f18be5766f
- the VALE switch now support up to 254 destinations per switch, unicast or broadcast (multicast goes to all ports). - we can attach hw interfaces and the host stack to a VALE switch, which means we will be able to use it more or less as a native bridge (minor tweaks still necessary). A 'vale-ctl' program is supplied in tools/tools/netmap to attach/detach ports the switch, and list current configuration. - the lookup function in the VALE switch can be reassigned to something else, similar to the pf hooks. This will enable attaching the firewall, or other processing functions (e.g. in-kernel openvswitch) directly on the netmap port. The internal API used by device drivers does not change. Userspace applications should be recompiled because we bump NETMAP_API as we now use some fields in the struct nmreq that were previously ignored -- otherwise, data structures are the same. Manpages will be committed separately.
3300 lines
90 KiB
C
3300 lines
90 KiB
C
/*
|
|
* Copyright (C) 2011-2013 Matteo Landi, Luigi Rizzo. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#define NM_BRIDGE
|
|
|
|
/*
|
|
* This module supports memory mapped access to network devices,
|
|
* see netmap(4).
|
|
*
|
|
* The module uses a large, memory pool allocated by the kernel
|
|
* and accessible as mmapped memory by multiple userspace threads/processes.
|
|
* The memory pool contains packet buffers and "netmap rings",
|
|
* i.e. user-accessible copies of the interface's queues.
|
|
*
|
|
* Access to the network card works like this:
|
|
* 1. a process/thread issues one or more open() on /dev/netmap, to create
|
|
* select()able file descriptor on which events are reported.
|
|
* 2. on each descriptor, the process issues an ioctl() to identify
|
|
* the interface that should report events to the file descriptor.
|
|
* 3. on each descriptor, the process issues an mmap() request to
|
|
* map the shared memory region within the process' address space.
|
|
* The list of interesting queues is indicated by a location in
|
|
* the shared memory region.
|
|
* 4. using the functions in the netmap(4) userspace API, a process
|
|
* can look up the occupation state of a queue, access memory buffers,
|
|
* and retrieve received packets or enqueue packets to transmit.
|
|
* 5. using some ioctl()s the process can synchronize the userspace view
|
|
* of the queue with the actual status in the kernel. This includes both
|
|
* receiving the notification of new packets, and transmitting new
|
|
* packets on the output interface.
|
|
* 6. select() or poll() can be used to wait for events on individual
|
|
* transmit or receive queues (or all queues for a given interface).
|
|
*/
|
|
|
|
#ifdef linux
|
|
#include "bsd_glue.h"
|
|
static netdev_tx_t linux_netmap_start(struct sk_buff *skb, struct net_device *dev);
|
|
#endif /* linux */
|
|
|
|
#ifdef __APPLE__
|
|
#include "osx_glue.h"
|
|
#endif /* __APPLE__ */
|
|
|
|
#ifdef __FreeBSD__
|
|
#include <sys/cdefs.h> /* prerequisite */
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/module.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/param.h> /* defines used in kernel.h */
|
|
#include <sys/jail.h>
|
|
#include <sys/kernel.h> /* types used in module initialization */
|
|
#include <sys/conf.h> /* cdevsw struct */
|
|
#include <sys/uio.h> /* uio struct */
|
|
#include <sys/sockio.h>
|
|
#include <sys/socketvar.h> /* struct socket */
|
|
#include <sys/malloc.h>
|
|
#include <sys/mman.h> /* PROT_EXEC */
|
|
#include <sys/poll.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rwlock.h>
|
|
#include <vm/vm.h> /* vtophys */
|
|
#include <vm/pmap.h> /* vtophys */
|
|
#include <sys/socket.h> /* sockaddrs */
|
|
#include <machine/bus.h>
|
|
#include <sys/selinfo.h>
|
|
#include <sys/sysctl.h>
|
|
#include <net/if.h>
|
|
#include <net/bpf.h> /* BIOCIMMEDIATE */
|
|
#include <net/vnet.h>
|
|
#include <machine/bus.h> /* bus_dmamap_* */
|
|
|
|
MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map");
|
|
#endif /* __FreeBSD__ */
|
|
|
|
#include <net/netmap.h>
|
|
#include <dev/netmap/netmap_kern.h>
|
|
|
|
/* XXX the following variables must be deprecated and included in nm_mem */
|
|
u_int netmap_total_buffers;
|
|
u_int netmap_buf_size;
|
|
char *netmap_buffer_base; /* address of an invalid buffer */
|
|
|
|
/* user-controlled variables */
|
|
int netmap_verbose;
|
|
|
|
static int netmap_no_timestamp; /* don't timestamp on rxsync */
|
|
|
|
SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
|
|
CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
|
|
CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
|
|
int netmap_mitigate = 1;
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, "");
|
|
int netmap_no_pendintr = 1;
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr,
|
|
CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets.");
|
|
int netmap_txsync_retry = 2;
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW,
|
|
&netmap_txsync_retry, 0 , "Number of txsync loops in bridge's flush.");
|
|
|
|
int netmap_drop = 0; /* debugging */
|
|
int netmap_flags = 0; /* debug flags */
|
|
int netmap_fwd = 0; /* force transparent mode */
|
|
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, drop, CTLFLAG_RW, &netmap_drop, 0 , "");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , "");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0 , "");
|
|
|
|
#ifdef NM_BRIDGE /* support for netmap virtual switch, called VALE */
|
|
|
|
/*
|
|
* system parameters (most of them in netmap_kern.h)
|
|
* NM_NAME prefix for switch port names, default "vale"
|
|
* NM_MAXPORTS number of ports
|
|
* NM_BRIDGES max number of switches in the system.
|
|
* XXX should become a sysctl or tunable
|
|
*
|
|
* Switch ports are named valeX:Y where X is the switch name and Y
|
|
* is the port. If Y matches a physical interface name, the port is
|
|
* connected to a physical device.
|
|
*
|
|
* Unlike physical interfaces, switch ports use their own memory region
|
|
* for rings and buffers.
|
|
* The virtual interfaces use per-queue lock instead of core lock.
|
|
* In the tx loop, we aggregate traffic in batches to make all operations
|
|
* faster. The batch size is NM_BDG_BATCH
|
|
*/
|
|
#define NM_BDG_MAXRINGS 16 /* XXX unclear how many. */
|
|
#define NM_BRIDGE_RINGSIZE 1024 /* in the device */
|
|
#define NM_BDG_HASH 1024 /* forwarding table entries */
|
|
#define NM_BDG_BATCH 1024 /* entries in the forwarding buffer */
|
|
#define NM_BRIDGES 8 /* number of bridges */
|
|
|
|
|
|
int netmap_bridge = NM_BDG_BATCH; /* bridge batch size */
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, bridge, CTLFLAG_RW, &netmap_bridge, 0 , "");
|
|
|
|
#ifdef linux
|
|
|
|
#define refcount_acquire(_a) atomic_add(1, (atomic_t *)_a)
|
|
#define refcount_release(_a) atomic_dec_and_test((atomic_t *)_a)
|
|
|
|
#else /* !linux */
|
|
|
|
#ifdef __FreeBSD__
|
|
#include <sys/endian.h>
|
|
#include <sys/refcount.h>
|
|
#endif /* __FreeBSD__ */
|
|
|
|
#define prefetch(x) __builtin_prefetch(x)
|
|
|
|
#endif /* !linux */
|
|
|
|
/*
|
|
* These are used to handle reference counters for bridge ports.
|
|
*/
|
|
#define ADD_BDG_REF(ifp) refcount_acquire(&NA(ifp)->na_bdg_refcount)
|
|
#define DROP_BDG_REF(ifp) refcount_release(&NA(ifp)->na_bdg_refcount)
|
|
|
|
static void bdg_netmap_attach(struct netmap_adapter *);
|
|
static int bdg_netmap_reg(struct ifnet *ifp, int onoff);
|
|
static int kern_netmap_regif(struct nmreq *nmr);
|
|
|
|
/* per-tx-queue entry */
|
|
struct nm_bdg_fwd { /* forwarding entry for a bridge */
|
|
void *buf;
|
|
uint32_t ft_dst; /* dst port */
|
|
uint16_t ft_len; /* src len */
|
|
uint16_t ft_next; /* next packet to same destination */
|
|
};
|
|
|
|
/* We need to build a list of buffers going to each destination.
|
|
* Each buffer is in one entry of struct nm_bdg_fwd, we use ft_next
|
|
* to build the list, and struct nm_bdg_q below for the queue.
|
|
* The structure should compact because potentially we have a lot
|
|
* of destinations.
|
|
*/
|
|
struct nm_bdg_q {
|
|
uint16_t bq_head;
|
|
uint16_t bq_tail;
|
|
};
|
|
|
|
struct nm_hash_ent {
|
|
uint64_t mac; /* the top 2 bytes are the epoch */
|
|
uint64_t ports;
|
|
};
|
|
|
|
/*
|
|
* Interfaces for a bridge are all in bdg_ports[].
|
|
* The array has fixed size, an empty entry does not terminate
|
|
* the search. But lookups only occur on attach/detach so we
|
|
* don't mind if they are slow.
|
|
*
|
|
* The bridge is non blocking on the transmit ports.
|
|
*
|
|
* bdg_lock protects accesses to the bdg_ports array.
|
|
* This is a rw lock (or equivalent).
|
|
*/
|
|
struct nm_bridge {
|
|
int namelen; /* 0 means free */
|
|
|
|
/* XXX what is the proper alignment/layout ? */
|
|
NM_RWLOCK_T bdg_lock; /* protects bdg_ports */
|
|
struct netmap_adapter *bdg_ports[NM_BDG_MAXPORTS];
|
|
|
|
char basename[IFNAMSIZ];
|
|
/*
|
|
* The function to decide the destination port.
|
|
* It returns either of an index of the destination port,
|
|
* NM_BDG_BROADCAST to broadcast this packet, or NM_BDG_NOPORT not to
|
|
* forward this packet. ring_nr is the source ring index, and the
|
|
* function may overwrite this value to forward this packet to a
|
|
* different ring index.
|
|
* This function must be set by netmap_bdgctl().
|
|
*/
|
|
bdg_lookup_fn_t nm_bdg_lookup;
|
|
|
|
/* the forwarding table, MAC+ports */
|
|
struct nm_hash_ent ht[NM_BDG_HASH];
|
|
};
|
|
|
|
struct nm_bridge nm_bridges[NM_BRIDGES];
|
|
NM_LOCK_T netmap_bridge_mutex;
|
|
|
|
/* other OS will have these macros defined in their own glue code. */
|
|
|
|
#ifdef __FreeBSD__
|
|
#define BDG_LOCK() mtx_lock(&netmap_bridge_mutex)
|
|
#define BDG_UNLOCK() mtx_unlock(&netmap_bridge_mutex)
|
|
#define BDG_WLOCK(b) rw_wlock(&(b)->bdg_lock)
|
|
#define BDG_WUNLOCK(b) rw_wunlock(&(b)->bdg_lock)
|
|
#define BDG_RLOCK(b) rw_rlock(&(b)->bdg_lock)
|
|
#define BDG_RUNLOCK(b) rw_runlock(&(b)->bdg_lock)
|
|
|
|
/* set/get variables. OS-specific macros may wrap these
|
|
* assignments into read/write lock or similar
|
|
*/
|
|
#define BDG_SET_VAR(lval, p) (lval = p)
|
|
#define BDG_GET_VAR(lval) (lval)
|
|
#define BDG_FREE(p) free(p, M_DEVBUF)
|
|
#endif /* __FreeBSD__ */
|
|
|
|
static __inline int
|
|
nma_is_vp(struct netmap_adapter *na)
|
|
{
|
|
return na->nm_register == bdg_netmap_reg;
|
|
}
|
|
static __inline int
|
|
nma_is_host(struct netmap_adapter *na)
|
|
{
|
|
return na->nm_register == NULL;
|
|
}
|
|
static __inline int
|
|
nma_is_hw(struct netmap_adapter *na)
|
|
{
|
|
/* In case of sw adapter, nm_register is NULL */
|
|
return !nma_is_vp(na) && !nma_is_host(na);
|
|
}
|
|
|
|
/*
|
|
* Regarding holding a NIC, if the NIC is owned by the kernel
|
|
* (i.e., bridge), neither another bridge nor user can use it;
|
|
* if the NIC is owned by a user, only users can share it.
|
|
* Evaluation must be done under NMA_LOCK().
|
|
*/
|
|
#define NETMAP_OWNED_BY_KERN(ifp) (!nma_is_vp(NA(ifp)) && NA(ifp)->na_bdg)
|
|
#define NETMAP_OWNED_BY_ANY(ifp) \
|
|
(NETMAP_OWNED_BY_KERN(ifp) || (NA(ifp)->refcount > 0))
|
|
|
|
/*
|
|
* NA(ifp)->bdg_port port index
|
|
*/
|
|
|
|
// XXX only for multiples of 64 bytes, non overlapped.
|
|
static inline void
|
|
pkt_copy(void *_src, void *_dst, int l)
|
|
{
|
|
uint64_t *src = _src;
|
|
uint64_t *dst = _dst;
|
|
if (unlikely(l >= 1024)) {
|
|
bcopy(src, dst, l);
|
|
return;
|
|
}
|
|
for (; likely(l > 0); l-=64) {
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* locate a bridge among the existing ones.
|
|
* a ':' in the name terminates the bridge name. Otherwise, just NM_NAME.
|
|
* We assume that this is called with a name of at least NM_NAME chars.
|
|
*/
|
|
static struct nm_bridge *
|
|
nm_find_bridge(const char *name, int create)
|
|
{
|
|
int i, l, namelen;
|
|
struct nm_bridge *b = NULL;
|
|
|
|
namelen = strlen(NM_NAME); /* base length */
|
|
l = strlen(name); /* actual length */
|
|
for (i = namelen + 1; i < l; i++) {
|
|
if (name[i] == ':') {
|
|
namelen = i;
|
|
break;
|
|
}
|
|
}
|
|
if (namelen >= IFNAMSIZ)
|
|
namelen = IFNAMSIZ;
|
|
ND("--- prefix is '%.*s' ---", namelen, name);
|
|
|
|
BDG_LOCK();
|
|
/* lookup the name, remember empty slot if there is one */
|
|
for (i = 0; i < NM_BRIDGES; i++) {
|
|
struct nm_bridge *x = nm_bridges + i;
|
|
|
|
if (x->namelen == 0) {
|
|
if (create && b == NULL)
|
|
b = x; /* record empty slot */
|
|
} else if (x->namelen != namelen) {
|
|
continue;
|
|
} else if (strncmp(name, x->basename, namelen) == 0) {
|
|
ND("found '%.*s' at %d", namelen, name, i);
|
|
b = x;
|
|
break;
|
|
}
|
|
}
|
|
if (i == NM_BRIDGES && b) { /* name not found, can create entry */
|
|
strncpy(b->basename, name, namelen);
|
|
b->namelen = namelen;
|
|
/* set the default function */
|
|
b->nm_bdg_lookup = netmap_bdg_learning;
|
|
/* reset the MAC address table */
|
|
bzero(b->ht, sizeof(struct nm_hash_ent) * NM_BDG_HASH);
|
|
}
|
|
BDG_UNLOCK();
|
|
return b;
|
|
}
|
|
|
|
|
|
/*
|
|
* Free the forwarding tables for rings attached to switch ports.
|
|
*/
|
|
static void
|
|
nm_free_bdgfwd(struct netmap_adapter *na)
|
|
{
|
|
int nrings, i;
|
|
struct netmap_kring *kring;
|
|
|
|
nrings = nma_is_vp(na) ? na->num_tx_rings : na->num_rx_rings;
|
|
kring = nma_is_vp(na) ? na->tx_rings : na->rx_rings;
|
|
for (i = 0; i < nrings; i++) {
|
|
if (kring[i].nkr_ft) {
|
|
free(kring[i].nkr_ft, M_DEVBUF);
|
|
kring[i].nkr_ft = NULL; /* protect from freeing twice */
|
|
}
|
|
}
|
|
if (nma_is_hw(na))
|
|
nm_free_bdgfwd(SWNA(na->ifp));
|
|
}
|
|
|
|
|
|
/*
|
|
* Allocate the forwarding tables for the rings attached to the bridge ports.
