a -= b; a -= c; a ^= (c >> 12); \
b -= c; b -= a; b ^= (a << 16); \
c -= a; c -= b; c ^= (b >> 5); \
a -= b; a -= c; a ^= (c >> 3); \
b -= c; b -= a; b ^= (a << 10); \
c -= a; c -= b; c ^= (b >> 15); \
} while (/*CONSTCOND*/0)
static __inline uint32_t
nm_bridge_rthash(const uint8_t *addr)
{
uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = 0; // hask key
b += addr[5] << 8;
b += addr[4];
a += addr[3] << 24;
a += addr[2] << 16;
a += addr[1] << 8;
a += addr[0];
mix(a, b, c);
#define BRIDGE_RTHASH_MASK (NM_BDG_HASH-1)
return (c & BRIDGE_RTHASH_MASK);
}
#undef mix
static int
bdg_netmap_reg(struct ifnet *ifp, int onoff)
{
// struct nm_bridge *b = NA(ifp)->na_bdg;
/* the interface is already attached to the bridge,
* so we only need to toggle IFCAP_NETMAP.
* Locking is not necessary (we are already under
* NMA_LOCK, and the port is not in use during this call).
*/
/* BDG_WLOCK(b); */
if (onoff) {
ifp->if_capenable |= IFCAP_NETMAP;
} else {
ifp->if_capenable &= ~IFCAP_NETMAP;
}
/* BDG_WUNLOCK(b); */
return 0;
}
/*
* Lookup function for a learning bridge.
* Update the hash table with the source address,
* and then returns the destination port index, and the
* ring in *dst_ring (at the moment, always use ring 0)
*/
u_int
netmap_bdg_learning(char *buf, u_int len, uint8_t *dst_ring,
struct netmap_adapter *na)
{
struct nm_hash_ent *ht = na->na_bdg->ht;
uint32_t sh, dh;
u_int dst, mysrc = na->bdg_port;
uint64_t smac, dmac;
dmac = le64toh(*(uint64_t *)(buf)) & 0xffffffffffff;
smac = le64toh(*(uint64_t *)(buf + 4));
smac >>= 16;
/*
* The hash is somewhat expensive, there might be some
* worthwhile optimizations here.
*/
if ((buf[6] & 1) == 0) { /* valid src */
uint8_t *s = buf+6;
sh = nm_bridge_rthash(buf+6); // XXX hash of source
/* update source port forwarding entry */
ht[sh].mac = smac; /* XXX expire ? */
ht[sh].ports = mysrc;
if (netmap_verbose)
D("src %02x:%02x:%02x:%02x:%02x:%02x on port %d",
s[0], s[1], s[2], s[3], s[4], s[5], mysrc);
}
dst = NM_BDG_BROADCAST;
if ((buf[0] & 1) == 0) { /* unicast */
dh = nm_bridge_rthash(buf); // XXX hash of dst
if (ht[dh].mac == dmac) { /* found dst */
dst = ht[dh].ports;
}
/* XXX otherwise return NM_BDG_UNKNOWN ? */
}
*dst_ring = 0;
return dst;
}
/*
* This flush routine supports only unicast and broadcast but a large
* number of ports, and lets us replace the learn and dispatch functions.
