freebsd-nq/usr.sbin/bhyve/pci_passthru.c
Mark Johnston 4558c11f1b bhyve: Correct unmapping of the MSI-X table BAR
The starting address passed to mprotect was wrong, so in the case where
the last page containing the table is not the last page of the BAR, the
wrong region would be unmapped.

Reported by:	Andy Fiddaman <andy@omniosce.org>
Reviewed by:	jhb
Fixes:		7fa233534736 ("bhyve: Map the MSI-X table unconditionally for passthrough")
MFC after:	3 days
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D33739
2022-01-05 10:12:09 -05:00

1027 lines
25 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#ifndef WITHOUT_CAPSICUM
#include <sys/capsicum.h>
#endif
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/pciio.h>
#include <sys/ioctl.h>
#include <dev/io/iodev.h>
#include <dev/pci/pcireg.h>
#include <vm/vm.h>
#include <machine/iodev.h>
#include <machine/vm.h>
#ifndef WITHOUT_CAPSICUM
#include <capsicum_helpers.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <sysexits.h>
#include <unistd.h>
#include <machine/vmm.h>
#include <vmmapi.h>
#include "config.h"
#include "debug.h"
#include "pci_emul.h"
#include "mem.h"
#ifndef _PATH_DEVPCI
#define _PATH_DEVPCI "/dev/pci"
#endif
#define LEGACY_SUPPORT 1
#define MSIX_TABLE_COUNT(ctrl) (((ctrl) & PCIM_MSIXCTRL_TABLE_SIZE) + 1)
#define MSIX_CAPLEN 12
static int pcifd = -1;
struct passthru_softc {
struct pci_devinst *psc_pi;
struct pcibar psc_bar[PCI_BARMAX + 1];
struct {
int capoff;
int msgctrl;
int emulated;
} psc_msi;
struct {
int capoff;
} psc_msix;
struct pcisel psc_sel;
};
static int
msi_caplen(int msgctrl)
{
int len;
len = 10; /* minimum length of msi capability */
if (msgctrl & PCIM_MSICTRL_64BIT)
len += 4;
#if 0
/*
* Ignore the 'mask' and 'pending' bits in the MSI capability.
* We'll let the guest manipulate them directly.
*/
if (msgctrl & PCIM_MSICTRL_VECTOR)
len += 10;
#endif
return (len);
}
static uint32_t
read_config(const struct pcisel *sel, long reg, int width)
{
struct pci_io pi;
bzero(&pi, sizeof(pi));
pi.pi_sel = *sel;
pi.pi_reg = reg;
pi.pi_width = width;
if (ioctl(pcifd, PCIOCREAD, &pi) < 0)
return (0); /* XXX */
else
return (pi.pi_data);
}
static void
write_config(const struct pcisel *sel, long reg, int width, uint32_t data)
{
struct pci_io pi;
bzero(&pi, sizeof(pi));
pi.pi_sel = *sel;
pi.pi_reg = reg;
pi.pi_width = width;
pi.pi_data = data;
(void)ioctl(pcifd, PCIOCWRITE, &pi); /* XXX */
}
#ifdef LEGACY_SUPPORT
static int
passthru_add_msicap(struct pci_devinst *pi, int msgnum, int nextptr)
{
int capoff, i;
struct msicap msicap;
u_char *capdata;
pci_populate_msicap(&msicap, msgnum, nextptr);
/*
* XXX
* Copy the msi capability structure in the last 16 bytes of the
* config space. This is wrong because it could shadow something
* useful to the device.
*/
capoff = 256 - roundup(sizeof(msicap), 4);
capdata = (u_char *)&msicap;
for (i = 0; i < sizeof(msicap); i++)
pci_set_cfgdata8(pi, capoff + i, capdata[i]);
return (capoff);
}
#endif /* LEGACY_SUPPORT */
static int
cfginitmsi(struct passthru_softc *sc)
{
int i, ptr, capptr, cap, sts, caplen, table_size;
uint32_t u32;
struct pcisel sel;
struct pci_devinst *pi;
struct msixcap msixcap;
uint32_t *msixcap_ptr;
pi = sc->psc_pi;
sel = sc->psc_sel;
/*
* Parse the capabilities and cache the location of the MSI
* and MSI-X capabilities.
