The primary benefit is maintaining a completely shared code base with the community allowing FreeBSD to receive new features sooner and with less effort. I would advise against doing 'zpool upgrade' or creating indispensable pools using new features until this change has had a month+ to soak. Work on merging FreeBSD support in to what was at the time "ZFS on Linux" began in August 2018. I first publicly proposed transitioning FreeBSD to (new) OpenZFS on December 18th, 2018. FreeBSD support in OpenZFS was finally completed in December 2019. A CFT for downstreaming OpenZFS support in to FreeBSD was first issued on July 8th. All issues that were reported have been addressed or, for a couple of less critical matters there are pull requests in progress with OpenZFS. iXsystems has tested and dogfooded extensively internally. The TrueNAS 12 release is based on OpenZFS with some additional features that have not yet made it upstream. Improvements include: project quotas, encrypted datasets, allocation classes, vectorized raidz, vectorized checksums, various command line improvements, zstd compression. Thanks to those who have helped along the way: Ryan Moeller, Allan Jude, Zack Welch, and many others. Sponsored by: iXsystems, Inc. Differential Revision: https://reviews.freebsd.org/D25872
468 lines
11 KiB
C
468 lines
11 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License, Version 1.0 only
|
|
* (the "License"). You may not use this file except in compliance
|
|
* with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*
|
|
* $FreeBSD$
|
|
*
|
|
*/
|
|
/*
|
|
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2011, Joyent, Inc. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/types.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/dtrace_impl.h>
|
|
#include <sys/dtrace_bsd.h>
|
|
#include <machine/clock.h>
|
|
#include <machine/cpufunc.h>
|
|
#include <machine/frame.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/psl.h>
|
|
#include <machine/trap.h>
|
|
#include <vm/pmap.h>
|
|
|
|
extern void dtrace_getnanotime(struct timespec *tsp);
|
|
extern int (*dtrace_invop_jump_addr)(struct trapframe *);
|
|
|
|
int dtrace_invop(uintptr_t, struct trapframe *, uintptr_t);
|
|
int dtrace_invop_start(struct trapframe *frame);
|
|
void dtrace_invop_init(void);
|
|
void dtrace_invop_uninit(void);
|
|
|
|
typedef struct dtrace_invop_hdlr {
|
|
int (*dtih_func)(uintptr_t, struct trapframe *, uintptr_t);
|
|
struct dtrace_invop_hdlr *dtih_next;
|
|
} dtrace_invop_hdlr_t;
|
|
|
|
dtrace_invop_hdlr_t *dtrace_invop_hdlr;
|
|
|
|
int
|
|
dtrace_invop(uintptr_t addr, struct trapframe *frame, uintptr_t eax)
|
|
{
|
|
dtrace_invop_hdlr_t *hdlr;
|
|
int rval;
|
|
|
|
for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next)
|
|
if ((rval = hdlr->dtih_func(addr, frame, eax)) != 0)
|
|
return (rval);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dtrace_invop_add(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
|
|
{
|
|
dtrace_invop_hdlr_t *hdlr;
|
|
|
|
hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
|
|
hdlr->dtih_func = func;
|
|
hdlr->dtih_next = dtrace_invop_hdlr;
|
|
dtrace_invop_hdlr = hdlr;
|
|
}
|
|
|
|
void
|
|
dtrace_invop_remove(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
|
|
{
|
|
dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
|
|
|
|
for (;;) {
|
|
if (hdlr == NULL)
|
|
panic("attempt to remove non-existent invop handler");
|
|
|
|
if (hdlr->dtih_func == func)
|
|
break;
|
|
|
|
prev = hdlr;
|
|
hdlr = hdlr->dtih_next;
|
|
}
|
|
|
|
if (prev == NULL) {
|
|
ASSERT(dtrace_invop_hdlr == hdlr);
|
|
dtrace_invop_hdlr = hdlr->dtih_next;
|
|
} else {
|
|
ASSERT(dtrace_invop_hdlr != hdlr);
|
|
prev->dtih_next = hdlr->dtih_next;
|
|
}
|
|
|
|
kmem_free(hdlr, 0);
|
|
}
|
|
|
|
void
|
|
dtrace_invop_init(void)
|
|
{
|
|
|
|
dtrace_invop_jump_addr = dtrace_invop_start;
|
|
}
|
|
|
|
void
|
|
dtrace_invop_uninit(void)
|
|
{
|
|
|
|
dtrace_invop_jump_addr = NULL;
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
|
|
{
|
|
(*func)(0, la57 ? (uintptr_t)addr_P5Tmap : (uintptr_t)addr_P4Tmap);
|
|
}
|
|
|
|
void
|
|
dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
|
|
{
|
|
cpuset_t cpus;
|
|
|
|
if (cpu == DTRACE_CPUALL)
|
|
cpus = all_cpus;
|
|
else
|
|
CPU_SETOF(cpu, &cpus);
|
|
|
|
smp_rendezvous_cpus(cpus, smp_no_rendezvous_barrier, func,
|
|
smp_no_rendezvous_barrier, arg);
|
|
}
|
|
|
|
static void
|
|
dtrace_sync_func(void)
|
|
{
|
|
}
|
|
|
|
void
|
|
dtrace_sync(void)
|
|
{
|
|
dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
|
|
}
|
|
|
|
#ifdef notyet
|
|
void
|
|
dtrace_safe_synchronous_signal(void)
|
|
{
|
|
kthread_t *t = curthread;
|
|
struct regs *rp = lwptoregs(ttolwp(t));
|
|
size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
|
|
|
|
ASSERT(t->t_dtrace_on);
|
|
|
|
/*
|
|
* If we're not in the range of scratch addresses, we're not actually
|
|
* tracing user instructions so turn off the flags. If the instruction
|
|
* we copied out caused a synchonous trap, reset the pc back to its
|
|
* original value and turn off the flags.
|
|
*/
|
|
if (rp->r_pc < t->t_dtrace_scrpc ||
|
|
rp->r_pc > t->t_dtrace_astpc + isz) {
|
|
t->t_dtrace_ft = 0;
|
|
} else if (rp->r_pc == t->t_dtrace_scrpc ||
|
|
rp->r_pc == t->t_dtrace_astpc) {
|
|
rp->r_pc = t->t_dtrace_pc;
|
|
t->t_dtrace_ft = 0;
|
|
}
|
|
}
|
|
|
|
int
|
|
dtrace_safe_defer_signal(void)
|
|
{
|
|
kthread_t *t = curthread;
|
|
struct regs *rp = lwptoregs(ttolwp(t));
|
|
size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
|
|
|
|
ASSERT(t->t_dtrace_on);
|
|
|
|
/*
|
|
* If we're not in the range of scratch addresses, we're not actually
|
|
* tracing user instructions so turn off the flags.
|
|
*/
|
|
if (rp->r_pc < t->t_dtrace_scrpc ||
|
|
rp->r_pc > t->t_dtrace_astpc + isz) {
|
|
t->t_dtrace_ft = 0;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If we have executed the original instruction, but we have performed
|
|
* neither the jmp back to t->t_dtrace_npc nor the clean up of any
|
|
* registers used to emulate %rip-relative instructions in 64-bit mode,
|
|
* we'll save ourselves some effort by doing that here and taking the
|
|
* signal right away. We detect this condition by seeing if the program
|
|
* counter is the range [scrpc + isz, astpc).
|
|
*/
|
|
if (rp->r_pc >= t->t_dtrace_scrpc + isz &&
|
|
rp->r_pc < t->t_dtrace_astpc) {
|
|
#ifdef __amd64
|
|
/*
|
|
* If there is a scratch register and we're on the
|
|
* instruction immediately after the modified instruction,
|
|
* restore the value of that scratch register.