|
|
*/
|
|
static int
|
|
nm_alloc_bdgfwd(struct netmap_adapter *na)
|
|
{
|
|
int nrings, l, i, num_dstq;
|
|
struct netmap_kring *kring;
|
|
|
|
/* all port:rings + broadcast */
|
|
num_dstq = NM_BDG_MAXPORTS * NM_BDG_MAXRINGS + 1;
|
|
l = sizeof(struct nm_bdg_fwd) * NM_BDG_BATCH;
|
|
l += sizeof(struct nm_bdg_q) * num_dstq;
|
|
l += sizeof(uint16_t) * NM_BDG_BATCH;
|
|
|
|
nrings = nma_is_vp(na) ? na->num_tx_rings : na->num_rx_rings;
|
|
kring = nma_is_vp(na) ? na->tx_rings : na->rx_rings;
|
|
for (i = 0; i < nrings; i++) {
|
|
struct nm_bdg_fwd *ft;
|
|
struct nm_bdg_q *dstq;
|
|
int j;
|
|
|
|
ft = malloc(l, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (!ft) {
|
|
nm_free_bdgfwd(na);
|
|
return ENOMEM;
|
|
}
|
|
dstq = (struct nm_bdg_q *)(ft + NM_BDG_BATCH);
|
|
for (j = 0; j < num_dstq; j++)
|
|
dstq[j].bq_head = dstq[j].bq_tail = NM_BDG_BATCH;
|
|
kring[i].nkr_ft = ft;
|
|
}
|
|
if (nma_is_hw(na))
|
|
nm_alloc_bdgfwd(SWNA(na->ifp));
|
|
return 0;
|
|
}
|
|
|
|
#endif /* NM_BRIDGE */
|
|
|
|
|
|
/*
|
|
* Fetch configuration from the device, to cope with dynamic
|
|
* reconfigurations after loading the module.
|
|
*/
|
|
static int
|
|
netmap_update_config(struct netmap_adapter *na)
|
|
{
|
|
struct ifnet *ifp = na->ifp;
|
|
u_int txr, txd, rxr, rxd;
|
|
|
|
txr = txd = rxr = rxd = 0;
|
|
if (na->nm_config) {
|
|
na->nm_config(ifp, &txr, &txd, &rxr, &rxd);
|
|
} else {
|
|
/* take whatever we had at init time */
|
|
txr = na->num_tx_rings;
|
|
txd = na->num_tx_desc;
|
|
rxr = na->num_rx_rings;
|
|
rxd = na->num_rx_desc;
|
|
}
|
|
|
|
if (na->num_tx_rings == txr && na->num_tx_desc == txd &&
|
|
na->num_rx_rings == rxr && na->num_rx_desc == rxd)
|
|
return 0; /* nothing changed */
|
|
if (netmap_verbose || na->refcount > 0) {
|
|
D("stored config %s: txring %d x %d, rxring %d x %d",
|
|
ifp->if_xname,
|
|
na->num_tx_rings, na->num_tx_desc,
|
|
na->num_rx_rings, na->num_rx_desc);
|
|
D("new config %s: txring %d x %d, rxring %d x %d",
|
|
ifp->if_xname, txr, txd, rxr, rxd);
|
|
}
|
|
if (na->refcount == 0) {
|
|
D("configuration changed (but fine)");
|
|
na->num_tx_rings = txr;
|
|
na->num_tx_desc = txd;
|
|
na->num_rx_rings = rxr;
|
|
na->num_rx_desc = rxd;
|
|
return 0;
|
|
}
|
|
D("configuration changed while active, this is bad...");
|
|
return 1;
|
|
}
|
|
|
|
/*------------- memory allocator -----------------*/
|
|
#include "netmap_mem2.c"
|
|
/*------------ end of memory allocator ----------*/
|
|
|
|
|
|
/* Structure associated to each thread which registered an interface.
|
|
*
|
|
* The first 4 fields of this structure are written by NIOCREGIF and
|
|
* read by poll() and NIOC?XSYNC.
|
|
* There is low contention among writers (actually, a correct user program
|
|
* should have no contention among writers) and among writers and readers,
|
|
* so we use a single global lock to protect the structure initialization.
|
|
* Since initialization involves the allocation of memory, we reuse the memory
|
|
* allocator lock.
|
|
* Read access to the structure is lock free. Readers must check that
|
|
* np_nifp is not NULL before using the other fields.
|
|
* If np_nifp is NULL initialization has not been performed, so they should
|
|
* return an error to userlevel.
|
|
*
|
|
* The ref_done field is used to regulate access to the refcount in the
|
|
* memory allocator. The refcount must be incremented at most once for
|
|
* each open("/dev/netmap"). The increment is performed by the first
|
|
* function that calls netmap_get_memory() (currently called by
|
|
* mmap(), NIOCGINFO and NIOCREGIF).
|
|
* If the refcount is incremented, it is then decremented when the
|
|
* private structure is destroyed.
|
|
*/
|
|
struct netmap_priv_d {
|
|
struct netmap_if * volatile np_nifp; /* netmap interface descriptor. */
|
|
|
|
struct ifnet *np_ifp; /* device for which we hold a reference */
|
|
int np_ringid; /* from the ioctl */
|
|
u_int np_qfirst, np_qlast; /* range of rings to scan */
|
|
uint16_t np_txpoll;
|
|
|
|
unsigned long ref_done; /* use with NMA_LOCK held */
|
|
};
|
|
|
|
|
|
static int
|
|
netmap_get_memory(struct netmap_priv_d* p)
|
|
{
|
|
int error = 0;
|
|
NMA_LOCK();
|
|
if (!p->ref_done) {
|
|
error = netmap_memory_finalize();
|
|
if (!error)
|
|
p->ref_done = 1;
|
|
}
|
|
NMA_UNLOCK();
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* File descriptor's private data destructor.
|
|
*
|
|
* Call nm_register(ifp,0) to stop netmap mode on the interface and
|
|
* revert to normal operation. We expect that np_ifp has not gone.
|
|
*/
|
|
/* call with NMA_LOCK held */
|
|
static void
|
|
netmap_dtor_locked(void *data)
|
|
{
|
|
struct netmap_priv_d *priv = data;
|
|
struct ifnet *ifp = priv->np_ifp;
|
|
struct netmap_adapter *na = NA(ifp);
|
|
struct netmap_if *nifp = priv->np_nifp;
|
|
|
|
na->refcount--;
|
|
if (na->refcount <= 0) { /* last instance */
|
|
u_int i, j, lim;
|
|
|
|
if (netmap_verbose)
|
|
D("deleting last instance for %s", ifp->if_xname);
|
|
/*
|
|
* (TO CHECK) This function is only called
|
|
* when the last reference to this file descriptor goes
|
|
* away. This means we cannot have any pending poll()
|
|
* or interrupt routine operating on the structure.
|
|
*/
|
|
na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */
|
|
/* Wake up any sleeping threads. netmap_poll will
|
|
* then return POLLERR
|
|
*/
|
|
for (i = 0; i < na->num_tx_rings + 1; i++)
|
|
selwakeuppri(&na->tx_rings[i].si, PI_NET);
|
|
for (i = 0; i < na->num_rx_rings + 1; i++)
|
|
selwakeuppri(&na->rx_rings[i].si, PI_NET);
|
|
selwakeuppri(&na->tx_si, PI_NET);
|
|
selwakeuppri(&na->rx_si, PI_NET);
|
|
#ifdef NM_BRIDGE
|
|
nm_free_bdgfwd(na);
|
|
#endif /* NM_BRIDGE */
|
|
/* release all buffers */
|
|
for (i = 0; i < na->num_tx_rings + 1; i++) {
|
|
struct netmap_ring *ring = na->tx_rings[i].ring;
|
|
lim = na->tx_rings[i].nkr_num_slots;
|
|
for (j = 0; j < lim; j++)
|
|
netmap_free_buf(nifp, ring->slot[j].buf_idx);
|
|
/* knlist_destroy(&na->tx_rings[i].si.si_note); */
|
|
mtx_destroy(&na->tx_rings[i].q_lock);
|
|
}
|
|
for (i = 0; i < na->num_rx_rings + 1; i++) {
|
|
struct netmap_ring *ring = na->rx_rings[i].ring;
|
|
lim = na->rx_rings[i].nkr_num_slots;
|
|
for (j = 0; j < lim; j++)
|
|
netmap_free_buf(nifp, ring->slot[j].buf_idx);
|
|
/* knlist_destroy(&na->rx_rings[i].si.si_note); */
|
|
mtx_destroy(&na->rx_rings[i].q_lock);
|
|
}
|
|
/* XXX kqueue(9) needed; these will mirror knlist_init. */
|
|
/* knlist_destroy(&na->tx_si.si_note); */
|
|
/* knlist_destroy(&na->rx_si.si_note); */
|
|
netmap_free_rings(na);
|
|
if (nma_is_hw(na))
|
|
SWNA(ifp)->tx_rings = SWNA(ifp)->rx_rings = NULL;
|
|
}
|
|
netmap_if_free(nifp);
|
|
}
|
|
|
|
|
|
/* we assume netmap adapter exists */
|
|
static void
|
|
nm_if_rele(struct ifnet *ifp)
|
|
{
|
|
#ifndef NM_BRIDGE
|
|
if_rele(ifp);
|
|
#else /* NM_BRIDGE */
|
|
int i, full = 0, is_hw;
|
|
struct nm_bridge *b;
|
|
struct netmap_adapter *na;
|
|
|
|
/* I can be called not only for get_ifp()-ed references where netmap's
|
|
* capability is guaranteed, but also for non-netmap-capable NICs.
|
|
*/
|
|
if (!NETMAP_CAPABLE(ifp) || !NA(ifp)->na_bdg) {
|
|
if_rele(ifp);
|
|
return;
|
|
}
|
|
if (!DROP_BDG_REF(ifp))
|
|
return;
|
|
|
|
na = NA(ifp);
|
|
b = na->na_bdg;
|
|
is_hw = nma_is_hw(na);
|
|
|
|
BDG_WLOCK(b);
|
|
ND("want to disconnect %s from the bridge", ifp->if_xname);
|
|
full = 0;
|
|
/* remove the entry from the bridge, also check
|
|
* if there are any leftover interfaces
|
|
* XXX we should optimize this code, e.g. going directly
|
|
* to na->bdg_port, and having a counter of ports that
|
|
* are connected. But it is not in a critical path.
|
|
* In NIC's case, index of sw na is always higher than hw na
|
|
*/
|
|
for (i = 0; i < NM_BDG_MAXPORTS; i++) {
|
|
struct netmap_adapter *tmp = BDG_GET_VAR(b->bdg_ports[i]);
|
|
|
|
if (tmp == na) {
|
|
/* disconnect from bridge */
|
|
BDG_SET_VAR(b->bdg_ports[i], NULL);
|
|
na->na_bdg = NULL;
|
|
if (is_hw && SWNA(ifp)->na_bdg) {
|
|
/* disconnect sw adapter too */
|
|
int j = SWNA(ifp)->bdg_port;
|
|
BDG_SET_VAR(b->bdg_ports[j], NULL);
|
|
SWNA(ifp)->na_bdg = NULL;
|
|
}
|
|
} else if (tmp != NULL) {
|
|
full = 1;
|
|
}
|
|
}
|
|
BDG_WUNLOCK(b);
|
|
if (full == 0) {
|
|
ND("marking bridge %d as free", b - nm_bridges);
|
|
b->namelen = 0;
|
|
b->nm_bdg_lookup = NULL;
|
|
}
|
|
if (na->na_bdg) { /* still attached to the bridge */
|
|
D("ouch, cannot find ifp to remove");
|
|
} else if (is_hw) {
|
|
if_rele(ifp);
|
|
} else {
|
|
bzero(na, sizeof(*na));
|
|
free(na, M_DEVBUF);
|
|
bzero(ifp, sizeof(*ifp));
|
|
free(ifp, M_DEVBUF);
|
|
}
|
|
#endif /* NM_BRIDGE */
|
|
}
|
|
|
|
static void
|
|
netmap_dtor(void *data)
|
|
{
|
|
struct netmap_priv_d *priv = data;
|
|
struct ifnet *ifp = priv->np_ifp;
|
|
|
|
NMA_LOCK();
|
|
if (ifp) {
|
|
struct netmap_adapter *na = NA(ifp);
|
|
|
|
if (na->na_bdg)
|
|
BDG_WLOCK(na->na_bdg);
|
|
na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
|
|
netmap_dtor_locked(data);
|
|
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
|
|
if (na->na_bdg)
|
|
BDG_WUNLOCK(na->na_bdg);
|
|
|
|
nm_if_rele(ifp); /* might also destroy *na */
|
|
}
|
|
if (priv->ref_done) {
|
|
netmap_memory_deref();
|
|
}
|
|
NMA_UNLOCK();
|
|
bzero(priv, sizeof(*priv)); /* XXX for safety */
|
|
free(priv, M_DEVBUF);
|
|
}
|
|
|
|
|
|
#ifdef __FreeBSD__
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/uma.h>
|
|
|
|
/*
|
|
* In order to track whether pages are still mapped, we hook into
|
|
* the standard cdev_pager and intercept the constructor and
|
|
* destructor.
|
|
* XXX but then ? Do we really use the information ?
|
|
* Need to investigate.
|
|
*/
|
|
static struct cdev_pager_ops saved_cdev_pager_ops;
|
|
|
|
|
|
static int
|
|
netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
|
|
vm_ooffset_t foff, struct ucred *cred, u_short *color)
|
|
{
|
|
if (netmap_verbose)
|
|
D("first mmap for %p", handle);
|
|
return saved_cdev_pager_ops.cdev_pg_ctor(handle,
|
|
size, prot, foff, cred, color);
|
|
}
|
|
|
|
|
|
static void
|
|
netmap_dev_pager_dtor(void *handle)
|
|
{
|
|
saved_cdev_pager_ops.cdev_pg_dtor(handle);
|
|
ND("ready to release memory for %p", handle);
|
|
}
|
|
|
|
|
|
static struct cdev_pager_ops netmap_cdev_pager_ops = {
|
|
.cdev_pg_ctor = netmap_dev_pager_ctor,
|
|
.cdev_pg_dtor = netmap_dev_pager_dtor,
|
|
.cdev_pg_fault = NULL,
|
|
};
|
|
|
|
|
|
// XXX check whether we need netmap_mmap_single _and_ netmap_mmap
|
|
static int
|
|
netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
|
|
vm_size_t objsize, vm_object_t *objp, int prot)
|
|
{
|
|
vm_object_t obj;
|
|
|
|
ND("cdev %p foff %jd size %jd objp %p prot %d", cdev,
|
|
(intmax_t )*foff, (intmax_t )objsize, objp, prot);
|
|
obj = vm_pager_allocate(OBJT_DEVICE, cdev, objsize, prot, *foff,
|
|
curthread->td_ucred);
|
|
ND("returns obj %p", obj);
|
|
if (obj == NULL)
|
|
return EINVAL;
|
|
if (saved_cdev_pager_ops.cdev_pg_fault == NULL) {
|
|
ND("initialize cdev_pager_ops");
|
|
saved_cdev_pager_ops = *(obj->un_pager.devp.ops);
|
|
netmap_cdev_pager_ops.cdev_pg_fault =
|
|
saved_cdev_pager_ops.cdev_pg_fault;
|
|
};
|
|
obj->un_pager.devp.ops = &netmap_cdev_pager_ops;
|
|
*objp = obj;
|
|
return 0;
|
|
}
|
|
#endif /* __FreeBSD__ */
|
|
|
|
|
|
/*
|
|
* mmap(2) support for the "netmap" device.
|
|
*
|
|
* Expose all the memory previously allocated by our custom memory
|
|
* allocator: this way the user has only to issue a single mmap(2), and
|
|
* can work on all the data structures flawlessly.
|
|
*
|
|
* Return 0 on success, -1 otherwise.
|
|
*/
|
|
|
|
#ifdef __FreeBSD__
|
|
static int
|
|
netmap_mmap(__unused struct cdev *dev,
|
|
#if __FreeBSD_version < 900000
|
|
vm_offset_t offset, vm_paddr_t *paddr, int nprot
|
|
#else
|
|
vm_ooffset_t offset, vm_paddr_t *paddr, int nprot,
|
|
__unused vm_memattr_t *memattr
|
|
#endif
|
|
)
|
|
{
|
|
int error = 0;
|
|
struct netmap_priv_d *priv;
|
|
|
|
if (nprot & PROT_EXEC)
|
|
return (-1); // XXX -1 or EINVAL ?