*/
sts = read_config(&sel, PCIR_STATUS, 2);
if (sts & PCIM_STATUS_CAPPRESENT) {
ptr = read_config(&sel, PCIR_CAP_PTR, 1);
while (ptr != 0 && ptr != 0xff) {
cap = read_config(&sel, ptr + PCICAP_ID, 1);
if (cap == PCIY_MSI) {
/*
* Copy the MSI capability into the config
* space of the emulated pci device
*/
sc->psc_msi.capoff = ptr;
sc->psc_msi.msgctrl = read_config(&sel,
ptr + 2, 2);
sc->psc_msi.emulated = 0;
caplen = msi_caplen(sc->psc_msi.msgctrl);
capptr = ptr;
while (caplen > 0) {
u32 = read_config(&sel, capptr, 4);
pci_set_cfgdata32(pi, capptr, u32);
caplen -= 4;
capptr += 4;
}
} else if (cap == PCIY_MSIX) {
/*
* Copy the MSI-X capability
*/
sc->psc_msix.capoff = ptr;
caplen = 12;
msixcap_ptr = (uint32_t*) &msixcap;
capptr = ptr;
while (caplen > 0) {
u32 = read_config(&sel, capptr, 4);
*msixcap_ptr = u32;
pci_set_cfgdata32(pi, capptr, u32);
caplen -= 4;
capptr += 4;
msixcap_ptr++;
}
}
ptr = read_config(&sel, ptr + PCICAP_NEXTPTR, 1);
}
}
if (sc->psc_msix.capoff != 0) {
pi->pi_msix.pba_bar =
msixcap.pba_info & PCIM_MSIX_BIR_MASK;
pi->pi_msix.pba_offset =
msixcap.pba_info & ~PCIM_MSIX_BIR_MASK;
pi->pi_msix.table_bar =
msixcap.table_info & PCIM_MSIX_BIR_MASK;
pi->pi_msix.table_offset =
msixcap.table_info & ~PCIM_MSIX_BIR_MASK;
pi->pi_msix.table_count = MSIX_TABLE_COUNT(msixcap.msgctrl);
pi->pi_msix.pba_size = PBA_SIZE(pi->pi_msix.table_count);
/* Allocate the emulated MSI-X table array */
table_size = pi->pi_msix.table_count * MSIX_TABLE_ENTRY_SIZE;
pi->pi_msix.table = calloc(1, table_size);
/* Mask all table entries */
for (i = 0; i < pi->pi_msix.table_count; i++) {
pi->pi_msix.table[i].vector_control |=
PCIM_MSIX_VCTRL_MASK;
}
}
#ifdef LEGACY_SUPPORT
/*
* If the passthrough device does not support MSI then craft a
* MSI capability for it. We link the new MSI capability at the
* head of the list of capabilities.