*/
int
nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct netmap_adapter *na,
u_int ring_nr)
{
struct nm_bdg_q *dst_ents, *brddst;
uint16_t num_dsts = 0, *dsts;
struct nm_bridge *b = na->na_bdg;
u_int i, me = na->bdg_port;
dst_ents = (struct nm_bdg_q *)(ft + NM_BDG_BATCH);
dsts = (uint16_t *)(dst_ents + NM_BDG_MAXPORTS * NM_BDG_MAXRINGS + 1);
BDG_RLOCK(b);
/* first pass: find a destination */
for (i = 0; likely(i < n); i++) {
uint8_t *buf = ft[i].buf;
uint8_t dst_ring = ring_nr;
uint16_t dst_port, d_i;
struct nm_bdg_q *d;
dst_port = b->nm_bdg_lookup(buf, ft[i].ft_len, &dst_ring, na);
if (dst_port == NM_BDG_NOPORT) {
continue; /* this packet is identified to be dropped */
} else if (unlikely(dst_port > NM_BDG_MAXPORTS)) {
continue;
} else if (dst_port == NM_BDG_BROADCAST) {
dst_ring = 0; /* broadcasts always go to ring 0 */
} else if (unlikely(dst_port == me ||
!BDG_GET_VAR(b->bdg_ports[dst_port]))) {
continue;
}
/* get a position in the scratch pad */
d_i = dst_port * NM_BDG_MAXRINGS + dst_ring;
d = dst_ents + d_i;
if (d->bq_head == NM_BDG_BATCH) { /* new destination */
d->bq_head = d->bq_tail = i;
/* remember this position to be scanned later */
if (dst_port != NM_BDG_BROADCAST)
dsts[num_dsts++] = d_i;
}
ft[d->bq_tail].ft_next = i;
d->bq_tail = i;
}
/* if there is a broadcast, set ring 0 of all ports to be scanned
* XXX This would be optimized by recording the highest index of active
* ports.
*/
brddst = dst_ents + NM_BDG_BROADCAST * NM_BDG_MAXRINGS;
if (brddst->bq_head != NM_BDG_BATCH) {
for (i = 0; likely(i < NM_BDG_MAXPORTS); i++) {
uint16_t d_i = i * NM_BDG_MAXRINGS;
if (unlikely(i == me) || !BDG_GET_VAR(b->bdg_ports[i]))
continue;
else if (dst_ents[d_i].bq_head == NM_BDG_BATCH)
dsts[num_dsts++] = d_i;
}
}
/* second pass: scan destinations (XXX will be modular somehow) */
for (i = 0; i < num_dsts; i++) {
struct ifnet *dst_ifp;
struct netmap_adapter *dst_na;
struct netmap_kring *kring;
struct netmap_ring *ring;
u_int dst_nr, is_vp, lim, j, sent = 0, d_i, next, brd_next;
int howmany, retry = netmap_txsync_retry;
struct nm_bdg_q *d;
d_i = dsts[i];
d = dst_ents + d_i;
dst_na = BDG_GET_VAR(b->bdg_ports[d_i/NM_BDG_MAXRINGS]);
/* protect from the lookup function returning an inactive
* destination port
*/
if (unlikely(dst_na == NULL))
continue;
else if (dst_na->na_flags & NAF_SW_ONLY)
continue;
dst_ifp = dst_na->ifp;
/*
* The interface may be in !netmap mode in two cases:
* - when na is attached but not activated yet;
* - when na is being deactivated but is still attached.