|
|
|
|
error = devfs_get_cdevpriv((void **)&priv);
|
|
if (error == EBADF) { /* called on fault, memory is initialized */
|
|
ND(5, "handling fault at ofs 0x%x", offset);
|
|
error = 0;
|
|
} else if (error == 0) /* make sure memory is set */
|
|
error = netmap_get_memory(priv);
|
|
if (error)
|
|
return (error);
|
|
|
|
ND("request for offset 0x%x", (uint32_t)offset);
|
|
*paddr = netmap_ofstophys(offset);
|
|
|
|
return (*paddr ? 0 : ENOMEM);
|
|
}
|
|
|
|
|
|
static int
|
|
netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
|
|
{
|
|
if (netmap_verbose)
|
|
D("dev %p fflag 0x%x devtype %d td %p",
|
|
dev, fflag, devtype, td);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
|
|
{
|
|
struct netmap_priv_d *priv;
|
|
int error;
|
|
|
|
priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF,
|
|
M_NOWAIT | M_ZERO);
|
|
if (priv == NULL)
|
|
return ENOMEM;
|
|
|
|
error = devfs_set_cdevpriv(priv, netmap_dtor);
|
|
if (error)
|
|
return error;
|
|
|
|
return 0;
|
|
}
|
|
#endif /* __FreeBSD__ */
|
|
|
|
|
|
/*
|
|
* Handlers for synchronization of the queues from/to the host.
|
|
* Netmap has two operating modes:
|
|
* - in the default mode, the rings connected to the host stack are
|
|
* just another ring pair managed by userspace;
|
|
* - in transparent mode (XXX to be defined) incoming packets
|
|
* (from the host or the NIC) are marked as NS_FORWARD upon
|
|
* arrival, and the user application has a chance to reset the
|
|
* flag for packets that should be dropped.
|
|
* On the RXSYNC or poll(), packets in RX rings between
|
|
* kring->nr_kcur and ring->cur with NS_FORWARD still set are moved
|
|
* to the other side.
|
|
* The transfer NIC --> host is relatively easy, just encapsulate
|
|
* into mbufs and we are done. The host --> NIC side is slightly
|
|
* harder because there might not be room in the tx ring so it
|
|
* might take a while before releasing the buffer.
|
|
*/
|
|
|
|
|
|
/*
|
|
* pass a chain of buffers to the host stack as coming from 'dst'
|
|
*/
|
|
static void
|
|
netmap_send_up(struct ifnet *dst, struct mbuf *head)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
/* send packets up, outside the lock */
|
|
while ((m = head) != NULL) {
|
|
head = head->m_nextpkt;
|
|
m->m_nextpkt = NULL;
|
|
if (netmap_verbose & NM_VERB_HOST)
|
|
D("sending up pkt %p size %d", m, MBUF_LEN(m));
|
|
NM_SEND_UP(dst, m);
|
|
}
|
|
}
|
|
|
|
struct mbq {
|
|
struct mbuf *head;
|
|
struct mbuf *tail;
|
|
int count;
|
|
};
|
|
|
|
|
|
/*
|
|
* put a copy of the buffers marked NS_FORWARD into an mbuf chain.
|
|
* Run from hwcur to cur - reserved
|
|
*/
|
|
static void
|
|
netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force)
|
|
{
|
|
/* Take packets from hwcur to cur-reserved and pass them up.
|
|
* In case of no buffers we give up. At the end of the loop,
|
|
* the queue is drained in all cases.
|
|
* XXX handle reserved
|
|
*/
|
|
int k = kring->ring->cur - kring->ring->reserved;
|
|
u_int n, lim = kring->nkr_num_slots - 1;
|
|
struct mbuf *m, *tail = q->tail;
|
|
|
|
if (k < 0)
|
|
k = k + kring->nkr_num_slots;
|
|
for (n = kring->nr_hwcur; n != k;) {
|
|
struct netmap_slot *slot = &kring->ring->slot[n];
|
|
|
|
n = (n == lim) ? 0 : n + 1;
|
|
if ((slot->flags & NS_FORWARD) == 0 && !force)
|
|
continue;
|
|
if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) {
|
|
D("bad pkt at %d len %d", n, slot->len);
|
|
continue;
|
|
}
|
|
slot->flags &= ~NS_FORWARD; // XXX needed ?
|
|
m = m_devget(NMB(slot), slot->len, 0, kring->na->ifp, NULL);
|
|
|
|
if (m == NULL)
|
|
break;
|
|
if (tail)
|
|
tail->m_nextpkt = m;
|
|
else
|
|
q->head = m;
|
|
tail = m;
|
|
q->count++;
|
|
m->m_nextpkt = NULL;
|
|
}
|
|
q->tail = tail;
|
|
}
|
|
|
|
|
|
/*
|
|
* called under main lock to send packets from the host to the NIC
|
|
* The host ring has packets from nr_hwcur to (cur - reserved)
|
|
* to be sent down. We scan the tx rings, which have just been
|
|
* flushed so nr_hwcur == cur. Pushing packets down means
|
|
* increment cur and decrement avail.
|
|
* XXX to be verified
|
|
*/
|
|
static void
|
|
netmap_sw_to_nic(struct netmap_adapter *na)
|
|
{
|
|
struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
|
|
struct netmap_kring *k1 = &na->tx_rings[0];
|
|
int i, howmany, src_lim, dst_lim;
|
|
|
|
howmany = kring->nr_hwavail; /* XXX otherwise cur - reserved - nr_hwcur */
|
|
|
|
src_lim = kring->nkr_num_slots;
|
|
for (i = 0; howmany > 0 && i < na->num_tx_rings; i++, k1++) {
|
|
ND("%d packets left to ring %d (space %d)", howmany, i, k1->nr_hwavail);
|
|
dst_lim = k1->nkr_num_slots;
|
|
while (howmany > 0 && k1->ring->avail > 0) {
|
|
struct netmap_slot *src, *dst, tmp;
|
|
src = &kring->ring->slot[kring->nr_hwcur];
|
|
dst = &k1->ring->slot[k1->ring->cur];
|
|
tmp = *src;
|
|
src->buf_idx = dst->buf_idx;
|
|
src->flags = NS_BUF_CHANGED;
|
|
|
|
dst->buf_idx = tmp.buf_idx;
|
|
dst->len = tmp.len;
|
|
dst->flags = NS_BUF_CHANGED;
|
|
ND("out len %d buf %d from %d to %d",
|
|
dst->len, dst->buf_idx,
|
|
kring->nr_hwcur, k1->ring->cur);
|
|
|
|
if (++kring->nr_hwcur >= src_lim)
|
|
kring->nr_hwcur = 0;
|
|
howmany--;
|
|
kring->nr_hwavail--;
|
|
if (++k1->ring->cur >= dst_lim)
|
|
k1->ring->cur = 0;
|
|
k1->ring->avail--;
|
|
}
|
|
kring->ring->cur = kring->nr_hwcur; // XXX
|
|
k1++;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* netmap_sync_to_host() passes packets up. We are called from a
|
|
* system call in user process context, and the only contention
|
|
* can be among multiple user threads erroneously calling
|
|
* this routine concurrently.
|
|
*/
|
|
static void
|
|
netmap_sync_to_host(struct netmap_adapter *na)
|
|
{
|
|
struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings];
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int k, lim = kring->nkr_num_slots - 1;
|
|
struct mbq q = { NULL, NULL };
|
|
|
|
k = ring->cur;
|
|
if (k > lim) {
|
|
netmap_ring_reinit(kring);
|
|
return;
|
|
}
|
|
// na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0);
|
|
|
|
/* Take packets from hwcur to cur and pass them up.
|
|
* In case of no buffers we give up. At the end of the loop,
|
|
* the queue is drained in all cases.
|
|
*/
|
|
netmap_grab_packets(kring, &q, 1);
|
|
kring->nr_hwcur = k;
|
|
kring->nr_hwavail = ring->avail = lim;
|
|
// na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0);
|
|
|
|
netmap_send_up(na->ifp, q.head);
|
|
}
|
|
|
|
|
|
/* SWNA(ifp)->txrings[0] is always NA(ifp)->txrings[NA(ifp)->num_txrings] */
|
|
static int
|
|
netmap_bdg_to_host(struct ifnet *ifp, u_int ring_nr, int do_lock)
|
|
{
|
|
(void)ring_nr;
|
|
(void)do_lock;
|
|
netmap_sync_to_host(NA(ifp));
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* rxsync backend for packets coming from the host stack.
|
|
* They have been put in the queue by netmap_start() so we
|
|
* need to protect access to the kring using a lock.
|
|
*
|
|
* This routine also does the selrecord if called from the poll handler
|
|
* (we know because td != NULL).
|
|
*
|
|
* NOTE: on linux, selrecord() is defined as a macro and uses pwait
|
|
* as an additional hidden argument.
|
|
*/
|
|
static void
|
|
netmap_sync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait)
|
|
{
|
|
struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int j, n, lim = kring->nkr_num_slots;
|
|
u_int k = ring->cur, resvd = ring->reserved;
|
|
|
|
(void)pwait; /* disable unused warnings */
|
|
na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0);
|
|
if (k >= lim) {
|
|
netmap_ring_reinit(kring);
|
|
return;
|
|
}
|
|
/* new packets are already set in nr_hwavail */
|
|
/* skip past packets that userspace has released */
|
|
j = kring->nr_hwcur;
|
|
if (resvd > 0) {
|
|
if (resvd + ring->avail >= lim + 1) {
|
|
D("XXX invalid reserve/avail %d %d", resvd, ring->avail);
|
|
ring->reserved = resvd = 0; // XXX panic...
|
|
}
|
|
k = (k >= resvd) ? k - resvd : k + lim - resvd;
|
|
}
|
|
if (j != k) {
|
|
n = k >= j ? k - j : k + lim - j;
|
|
kring->nr_hwavail -= n;
|
|
kring->nr_hwcur = k;
|
|
}
|
|
k = ring->avail = kring->nr_hwavail - resvd;
|
|
if (k == 0 && td)
|
|
selrecord(td, &kring->si);
|
|
if (k && (netmap_verbose & NM_VERB_HOST))
|
|
D("%d pkts from stack", k);
|
|
na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* get a refcounted reference to an interface.
|
|
* Return ENXIO if the interface does not exist, EINVAL if netmap
|
|
* is not supported by the interface.
|
|
* If successful, hold a reference.
|
|
*
|
|
* During the NIC is attached to a bridge, reference is managed
|
|
* at na->na_bdg_refcount using ADD/DROP_BDG_REF() as well as
|
|
* virtual ports. Hence, on the final DROP_BDG_REF(), the NIC
|
|
* is detached from the bridge, then ifp's refcount is dropped (this
|
|
* is equivalent to that ifp is destroyed in case of virtual ports.
|
|
*
|
|
* This function uses if_rele() when we want to prevent the NIC from
|
|
* being detached from the bridge in error handling. But once refcount
|
|
* is acquired by this function, it must be released using nm_if_rele().
|
|
*/
|
|
static int
|
|
get_ifp(struct nmreq *nmr, struct ifnet **ifp)
|
|
{
|
|
const char *name = nmr->nr_name;
|
|
int namelen = strlen(name);
|
|
#ifdef NM_BRIDGE
|
|
struct ifnet *iter = NULL;
|
|
int no_prefix = 0;
|
|
|
|
do {
|
|
struct nm_bridge *b;
|
|
struct netmap_adapter *na;
|
|
int i, cand = -1, cand2 = -1;
|
|
|
|
if (strncmp(name, NM_NAME, sizeof(NM_NAME) - 1)) {
|
|
no_prefix = 1;
|
|
break;
|
|
}
|
|
b = nm_find_bridge(name, 1 /* create a new one if no exist */ );
|
|
if (b == NULL) {
|
|
D("no bridges available for '%s'", name);
|
|
return (ENXIO);
|
|
}
|
|
/* Now we are sure that name starts with the bridge's name */
|
|
BDG_WLOCK(b);
|
|
/* lookup in the local list of ports */
|
|
for (i = 0; i < NM_BDG_MAXPORTS; i++) {
|
|
na = BDG_GET_VAR(b->bdg_ports[i]);
|
|
if (na == NULL) {
|
|
if (cand == -1)
|
|
cand = i; /* potential insert point */
|
|
else if (cand2 == -1)
|
|
cand2 = i; /* for host stack */
|
|
continue;
|
|
}
|
|
iter = na->ifp;
|
|
/* XXX make sure the name only contains one : */
|
|
if (!strcmp(iter->if_xname, name) /* virtual port */ ||
|
|
(namelen > b->namelen && !strcmp(iter->if_xname,
|
|
name + b->namelen + 1)) /* NIC */) {
|
|
ADD_BDG_REF(iter);
|
|
ND("found existing interface");
|
|
BDG_WUNLOCK(b);
|
|
break;
|
|
}
|
|
}
|
|
if (i < NM_BDG_MAXPORTS) /* already unlocked */
|
|
break;
|
|
if (cand == -1) {
|
|
D("bridge full, cannot create new port");
|
|
no_port:
|
|
BDG_WUNLOCK(b);
|
|
*ifp = NULL;
|
|
return EINVAL;
|
|
}
|
|
ND("create new bridge port %s", name);
|
|
/*
|
|
* create a struct ifnet for the new port.
|
|
* The forwarding table is attached to the kring(s).
|
|
*/
|
|
/*
|
|
* try see if there is a matching NIC with this name
|
|
* (after the bridge's name)
|
|
*/
|
|
iter = ifunit_ref(name + b->namelen + 1);
|
|
if (!iter) { /* this is a virtual port */
|
|
/* Create a temporary NA with arguments, then
|
|
* bdg_netmap_attach() will allocate the real one
|
|
* and attach it to the ifp
|
|
*/
|
|
struct netmap_adapter tmp_na;
|
|
|
|
if (nmr->nr_cmd) /* nr_cmd must be for a NIC */
|
|
goto no_port;
|
|
bzero(&tmp_na, sizeof(tmp_na));
|
|
/* bound checking */
|
|
if (nmr->nr_tx_rings < 1)
|
|
nmr->nr_tx_rings = 1;
|
|
if (nmr->nr_tx_rings > NM_BDG_MAXRINGS)
|
|
nmr->nr_tx_rings = NM_BDG_MAXRINGS;
|
|
tmp_na.num_tx_rings = nmr->nr_tx_rings;
|
|
if (nmr->nr_rx_rings < 1)
|
|
nmr->nr_rx_rings = 1;
|
|
if (nmr->nr_rx_rings > NM_BDG_MAXRINGS)
|
|
nmr->nr_rx_rings = NM_BDG_MAXRINGS;
|
|
tmp_na.num_rx_rings = nmr->nr_rx_rings;
|
|
|
|
iter = malloc(sizeof(*iter), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (!iter)
|
|
goto no_port;
|
|
strcpy(iter->if_xname, name);
|
|
tmp_na.ifp = iter;
|
|
/* bdg_netmap_attach creates a struct netmap_adapter */
|
|
bdg_netmap_attach(&tmp_na);
|
|
} else if (NETMAP_CAPABLE(iter)) { /* this is a NIC */
|
|
/* cannot attach the NIC that any user or another
|
|
* bridge already holds.
|
|
*/
|
|
if (NETMAP_OWNED_BY_ANY(iter) || cand2 == -1) {
|
|
ifunit_rele:
|
|
if_rele(iter); /* don't detach from bridge */
|
|
goto no_port;
|
|
}
|
|
/* bind the host stack to the bridge */
|
|
if (nmr->nr_arg1 == NETMAP_BDG_HOST) {
|
|
BDG_SET_VAR(b->bdg_ports[cand2], SWNA(iter));
|
|
SWNA(iter)->bdg_port = cand2;
|
|
SWNA(iter)->na_bdg = b;
|
|
}
|
|
} else /* not a netmap-capable NIC */
|
|
goto ifunit_rele;
|
|
na = NA(iter);
|
|
na->bdg_port = cand;
|
|
/* bind the port to the bridge (virtual ports are not active) */
|
|
BDG_SET_VAR(b->bdg_ports[cand], na);
|
|
na->na_bdg = b;
|
|
ADD_BDG_REF(iter);
|
|
BDG_WUNLOCK(b);
|
|
ND("attaching virtual bridge %p", b);
|
|
} while (0);
|
|
*ifp = iter;
|
|
if (! *ifp)
|
|
#endif /* NM_BRIDGE */
|
|
*ifp = ifunit_ref(name);
|
|
if (*ifp == NULL)
|
|
return (ENXIO);
|
|
/* can do this if the capability exists and if_pspare[0]
|
|
* points to the netmap descriptor.