*/
if ((sts & PCIM_STATUS_CAPPRESENT) != 0 && sc->psc_msi.capoff == 0) {
int origptr, msiptr;
origptr = read_config(&sel, PCIR_CAP_PTR, 1);
msiptr = passthru_add_msicap(pi, 1, origptr);
sc->psc_msi.capoff = msiptr;
sc->psc_msi.msgctrl = pci_get_cfgdata16(pi, msiptr + 2);
sc->psc_msi.emulated = 1;
pci_set_cfgdata8(pi, PCIR_CAP_PTR, msiptr);
}
#endif
/* Make sure one of the capabilities is present */
if (sc->psc_msi.capoff == 0 && sc->psc_msix.capoff == 0)
return (-1);
else
return (0);
}
static uint64_t
msix_table_read(struct passthru_softc *sc, uint64_t offset, int size)
{
struct pci_devinst *pi;
struct msix_table_entry *entry;
uint8_t *src8;
uint16_t *src16;
uint32_t *src32;
uint64_t *src64;
uint64_t data;
size_t entry_offset;
uint32_t table_offset;
int index, table_count;
pi = sc->psc_pi;
table_offset = pi->pi_msix.table_offset;
table_count = pi->pi_msix.table_count;
if (offset < table_offset ||
offset >= table_offset + table_count * MSIX_TABLE_ENTRY_SIZE) {
switch (size) {
case 1:
src8 = (uint8_t *)(pi->pi_msix.mapped_addr + offset);
data = *src8;
break;
case 2:
src16 = (uint16_t *)(pi->pi_msix.mapped_addr + offset);
data = *src16;
break;
case 4:
src32 = (uint32_t *)(pi->pi_msix.mapped_addr + offset);
data = *src32;
break;
case 8:
src64 = (uint64_t *)(pi->pi_msix.mapped_addr + offset);
data = *src64;
break;
default:
return (-1);
}
return (data);
}
offset -= table_offset;
index = offset / MSIX_TABLE_ENTRY_SIZE;
assert(index < table_count);
entry = &pi->pi_msix.table[index];
entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
switch (size) {
case 1:
src8 = (uint8_t *)((uint8_t *)entry + entry_offset);
data = *src8;
break;
case 2:
src16 = (uint16_t *)((uint8_t *)entry + entry_offset);
data = *src16;
break;
case 4:
src32 = (uint32_t *)((uint8_t *)entry + entry_offset);
data = *src32;
break;
case 8:
src64 = (uint64_t *)((uint8_t *)entry + entry_offset);
data = *src64;
break;
default:
return (-1);
}
return (data);
}
static void
msix_table_write(struct vmctx *ctx, int vcpu, struct passthru_softc *sc,
uint64_t offset, int size, uint64_t data)
{
struct pci_devinst *pi;
struct msix_table_entry *entry;
uint8_t *dest8;
uint16_t *dest16;
uint32_t *dest32;
uint64_t *dest64;
size_t entry_offset;
uint32_t table_offset, vector_control;
int index, table_count;
pi = sc->psc_pi;
table_offset = pi->pi_msix.table_offset;
table_count = pi->pi_msix.table_count;
if (offset < table_offset ||
offset >= table_offset + table_count * MSIX_TABLE_ENTRY_SIZE) {
switch (size) {
case 1:
dest8 = (uint8_t *)(pi->pi_msix.mapped_addr + offset);
*dest8 = data;
break;
case 2:
dest16 = (uint16_t *)(pi->pi_msix.mapped_addr + offset);
*dest16 = data;
break;
case 4:
dest32 = (uint32_t *)(pi->pi_msix.mapped_addr + offset);
*dest32 = data;
break;
case 8:
dest64 = (uint64_t *)(pi->pi_msix.mapped_addr + offset);
*dest64 = data;
break;
}
return;
}
offset -= table_offset;
index = offset / MSIX_TABLE_ENTRY_SIZE;
assert(index < table_count);
entry = &pi->pi_msix.table[index];
entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
/* Only 4 byte naturally-aligned writes are supported */
assert(size == 4);
assert(entry_offset % 4 == 0);
vector_control = entry->vector_control;
dest32 = (uint32_t *)((void *)entry + entry_offset);
*dest32 = data;
/* If MSI-X hasn't been enabled, do nothing */
if (pi->pi_msix.enabled) {
/* If the entry is masked, don't set it up */
if ((entry->vector_control & PCIM_MSIX_VCTRL_MASK) == 0 ||
(vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
(void)vm_setup_pptdev_msix(ctx, vcpu,
sc->psc_sel.pc_bus, sc->psc_sel.pc_dev,
sc->psc_sel.pc_func, index, entry->addr,
entry->msg_data, entry->vector_control);
}
}
}
static int
init_msix_table(struct vmctx *ctx, struct passthru_softc *sc)
{
struct pci_devinst *pi = sc->psc_pi;
struct pci_bar_mmap pbm;
int b, s, f;
uint32_t table_size, table_offset;
assert(pci_msix_table_bar(pi) >= 0 && pci_msix_pba_bar(pi) >= 0);
b = sc->psc_sel.pc_bus;
s = sc->psc_sel.pc_dev;
f = sc->psc_sel.pc_func;
/*
* Map the region of the BAR containing the MSI-X table. This is
* necessary for two reasons:
* 1. The PBA may reside in the first or last page containing the MSI-X
* table.
