7d69783ae4
- fix warning about comparison of 'uint8_t v_tpr >= 0' always being true. - fix error triggered by an empty clobber list in the inline assembly for "clgi" and "stgi" - fix error when compiling "vmload %rax", "vmrun %rax" and "vmsave %rax". The gcc assembler does not like the explicit operand "%rax" while the clang assembler requires specifying the operand "%rax". Fix this by encoding the instructions using the ".byte" directive. Reported by: julian MFC after: 1 week
2183 lines
56 KiB
C
2183 lines
56 KiB
C
/*-
|
|
* Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
|
|
#include <machine/cpufunc.h>
|
|
#include <machine/psl.h>
|
|
#include <machine/pmap.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/specialreg.h>
|
|
#include <machine/smp.h>
|
|
#include <machine/vmm.h>
|
|
#include <machine/vmm_dev.h>
|
|
#include <machine/vmm_instruction_emul.h>
|
|
|
|
#include "vmm_lapic.h"
|
|
#include "vmm_stat.h"
|
|
#include "vmm_ktr.h"
|
|
#include "vmm_ioport.h"
|
|
#include "vatpic.h"
|
|
#include "vlapic.h"
|
|
#include "vlapic_priv.h"
|
|
|
|
#include "x86.h"
|
|
#include "vmcb.h"
|
|
#include "svm.h"
|
|
#include "svm_softc.h"
|
|
#include "svm_msr.h"
|
|
#include "npt.h"
|
|
|
|
SYSCTL_DECL(_hw_vmm);
|
|
SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW, NULL, NULL);
|
|
|
|
/*
|
|
* SVM CPUID function 0x8000_000A, edx bit decoding.
|
|
*/
|
|
#define AMD_CPUID_SVM_NP BIT(0) /* Nested paging or RVI */
|
|
#define AMD_CPUID_SVM_LBR BIT(1) /* Last branch virtualization */
|
|
#define AMD_CPUID_SVM_SVML BIT(2) /* SVM lock */
|
|
#define AMD_CPUID_SVM_NRIP_SAVE BIT(3) /* Next RIP is saved */
|
|
#define AMD_CPUID_SVM_TSC_RATE BIT(4) /* TSC rate control. */
|
|
#define AMD_CPUID_SVM_VMCB_CLEAN BIT(5) /* VMCB state caching */
|
|
#define AMD_CPUID_SVM_FLUSH_BY_ASID BIT(6) /* Flush by ASID */
|
|
#define AMD_CPUID_SVM_DECODE_ASSIST BIT(7) /* Decode assist */
|
|
#define AMD_CPUID_SVM_PAUSE_INC BIT(10) /* Pause intercept filter. */
|
|
#define AMD_CPUID_SVM_PAUSE_FTH BIT(12) /* Pause filter threshold */
|
|
#define AMD_CPUID_SVM_AVIC BIT(13) /* AVIC present */
|
|
|
|
#define VMCB_CACHE_DEFAULT (VMCB_CACHE_ASID | \
|
|
VMCB_CACHE_IOPM | \
|
|
VMCB_CACHE_I | \
|
|
VMCB_CACHE_TPR | \
|
|
VMCB_CACHE_CR2 | \
|
|
VMCB_CACHE_CR | \
|
|
VMCB_CACHE_DT | \
|
|
VMCB_CACHE_SEG | \
|
|
VMCB_CACHE_NP)
|
|
|
|
static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
|
|
SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
|
|
0, NULL);
|
|
|
|
static MALLOC_DEFINE(M_SVM, "svm", "svm");
|
|
static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
|
|
|
|
/* Per-CPU context area. */
|
|
extern struct pcpu __pcpu[];
|
|
|
|
static uint32_t svm_feature; /* AMD SVM features. */
|
|
SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RD, &svm_feature, 0,
|
|
"SVM features advertised by CPUID.8000000AH:EDX");
|
|
|
|
static int disable_npf_assist;
|
|
SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
|
|
&disable_npf_assist, 0, NULL);
|
|
|
|
/* Maximum ASIDs supported by the processor */
|
|
static uint32_t nasid;
|
|
SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RD, &nasid, 0,
|
|
"Number of ASIDs supported by this processor");
|
|
|
|
/* Current ASID generation for each host cpu */
|
|
static struct asid asid[MAXCPU];
|
|
|
|
/*
|
|
* SVM host state saved area of size 4KB for each core.
|
|
*/
|
|
static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
|
|
|
|
static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
|
|
static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
|
|
static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
|
|
|
|
static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val);
|
|
|
|
static __inline int
|
|
flush_by_asid(void)
|
|
{
|
|
|
|
return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
|
|
}
|
|
|
|
static __inline int
|
|
decode_assist(void)
|
|
{
|
|
|
|
return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
|
|
}
|
|
|
|
static void
|
|
svm_disable(void *arg __unused)
|
|
{
|
|
uint64_t efer;
|
|
|
|
efer = rdmsr(MSR_EFER);
|
|
efer &= ~EFER_SVM;
|
|
wrmsr(MSR_EFER, efer);
|
|
}
|
|
|
|
/*
|
|
* Disable SVM on all CPUs.