|
|
*/
|
|
if (NETMAP_CAPABLE(*ifp)) {
|
|
#ifdef NM_BRIDGE
|
|
/* Users cannot use the NIC attached to a bridge directly */
|
|
if (no_prefix && NETMAP_OWNED_BY_KERN(*ifp)) {
|
|
if_rele(*ifp); /* don't detach from bridge */
|
|
return EINVAL;
|
|
} else
|
|
#endif /* NM_BRIDGE */
|
|
return 0; /* valid pointer, we hold the refcount */
|
|
}
|
|
nm_if_rele(*ifp);
|
|
return EINVAL; // not NETMAP capable
|
|
}
|
|
|
|
|
|
/*
|
|
* Error routine called when txsync/rxsync detects an error.
|
|
* Can't do much more than resetting cur = hwcur, avail = hwavail.
|
|
* Return 1 on reinit.
|
|
*
|
|
* This routine is only called by the upper half of the kernel.
|
|
* It only reads hwcur (which is changed only by the upper half, too)
|
|
* and hwavail (which may be changed by the lower half, but only on
|
|
* a tx ring and only to increase it, so any error will be recovered
|
|
* on the next call). For the above, we don't strictly need to call
|
|
* it under lock.
|
|
*/
|
|
int
|
|
netmap_ring_reinit(struct netmap_kring *kring)
|
|
{
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int i, lim = kring->nkr_num_slots - 1;
|
|
int errors = 0;
|
|
|
|
RD(10, "called for %s", kring->na->ifp->if_xname);
|
|
if (ring->cur > lim)
|
|
errors++;
|
|
for (i = 0; i <= lim; i++) {
|
|
u_int idx = ring->slot[i].buf_idx;
|
|
u_int len = ring->slot[i].len;
|
|
if (idx < 2 || idx >= netmap_total_buffers) {
|
|
if (!errors++)
|
|
D("bad buffer at slot %d idx %d len %d ", i, idx, len);
|
|
ring->slot[i].buf_idx = 0;
|
|
ring->slot[i].len = 0;
|
|
} else if (len > NETMAP_BUF_SIZE) {
|
|
ring->slot[i].len = 0;
|
|
if (!errors++)
|
|
D("bad len %d at slot %d idx %d",
|
|
len, i, idx);
|
|
}
|
|
}
|
|
if (errors) {
|
|
int pos = kring - kring->na->tx_rings;
|
|
int n = kring->na->num_tx_rings + 1;
|
|
|
|
RD(10, "total %d errors", errors);
|
|
errors++;
|
|
RD(10, "%s %s[%d] reinit, cur %d -> %d avail %d -> %d",
|
|
kring->na->ifp->if_xname,
|
|
pos < n ? "TX" : "RX", pos < n ? pos : pos - n,
|
|
ring->cur, kring->nr_hwcur,
|
|
ring->avail, kring->nr_hwavail);
|
|
ring->cur = kring->nr_hwcur;
|
|
ring->avail = kring->nr_hwavail;
|
|
}
|
|
return (errors ? 1 : 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Set the ring ID. For devices with a single queue, a request
|
|
* for all rings is the same as a single ring.
|
|
*/
|
|
static int
|
|
netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid)
|
|
{
|
|
struct ifnet *ifp = priv->np_ifp;
|
|
struct netmap_adapter *na = NA(ifp);
|
|
u_int i = ringid & NETMAP_RING_MASK;
|
|
/* initially (np_qfirst == np_qlast) we don't want to lock */
|
|
int need_lock = (priv->np_qfirst != priv->np_qlast);
|
|
int lim = na->num_rx_rings;
|
|
|
|
if (na->num_tx_rings > lim)
|
|
lim = na->num_tx_rings;
|
|
if ( (ringid & NETMAP_HW_RING) && i >= lim) {
|
|
D("invalid ring id %d", i);
|
|
return (EINVAL);
|
|
}
|
|
if (need_lock)
|
|
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
|
|
priv->np_ringid = ringid;
|
|
if (ringid & NETMAP_SW_RING) {
|
|
priv->np_qfirst = NETMAP_SW_RING;
|
|
priv->np_qlast = 0;
|
|
} else if (ringid & NETMAP_HW_RING) {
|
|
priv->np_qfirst = i;
|
|
priv->np_qlast = i + 1;
|
|
} else {
|
|
priv->np_qfirst = 0;
|
|
priv->np_qlast = NETMAP_HW_RING ;
|
|
}
|
|
priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1;
|
|
if (need_lock)
|
|
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
|
|
if (netmap_verbose) {
|
|
if (ringid & NETMAP_SW_RING)
|
|
D("ringid %s set to SW RING", ifp->if_xname);
|
|
else if (ringid & NETMAP_HW_RING)
|
|
D("ringid %s set to HW RING %d", ifp->if_xname,
|
|
priv->np_qfirst);
|
|
else
|
|
D("ringid %s set to all %d HW RINGS", ifp->if_xname, lim);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* possibly move the interface to netmap-mode.
|
|
* If success it returns a pointer to netmap_if, otherwise NULL.
|
|
* This must be called with NMA_LOCK held.
|
|
*/
|
|
static struct netmap_if *
|
|
netmap_do_regif(struct netmap_priv_d *priv, struct ifnet *ifp,
|
|
uint16_t ringid, int *err)
|
|
{
|
|
struct netmap_adapter *na = NA(ifp);
|
|
struct netmap_if *nifp = NULL;
|
|
int i, error;
|
|
|
|
if (na->na_bdg)
|
|
BDG_WLOCK(na->na_bdg);
|
|
na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
|
|
|
|
/* ring configuration may have changed, fetch from the card */
|
|
netmap_update_config(na);
|
|
priv->np_ifp = ifp; /* store the reference */
|
|
error = netmap_set_ringid(priv, ringid);
|
|
if (error)
|
|
goto out;
|
|
nifp = netmap_if_new(ifp->if_xname, na);
|
|
if (nifp == NULL) { /* allocation failed */
|
|
error = ENOMEM;
|
|
} else if (ifp->if_capenable & IFCAP_NETMAP) {
|
|
/* was already set */
|
|
} else {
|
|
/* Otherwise set the card in netmap mode
|
|
* and make it use the shared buffers.
|
|
*/
|
|
for (i = 0 ; i < na->num_tx_rings + 1; i++)
|
|
mtx_init(&na->tx_rings[i].q_lock, "nm_txq_lock",
|
|
MTX_NETWORK_LOCK, MTX_DEF);
|
|
for (i = 0 ; i < na->num_rx_rings + 1; i++) {
|
|
mtx_init(&na->rx_rings[i].q_lock, "nm_rxq_lock",
|
|
MTX_NETWORK_LOCK, MTX_DEF);
|
|
}
|
|
if (nma_is_hw(na)) {
|
|
SWNA(ifp)->tx_rings = &na->tx_rings[na->num_tx_rings];
|
|
SWNA(ifp)->rx_rings = &na->rx_rings[na->num_rx_rings];
|
|
}
|
|
error = na->nm_register(ifp, 1); /* mode on */
|
|
#ifdef NM_BRIDGE
|
|
if (!error)
|
|
error = nm_alloc_bdgfwd(na);
|
|
#endif /* NM_BRIDGE */
|
|
if (error) {
|
|
netmap_dtor_locked(priv);
|
|
/* nifp is not yet in priv, so free it separately */
|
|
netmap_if_free(nifp);
|
|
nifp = NULL;
|
|
}
|
|
|
|
}
|
|
out:
|
|
*err = error;
|
|
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
|
|
if (na->na_bdg)
|
|
BDG_WUNLOCK(na->na_bdg);
|
|
return nifp;
|
|
}
|
|
|
|
|
|
/* Process NETMAP_BDG_ATTACH and NETMAP_BDG_DETACH */
|
|
static int
|
|
kern_netmap_regif(struct nmreq *nmr)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct netmap_if *nifp;
|
|
struct netmap_priv_d *npriv;
|
|
int error;
|
|
|
|
npriv = malloc(sizeof(*npriv), M_DEVBUF, M_NOWAIT|M_ZERO);
|
|
if (npriv == NULL)
|
|
return ENOMEM;
|
|
error = netmap_get_memory(npriv);
|
|
if (error) {
|
|
free_exit:
|
|
bzero(npriv, sizeof(*npriv));
|
|
free(npriv, M_DEVBUF);
|
|
return error;
|
|
}
|
|
|
|
NMA_LOCK();
|
|
error = get_ifp(nmr, &ifp);
|
|
if (error) { /* no device, or another bridge or user owns the device */
|
|
NMA_UNLOCK();
|
|
goto free_exit;
|
|
} else if (!NETMAP_OWNED_BY_KERN(ifp)) {
|
|
/* got reference to a virtual port or direct access to a NIC.
|
|
* perhaps specified no bridge's prefix or wrong NIC's name
|
|
*/
|
|
error = EINVAL;
|
|
unref_exit:
|
|
nm_if_rele(ifp);
|
|
NMA_UNLOCK();
|
|
goto free_exit;
|
|
}
|
|
|
|
if (nmr->nr_cmd == NETMAP_BDG_DETACH) {
|
|
if (NA(ifp)->refcount == 0) { /* not registered */
|
|
error = EINVAL;
|
|
goto unref_exit;
|
|
}
|
|
NMA_UNLOCK();
|
|
|
|
netmap_dtor(NA(ifp)->na_kpriv); /* unregister */
|
|
NA(ifp)->na_kpriv = NULL;
|
|
nm_if_rele(ifp); /* detach from the bridge */
|
|
goto free_exit;
|
|
} else if (NA(ifp)->refcount > 0) { /* already registered */
|
|
error = EINVAL;
|
|
goto unref_exit;
|
|
}
|
|
|
|
nifp = netmap_do_regif(npriv, ifp, nmr->nr_ringid, &error);
|
|
if (!nifp)
|
|
goto unref_exit;
|
|
wmb(); // XXX do we need it ?
|
|
npriv->np_nifp = nifp;
|
|
NA(ifp)->na_kpriv = npriv;
|
|
NMA_UNLOCK();
|
|
D("registered %s to netmap-mode", ifp->if_xname);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* CORE_LOCK is not necessary */
|
|
static void
|
|
netmap_swlock_wrapper(struct ifnet *dev, int what, u_int queueid)
|
|
{
|
|
struct netmap_adapter *na = SWNA(dev);
|
|
|
|
switch (what) {
|
|
case NETMAP_TX_LOCK:
|
|
mtx_lock(&na->tx_rings[queueid].q_lock);
|
|
break;
|
|
|
|
case NETMAP_TX_UNLOCK:
|
|
mtx_unlock(&na->tx_rings[queueid].q_lock);
|
|
break;
|
|
|
|
case NETMAP_RX_LOCK:
|
|
mtx_lock(&na->rx_rings[queueid].q_lock);
|
|
break;
|
|
|
|
case NETMAP_RX_UNLOCK:
|
|
mtx_unlock(&na->rx_rings[queueid].q_lock);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/* Initialize necessary fields of sw adapter located in right after hw's
|
|
* one. sw adapter attaches a pair of sw rings of the netmap-mode NIC.
|
|
* It is always activated and deactivated at the same tie with the hw's one.
|
|
* Thus we don't need refcounting on the sw adapter.
|
|
* Regardless of NIC's feature we use separate lock so that anybody can lock
|
|
* me independently from the hw adapter.
|
|
* Make sure nm_register is NULL to be handled as FALSE in nma_is_hw
|
|
*/
|
|
static void
|
|
netmap_attach_sw(struct ifnet *ifp)
|
|
{
|
|
struct netmap_adapter *hw_na = NA(ifp);
|
|
struct netmap_adapter *na = SWNA(ifp);
|
|
|
|
na->ifp = ifp;
|
|
na->separate_locks = 1;
|
|
na->nm_lock = netmap_swlock_wrapper;
|
|
na->num_rx_rings = na->num_tx_rings = 1;
|
|
na->num_tx_desc = hw_na->num_tx_desc;
|
|
na->num_rx_desc = hw_na->num_rx_desc;
|
|
na->nm_txsync = netmap_bdg_to_host;
|
|
}
|
|
|
|
|
|
/* exported to kernel callers */
|
|
int
|
|
netmap_bdg_ctl(struct nmreq *nmr, bdg_lookup_fn_t func)
|
|
{
|
|
struct nm_bridge *b;
|
|
struct netmap_adapter *na;
|
|
struct ifnet *iter;
|
|
char *name = nmr->nr_name;
|
|
int cmd = nmr->nr_cmd, namelen = strlen(name);
|
|
int error = 0, i, j;
|
|
|
|
switch (cmd) {
|
|
case NETMAP_BDG_ATTACH:
|
|
case NETMAP_BDG_DETACH:
|
|
error = kern_netmap_regif(nmr);
|
|
break;
|
|
|
|
case NETMAP_BDG_LIST:
|
|
/* this is used to enumerate bridges and ports */
|
|
if (namelen) { /* look up indexes of bridge and port */
|
|
if (strncmp(name, NM_NAME, strlen(NM_NAME))) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
b = nm_find_bridge(name, 0 /* don't create */);
|
|
if (!b) {
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
|
|
BDG_RLOCK(b);
|
|
error = ENOENT;
|
|
for (i = 0; i < NM_BDG_MAXPORTS; i++) {
|
|
na = BDG_GET_VAR(b->bdg_ports[i]);
|
|
if (na == NULL)
|
|
continue;
|
|
iter = na->ifp;
|
|
/* the former and the latter identify a
|
|
* virtual port and a NIC, respectively
|
|
*/
|
|
if (!strcmp(iter->if_xname, name) ||
|
|
(namelen > b->namelen &&
|
|
!strcmp(iter->if_xname,
|
|
name + b->namelen + 1))) {
|
|
/* bridge index */
|
|
nmr->nr_arg1 = b - nm_bridges;
|
|
nmr->nr_arg2 = i; /* port index */
|
|
error = 0;
|
|
break;
|
|
}
|
|
}
|
|
BDG_RUNLOCK(b);
|
|
} else {
|
|
/* return the first non-empty entry starting from
|
|
* bridge nr_arg1 and port nr_arg2.
|
|
*
|
|
* Users can detect the end of the same bridge by
|
|
* seeing the new and old value of nr_arg1, and can
|
|
* detect the end of all the bridge by error != 0
|
|
*/
|
|
i = nmr->nr_arg1;
|
|
j = nmr->nr_arg2;
|
|
|
|
for (error = ENOENT; error && i < NM_BRIDGES; i++) {
|
|
b = nm_bridges + i;
|
|
BDG_RLOCK(b);
|
|
for (; j < NM_BDG_MAXPORTS; j++) {
|
|
na = BDG_GET_VAR(b->bdg_ports[j]);
|
|
if (na == NULL)
|
|
continue;
|
|
iter = na->ifp;
|
|
nmr->nr_arg1 = i;
|
|
nmr->nr_arg2 = j;
|
|
strncpy(name, iter->if_xname, IFNAMSIZ);
|
|
error = 0;
|
|
break;
|
|
}
|
|
BDG_RUNLOCK(b);
|
|
j = 0; /* following bridges scan from 0 */
|
|
}
|
|
}
|
|
break;
|
|
|
|
case NETMAP_BDG_LOOKUP_REG:
|
|
/* register a lookup function to the given bridge.
|
|
* nmr->nr_name may be just bridge's name (including ':'
|
|
* if it is not just NM_NAME).
|
|
*/
|
|
if (!func) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
b = nm_find_bridge(name, 0 /* don't create */);
|
|
if (!b) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
BDG_WLOCK(b);
|
|
b->nm_bdg_lookup = func;
|
|
BDG_WUNLOCK(b);
|
|
break;
|
|
default:
|
|
D("invalid cmd (nmr->nr_cmd) (0x%x)", cmd);
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
|
|
/*
|
|
* ioctl(2) support for the "netmap" device.
|
|
*
|
|
* Following a list of accepted commands:
|
|
* - NIOCGINFO
|
|
* - SIOCGIFADDR just for convenience
|
|
* - NIOCREGIF
|
|
* - NIOCUNREGIF
|
|
* - NIOCTXSYNC
|
|
* - NIOCRXSYNC
|
|
*
|
|
* Return 0 on success, errno otherwise.