* 2. While PCI devices are not supposed to use the page(s) containing
* the MSI-X table for other purposes, some do in practice.
*/
memset(&pbm, 0, sizeof(pbm));
pbm.pbm_sel = sc->psc_sel;
pbm.pbm_flags = PCIIO_BAR_MMAP_RW;
pbm.pbm_reg = PCIR_BAR(pi->pi_msix.table_bar);
pbm.pbm_memattr = VM_MEMATTR_DEVICE;
if (ioctl(pcifd, PCIOCBARMMAP, &pbm) != 0) {
warn("Failed to map MSI-X table BAR on %d/%d/%d", b, s, f);
return (-1);
}
assert(pbm.pbm_bar_off == 0);
pi->pi_msix.mapped_addr = (uint8_t *)(uintptr_t)pbm.pbm_map_base;
pi->pi_msix.mapped_size = pbm.pbm_map_length;
table_offset = rounddown2(pi->pi_msix.table_offset, 4096);
table_size = pi->pi_msix.table_offset - table_offset;
table_size += pi->pi_msix.table_count * MSIX_TABLE_ENTRY_SIZE;
table_size = roundup2(table_size, 4096);
/*
* Unmap any pages not containing the table, we do not need to emulate
* accesses to them. Avoid releasing address space to help ensure that
* a buggy out-of-bounds access causes a crash.
*/
if (table_offset != 0)
if (mprotect(pi->pi_msix.mapped_addr, table_offset,
PROT_NONE) != 0)
warn("Failed to unmap MSI-X table BAR region");
if (table_offset + table_size != pi->pi_msix.mapped_size)
if (mprotect(
pi->pi_msix.mapped_addr + table_offset + table_size,
pi->pi_msix.mapped_size - (table_offset + table_size),
PROT_NONE) != 0)
warn("Failed to unmap MSI-X table BAR region");
return (0);
}
static int
cfginitbar(struct vmctx *ctx, struct passthru_softc *sc)
{
int i, error;
struct pci_devinst *pi;
struct pci_bar_io bar;
enum pcibar_type bartype;
uint64_t base, size;
pi = sc->psc_pi;
/*
* Initialize BAR registers
*/
for (i = 0; i <= PCI_BARMAX; i++) {
bzero(&bar, sizeof(bar));
bar.pbi_sel = sc->psc_sel;
bar.pbi_reg = PCIR_BAR(i);
if (ioctl(pcifd, PCIOCGETBAR, &bar) < 0)
continue;
if (PCI_BAR_IO(bar.pbi_base)) {
bartype = PCIBAR_IO;
base = bar.pbi_base & PCIM_BAR_IO_BASE;
} else {
switch (bar.pbi_base & PCIM_BAR_MEM_TYPE) {
case PCIM_BAR_MEM_64:
bartype = PCIBAR_MEM64;
break;
default:
bartype = PCIBAR_MEM32;
break;
}
base = bar.pbi_base & PCIM_BAR_MEM_BASE;
}
size = bar.pbi_length;
if (bartype != PCIBAR_IO) {
if (((base | size) & PAGE_MASK) != 0) {
warnx("passthru device %d/%d/%d BAR %d: "
"base %#lx or size %#lx not page aligned\n",
sc->psc_sel.pc_bus, sc->psc_sel.pc_dev,
sc->psc_sel.pc_func, i, base, size);
return (-1);
}
}
/* Cache information about the "real" BAR */
sc->psc_bar[i].type = bartype;
sc->psc_bar[i].size = size;
sc->psc_bar[i].addr = base;
sc->psc_bar[i].lobits = 0;
/* Allocate the BAR in the guest I/O or MMIO space */
error = pci_emul_alloc_bar(pi, i, bartype, size);
if (error)
return (-1);
/* Use same lobits as physical bar */
uint8_t lobits = read_config(&sc->psc_sel, PCIR_BAR(i), 0x01);
if (bartype == PCIBAR_MEM32 || bartype == PCIBAR_MEM64) {
lobits &= ~PCIM_BAR_MEM_BASE;
} else {
lobits &= ~PCIM_BAR_IO_BASE;
}
sc->psc_bar[i].lobits = lobits;
pi->pi_bar[i].lobits = lobits;
/*
* 64-bit BAR takes up two slots so skip the next one.