|
|
*/
|
|
if (t->t_dtrace_reg != 0 &&
|
|
rp->r_pc == t->t_dtrace_scrpc + isz) {
|
|
switch (t->t_dtrace_reg) {
|
|
case REG_RAX:
|
|
rp->r_rax = t->t_dtrace_regv;
|
|
break;
|
|
case REG_RCX:
|
|
rp->r_rcx = t->t_dtrace_regv;
|
|
break;
|
|
case REG_R8:
|
|
rp->r_r8 = t->t_dtrace_regv;
|
|
break;
|
|
case REG_R9:
|
|
rp->r_r9 = t->t_dtrace_regv;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
rp->r_pc = t->t_dtrace_npc;
|
|
t->t_dtrace_ft = 0;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Otherwise, make sure we'll return to the kernel after executing
|
|
* the copied out instruction and defer the signal.
|
|
*/
|
|
if (!t->t_dtrace_step) {
|
|
ASSERT(rp->r_pc < t->t_dtrace_astpc);
|
|
rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
|
|
t->t_dtrace_step = 1;
|
|
}
|
|
|
|
t->t_dtrace_ast = 1;
|
|
|
|
return (1);
|
|
}
|
|
#endif
|
|
|
|
static int64_t tgt_cpu_tsc;
|
|
static int64_t hst_cpu_tsc;
|
|
static int64_t tsc_skew[MAXCPU];
|
|
static uint64_t nsec_scale;
|
|
|
|
/* See below for the explanation of this macro. */
|
|
#define SCALE_SHIFT 28
|
|
|
|
static void
|
|
dtrace_gethrtime_init_cpu(void *arg)
|
|
{
|
|
uintptr_t cpu = (uintptr_t) arg;
|
|
|
|
if (cpu == curcpu)
|
|
tgt_cpu_tsc = rdtsc();
|
|
else
|
|
hst_cpu_tsc = rdtsc();
|
|
}
|
|
|
|
#ifdef EARLY_AP_STARTUP
|
|
static void
|
|
dtrace_gethrtime_init(void *arg)
|
|
{
|
|
struct pcpu *pc;
|
|
uint64_t tsc_f;
|
|
cpuset_t map;
|
|
int i;
|
|
#else
|
|
/*
|
|
* Get the frequency and scale factor as early as possible so that they can be
|
|
* used for boot-time tracing.
|
|
*/
|
|
static void
|
|
dtrace_gethrtime_init_early(void *arg)
|
|
{
|
|
uint64_t tsc_f;
|
|
#endif
|
|
|
|
/*
|
|
* Get TSC frequency known at this moment.
|
|
* This should be constant if TSC is invariant.
|
|
* Otherwise tick->time conversion will be inaccurate, but
|
|
* will preserve monotonic property of TSC.
|
|
*/
|
|
tsc_f = atomic_load_acq_64(&tsc_freq);
|
|
|
|
/*
|
|
* The following line checks that nsec_scale calculated below
|
|
* doesn't overflow 32-bit unsigned integer, so that it can multiply
|
|
* another 32-bit integer without overflowing 64-bit.
|
|
* Thus minimum supported TSC frequency is 62.5MHz.
|
|
*/
|
|
KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)),
|
|
("TSC frequency is too low"));
|
|
|
|
/*
|
|
* We scale up NANOSEC/tsc_f ratio to preserve as much precision
|
|
* as possible.
|
|
* 2^28 factor was chosen quite arbitrarily from practical
|
|
* considerations:
|
|
* - it supports TSC frequencies as low as 62.5MHz (see above);
|
|
* - it provides quite good precision (e < 0.01%) up to THz
|
|
* (terahertz) values;
|
|
*/
|
|
nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f;
|
|
#ifndef EARLY_AP_STARTUP
|
|
}
|
|
SYSINIT(dtrace_gethrtime_init_early, SI_SUB_CPU, SI_ORDER_ANY,
|
|
dtrace_gethrtime_init_early, NULL);
|
|
|
|
static void
|
|
dtrace_gethrtime_init(void *arg)
|
|
{
|
|
struct pcpu *pc;
|
|
cpuset_t map;
|
|
int i;
|
|
#endif
|
|
|
|
if (vm_guest != VM_GUEST_NO)
|
|
return;
|
|
|
|
/* The current CPU is the reference one. */
|
|
sched_pin();
|
|
tsc_skew[curcpu] = 0;
|
|
CPU_FOREACH(i) {
|
|
if (i == curcpu)
|
|
continue;
|
|
|
|
pc = pcpu_find(i);
|
|
CPU_SETOF(PCPU_GET(cpuid), &map);
|
|
CPU_SET(pc->pc_cpuid, &map);
|
|
|
|
smp_rendezvous_cpus(map, NULL,
|
|
dtrace_gethrtime_init_cpu,
|
|
smp_no_rendezvous_barrier, (void *)(uintptr_t) i);
|
|
|
|
tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
|
|
}
|
|
sched_unpin();
|
|
}
|
|
#ifdef EARLY_AP_STARTUP
|
|
SYSINIT(dtrace_gethrtime_init, SI_SUB_DTRACE, SI_ORDER_ANY,
|
|
dtrace_gethrtime_init, NULL);
|
|
#else
|
|
SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init,
|
|
NULL);
|
|
#endif
|
|
|
|
/*
|
|
* DTrace needs a high resolution time function which can
|
|
* be called from a probe context and guaranteed not to have
|
|
* instrumented with probes itself.