|
|
*/
|
|
static int
|
|
netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data,
|
|
int fflag, struct thread *td)
|
|
{
|
|
struct netmap_priv_d *priv = NULL;
|
|
struct ifnet *ifp;
|
|
struct nmreq *nmr = (struct nmreq *) data;
|
|
struct netmap_adapter *na;
|
|
int error;
|
|
u_int i, lim;
|
|
struct netmap_if *nifp;
|
|
|
|
(void)dev; /* UNUSED */
|
|
(void)fflag; /* UNUSED */
|
|
#ifdef linux
|
|
#define devfs_get_cdevpriv(pp) \
|
|
({ *(struct netmap_priv_d **)pp = ((struct file *)td)->private_data; \
|
|
(*pp ? 0 : ENOENT); })
|
|
|
|
/* devfs_set_cdevpriv cannot fail on linux */
|
|
#define devfs_set_cdevpriv(p, fn) \
|
|
({ ((struct file *)td)->private_data = p; (p ? 0 : EINVAL); })
|
|
|
|
|
|
#define devfs_clear_cdevpriv() do { \
|
|
netmap_dtor(priv); ((struct file *)td)->private_data = 0; \
|
|
} while (0)
|
|
#endif /* linux */
|
|
|
|
CURVNET_SET(TD_TO_VNET(td));
|
|
|
|
error = devfs_get_cdevpriv((void **)&priv);
|
|
if (error) {
|
|
CURVNET_RESTORE();
|
|
/* XXX ENOENT should be impossible, since the priv
|
|
* is now created in the open */
|
|
return (error == ENOENT ? ENXIO : error);
|
|
}
|
|
|
|
nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; /* truncate name */
|
|
switch (cmd) {
|
|
case NIOCGINFO: /* return capabilities etc */
|
|
if (nmr->nr_version != NETMAP_API) {
|
|
D("API mismatch got %d have %d",
|
|
nmr->nr_version, NETMAP_API);
|
|
nmr->nr_version = NETMAP_API;
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (nmr->nr_cmd == NETMAP_BDG_LIST) {
|
|
error = netmap_bdg_ctl(nmr, NULL);
|
|
break;
|
|
}
|
|
/* update configuration */
|
|
error = netmap_get_memory(priv);
|
|
ND("get_memory returned %d", error);
|
|
if (error)
|
|
break;
|
|
/* memsize is always valid */
|
|
nmr->nr_memsize = nm_mem.nm_totalsize;
|
|
nmr->nr_offset = 0;
|
|
nmr->nr_rx_slots = nmr->nr_tx_slots = 0;
|
|
if (nmr->nr_name[0] == '\0') /* just get memory info */
|
|
break;
|
|
/* lock because get_ifp and update_config see na->refcount */
|
|
NMA_LOCK();
|
|
error = get_ifp(nmr, &ifp); /* get a refcount */
|
|
if (error) {
|
|
NMA_UNLOCK();
|
|
break;
|
|
}
|
|
na = NA(ifp); /* retrieve netmap_adapter */
|
|
netmap_update_config(na);
|
|
NMA_UNLOCK();
|
|
nmr->nr_rx_rings = na->num_rx_rings;
|
|
nmr->nr_tx_rings = na->num_tx_rings;
|
|
nmr->nr_rx_slots = na->num_rx_desc;
|
|
nmr->nr_tx_slots = na->num_tx_desc;
|
|
nm_if_rele(ifp); /* return the refcount */
|
|
break;
|
|
|
|
case NIOCREGIF:
|
|
if (nmr->nr_version != NETMAP_API) {
|
|
nmr->nr_version = NETMAP_API;
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
/* possibly attach/detach NIC and VALE switch */
|
|
i = nmr->nr_cmd;
|
|
if (i == NETMAP_BDG_ATTACH || i == NETMAP_BDG_DETACH) {
|
|
error = netmap_bdg_ctl(nmr, NULL);
|
|
break;
|
|
} else if (i != 0) {
|
|
D("nr_cmd must be 0 not %d", i);
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* ensure allocators are ready */
|
|
error = netmap_get_memory(priv);
|
|
ND("get_memory returned %d", error);
|
|
if (error)
|
|
break;
|
|
|
|
/* protect access to priv from concurrent NIOCREGIF */
|
|
NMA_LOCK();
|
|
if (priv->np_ifp != NULL) { /* thread already registered */
|
|
error = netmap_set_ringid(priv, nmr->nr_ringid);
|
|
unlock_out:
|
|
NMA_UNLOCK();
|
|
break;
|
|
}
|
|
/* find the interface and a reference */
|
|
error = get_ifp(nmr, &ifp); /* keep reference */
|
|
if (error)
|
|
goto unlock_out;
|
|
else if (NETMAP_OWNED_BY_KERN(ifp)) {
|
|
nm_if_rele(ifp);
|
|
goto unlock_out;
|
|
}
|
|
nifp = netmap_do_regif(priv, ifp, nmr->nr_ringid, &error);
|
|
if (!nifp) { /* reg. failed, release priv and ref */
|
|
nm_if_rele(ifp); /* return the refcount */
|
|
priv->np_ifp = NULL;
|
|
priv->np_nifp = NULL;
|
|
goto unlock_out;
|
|
}
|
|
|
|
/* the following assignment is a commitment.
|
|
* Readers (i.e., poll and *SYNC) check for
|
|
* np_nifp != NULL without locking
|
|
*/
|
|
wmb(); /* make sure previous writes are visible to all CPUs */
|
|
priv->np_nifp = nifp;
|
|
NMA_UNLOCK();
|
|
|
|
/* return the offset of the netmap_if object */
|
|
na = NA(ifp); /* retrieve netmap adapter */
|
|
nmr->nr_rx_rings = na->num_rx_rings;
|
|
nmr->nr_tx_rings = na->num_tx_rings;
|
|
nmr->nr_rx_slots = na->num_rx_desc;
|
|
nmr->nr_tx_slots = na->num_tx_desc;
|
|
nmr->nr_memsize = nm_mem.nm_totalsize;
|
|
nmr->nr_offset = netmap_if_offset(nifp);
|
|
break;
|
|
|
|
case NIOCUNREGIF:
|
|
// XXX we have no data here ?
|
|
D("deprecated, data is %p", nmr);
|
|
error = EINVAL;
|
|
break;
|
|
|
|
case NIOCTXSYNC:
|
|
case NIOCRXSYNC:
|
|
nifp = priv->np_nifp;
|
|
|
|
if (nifp == NULL) {
|
|
error = ENXIO;
|
|
break;
|
|
}
|
|
rmb(); /* make sure following reads are not from cache */
|
|
|
|
|
|
ifp = priv->np_ifp; /* we have a reference */
|
|
|
|
if (ifp == NULL) {
|
|
D("Internal error: nifp != NULL && ifp == NULL");
|
|
error = ENXIO;
|
|
break;
|
|
}
|
|
|
|
na = NA(ifp); /* retrieve netmap adapter */
|
|
if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */
|
|
if (cmd == NIOCTXSYNC)
|
|
netmap_sync_to_host(na);
|
|
else
|
|
netmap_sync_from_host(na, NULL, NULL);
|
|
break;
|
|
}
|
|
/* find the last ring to scan */
|
|
lim = priv->np_qlast;
|
|
if (lim == NETMAP_HW_RING)
|
|
lim = (cmd == NIOCTXSYNC) ?
|
|
na->num_tx_rings : na->num_rx_rings;
|
|
|
|
for (i = priv->np_qfirst; i < lim; i++) {
|
|
if (cmd == NIOCTXSYNC) {
|
|
struct netmap_kring *kring = &na->tx_rings[i];
|
|
if (netmap_verbose & NM_VERB_TXSYNC)
|
|
D("pre txsync ring %d cur %d hwcur %d",
|
|
i, kring->ring->cur,
|
|
kring->nr_hwcur);
|
|
na->nm_txsync(ifp, i, 1 /* do lock */);
|
|
if (netmap_verbose & NM_VERB_TXSYNC)
|
|
D("post txsync ring %d cur %d hwcur %d",
|
|
i, kring->ring->cur,
|
|
kring->nr_hwcur);
|
|
} else {
|
|
na->nm_rxsync(ifp, i, 1 /* do lock */);
|
|
microtime(&na->rx_rings[i].ring->ts);
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
#ifdef __FreeBSD__
|
|
case BIOCIMMEDIATE:
|
|
case BIOCGHDRCMPLT:
|
|
case BIOCSHDRCMPLT:
|
|
case BIOCSSEESENT:
|
|
D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT");
|
|
break;
|
|
|
|
default: /* allow device-specific ioctls */
|
|
{
|
|
struct socket so;
|
|
bzero(&so, sizeof(so));
|
|
error = get_ifp(nmr, &ifp); /* keep reference */
|
|
if (error)
|
|
break;
|
|
so.so_vnet = ifp->if_vnet;
|
|
// so->so_proto not null.
|
|
error = ifioctl(&so, cmd, data, td);
|
|
nm_if_rele(ifp);
|
|
break;
|
|
}
|
|
|
|
#else /* linux */
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
#endif /* linux */
|
|
}
|
|
|
|
CURVNET_RESTORE();
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*
|
|
* select(2) and poll(2) handlers for the "netmap" device.
|
|
*
|
|
* Can be called for one or more queues.
|
|
* Return true the event mask corresponding to ready events.
|
|
* If there are no ready events, do a selrecord on either individual
|
|
* selfd or on the global one.
|
|
* Device-dependent parts (locking and sync of tx/rx rings)
|
|
* are done through callbacks.
|
|
*
|
|
* On linux, arguments are really pwait, the poll table, and 'td' is struct file *
|
|
* The first one is remapped to pwait as selrecord() uses the name as an
|
|
* hidden argument.
|
|
*/
|
|
static int
|
|
netmap_poll(struct cdev *dev, int events, struct thread *td)
|
|
{
|
|
struct netmap_priv_d *priv = NULL;
|
|
struct netmap_adapter *na;
|
|
struct ifnet *ifp;
|
|
struct netmap_kring *kring;
|
|
u_int core_lock, i, check_all, want_tx, want_rx, revents = 0;
|
|
u_int lim_tx, lim_rx, host_forwarded = 0;
|
|
struct mbq q = { NULL, NULL, 0 };
|
|
enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */
|
|
void *pwait = dev; /* linux compatibility */
|
|
|
|
(void)pwait;
|
|
|
|
if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL)
|
|
return POLLERR;
|
|
|
|
if (priv->np_nifp == NULL) {
|
|
D("No if registered");
|
|
return POLLERR;
|
|
}
|
|
rmb(); /* make sure following reads are not from cache */
|
|
|
|
ifp = priv->np_ifp;
|
|
// XXX check for deleting() ?
|
|
if ( (ifp->if_capenable & IFCAP_NETMAP) == 0)
|
|
return POLLERR;
|
|
|
|
if (netmap_verbose & 0x8000)
|
|
D("device %s events 0x%x", ifp->if_xname, events);
|
|
want_tx = events & (POLLOUT | POLLWRNORM);
|
|
want_rx = events & (POLLIN | POLLRDNORM);
|
|
|
|
na = NA(ifp); /* retrieve netmap adapter */
|
|
|
|
lim_tx = na->num_tx_rings;
|
|
lim_rx = na->num_rx_rings;
|
|
/* how many queues we are scanning */
|
|
if (priv->np_qfirst == NETMAP_SW_RING) {
|
|
if (priv->np_txpoll || want_tx) {
|
|
/* push any packets up, then we are always ready */
|
|
netmap_sync_to_host(na);
|
|
revents |= want_tx;
|
|
}
|
|
if (want_rx) {
|
|
kring = &na->rx_rings[lim_rx];
|
|
if (kring->ring->avail == 0)
|
|
netmap_sync_from_host(na, td, dev);
|
|
if (kring->ring->avail > 0) {
|
|
revents |= want_rx;
|
|
}
|
|
}
|
|
return (revents);
|
|
}
|
|
|
|
/* if we are in transparent mode, check also the host rx ring */
|
|
kring = &na->rx_rings[lim_rx];
|
|
if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all
|
|
&& want_rx
|
|
&& (netmap_fwd || kring->ring->flags & NR_FORWARD) ) {
|
|
if (kring->ring->avail == 0)
|
|
netmap_sync_from_host(na, td, dev);
|
|
if (kring->ring->avail > 0)
|
|
revents |= want_rx;
|
|
}
|
|
|
|
/*
|
|
* check_all is set if the card has more than one queue and
|
|
* the client is polling all of them. If true, we sleep on
|
|
* the "global" selfd, otherwise we sleep on individual selfd
|
|
* (we can only sleep on one of them per direction).
|
|
* The interrupt routine in the driver should always wake on
|
|
* the individual selfd, and also on the global one if the card
|
|
* has more than one ring.
|
|
*
|
|
* If the card has only one lock, we just use that.
|
|
* If the card has separate ring locks, we just use those
|
|
* unless we are doing check_all, in which case the whole
|
|
* loop is wrapped by the global lock.
|
|
* We acquire locks only when necessary: if poll is called
|
|
* when buffers are available, we can just return without locks.
|
|
*
|
|
* rxsync() is only called if we run out of buffers on a POLLIN.
|
|
* txsync() is called if we run out of buffers on POLLOUT, or
|
|
* there are pending packets to send. The latter can be disabled
|
|
* passing NETMAP_NO_TX_POLL in the NIOCREG call.
|
|
*/
|
|
check_all = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1 || lim_rx > 1);
|
|
|
|
/*
|
|
* core_lock indicates what to do with the core lock.
|
|
* The core lock is used when either the card has no individual
|
|
* locks, or it has individual locks but we are cheking all
|
|
* rings so we need the core lock to avoid missing wakeup events.
|
|
*
|
|
* It has three possible states:
|
|
* NO_CL we don't need to use the core lock, e.g.
|
|
* because we are protected by individual locks.
|
|
* NEED_CL we need the core lock. In this case, when we
|
|
* call the lock routine, move to LOCKED_CL
|
|
* to remember to release the lock once done.
|
|
* LOCKED_CL core lock is set, so we need to release it.
|
|
*/
|
|
core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL;
|
|
#ifdef NM_BRIDGE
|
|
/* the bridge uses separate locks */
|
|
if (na->nm_register == bdg_netmap_reg) {
|
|
ND("not using core lock for %s", ifp->if_xname);
|
|
core_lock = NO_CL;
|
|
}
|
|
#endif /* NM_BRIDGE */
|
|
if (priv->np_qlast != NETMAP_HW_RING) {
|
|
lim_tx = lim_rx = priv->np_qlast;
|
|
}
|
|
|
|
/*
|
|
* We start with a lock free round which is good if we have
|
|
* data available. If this fails, then lock and call the sync
|
|
* routines.
|
|
*/
|
|
for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) {
|
|
kring = &na->rx_rings[i];
|
|
if (kring->ring->avail > 0) {
|
|
revents |= want_rx;
|
|
want_rx = 0; /* also breaks the loop */
|
|
}
|
|
}
|
|
for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) {
|
|
kring = &na->tx_rings[i];
|
|
if (kring->ring->avail > 0) {
|
|
revents |= want_tx;
|
|
want_tx = 0; /* also breaks the loop */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we to push packets out (priv->np_txpoll) or want_tx is
|
|
* still set, we do need to run the txsync calls (on all rings,
|
|
* to avoid that the tx rings stall).
|
|
*/
|
|
if (priv->np_txpoll || want_tx) {
|
|
flush_tx:
|
|
for (i = priv->np_qfirst; i < lim_tx; i++) {
|
|
kring = &na->tx_rings[i];
|
|
/*
|
|
* Skip the current ring if want_tx == 0
|
|
* (we have already done a successful sync on
|
|
* a previous ring) AND kring->cur == kring->hwcur
|
|
* (there are no pending transmissions for this ring).
|
|
*/
|
|
if (!want_tx && kring->ring->cur == kring->nr_hwcur)
|
|
continue;
|
|
if (core_lock == NEED_CL) {
|
|
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
|
|
core_lock = LOCKED_CL;
|
|
}
|
|
if (na->separate_locks)
|
|
na->nm_lock(ifp, NETMAP_TX_LOCK, i);
|
|
if (netmap_verbose & NM_VERB_TXSYNC)
|
|
D("send %d on %s %d",
|
|
kring->ring->cur,
|
|
ifp->if_xname, i);
|
|
if (na->nm_txsync(ifp, i, 0 /* no lock */))
|
|
revents |= POLLERR;
|
|
|
|
/* Check avail/call selrecord only if called with POLLOUT */
|
|
if (want_tx) {
|
|
if (kring->ring->avail > 0) {
|
|
/* stop at the first ring. We don't risk
|
|
* starvation.