*/
if (bartype == PCIBAR_MEM64) {
i++;
assert(i <= PCI_BARMAX);
sc->psc_bar[i].type = PCIBAR_MEMHI64;
}
}
return (0);
}
static int
cfginit(struct vmctx *ctx, struct pci_devinst *pi, int bus, int slot, int func)
{
int error;
struct passthru_softc *sc;
error = 1;
sc = pi->pi_arg;
bzero(&sc->psc_sel, sizeof(struct pcisel));
sc->psc_sel.pc_bus = bus;
sc->psc_sel.pc_dev = slot;
sc->psc_sel.pc_func = func;
if (cfginitmsi(sc) != 0) {
warnx("failed to initialize MSI for PCI %d/%d/%d",
bus, slot, func);
goto done;
}
if (cfginitbar(ctx, sc) != 0) {
warnx("failed to initialize BARs for PCI %d/%d/%d",
bus, slot, func);
goto done;
}
write_config(&sc->psc_sel, PCIR_COMMAND, 2,
pci_get_cfgdata16(pi, PCIR_COMMAND));
/*
* We need to do this after PCIR_COMMAND got possibly updated, e.g.,
* a BAR was enabled, as otherwise the PCIOCBARMMAP might fail on us.
*/
if (pci_msix_table_bar(pi) >= 0) {
error = init_msix_table(ctx, sc);
if (error != 0) {
warnx(
"failed to initialize MSI-X table for PCI %d/%d/%d: %d",
bus, slot, func, error);
goto done;
}
}
error = 0; /* success */
done:
return (error);
}
static int
passthru_legacy_config(nvlist_t *nvl, const char *opts)
{
char value[16];
int bus, slot, func;
if (opts == NULL)
return (0);
if (sscanf(opts, "%d/%d/%d", &bus, &slot, &func) != 3) {
EPRINTLN("passthru: invalid options \"%s\"", opts);
return (-1);
}
snprintf(value, sizeof(value), "%d", bus);
set_config_value_node(nvl, "bus", value);
snprintf(value, sizeof(value), "%d", slot);
set_config_value_node(nvl, "slot", value);
snprintf(value, sizeof(value), "%d", func);
set_config_value_node(nvl, "func", value);
return (0);
}
static int
passthru_init(struct vmctx *ctx, struct pci_devinst *pi, nvlist_t *nvl)
{
int bus, slot, func, error, memflags;
struct passthru_softc *sc;
const char *value;
#ifndef WITHOUT_CAPSICUM
cap_rights_t rights;
cap_ioctl_t pci_ioctls[] =
{ PCIOCREAD, PCIOCWRITE, PCIOCGETBAR, PCIOCBARIO, PCIOCBARMMAP };
#endif
sc = NULL;
error = 1;
#ifndef WITHOUT_CAPSICUM
cap_rights_init(&rights, CAP_IOCTL, CAP_READ, CAP_WRITE);
#endif
memflags = vm_get_memflags(ctx);
if (!(memflags & VM_MEM_F_WIRED)) {
warnx("passthru requires guest memory to be wired");
return (error);
}
if (pcifd < 0) {
pcifd = open(_PATH_DEVPCI, O_RDWR, 0);
if (pcifd < 0) {