*/
if (unlikely(!(dst_ifp->if_capenable & IFCAP_NETMAP)))
continue;
/* there is at least one either unicast or broadcast packet */
brd_next = brddst->bq_head;
next = d->bq_head;
is_vp = nma_is_vp(dst_na);
dst_nr = d_i & (NM_BDG_MAXRINGS-1);
if (is_vp) { /* virtual port */
if (dst_nr >= dst_na->num_rx_rings)
dst_nr = dst_nr % dst_na->num_rx_rings;
kring = &dst_na->rx_rings[dst_nr];
ring = kring->ring;
lim = kring->nkr_num_slots - 1;
dst_na->nm_lock(dst_ifp, NETMAP_RX_LOCK, dst_nr);
j = kring->nr_hwcur + kring->nr_hwavail;
if (j > lim)
j -= kring->nkr_num_slots;
howmany = lim - kring->nr_hwavail;
} else { /* hw or sw adapter */
if (dst_nr >= dst_na->num_tx_rings)
dst_nr = dst_nr % dst_na->num_tx_rings;
kring = &dst_na->tx_rings[dst_nr];
ring = kring->ring;
lim = kring->nkr_num_slots - 1;
dst_na->nm_lock(dst_ifp, NETMAP_TX_LOCK, dst_nr);
retry:
dst_na->nm_txsync(dst_ifp, dst_nr, 0);
/* see nm_bdg_flush() */
j = kring->nr_hwcur;
howmany = kring->nr_hwavail;
}
while (howmany-- > 0) {
struct netmap_slot *slot;
struct nm_bdg_fwd *ft_p;
if (next < brd_next) {
ft_p = ft + next;
next = ft_p->ft_next;
} else { /* insert broadcast */
ft_p = ft + brd_next;
brd_next = ft_p->ft_next;
}
slot = &ring->slot[j];
ND("send %d %d bytes at %s:%d", i, ft_p->ft_len, dst_ifp->if_xname, j);
pkt_copy(ft_p->buf, NMB(slot), ft_p->ft_len);
slot->len = ft_p->ft_len;
j = (j == lim) ? 0: j + 1; /* XXX to be macro-ed */
sent++;
if (next == d->bq_tail && brd_next == brddst->bq_tail)
break;
}
if (netmap_verbose && (howmany < 0))
D("rx ring full on %s", dst_ifp->if_xname);
if (is_vp) {
if (sent) {
kring->nr_hwavail += sent;
selwakeuppri(&kring->si, PI_NET);
}
dst_na->nm_lock(dst_ifp, NETMAP_RX_UNLOCK, dst_nr);
} else {
if (sent) {
ring->avail -= sent;
ring->cur = j;
dst_na->nm_txsync(dst_ifp, dst_nr, 0);
}
/* retry to send more packets */
if (nma_is_hw(dst_na) && howmany < 0 && retry--)
goto retry;
dst_na->nm_lock(dst_ifp, NETMAP_TX_UNLOCK, dst_nr);
}
d->bq_head = d->bq_tail = NM_BDG_BATCH; /* cleanup */
}
brddst->bq_head = brddst->bq_tail = NM_BDG_BATCH; /* cleanup */
BDG_RUNLOCK(b);
return 0;
}
/*
* main dispatch routine
*/
static int
bdg_netmap_txsync(struct ifnet *ifp, u_int ring_nr, int do_lock)
{
struct netmap_adapter *na = NA(ifp);
struct netmap_kring *kring = &na->tx_rings[ring_nr];
struct netmap_ring *ring = kring->ring;
int i, j, k, lim = kring->nkr_num_slots - 1;
k = ring->cur;
if (k > lim)
return netmap_ring_reinit(kring);
if (do_lock)
na->nm_lock(ifp, NETMAP_TX_LOCK, ring_nr);
if (netmap_bridge <= 0) { /* testing only */
j = k; // used all
goto done;
}
if (netmap_bridge > NM_BDG_BATCH)
netmap_bridge = NM_BDG_BATCH;
j = nm_bdg_preflush(na, ring_nr, kring, k);
i = k - j;
if (i < 0)
i += kring->nkr_num_slots;
kring->nr_hwavail = kring->nkr_num_slots - 1 - i;
if (j != k)
D("early break at %d/ %d, avail %d", j, k, kring->nr_hwavail);
done:
kring->nr_hwcur = j;
ring->avail = kring->nr_hwavail;
if (do_lock)
na->nm_lock(ifp, NETMAP_TX_UNLOCK, ring_nr);
if (netmap_verbose)
D("%s ring %d lock %d", ifp->if_xname, ring_nr, do_lock);
return 0;
}
static int
bdg_netmap_rxsync(struct ifnet *ifp, u_int ring_nr, int do_lock)
{
struct netmap_adapter *na = NA(ifp);
struct netmap_kring *kring = &na->rx_rings[ring_nr];
struct netmap_ring *ring = kring->ring;
u_int j, lim = kring->nkr_num_slots - 1;
u_int k = ring->cur, resvd = ring->reserved;
int n;
ND("%s ring %d lock %d avail %d",
ifp->if_xname, ring_nr, do_lock, kring->nr_hwavail);
if (k > lim)
return netmap_ring_reinit(kring);
if (do_lock)
na->nm_lock(ifp, NETMAP_RX_LOCK, ring_nr);
/* skip past packets that userspace has released */
j = kring->nr_hwcur; /* netmap ring index */
if (resvd > 0) {
if (resvd + ring->avail >= lim + 1) {
D("XXX invalid reserve/avail %d %d", resvd, ring->avail);
ring->reserved = resvd = 0; // XXX panic...