|
|
*/
|
|
revents |= want_tx;
|
|
want_tx = 0;
|
|
} else if (!check_all)
|
|
selrecord(td, &kring->si);
|
|
}
|
|
if (na->separate_locks)
|
|
na->nm_lock(ifp, NETMAP_TX_UNLOCK, i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* now if want_rx is still set we need to lock and rxsync.
|
|
* Do it on all rings because otherwise we starve.
|
|
*/
|
|
if (want_rx) {
|
|
for (i = priv->np_qfirst; i < lim_rx; i++) {
|
|
kring = &na->rx_rings[i];
|
|
if (core_lock == NEED_CL) {
|
|
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
|
|
core_lock = LOCKED_CL;
|
|
}
|
|
if (na->separate_locks)
|
|
na->nm_lock(ifp, NETMAP_RX_LOCK, i);
|
|
if (netmap_fwd ||kring->ring->flags & NR_FORWARD) {
|
|
ND(10, "forwarding some buffers up %d to %d",
|
|
kring->nr_hwcur, kring->ring->cur);
|
|
netmap_grab_packets(kring, &q, netmap_fwd);
|
|
}
|
|
|
|
if (na->nm_rxsync(ifp, i, 0 /* no lock */))
|
|
revents |= POLLERR;
|
|
if (netmap_no_timestamp == 0 ||
|
|
kring->ring->flags & NR_TIMESTAMP) {
|
|
microtime(&kring->ring->ts);
|
|
}
|
|
|
|
if (kring->ring->avail > 0)
|
|
revents |= want_rx;
|
|
else if (!check_all)
|
|
selrecord(td, &kring->si);
|
|
if (na->separate_locks)
|
|
na->nm_lock(ifp, NETMAP_RX_UNLOCK, i);
|
|
}
|
|
}
|
|
if (check_all && revents == 0) { /* signal on the global queue */
|
|
if (want_tx)
|
|
selrecord(td, &na->tx_si);
|
|
if (want_rx)
|
|
selrecord(td, &na->rx_si);
|
|
}
|
|
|
|
/* forward host to the netmap ring */
|
|
kring = &na->rx_rings[lim_rx];
|
|
if (kring->nr_hwavail > 0)
|
|
ND("host rx %d has %d packets", lim_rx, kring->nr_hwavail);
|
|
if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all
|
|
&& (netmap_fwd || kring->ring->flags & NR_FORWARD)
|
|
&& kring->nr_hwavail > 0 && !host_forwarded) {
|
|
if (core_lock == NEED_CL) {
|
|
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
|
|
core_lock = LOCKED_CL;
|
|
}
|
|
netmap_sw_to_nic(na);
|
|
host_forwarded = 1; /* prevent another pass */
|
|
want_rx = 0;
|
|
goto flush_tx;
|
|
}
|
|
|
|
if (core_lock == LOCKED_CL)
|
|
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
|
|
if (q.head)
|
|
netmap_send_up(na->ifp, q.head);
|
|
|
|
return (revents);
|
|
}
|
|
|
|
/*------- driver support routines ------*/
|
|
|
|
|
|
/*
|
|
* default lock wrapper.
|
|
*/
|
|
static void
|
|
netmap_lock_wrapper(struct ifnet *dev, int what, u_int queueid)
|
|
{
|
|
struct netmap_adapter *na = NA(dev);
|
|
|
|
switch (what) {
|
|
#ifdef linux /* some system do not need lock on register */
|
|
case NETMAP_REG_LOCK:
|
|
case NETMAP_REG_UNLOCK:
|
|
break;
|
|
#endif /* linux */
|
|
|
|
case NETMAP_CORE_LOCK:
|
|
mtx_lock(&na->core_lock);
|
|
break;
|
|
|
|
case NETMAP_CORE_UNLOCK:
|
|
mtx_unlock(&na->core_lock);
|
|
break;
|
|
|
|
case NETMAP_TX_LOCK:
|
|
mtx_lock(&na->tx_rings[queueid].q_lock);
|
|
break;
|
|
|
|
case NETMAP_TX_UNLOCK:
|
|
mtx_unlock(&na->tx_rings[queueid].q_lock);
|
|
break;
|
|
|
|
case NETMAP_RX_LOCK:
|
|
mtx_lock(&na->rx_rings[queueid].q_lock);
|
|
break;
|
|
|
|
case NETMAP_RX_UNLOCK:
|
|
mtx_unlock(&na->rx_rings[queueid].q_lock);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize a ``netmap_adapter`` object created by driver on attach.
|
|
* We allocate a block of memory with room for a struct netmap_adapter
|
|
* plus two sets of N+2 struct netmap_kring (where N is the number
|
|
* of hardware rings):
|
|
* krings 0..N-1 are for the hardware queues.
|
|
* kring N is for the host stack queue
|
|
* kring N+1 is only used for the selinfo for all queues.
|
|
* Return 0 on success, ENOMEM otherwise.
|
|
*
|
|
* By default the receive and transmit adapter ring counts are both initialized
|
|
* to num_queues. na->num_tx_rings can be set for cards with different tx/rx
|
|
* setups.
|
|
*/
|
|
int
|
|
netmap_attach(struct netmap_adapter *arg, int num_queues)
|
|
{
|
|
struct netmap_adapter *na = NULL;
|
|
struct ifnet *ifp = arg ? arg->ifp : NULL;
|
|
int len;
|
|
|
|
if (arg == NULL || ifp == NULL)
|
|
goto fail;
|
|
len = nma_is_vp(arg) ? sizeof(*na) : sizeof(*na) * 2;
|
|
na = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (na == NULL)
|
|
goto fail;
|
|
WNA(ifp) = na;
|
|
*na = *arg; /* copy everything, trust the driver to not pass junk */
|
|
NETMAP_SET_CAPABLE(ifp);
|
|
if (na->num_tx_rings == 0)
|
|
na->num_tx_rings = num_queues;
|
|
na->num_rx_rings = num_queues;
|
|
na->refcount = na->na_single = na->na_multi = 0;
|
|
/* Core lock initialized here, others after netmap_if_new. */
|
|
mtx_init(&na->core_lock, "netmap core lock", MTX_NETWORK_LOCK, MTX_DEF);
|
|
if (na->nm_lock == NULL) {
|
|
ND("using default locks for %s", ifp->if_xname);
|
|
na->nm_lock = netmap_lock_wrapper;
|
|
}
|
|
#ifdef linux
|
|
if (ifp->netdev_ops) {
|
|
ND("netdev_ops %p", ifp->netdev_ops);
|
|
/* prepare a clone of the netdev ops */
|
|
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 28)
|
|
na->nm_ndo.ndo_start_xmit = ifp->netdev_ops;
|
|
#else
|
|
na->nm_ndo = *ifp->netdev_ops;
|
|
#endif
|
|
}
|
|
na->nm_ndo.ndo_start_xmit = linux_netmap_start;
|
|
#endif
|
|
if (!nma_is_vp(arg))
|
|
netmap_attach_sw(ifp);
|
|
D("success for %s", ifp->if_xname);
|
|
return 0;
|
|
|
|
fail:
|
|
D("fail, arg %p ifp %p na %p", arg, ifp, na);
|
|
netmap_detach(ifp);
|
|
return (na ? EINVAL : ENOMEM);
|
|
}
|
|
|
|
|
|
/*
|
|
* Free the allocated memory linked to the given ``netmap_adapter``
|
|
* object.
|
|
*/
|
|
void
|
|
netmap_detach(struct ifnet *ifp)
|
|
{
|
|
struct netmap_adapter *na = NA(ifp);
|
|
|
|
if (!na)
|
|
return;
|
|
|
|
mtx_destroy(&na->core_lock);
|
|
|
|
if (na->tx_rings) { /* XXX should not happen */
|
|
D("freeing leftover tx_rings");
|
|
free(na->tx_rings, M_DEVBUF);
|
|
}
|
|
bzero(na, sizeof(*na));
|
|
WNA(ifp) = NULL;
|
|
free(na, M_DEVBUF);
|
|
}
|
|
|
|
|
|
int
|
|
nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct netmap_adapter *na, u_int ring_nr);
|
|
|
|
/* we don't need to lock myself */
|
|
static int
|
|
bdg_netmap_start(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct netmap_adapter *na = SWNA(ifp);
|
|
struct nm_bdg_fwd *ft = na->rx_rings[0].nkr_ft;
|
|
char *buf = NMB(&na->rx_rings[0].ring->slot[0]);
|
|
u_int len = MBUF_LEN(m);
|
|
|
|
if (!na->na_bdg) /* SWNA is not configured to be attached */
|
|
return EBUSY;
|
|
m_copydata(m, 0, len, buf);
|
|
ft->ft_len = len;
|
|
ft->buf = buf;
|
|
nm_bdg_flush(ft, 1, na, 0);
|
|
|
|
/* release the mbuf in either cases of success or failure. As an
|
|
* alternative, put the mbuf in a free list and free the list
|
|
* only when really necessary.
|
|
*/
|
|
m_freem(m);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Intercept packets from the network stack and pass them
|
|
* to netmap as incoming packets on the 'software' ring.
|
|
* We are not locked when called.
|
|
*/
|
|
int
|
|
netmap_start(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct netmap_adapter *na = NA(ifp);
|
|
struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
|
|
u_int i, len = MBUF_LEN(m);
|
|
u_int error = EBUSY, lim = kring->nkr_num_slots - 1;
|
|
struct netmap_slot *slot;
|
|
|
|
if (netmap_verbose & NM_VERB_HOST)
|
|
D("%s packet %d len %d from the stack", ifp->if_xname,
|
|
kring->nr_hwcur + kring->nr_hwavail, len);
|
|
if (len > NETMAP_BUF_SIZE) { /* too long for us */
|
|
D("%s from_host, drop packet size %d > %d", ifp->if_xname,
|
|
len, NETMAP_BUF_SIZE);
|
|
m_freem(m);
|
|
return EINVAL;
|
|
}
|
|
if (na->na_bdg)
|
|
return bdg_netmap_start(ifp, m);
|
|
|
|
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
|
|
if (kring->nr_hwavail >= lim) {
|
|
if (netmap_verbose)
|
|
D("stack ring %s full\n", ifp->if_xname);
|
|
goto done; /* no space */
|
|
}
|
|
|
|
/* compute the insert position */
|
|
i = kring->nr_hwcur + kring->nr_hwavail;
|
|
if (i > lim)
|
|
i -= lim + 1;
|
|
slot = &kring->ring->slot[i];
|
|
m_copydata(m, 0, len, NMB(slot));
|
|
slot->len = len;
|
|
slot->flags = kring->nkr_slot_flags;
|
|
kring->nr_hwavail++;
|
|
if (netmap_verbose & NM_VERB_HOST)
|
|
D("wake up host ring %s %d", na->ifp->if_xname, na->num_rx_rings);
|
|
selwakeuppri(&kring->si, PI_NET);
|
|
error = 0;
|
|
done:
|
|
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
|
|
|
|
/* release the mbuf in either cases of success or failure. As an
|
|
* alternative, put the mbuf in a free list and free the list
|
|
* only when really necessary.
|
|
*/
|
|
m_freem(m);
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*
|
|
* netmap_reset() is called by the driver routines when reinitializing
|
|
* a ring. The driver is in charge of locking to protect the kring.
|
|
* If netmap mode is not set just return NULL.
|
|
*/
|
|
struct netmap_slot *
|
|
netmap_reset(struct netmap_adapter *na, enum txrx tx, int n,
|
|
u_int new_cur)
|
|
{
|
|
struct netmap_kring *kring;
|
|
int new_hwofs, lim;
|
|
|
|
if (na == NULL)
|
|
return NULL; /* no netmap support here */
|
|
if (!(na->ifp->if_capenable & IFCAP_NETMAP))
|
|
return NULL; /* nothing to reinitialize */
|
|
|
|
if (tx == NR_TX) {
|
|
if (n >= na->num_tx_rings)
|
|
return NULL;
|
|
kring = na->tx_rings + n;
|
|
new_hwofs = kring->nr_hwcur - new_cur;
|
|
} else {
|
|
if (n >= na->num_rx_rings)
|
|
return NULL;
|
|
kring = na->rx_rings + n;
|
|
new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur;
|
|
}
|
|
lim = kring->nkr_num_slots - 1;
|
|
if (new_hwofs > lim)
|
|
new_hwofs -= lim + 1;
|
|
|
|
/* Alwayws set the new offset value and realign the ring. */
|
|
kring->nkr_hwofs = new_hwofs;
|
|
if (tx == NR_TX)
|
|
kring->nr_hwavail = kring->nkr_num_slots - 1;
|
|
ND(10, "new hwofs %d on %s %s[%d]",
|
|
kring->nkr_hwofs, na->ifp->if_xname,
|
|
tx == NR_TX ? "TX" : "RX", n);
|
|
|
|
#if 0 // def linux
|
|
/* XXX check that the mappings are correct */
|
|
/* need ring_nr, adapter->pdev, direction */
|
|
buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
|
|
D("error mapping rx netmap buffer %d", i);
|
|
// XXX fix error handling
|
|
}
|
|
|
|
#endif /* linux */
|
|
/*
|
|
* Wakeup on the individual and global lock
|
|
* We do the wakeup here, but the ring is not yet reconfigured.
|
|
* However, we are under lock so there are no races.
|
|
*/
|
|
selwakeuppri(&kring->si, PI_NET);
|
|
selwakeuppri(tx == NR_TX ? &na->tx_si : &na->rx_si, PI_NET);
|
|
return kring->ring->slot;
|
|
}
|
|
|
|
|
|
/* returns the next position in the ring */
|
|
static int
|
|
nm_bdg_preflush(struct netmap_adapter *na, u_int ring_nr,
|
|
struct netmap_kring *kring, u_int end)
|
|
{
|
|
struct netmap_ring *ring = kring->ring;
|
|
struct nm_bdg_fwd *ft = kring->nkr_ft;
|
|
u_int j = kring->nr_hwcur, lim = kring->nkr_num_slots - 1;
|
|
u_int ft_i = 0; /* start from 0 */
|
|
|
|
for (; likely(j != end); j = unlikely(j == lim) ? 0 : j+1) {
|
|
struct netmap_slot *slot = &ring->slot[j];
|
|
int len = ft[ft_i].ft_len = slot->len;
|
|
char *buf = ft[ft_i].buf = NMB(slot);
|
|
|
|
prefetch(buf);
|
|
if (unlikely(len < 14))
|
|
continue;
|
|
if (unlikely(++ft_i == netmap_bridge))
|
|
ft_i = nm_bdg_flush(ft, ft_i, na, ring_nr);
|
|
}
|
|
if (ft_i)
|
|
ft_i = nm_bdg_flush(ft, ft_i, na, ring_nr);
|
|
return j;
|
|
}
|
|
|
|
|
|
/*
|
|
* Pass packets from nic to the bridge. Must be called with
|
|
* proper locks on the source interface.
|
|
* Note, no user process can access this NIC so we can ignore
|
|
* the info in the 'ring'.
|
|
*/
|
|
static void
|
|
netmap_nic_to_bdg(struct ifnet *ifp, u_int ring_nr)
|
|
{
|
|
struct netmap_adapter *na = NA(ifp);
|
|
struct netmap_kring *kring = &na->rx_rings[ring_nr];
|
|
struct netmap_ring *ring = kring->ring;
|
|
int j, k, lim = kring->nkr_num_slots - 1;
|
|
|
|
/* fetch packets that have arrived */
|
|
na->nm_rxsync(ifp, ring_nr, 0);
|
|
/* XXX we don't count reserved, but it should be 0 */
|
|
j = kring->nr_hwcur;
|
|
k = j + kring->nr_hwavail;
|
|
if (k > lim)
|
|
k -= lim + 1;
|
|
if (k == j && netmap_verbose) {
|
|
D("how strange, interrupt with no packets on %s",
|
|
ifp->if_xname);
|
|
return;
|
|
}
|
|
|
|
j = nm_bdg_preflush(na, ring_nr, kring, k);
|
|
|
|
/* we consume everything, but we cannot update kring directly
|
|
* because the nic may have destroyed the info in the NIC ring.