warn("failed to open %s", _PATH_DEVPCI);
return (error);
}
}
#ifndef WITHOUT_CAPSICUM
if (caph_rights_limit(pcifd, &rights) == -1)
errx(EX_OSERR, "Unable to apply rights for sandbox");
if (caph_ioctls_limit(pcifd, pci_ioctls, nitems(pci_ioctls)) == -1)
errx(EX_OSERR, "Unable to apply rights for sandbox");
#endif
#define GET_INT_CONFIG(var, name) do { \
value = get_config_value_node(nvl, name); \
if (value == NULL) { \
EPRINTLN("passthru: missing required %s setting", name); \
return (error); \
} \
var = atoi(value); \
} while (0)
GET_INT_CONFIG(bus, "bus");
GET_INT_CONFIG(slot, "slot");
GET_INT_CONFIG(func, "func");
if (vm_assign_pptdev(ctx, bus, slot, func) != 0) {
warnx("PCI device at %d/%d/%d is not using the ppt(4) driver",
bus, slot, func);
goto done;
}
sc = calloc(1, sizeof(struct passthru_softc));
pi->pi_arg = sc;
sc->psc_pi = pi;
/* initialize config space */
error = cfginit(ctx, pi, bus, slot, func);
done:
if (error) {
free(sc);
vm_unassign_pptdev(ctx, bus, slot, func);
}
return (error);
}
static int
bar_access(int coff)
{
if (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1))
return (1);
else
return (0);
}
static int
msicap_access(struct passthru_softc *sc, int coff)
{
int caplen;
if (sc->psc_msi.capoff == 0)
return (0);
caplen = msi_caplen(sc->psc_msi.msgctrl);
if (coff >= sc->psc_msi.capoff && coff < sc->psc_msi.capoff + caplen)
return (1);
else
return (0);
}
static int
msixcap_access(struct passthru_softc *sc, int coff)
{
if (sc->psc_msix.capoff == 0)
return (0);
return (coff >= sc->psc_msix.capoff &&
coff < sc->psc_msix.capoff + MSIX_CAPLEN);
}
static int
passthru_cfgread(struct vmctx *ctx, int vcpu, struct pci_devinst *pi,
int coff, int bytes, uint32_t *rv)
{
struct passthru_softc *sc;
sc = pi->pi_arg;
/*
* PCI BARs and MSI capability is emulated.
*/
if (bar_access(coff) || msicap_access(sc, coff) ||
msixcap_access(sc, coff))
return (-1);
#ifdef LEGACY_SUPPORT
/*
* Emulate PCIR_CAP_PTR if this device does not support MSI capability
* natively.
*/
if (sc->psc_msi.emulated) {
if (coff >= PCIR_CAP_PTR && coff < PCIR_CAP_PTR + 4)
return (-1);
}
#endif
/*
* Emulate the command register. If a single read reads both the
* command and status registers, read the status register from the
* device's config space.