}
k = (k >= resvd) ? k - resvd : k + lim + 1 - resvd;
}
if (j != k) { /* userspace has released some packets. */
n = k - j;
if (n < 0)
n += kring->nkr_num_slots;
ND("userspace releases %d packets", n);
for (n = 0; likely(j != k); n++) {
struct netmap_slot *slot = &ring->slot[j];
void *addr = NMB(slot);
if (addr == netmap_buffer_base) { /* bad buf */
if (do_lock)
na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr);
return netmap_ring_reinit(kring);
}
/* decrease refcount for buffer */
slot->flags &= ~NS_BUF_CHANGED;
j = unlikely(j == lim) ? 0 : j + 1;
}
kring->nr_hwavail -= n;
kring->nr_hwcur = k;
}
/* tell userspace that there are new packets */
ring->avail = kring->nr_hwavail - resvd;
if (do_lock)
na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr);
return 0;
}
static void
bdg_netmap_attach(struct netmap_adapter *arg)
{
struct netmap_adapter na;
ND("attaching virtual bridge");
bzero(&na, sizeof(na));
na.ifp = arg->ifp;
na.separate_locks = 1;
na.num_tx_rings = arg->num_tx_rings;
na.num_rx_rings = arg->num_rx_rings;
na.num_tx_desc = NM_BRIDGE_RINGSIZE;
na.num_rx_desc = NM_BRIDGE_RINGSIZE;
na.nm_txsync = bdg_netmap_txsync;
na.nm_rxsync = bdg_netmap_rxsync;
na.nm_register = bdg_netmap_reg;
netmap_attach(&na, na.num_tx_rings);
}
#endif /* NM_BRIDGE */
static struct cdev *netmap_dev; /* /dev/netmap character device. */
/*
* Module loader.
*
* Create the /dev/netmap device and initialize all global
* variables.
*
* Return 0 on success, errno on failure.
*/
static int
netmap_init(void)
{
int error;
error = netmap_memory_init();
if (error != 0) {
printf("netmap: unable to initialize the memory allocator.\n");
return (error);
}
printf("netmap: loaded module\n");
netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660,
"netmap");
#ifdef NM_BRIDGE
{
int i;
mtx_init(&netmap_bridge_mutex, "netmap_bridge_mutex",
MTX_NETWORK_LOCK, MTX_DEF);
bzero(nm_bridges, sizeof(struct nm_bridge) * NM_BRIDGES); /* safety */
for (i = 0; i < NM_BRIDGES; i++)
rw_init(&nm_bridges[i].bdg_lock, "bdg lock");
}
#endif
return (error);
}
/*
* Module unloader.
*
* Free all the memory, and destroy the ``/dev/netmap`` device.
*/
static void
netmap_fini(void)
{
destroy_dev(netmap_dev);
netmap_memory_fini();
printf("netmap: unloaded module.\n");
}
#ifdef __FreeBSD__
/*
* Kernel entry point.
*
* Initialize/finalize the module and return.
*
* Return 0 on success, errno on failure.
*/
static int
netmap_loader(__unused struct module *module, int event, __unused void *arg)
{
int error = 0;
switch (event) {
case MOD_LOAD:
error = netmap_init();
break;
case MOD_UNLOAD:
netmap_fini();
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
DEV_MODULE(netmap, netmap_loader, NULL);
#endif /* __FreeBSD__ */