|
|
*/
|
|
static int
|
|
svm_cleanup(void)
|
|
{
|
|
|
|
smp_rendezvous(NULL, svm_disable, NULL, NULL);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Verify that all the features required by bhyve are available.
|
|
*/
|
|
static int
|
|
check_svm_features(void)
|
|
{
|
|
u_int regs[4];
|
|
|
|
/* CPUID Fn8000_000A is for SVM */
|
|
do_cpuid(0x8000000A, regs);
|
|
svm_feature = regs[3];
|
|
|
|
nasid = regs[1];
|
|
KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
|
|
|
|
/* bhyve requires the Nested Paging feature */
|
|
if (!(svm_feature & AMD_CPUID_SVM_NP)) {
|
|
printf("SVM: Nested Paging feature not available.\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
/* bhyve requires the NRIP Save feature */
|
|
if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
|
|
printf("SVM: NRIP Save feature not available.\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
svm_enable(void *arg __unused)
|
|
{
|
|
uint64_t efer;
|
|
|
|
efer = rdmsr(MSR_EFER);
|
|
efer |= EFER_SVM;
|
|
wrmsr(MSR_EFER, efer);
|
|
|
|
wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu]));
|
|
}
|
|
|
|
/*
|
|
* Return 1 if SVM is enabled on this processor and 0 otherwise.
|
|
*/
|
|
static int
|
|
svm_available(void)
|
|
{
|
|
uint64_t msr;
|
|
|
|
/* Section 15.4 Enabling SVM from APM2. */
|
|
if ((amd_feature2 & AMDID2_SVM) == 0) {
|
|
printf("SVM: not available.\n");
|
|
return (0);
|
|
}
|
|
|
|
msr = rdmsr(MSR_VM_CR);
|
|
if ((msr & VM_CR_SVMDIS) != 0) {
|
|
printf("SVM: disabled by BIOS.\n");
|
|
return (0);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
svm_init(int ipinum)
|
|
{
|
|
int error, cpu;
|
|
|
|
if (!svm_available())
|
|
return (ENXIO);
|
|
|
|
error = check_svm_features();
|
|
if (error)
|
|
return (error);
|
|
|
|
vmcb_clean &= VMCB_CACHE_DEFAULT;
|
|
|
|
for (cpu = 0; cpu < MAXCPU; cpu++) {
|
|
/*
|
|
* Initialize the host ASIDs to their "highest" valid values.
|
|
*
|
|
* The next ASID allocation will rollover both 'gen' and 'num'
|
|
* and start off the sequence at {1,1}.
|
|
*/
|
|
asid[cpu].gen = ~0UL;
|
|
asid[cpu].num = nasid - 1;
|
|
}
|
|
|
|
svm_msr_init();
|
|
svm_npt_init(ipinum);
|
|
|
|
/* Enable SVM on all CPUs */
|
|
smp_rendezvous(NULL, svm_enable, NULL, NULL);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
svm_restore(void)
|
|
{
|
|
|
|
svm_enable(NULL);
|
|
}
|
|
|
|
/* Pentium compatible MSRs */
|
|
#define MSR_PENTIUM_START 0
|
|
#define MSR_PENTIUM_END 0x1FFF
|
|
/* AMD 6th generation and Intel compatible MSRs */
|
|
#define MSR_AMD6TH_START 0xC0000000UL
|
|
#define MSR_AMD6TH_END 0xC0001FFFUL
|
|
/* AMD 7th and 8th generation compatible MSRs */
|
|
#define MSR_AMD7TH_START 0xC0010000UL
|
|
#define MSR_AMD7TH_END 0xC0011FFFUL
|
|
|
|
/*
|
|
* Get the index and bit position for a MSR in permission bitmap.
|
|
* Two bits are used for each MSR: lower bit for read and higher bit for write.