|
|
* So we need to call rxsync again to restore it.
|
|
*/
|
|
ring->cur = j;
|
|
ring->avail = 0;
|
|
na->nm_rxsync(ifp, ring_nr, 0);
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* Default functions to handle rx/tx interrupts
|
|
* we have 4 cases:
|
|
* 1 ring, single lock:
|
|
* lock(core); wake(i=0); unlock(core)
|
|
* N rings, single lock:
|
|
* lock(core); wake(i); wake(N+1) unlock(core)
|
|
* 1 ring, separate locks: (i=0)
|
|
* lock(i); wake(i); unlock(i)
|
|
* N rings, separate locks:
|
|
* lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core)
|
|
* work_done is non-null on the RX path.
|
|
*
|
|
* The 'q' argument also includes flag to tell whether the queue is
|
|
* already locked on enter, and whether it should remain locked on exit.
|
|
* This helps adapting to different defaults in drivers and OSes.
|
|
*/
|
|
int
|
|
netmap_rx_irq(struct ifnet *ifp, int q, int *work_done)
|
|
{
|
|
struct netmap_adapter *na;
|
|
struct netmap_kring *r;
|
|
NM_SELINFO_T *main_wq;
|
|
int locktype, unlocktype, nic_to_bridge, lock;
|
|
|
|
if (!(ifp->if_capenable & IFCAP_NETMAP))
|
|
return 0;
|
|
|
|
lock = q & (NETMAP_LOCKED_ENTER | NETMAP_LOCKED_EXIT);
|
|
q = q & NETMAP_RING_MASK;
|
|
|
|
ND(5, "received %s queue %d", work_done ? "RX" : "TX" , q);
|
|
na = NA(ifp);
|
|
if (na->na_flags & NAF_SKIP_INTR) {
|
|
ND("use regular interrupt");
|
|
return 0;
|
|
}
|
|
|
|
if (work_done) { /* RX path */
|
|
if (q >= na->num_rx_rings)
|
|
return 0; // not a physical queue
|
|
r = na->rx_rings + q;
|
|
r->nr_kflags |= NKR_PENDINTR;
|
|
main_wq = (na->num_rx_rings > 1) ? &na->rx_si : NULL;
|
|
/* set a flag if the NIC is attached to a VALE switch */
|
|
nic_to_bridge = (na->na_bdg != NULL);
|
|
locktype = NETMAP_RX_LOCK;
|
|
unlocktype = NETMAP_RX_UNLOCK;
|
|
} else { /* TX path */
|
|
if (q >= na->num_tx_rings)
|
|
return 0; // not a physical queue
|
|
r = na->tx_rings + q;
|
|
main_wq = (na->num_tx_rings > 1) ? &na->tx_si : NULL;
|
|
work_done = &q; /* dummy */
|
|
nic_to_bridge = 0;
|
|
locktype = NETMAP_TX_LOCK;
|
|
unlocktype = NETMAP_TX_UNLOCK;
|
|
}
|
|
if (na->separate_locks) {
|
|
if (!(lock & NETMAP_LOCKED_ENTER))
|
|
na->nm_lock(ifp, locktype, q);
|
|
/* If a NIC is attached to a bridge, flush packets
|
|
* (and no need to wakeup anyone). Otherwise, wakeup
|
|
* possible processes waiting for packets.
|
|
*/
|
|
if (nic_to_bridge)
|
|
netmap_nic_to_bdg(ifp, q);
|
|
else
|
|
selwakeuppri(&r->si, PI_NET);
|
|
na->nm_lock(ifp, unlocktype, q);
|
|
if (main_wq && !nic_to_bridge) {
|
|
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
|
|
selwakeuppri(main_wq, PI_NET);
|
|
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
|
|
}
|
|
/* lock the queue again if requested */
|
|
if (lock & NETMAP_LOCKED_EXIT)
|
|
na->nm_lock(ifp, locktype, q);
|
|
} else {
|
|
if (!(lock & NETMAP_LOCKED_ENTER))
|
|
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
|
|
if (nic_to_bridge)
|
|
netmap_nic_to_bdg(ifp, q);
|
|
else {
|
|
selwakeuppri(&r->si, PI_NET);
|
|
if (main_wq)
|
|
selwakeuppri(main_wq, PI_NET);
|
|
}
|
|
if (!(lock & NETMAP_LOCKED_EXIT))
|
|
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
|
|
}
|
|
*work_done = 1; /* do not fire napi again */
|
|
return 1;
|
|
}
|
|
|
|
|
|
#ifdef linux /* linux-specific routines */
|
|
|
|
|
|
/*
|
|
* Remap linux arguments into the FreeBSD call.
|
|
* - pwait is the poll table, passed as 'dev';
|
|
* If pwait == NULL someone else already woke up before. We can report
|
|
* events but they are filtered upstream.
|
|
* If pwait != NULL, then pwait->key contains the list of events.
|
|
* - events is computed from pwait as above.
|
|
* - file is passed as 'td';
|
|
*/
|
|
static u_int
|
|
linux_netmap_poll(struct file * file, struct poll_table_struct *pwait)
|
|
{
|
|
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
|
|
int events = POLLIN | POLLOUT; /* XXX maybe... */
|
|
#elif LINUX_VERSION_CODE < KERNEL_VERSION(3,4,0)
|
|
int events = pwait ? pwait->key : POLLIN | POLLOUT;
|
|
#else /* in 3.4.0 field 'key' was renamed to '_key' */
|
|
int events = pwait ? pwait->_key : POLLIN | POLLOUT;
|
|
#endif
|
|
return netmap_poll((void *)pwait, events, (void *)file);
|
|
}
|
|
|
|
|
|
static int
|
|
linux_netmap_mmap(struct file *f, struct vm_area_struct *vma)
|
|
{
|
|
int lut_skip, i, j;
|
|
int user_skip = 0;
|
|
struct lut_entry *l_entry;
|
|
int error = 0;
|
|
unsigned long off, tomap;
|
|
/*
|
|
* vma->vm_start: start of mapping user address space
|
|
* vma->vm_end: end of the mapping user address space
|
|
* vma->vm_pfoff: offset of first page in the device
|
|
*/
|
|
|
|
// XXX security checks
|
|
|
|
error = netmap_get_memory(f->private_data);
|
|
ND("get_memory returned %d", error);
|
|
if (error)
|
|
return -error;
|
|
|
|
off = vma->vm_pgoff << PAGE_SHIFT; /* offset in bytes */
|
|
tomap = vma->vm_end - vma->vm_start;
|
|
for (i = 0; i < NETMAP_POOLS_NR; i++) { /* loop through obj_pools */
|
|
const struct netmap_obj_pool *p = &nm_mem.pools[i];
|
|
/*
|
|
* In each pool memory is allocated in clusters
|
|
* of size _clustsize, each containing clustentries
|
|
* entries. For each object k we already store the
|
|
* vtophys mapping in lut[k] so we use that, scanning
|
|
* the lut[] array in steps of clustentries,
|
|
* and we map each cluster (not individual pages,
|
|
* it would be overkill -- XXX slow ? 20130415).
|
|
*/
|
|
|
|
/*
|
|
* We interpret vm_pgoff as an offset into the whole
|
|
* netmap memory, as if all clusters where contiguous.
|
|
*/
|
|
for (lut_skip = 0, j = 0; j < p->_numclusters; j++, lut_skip += p->clustentries) {
|
|
unsigned long paddr, mapsize;
|
|
if (p->_clustsize <= off) {
|
|
off -= p->_clustsize;
|
|
continue;
|
|
}
|
|
l_entry = &p->lut[lut_skip]; /* first obj in the cluster */
|
|
paddr = l_entry->paddr + off;
|
|
mapsize = p->_clustsize - off;
|
|
off = 0;
|
|
if (mapsize > tomap)
|
|
mapsize = tomap;
|
|
ND("remap_pfn_range(%lx, %lx, %lx)",
|
|
vma->vm_start + user_skip,
|
|
paddr >> PAGE_SHIFT, mapsize);
|
|
if (remap_pfn_range(vma, vma->vm_start + user_skip,
|
|
paddr >> PAGE_SHIFT, mapsize,
|
|
vma->vm_page_prot))
|
|
return -EAGAIN; // XXX check return value
|
|
user_skip += mapsize;
|
|
tomap -= mapsize;
|
|
if (tomap == 0)
|
|
goto done;
|
|
}
|
|
}
|
|
done:
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static netdev_tx_t
|
|
linux_netmap_start(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
netmap_start(dev, skb);
|
|
return (NETDEV_TX_OK);
|
|
}
|
|
|
|
|
|
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37) // XXX was 38
|
|
#define LIN_IOCTL_NAME .ioctl
|
|
int
|
|
linux_netmap_ioctl(struct inode *inode, struct file *file, u_int cmd, u_long data /* arg */)
|
|
#else
|
|
#define LIN_IOCTL_NAME .unlocked_ioctl
|
|
long
|
|
linux_netmap_ioctl(struct file *file, u_int cmd, u_long data /* arg */)
|
|
#endif
|
|
{
|
|
int ret;
|
|
struct nmreq nmr;
|
|
bzero(&nmr, sizeof(nmr));
|
|
|
|
if (data && copy_from_user(&nmr, (void *)data, sizeof(nmr) ) != 0)
|
|
return -EFAULT;
|
|
ret = netmap_ioctl(NULL, cmd, (caddr_t)&nmr, 0, (void *)file);
|
|
if (data && copy_to_user((void*)data, &nmr, sizeof(nmr) ) != 0)
|
|
return -EFAULT;
|
|
return -ret;
|
|
}
|
|
|
|
|
|
static int
|
|
netmap_release(struct inode *inode, struct file *file)
|
|
{
|
|
(void)inode; /* UNUSED */
|
|
if (file->private_data)
|
|
netmap_dtor(file->private_data);
|
|
return (0);
|
|
}
|
|
|
|
|
|
static int
|
|
linux_netmap_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct netmap_priv_d *priv;
|
|
(void)inode; /* UNUSED */
|
|
|
|
priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF,
|
|
M_NOWAIT | M_ZERO);
|
|
if (priv == NULL)
|
|
return -ENOMEM;
|
|
|
|
file->private_data = priv;
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static struct file_operations netmap_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = linux_netmap_open,
|
|
.mmap = linux_netmap_mmap,
|
|
LIN_IOCTL_NAME = linux_netmap_ioctl,
|
|
.poll = linux_netmap_poll,
|
|
.release = netmap_release,
|
|
};
|
|
|
|
|
|
static struct miscdevice netmap_cdevsw = { /* same name as FreeBSD */
|
|
MISC_DYNAMIC_MINOR,
|
|
"netmap",
|
|
&netmap_fops,
|
|
};
|
|
|
|
static int netmap_init(void);
|
|
static void netmap_fini(void);
|
|
|
|
|
|
/* Errors have negative values on linux */
|
|
static int linux_netmap_init(void)
|
|
{
|
|
return -netmap_init();
|
|
}
|
|
|
|
module_init(linux_netmap_init);
|
|
module_exit(netmap_fini);
|
|
/* export certain symbols to other modules */
|
|
EXPORT_SYMBOL(netmap_attach); // driver attach routines
|
|
EXPORT_SYMBOL(netmap_detach); // driver detach routines
|
|
EXPORT_SYMBOL(netmap_ring_reinit); // ring init on error
|
|
EXPORT_SYMBOL(netmap_buffer_lut);
|
|
EXPORT_SYMBOL(netmap_total_buffers); // index check
|
|
EXPORT_SYMBOL(netmap_buffer_base);
|
|
EXPORT_SYMBOL(netmap_reset); // ring init routines
|
|
EXPORT_SYMBOL(netmap_buf_size);
|
|
EXPORT_SYMBOL(netmap_rx_irq); // default irq handler
|
|
EXPORT_SYMBOL(netmap_no_pendintr); // XXX mitigation - should go away
|
|
EXPORT_SYMBOL(netmap_bdg_ctl); // bridge configuration routine
|
|
EXPORT_SYMBOL(netmap_bdg_learning); // the default lookup function
|
|
|
|
|
|
MODULE_AUTHOR("http://info.iet.unipi.it/~luigi/netmap/");
|
|
MODULE_DESCRIPTION("The netmap packet I/O framework");
|
|
MODULE_LICENSE("Dual BSD/GPL"); /* the code here is all BSD. */
|
|
|
|
#else /* __FreeBSD__ */
|
|
|
|
|
|
static struct cdevsw netmap_cdevsw = {
|
|
.d_version = D_VERSION,
|
|
.d_name = "netmap",
|
|
.d_open = netmap_open,
|
|
.d_mmap = netmap_mmap,
|
|
.d_mmap_single = netmap_mmap_single,
|
|
.d_ioctl = netmap_ioctl,
|
|
.d_poll = netmap_poll,
|
|
.d_close = netmap_close,
|
|
};
|
|
#endif /* __FreeBSD__ */
|
|
|
|
#ifdef NM_BRIDGE
|
|
/*
|
|
*---- support for virtual bridge -----
|
|
*/
|
|
|
|
/* ----- FreeBSD if_bridge hash function ------- */
|
|
|
|
/*
|
|
* The following hash function is adapted from "Hash Functions" by Bob Jenkins
|
|
* ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
|
|
*
|
|
* http://www.burtleburtle.net/bob/hash/spooky.html
|
|
*/
|
|
#define mix(a, b, c) \
|
|
do { \
|
|
a -= b; a -= c; a ^= (c >> 13); \
|
|
b -= c; b -= a; b ^= (a << 8); \
|
|
c -= a; c -= b; c ^= (b >> 13); \
|
|
a -= b; a -= c; a ^= (c >> 12); \
|
|
b -= c; b -= a; b ^= (a << 16); \
|
|
c -= a; c -= b; c ^= (b >> 5); \
|
|
a -= b; a -= c; a ^= (c >> 3); \
|
|
b -= c; b -= a; b ^= (a << 10); \
|
|
c -= a; c -= b; c ^= (b >> 15); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
static __inline uint32_t
|
|
nm_bridge_rthash(const uint8_t *addr)
|
|
{
|
|
uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = 0; // hask key
|
|
|
|
b += addr[5] << 8;
|
|
b += addr[4];
|
|
a += addr[3] << 24;
|
|
a += addr[2] << 16;
|
|
a += addr[1] << 8;
|
|
a += addr[0];
|
|
|
|
mix(a, b, c);
|
|
#define BRIDGE_RTHASH_MASK (NM_BDG_HASH-1)
|
|
return (c & BRIDGE_RTHASH_MASK);
|
|
}
|
|
|
|
#undef mix
|
|
|
|
|
|
static int
|
|
bdg_netmap_reg(struct ifnet *ifp, int onoff)
|
|
{
|
|
// struct nm_bridge *b = NA(ifp)->na_bdg;
|
|
|
|
/* the interface is already attached to the bridge,
|
|
* so we only need to toggle IFCAP_NETMAP.
|
|
* Locking is not necessary (we are already under
|
|
* NMA_LOCK, and the port is not in use during this call).
|
|
*/
|
|
/* BDG_WLOCK(b); */
|
|
if (onoff) {
|
|
ifp->if_capenable |= IFCAP_NETMAP;
|
|
} else {
|
|
ifp->if_capenable &= ~IFCAP_NETMAP;
|
|
}
|
|
/* BDG_WUNLOCK(b); */
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Lookup function for a learning bridge.
|
|
* Update the hash table with the source address,
|
|
* and then returns the destination port index, and the
|
|
* ring in *dst_ring (at the moment, always use ring 0)
|
|
*/
|
|
u_int
|
|
netmap_bdg_learning(char *buf, u_int len, uint8_t *dst_ring,
|
|
struct netmap_adapter *na)
|
|
{
|
|
struct nm_hash_ent *ht = na->na_bdg->ht;
|
|
uint32_t sh, dh;
|
|
u_int dst, mysrc = na->bdg_port;
|
|
uint64_t smac, dmac;
|
|
|
|
dmac = le64toh(*(uint64_t *)(buf)) & 0xffffffffffff;
|
|
smac = le64toh(*(uint64_t *)(buf + 4));
|
|
smac >>= 16;
|
|
|
|
/*
|
|
* The hash is somewhat expensive, there might be some
|
|
* worthwhile optimizations here.