*/
if (coff == PCIR_COMMAND) {
if (bytes <= 2)
return (-1);
*rv = read_config(&sc->psc_sel, PCIR_STATUS, 2) << 16 |
pci_get_cfgdata16(pi, PCIR_COMMAND);
return (0);
}
/* Everything else just read from the device's config space */
*rv = read_config(&sc->psc_sel, coff, bytes);
return (0);
}
static int
passthru_cfgwrite(struct vmctx *ctx, int vcpu, struct pci_devinst *pi,
int coff, int bytes, uint32_t val)
{
int error, msix_table_entries, i;
struct passthru_softc *sc;
uint16_t cmd_old;
sc = pi->pi_arg;
/*
* PCI BARs are emulated
*/
if (bar_access(coff))
return (-1);
/*
* MSI capability is emulated
*/
if (msicap_access(sc, coff)) {
pci_emul_capwrite(pi, coff, bytes, val, sc->psc_msi.capoff,
PCIY_MSI);
error = vm_setup_pptdev_msi(ctx, vcpu, sc->psc_sel.pc_bus,
sc->psc_sel.pc_dev, sc->psc_sel.pc_func,
pi->pi_msi.addr, pi->pi_msi.msg_data,
pi->pi_msi.maxmsgnum);
if (error != 0)
err(1, "vm_setup_pptdev_msi");
return (0);
}
if (msixcap_access(sc, coff)) {
pci_emul_capwrite(pi, coff, bytes, val, sc->psc_msix.capoff,
PCIY_MSIX);
if (pi->pi_msix.enabled) {
msix_table_entries = pi->pi_msix.table_count;
for (i = 0; i < msix_table_entries; i++) {
error = vm_setup_pptdev_msix(ctx, vcpu,
sc->psc_sel.pc_bus, sc->psc_sel.pc_dev,
sc->psc_sel.pc_func, i,
pi->pi_msix.table[i].addr,
pi->pi_msix.table[i].msg_data,
pi->pi_msix.table[i].vector_control);
if (error)
err(1, "vm_setup_pptdev_msix");
}
} else {
error = vm_disable_pptdev_msix(ctx, sc->psc_sel.pc_bus,
sc->psc_sel.pc_dev, sc->psc_sel.pc_func);
if (error)
err(1, "vm_disable_pptdev_msix");
}
return (0);
}
#ifdef LEGACY_SUPPORT
/*
* If this device does not support MSI natively then we cannot let
* the guest disable legacy interrupts from the device. It is the
* legacy interrupt that is triggering the virtual MSI to the guest.
*/
if (sc->psc_msi.emulated && pci_msi_enabled(pi)) {
if (coff == PCIR_COMMAND && bytes == 2)
val &= ~PCIM_CMD_INTxDIS;
}
#endif
write_config(&sc->psc_sel, coff, bytes, val);
if (coff == PCIR_COMMAND) {
cmd_old = pci_get_cfgdata16(pi, PCIR_COMMAND);
if (bytes == 1)
pci_set_cfgdata8(pi, PCIR_COMMAND, val);
else if (bytes == 2)
pci_set_cfgdata16(pi, PCIR_COMMAND, val);
pci_emul_cmd_changed(pi, cmd_old);
}
return (0);
}
static void
passthru_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
uint64_t offset, int size, uint64_t value)
{
struct passthru_softc *sc;
struct pci_bar_ioreq pio;
sc = pi->pi_arg;
if (baridx == pci_msix_table_bar(pi)) {
msix_table_write(ctx, vcpu, sc, offset, size, value);
} else {
assert(pi->pi_bar[baridx].type == PCIBAR_IO);
assert(size == 1 || size == 2 || size == 4);
assert(offset <= UINT32_MAX && offset + size <= UINT32_MAX);
bzero(&pio, sizeof(pio));
pio.pbi_sel = sc->psc_sel;
pio.pbi_op = PCIBARIO_WRITE;
pio.pbi_bar = baridx;
pio.pbi_offset = (uint32_t)offset;
pio.pbi_width = size;
pio.pbi_value = (uint32_t)value;
(void)ioctl(pcifd, PCIOCBARIO, &pio);
}
}
static uint64_t
passthru_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
uint64_t offset, int size)
{
struct passthru_softc *sc;
struct pci_bar_ioreq pio;
uint64_t val;