|
|
*
|
|
* Returns nanoseconds since boot.
|
|
*/
|
|
uint64_t
|
|
dtrace_gethrtime(void)
|
|
{
|
|
uint64_t tsc;
|
|
uint32_t lo, hi;
|
|
register_t rflags;
|
|
|
|
/*
|
|
* We split TSC value into lower and higher 32-bit halves and separately
|
|
* scale them with nsec_scale, then we scale them down by 2^28
|
|
* (see nsec_scale calculations) taking into account 32-bit shift of
|
|
* the higher half and finally add.
|
|
*/
|
|
rflags = intr_disable();
|
|
tsc = rdtsc() - tsc_skew[curcpu];
|
|
intr_restore(rflags);
|
|
|
|
lo = tsc;
|
|
hi = tsc >> 32;
|
|
return (((lo * nsec_scale) >> SCALE_SHIFT) +
|
|
((hi * nsec_scale) << (32 - SCALE_SHIFT)));
|
|
}
|
|
|
|
uint64_t
|
|
dtrace_gethrestime(void)
|
|
{
|
|
struct timespec current_time;
|
|
|
|
dtrace_getnanotime(¤t_time);
|
|
|
|
return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec);
|
|
}
|
|
|
|
/* Function to handle DTrace traps during probes. See amd64/amd64/trap.c. */
|
|
int
|
|
dtrace_trap(struct trapframe *frame, u_int type)
|
|
{
|
|
uint16_t nofault;
|
|
|
|
/*
|
|
* A trap can occur while DTrace executes a probe. Before
|
|
* executing the probe, DTrace blocks re-scheduling and sets
|
|
* a flag in its per-cpu flags to indicate that it doesn't
|
|
* want to fault. On returning from the probe, the no-fault
|
|
* flag is cleared and finally re-scheduling is enabled.
|
|
*
|
|
* Check if DTrace has enabled 'no-fault' mode:
|
|
*/
|
|
sched_pin();
|
|
nofault = cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT;
|
|
sched_unpin();
|
|
if (nofault) {
|
|
KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
|
|
|
|
/*
|
|
* There are only a couple of trap types that are expected.
|
|
* All the rest will be handled in the usual way.
|
|
*/
|
|
switch (type) {
|
|
/* General protection fault. */
|
|
case T_PROTFLT:
|
|
/* Flag an illegal operation. */
|
|
cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
|
|
|
|
/*
|
|
* Offset the instruction pointer to the instruction
|
|
* following the one causing the fault.
|
|
*/
|
|
frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip);
|
|
return (1);
|
|
/* Page fault. */
|
|
case T_PAGEFLT:
|
|
/* Flag a bad address. */
|
|
cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
|
|
cpu_core[curcpu].cpuc_dtrace_illval = frame->tf_addr;
|
|
|
|
/*
|
|
* Offset the instruction pointer to the instruction
|
|
* following the one causing the fault.
|
|
*/
|
|
frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip);
|
|
return (1);
|
|
default:
|
|
/* Handle all other traps in the usual way. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Handle the trap in the usual way. */
|
|
return (0);
|
|
}
|