|
|
*/
|
|
if ((buf[6] & 1) == 0) { /* valid src */
|
|
uint8_t *s = buf+6;
|
|
sh = nm_bridge_rthash(buf+6); // XXX hash of source
|
|
/* update source port forwarding entry */
|
|
ht[sh].mac = smac; /* XXX expire ? */
|
|
ht[sh].ports = mysrc;
|
|
if (netmap_verbose)
|
|
D("src %02x:%02x:%02x:%02x:%02x:%02x on port %d",
|
|
s[0], s[1], s[2], s[3], s[4], s[5], mysrc);
|
|
}
|
|
dst = NM_BDG_BROADCAST;
|
|
if ((buf[0] & 1) == 0) { /* unicast */
|
|
dh = nm_bridge_rthash(buf); // XXX hash of dst
|
|
if (ht[dh].mac == dmac) { /* found dst */
|
|
dst = ht[dh].ports;
|
|
}
|
|
/* XXX otherwise return NM_BDG_UNKNOWN ? */
|
|
}
|
|
*dst_ring = 0;
|
|
return dst;
|
|
}
|
|
|
|
|
|
/*
|
|
* This flush routine supports only unicast and broadcast but a large
|
|
* number of ports, and lets us replace the learn and dispatch functions.
|
|
*/
|
|
int
|
|
nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct netmap_adapter *na,
|
|
u_int ring_nr)
|
|
{
|
|
struct nm_bdg_q *dst_ents, *brddst;
|
|
uint16_t num_dsts = 0, *dsts;
|
|
struct nm_bridge *b = na->na_bdg;
|
|
u_int i, me = na->bdg_port;
|
|
|
|
dst_ents = (struct nm_bdg_q *)(ft + NM_BDG_BATCH);
|
|
dsts = (uint16_t *)(dst_ents + NM_BDG_MAXPORTS * NM_BDG_MAXRINGS + 1);
|
|
|
|
BDG_RLOCK(b);
|
|
|
|
/* first pass: find a destination */
|
|
for (i = 0; likely(i < n); i++) {
|
|
uint8_t *buf = ft[i].buf;
|
|
uint8_t dst_ring = ring_nr;
|
|
uint16_t dst_port, d_i;
|
|
struct nm_bdg_q *d;
|
|
|
|
dst_port = b->nm_bdg_lookup(buf, ft[i].ft_len, &dst_ring, na);
|
|
if (dst_port == NM_BDG_NOPORT) {
|
|
continue; /* this packet is identified to be dropped */
|
|
} else if (unlikely(dst_port > NM_BDG_MAXPORTS)) {
|
|
continue;
|
|
} else if (dst_port == NM_BDG_BROADCAST) {
|
|
dst_ring = 0; /* broadcasts always go to ring 0 */
|
|
} else if (unlikely(dst_port == me ||
|
|
!BDG_GET_VAR(b->bdg_ports[dst_port]))) {
|
|
continue;
|
|
}
|
|
|
|
/* get a position in the scratch pad */
|
|
d_i = dst_port * NM_BDG_MAXRINGS + dst_ring;
|
|
d = dst_ents + d_i;
|
|
if (d->bq_head == NM_BDG_BATCH) { /* new destination */
|
|
d->bq_head = d->bq_tail = i;
|
|
/* remember this position to be scanned later */
|
|
if (dst_port != NM_BDG_BROADCAST)
|
|
dsts[num_dsts++] = d_i;
|
|
}
|
|
ft[d->bq_tail].ft_next = i;
|
|
d->bq_tail = i;
|
|
}
|
|
|
|
/* if there is a broadcast, set ring 0 of all ports to be scanned
|
|
* XXX This would be optimized by recording the highest index of active
|
|
* ports.
|
|
*/
|
|
brddst = dst_ents + NM_BDG_BROADCAST * NM_BDG_MAXRINGS;
|
|
if (brddst->bq_head != NM_BDG_BATCH) {
|
|
for (i = 0; likely(i < NM_BDG_MAXPORTS); i++) {
|
|
uint16_t d_i = i * NM_BDG_MAXRINGS;
|
|
if (unlikely(i == me) || !BDG_GET_VAR(b->bdg_ports[i]))
|
|
continue;
|
|
else if (dst_ents[d_i].bq_head == NM_BDG_BATCH)
|
|
dsts[num_dsts++] = d_i;
|
|
}
|
|
}
|
|
|
|
/* second pass: scan destinations (XXX will be modular somehow) */
|
|
for (i = 0; i < num_dsts; i++) {
|
|
struct ifnet *dst_ifp;
|
|
struct netmap_adapter *dst_na;
|
|
struct netmap_kring *kring;
|
|
struct netmap_ring *ring;
|
|
u_int dst_nr, is_vp, lim, j, sent = 0, d_i, next, brd_next;
|
|
int howmany, retry = netmap_txsync_retry;
|
|
struct nm_bdg_q *d;
|
|
|
|
d_i = dsts[i];
|
|
d = dst_ents + d_i;
|
|
dst_na = BDG_GET_VAR(b->bdg_ports[d_i/NM_BDG_MAXRINGS]);
|
|
/* protect from the lookup function returning an inactive
|
|
* destination port
|
|
*/
|
|
if (unlikely(dst_na == NULL))
|
|
continue;
|
|
else if (dst_na->na_flags & NAF_SW_ONLY)
|
|
continue;
|
|
dst_ifp = dst_na->ifp;
|
|
/*
|
|
* The interface may be in !netmap mode in two cases:
|
|
* - when na is attached but not activated yet;
|
|
* - when na is being deactivated but is still attached.
|
|
*/
|
|
if (unlikely(!(dst_ifp->if_capenable & IFCAP_NETMAP)))
|
|
continue;
|
|
|
|
/* there is at least one either unicast or broadcast packet */
|
|
brd_next = brddst->bq_head;
|
|
next = d->bq_head;
|
|
|
|
is_vp = nma_is_vp(dst_na);
|
|
dst_nr = d_i & (NM_BDG_MAXRINGS-1);
|
|
if (is_vp) { /* virtual port */
|
|
if (dst_nr >= dst_na->num_rx_rings)
|
|
dst_nr = dst_nr % dst_na->num_rx_rings;
|
|
kring = &dst_na->rx_rings[dst_nr];
|
|
ring = kring->ring;
|
|
lim = kring->nkr_num_slots - 1;
|
|
dst_na->nm_lock(dst_ifp, NETMAP_RX_LOCK, dst_nr);
|
|
j = kring->nr_hwcur + kring->nr_hwavail;
|
|
if (j > lim)
|
|
j -= kring->nkr_num_slots;
|
|
howmany = lim - kring->nr_hwavail;
|
|
} else { /* hw or sw adapter */
|
|
if (dst_nr >= dst_na->num_tx_rings)
|
|
dst_nr = dst_nr % dst_na->num_tx_rings;
|
|
kring = &dst_na->tx_rings[dst_nr];
|
|
ring = kring->ring;
|
|
lim = kring->nkr_num_slots - 1;
|
|
dst_na->nm_lock(dst_ifp, NETMAP_TX_LOCK, dst_nr);
|
|
retry:
|
|
dst_na->nm_txsync(dst_ifp, dst_nr, 0);
|
|
/* see nm_bdg_flush() */
|
|
j = kring->nr_hwcur;
|
|
howmany = kring->nr_hwavail;
|
|
}
|
|
while (howmany-- > 0) {
|
|
struct netmap_slot *slot;
|
|
struct nm_bdg_fwd *ft_p;
|
|
|
|
if (next < brd_next) {
|
|
ft_p = ft + next;
|
|
next = ft_p->ft_next;
|
|
} else { /* insert broadcast */
|
|
ft_p = ft + brd_next;
|
|
brd_next = ft_p->ft_next;
|
|
}
|
|
slot = &ring->slot[j];
|
|
ND("send %d %d bytes at %s:%d", i, ft_p->ft_len, dst_ifp->if_xname, j);
|
|
pkt_copy(ft_p->buf, NMB(slot), ft_p->ft_len);
|
|
slot->len = ft_p->ft_len;
|
|
j = (j == lim) ? 0: j + 1; /* XXX to be macro-ed */
|
|
sent++;
|
|
if (next == d->bq_tail && brd_next == brddst->bq_tail)
|
|
break;
|
|
}
|
|
if (netmap_verbose && (howmany < 0))
|
|
D("rx ring full on %s", dst_ifp->if_xname);
|
|
if (is_vp) {
|
|
if (sent) {
|
|
kring->nr_hwavail += sent;
|
|
selwakeuppri(&kring->si, PI_NET);
|
|
}
|
|
dst_na->nm_lock(dst_ifp, NETMAP_RX_UNLOCK, dst_nr);
|
|
} else {
|
|
if (sent) {
|
|
ring->avail -= sent;
|
|
ring->cur = j;
|
|
dst_na->nm_txsync(dst_ifp, dst_nr, 0);
|
|
}
|
|
/* retry to send more packets */
|
|
if (nma_is_hw(dst_na) && howmany < 0 && retry--)
|
|
goto retry;
|
|
dst_na->nm_lock(dst_ifp, NETMAP_TX_UNLOCK, dst_nr);
|
|
}
|
|
d->bq_head = d->bq_tail = NM_BDG_BATCH; /* cleanup */
|
|
}
|
|
brddst->bq_head = brddst->bq_tail = NM_BDG_BATCH; /* cleanup */
|
|
BDG_RUNLOCK(b);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* main dispatch routine
|
|
*/
|
|
static int
|
|
bdg_netmap_txsync(struct ifnet *ifp, u_int ring_nr, int do_lock)
|
|
{
|
|
struct netmap_adapter *na = NA(ifp);
|
|
struct netmap_kring *kring = &na->tx_rings[ring_nr];
|
|
struct netmap_ring *ring = kring->ring;
|
|
int i, j, k, lim = kring->nkr_num_slots - 1;
|
|
|
|
k = ring->cur;
|
|
if (k > lim)
|
|
return netmap_ring_reinit(kring);
|
|
if (do_lock)
|
|
na->nm_lock(ifp, NETMAP_TX_LOCK, ring_nr);
|
|
|
|
if (netmap_bridge <= 0) { /* testing only */
|
|
j = k; // used all
|
|
goto done;
|
|
}
|
|
if (netmap_bridge > NM_BDG_BATCH)
|
|
netmap_bridge = NM_BDG_BATCH;
|
|
|
|
j = nm_bdg_preflush(na, ring_nr, kring, k);
|
|
i = k - j;
|
|
if (i < 0)
|
|
i += kring->nkr_num_slots;
|
|
kring->nr_hwavail = kring->nkr_num_slots - 1 - i;
|
|
if (j != k)
|
|
D("early break at %d/ %d, avail %d", j, k, kring->nr_hwavail);
|
|
|
|
done:
|
|
kring->nr_hwcur = j;
|
|
ring->avail = kring->nr_hwavail;
|
|
if (do_lock)
|
|
na->nm_lock(ifp, NETMAP_TX_UNLOCK, ring_nr);
|
|
|
|
if (netmap_verbose)
|
|
D("%s ring %d lock %d", ifp->if_xname, ring_nr, do_lock);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
bdg_netmap_rxsync(struct ifnet *ifp, u_int ring_nr, int do_lock)
|
|
{
|
|
struct netmap_adapter *na = NA(ifp);
|
|
struct netmap_kring *kring = &na->rx_rings[ring_nr];
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int j, lim = kring->nkr_num_slots - 1;
|
|
u_int k = ring->cur, resvd = ring->reserved;
|
|
int n;
|
|
|
|
ND("%s ring %d lock %d avail %d",
|
|
ifp->if_xname, ring_nr, do_lock, kring->nr_hwavail);
|
|
|
|
if (k > lim)
|
|
return netmap_ring_reinit(kring);
|
|
if (do_lock)
|
|
na->nm_lock(ifp, NETMAP_RX_LOCK, ring_nr);
|
|
|
|
/* skip past packets that userspace has released */
|
|
j = kring->nr_hwcur; /* netmap ring index */
|
|
if (resvd > 0) {
|
|
if (resvd + ring->avail >= lim + 1) {
|
|
D("XXX invalid reserve/avail %d %d", resvd, ring->avail);
|
|
ring->reserved = resvd = 0; // XXX panic...
|
|
}
|
|
k = (k >= resvd) ? k - resvd : k + lim + 1 - resvd;
|
|
}
|
|
|
|
if (j != k) { /* userspace has released some packets. */
|
|
n = k - j;
|
|
if (n < 0)
|
|
n += kring->nkr_num_slots;
|
|
ND("userspace releases %d packets", n);
|
|
for (n = 0; likely(j != k); n++) {
|
|
struct netmap_slot *slot = &ring->slot[j];
|
|
void *addr = NMB(slot);
|
|
|
|
if (addr == netmap_buffer_base) { /* bad buf */
|
|
if (do_lock)
|
|
na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr);
|
|
return netmap_ring_reinit(kring);
|
|
}
|
|
/* decrease refcount for buffer */
|
|
|
|
slot->flags &= ~NS_BUF_CHANGED;
|
|
j = unlikely(j == lim) ? 0 : j + 1;
|
|
}
|
|
kring->nr_hwavail -= n;
|
|
kring->nr_hwcur = k;
|
|
}
|
|
/* tell userspace that there are new packets */
|
|
ring->avail = kring->nr_hwavail - resvd;
|
|
|
|
if (do_lock)
|
|
na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void
|
|
bdg_netmap_attach(struct netmap_adapter *arg)
|
|
{
|
|
struct netmap_adapter na;
|
|
|
|
ND("attaching virtual bridge");
|
|
bzero(&na, sizeof(na));
|
|
|
|
na.ifp = arg->ifp;
|
|
na.separate_locks = 1;
|
|
na.num_tx_rings = arg->num_tx_rings;
|
|
na.num_rx_rings = arg->num_rx_rings;
|
|
na.num_tx_desc = NM_BRIDGE_RINGSIZE;
|
|
na.num_rx_desc = NM_BRIDGE_RINGSIZE;
|
|
na.nm_txsync = bdg_netmap_txsync;
|
|
na.nm_rxsync = bdg_netmap_rxsync;
|
|
na.nm_register = bdg_netmap_reg;
|
|
netmap_attach(&na, na.num_tx_rings);
|
|
}
|
|
|
|
#endif /* NM_BRIDGE */
|
|
|
|
static struct cdev *netmap_dev; /* /dev/netmap character device. */
|
|
|
|
|
|
/*
|
|
* Module loader.
|
|
*
|
|
* Create the /dev/netmap device and initialize all global
|
|
* variables.
|
|
*
|
|
* Return 0 on success, errno on failure.
|
|
*/
|
|
static int
|
|
netmap_init(void)
|
|
{
|
|
int error;
|
|
|
|
error = netmap_memory_init();
|
|
if (error != 0) {
|
|
printf("netmap: unable to initialize the memory allocator.\n");
|
|
return (error);
|
|
}
|
|
printf("netmap: loaded module\n");
|
|
netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660,
|
|
"netmap");
|
|
|
|
#ifdef NM_BRIDGE
|
|
{
|
|
int i;
|
|
mtx_init(&netmap_bridge_mutex, "netmap_bridge_mutex",
|
|
MTX_NETWORK_LOCK, MTX_DEF);
|
|
bzero(nm_bridges, sizeof(struct nm_bridge) * NM_BRIDGES); /* safety */
|
|
for (i = 0; i < NM_BRIDGES; i++)
|
|
rw_init(&nm_bridges[i].bdg_lock, "bdg lock");
|
|
}
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*
|
|
* Module unloader.
|
|
*
|
|
* Free all the memory, and destroy the ``/dev/netmap`` device.
|
|
*/
|
|
static void
|
|
netmap_fini(void)
|
|
{
|
|
destroy_dev(netmap_dev);
|
|
netmap_memory_fini();
|
|
printf("netmap: unloaded module.\n");
|
|
}
|
|
|
|
|
|
#ifdef __FreeBSD__
|
|
/*
|
|
* Kernel entry point.
|
|
*
|
|
* Initialize/finalize the module and return.
|
|
*
|
|
* Return 0 on success, errno on failure.
|
|
*/
|
|
static int
|
|
netmap_loader(__unused struct module *module, int event, __unused void *arg)
|
|
{
|
|
int error = 0;
|
|
|
|
switch (event) {
|
|
case MOD_LOAD:
|
|
error = netmap_init();
|
|
break;
|
|
|
|
case MOD_UNLOAD:
|
|
netmap_fini();
|
|
break;
|
|
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
DEV_MODULE(netmap, netmap_loader, NULL);
|
|
#endif /* __FreeBSD__ */
|