sc = pi->pi_arg;
if (baridx == pci_msix_table_bar(pi)) {
val = msix_table_read(sc, offset, size);
} else {
assert(pi->pi_bar[baridx].type == PCIBAR_IO);
assert(size == 1 || size == 2 || size == 4);
assert(offset <= UINT32_MAX && offset + size <= UINT32_MAX);
bzero(&pio, sizeof(pio));
pio.pbi_sel = sc->psc_sel;
pio.pbi_op = PCIBARIO_READ;
pio.pbi_bar = baridx;
pio.pbi_offset = (uint32_t)offset;
pio.pbi_width = size;
(void)ioctl(pcifd, PCIOCBARIO, &pio);
val = pio.pbi_value;
}
return (val);
}
static void
passthru_msix_addr(struct vmctx *ctx, struct pci_devinst *pi, int baridx,
int enabled, uint64_t address)
{
struct passthru_softc *sc;
size_t remaining;
uint32_t table_size, table_offset;
sc = pi->pi_arg;
table_offset = rounddown2(pi->pi_msix.table_offset, 4096);
if (table_offset > 0) {
if (!enabled) {
if (vm_unmap_pptdev_mmio(ctx, sc->psc_sel.pc_bus,
sc->psc_sel.pc_dev,
sc->psc_sel.pc_func, address,
table_offset) != 0)
warnx("pci_passthru: unmap_pptdev_mmio failed");
} else {
if (vm_map_pptdev_mmio(ctx, sc->psc_sel.pc_bus,
sc->psc_sel.pc_dev,
sc->psc_sel.pc_func, address,
table_offset,
sc->psc_bar[baridx].addr) != 0)
warnx("pci_passthru: map_pptdev_mmio failed");
}
}
table_size = pi->pi_msix.table_offset - table_offset;
table_size += pi->pi_msix.table_count * MSIX_TABLE_ENTRY_SIZE;
table_size = roundup2(table_size, 4096);
remaining = pi->pi_bar[baridx].size - table_offset - table_size;
if (remaining > 0) {
address += table_offset + table_size;
if (!enabled) {
if (vm_unmap_pptdev_mmio(ctx, sc->psc_sel.pc_bus,
sc->psc_sel.pc_dev,
sc->psc_sel.pc_func, address,
remaining) != 0)
warnx("pci_passthru: unmap_pptdev_mmio failed");
} else {
if (vm_map_pptdev_mmio(ctx, sc->psc_sel.pc_bus,
sc->psc_sel.pc_dev,
sc->psc_sel.pc_func, address,
remaining,
sc->psc_bar[baridx].addr +
table_offset + table_size) != 0)
warnx("pci_passthru: map_pptdev_mmio failed");
}
}
}
static void
passthru_mmio_addr(struct vmctx *ctx, struct pci_devinst *pi, int baridx,
int enabled, uint64_t address)
{
struct passthru_softc *sc;
sc = pi->pi_arg;
if (!enabled) {
if (vm_unmap_pptdev_mmio(ctx, sc->psc_sel.pc_bus,
sc->psc_sel.pc_dev,
sc->psc_sel.pc_func, address,
sc->psc_bar[baridx].size) != 0)
warnx("pci_passthru: unmap_pptdev_mmio failed");
} else {
if (vm_map_pptdev_mmio(ctx, sc->psc_sel.pc_bus,
sc->psc_sel.pc_dev,
sc->psc_sel.pc_func, address,
sc->psc_bar[baridx].size,
sc->psc_bar[baridx].addr) != 0)
warnx("pci_passthru: map_pptdev_mmio failed");
}
}
static void
passthru_addr(struct vmctx *ctx, struct pci_devinst *pi, int baridx,
int enabled, uint64_t address)
{
if (pi->pi_bar[baridx].type == PCIBAR_IO)
return;
if (baridx == pci_msix_table_bar(pi))
passthru_msix_addr(ctx, pi, baridx, enabled, address);
else
passthru_mmio_addr(ctx, pi, baridx, enabled, address);
}
struct pci_devemu passthru = {
.pe_emu = "passthru",
.pe_init = passthru_init,
.pe_legacy_config = passthru_legacy_config,
.pe_cfgwrite = passthru_cfgwrite,
.pe_cfgread = passthru_cfgread,
.pe_barwrite = passthru_write,
.pe_barread = passthru_read,
.pe_baraddr = passthru_addr,
};
PCI_EMUL_SET(passthru);