|
|
*/
|
|
static int
|
|
svm_msr_index(uint64_t msr, int *index, int *bit)
|
|
{
|
|
uint32_t base, off;
|
|
|
|
*index = -1;
|
|
*bit = (msr % 4) * 2;
|
|
base = 0;
|
|
|
|
if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
|
|
*index = msr / 4;
|
|
return (0);
|
|
}
|
|
|
|
base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
|
|
if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
|
|
off = (msr - MSR_AMD6TH_START);
|
|
*index = (off + base) / 4;
|
|
return (0);
|
|
}
|
|
|
|
base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
|
|
if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
|
|
off = (msr - MSR_AMD7TH_START);
|
|
*index = (off + base) / 4;
|
|
return (0);
|
|
}
|
|
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
|
|
*/
|
|
static void
|
|
svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
|
|
{
|
|
int index, bit, error;
|
|
|
|
error = svm_msr_index(msr, &index, &bit);
|
|
KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
|
|
KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
|
|
("%s: invalid index %d for msr %#lx", __func__, index, msr));
|
|
KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
|
|
"msr %#lx", __func__, bit, msr));
|
|
|
|
if (read)
|
|
perm_bitmap[index] &= ~(1UL << bit);
|
|
|
|
if (write)
|
|
perm_bitmap[index] &= ~(2UL << bit);
|
|
}
|
|
|
|
static void
|
|
svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
|
|
{
|
|
|
|
svm_msr_perm(perm_bitmap, msr, true, true);
|
|
}
|
|
|
|
static void
|
|
svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
|
|
{
|
|
|
|
svm_msr_perm(perm_bitmap, msr, true, false);
|
|
}
|
|
|
|
static __inline int
|
|
svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask)
|
|
{
|
|
struct vmcb_ctrl *ctrl;
|
|
|
|
KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
|
|
|
|
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
|
|
return (ctrl->intercept[idx] & bitmask ? 1 : 0);
|
|
}
|
|
|
|
static __inline void
|
|
svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask,
|
|
int enabled)
|
|
{
|
|
struct vmcb_ctrl *ctrl;
|
|
uint32_t oldval;
|
|
|
|
KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
|
|
|
|
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
|
|
oldval = ctrl->intercept[idx];
|
|
|
|
if (enabled)
|
|
ctrl->intercept[idx] |= bitmask;
|
|
else
|
|
ctrl->intercept[idx] &= ~bitmask;
|
|
|
|
if (ctrl->intercept[idx] != oldval) {
|
|
svm_set_dirty(sc, vcpu, VMCB_CACHE_I);
|
|
VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified "
|
|
"from %#x to %#x", idx, oldval, ctrl->intercept[idx]);
|
|
}
|
|
}
|
|
|
|
static __inline void
|
|
svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
|
|
{
|
|
|
|
svm_set_intercept(sc, vcpu, off, bitmask, 0);
|
|
}
|
|
|
|
static __inline void
|
|
svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
|
|
{
|
|
|
|
svm_set_intercept(sc, vcpu, off, bitmask, 1);
|
|
}
|
|
|
|
static void
|
|
vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa,
|
|
uint64_t msrpm_base_pa, uint64_t np_pml4)
|
|
{
|
|
struct vmcb_ctrl *ctrl;
|
|
struct vmcb_state *state;
|
|
uint32_t mask;
|
|
int n;
|
|
|
|
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
|
|
state = svm_get_vmcb_state(sc, vcpu);
|
|
|
|
ctrl->iopm_base_pa = iopm_base_pa;
|
|
ctrl->msrpm_base_pa = msrpm_base_pa;
|
|
|
|
/* Enable nested paging */
|
|
ctrl->np_enable = 1;
|
|
ctrl->n_cr3 = np_pml4;
|
|
|
|
/*
|
|
* Intercept accesses to the control registers that are not shadowed
|
|
* in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
|
|
*/
|
|
for (n = 0; n < 16; n++) {
|
|
mask = (BIT(n) << 16) | BIT(n);
|
|
if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
|
|
svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
|
|
else
|
|
svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
|
|
}
|
|
|
|
|
|
/*
|
|
* Intercept everything when tracing guest exceptions otherwise
|
|
* just intercept machine check exception.
|
|
*/
|
|
if (vcpu_trace_exceptions(sc->vm, vcpu)) {
|
|
for (n = 0; n < 32; n++) {
|
|
/*
|
|
* Skip unimplemented vectors in the exception bitmap.
|
|
*/
|
|
if (n == 2 || n == 9) {
|
|
continue;
|
|
}
|
|
svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n));
|
|
}
|
|
} else {
|
|
svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
|
|
}
|
|
|
|
/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
|
|
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
|
|
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
|
|
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
|
|
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
|
|
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
|
|
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
|
|
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
|
|
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
|
|
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
|
|
VMCB_INTCPT_FERR_FREEZE);
|
|
|
|
svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
|
|
svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
|
|
|
|
/*
|
|
* From section "Canonicalization and Consistency Checks" in APMv2
|
|
* the VMRUN intercept bit must be set to pass the consistency check.
|
|
*/
|
|
svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
|
|
|
|
/*
|
|
* The ASID will be set to a non-zero value just before VMRUN.
|
|
*/
|
|
ctrl->asid = 0;
|
|
|
|
/*
|
|
* Section 15.21.1, Interrupt Masking in EFLAGS
|
|
* Section 15.21.2, Virtualizing APIC.TPR
|
|
*
|
|
* This must be set for %rflag and %cr8 isolation of guest and host.
|
|
*/
|
|
ctrl->v_intr_masking = 1;
|
|
|
|
/* Enable Last Branch Record aka LBR for debugging */
|
|
ctrl->lbr_virt_en = 1;
|
|
state->dbgctl = BIT(0);
|
|
|
|
/* EFER_SVM must always be set when the guest is executing */
|
|
state->efer = EFER_SVM;
|
|
|
|
/* Set up the PAT to power-on state */
|
|
state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK) |
|
|
PAT_VALUE(1, PAT_WRITE_THROUGH) |
|
|
PAT_VALUE(2, PAT_UNCACHED) |
|
|
PAT_VALUE(3, PAT_UNCACHEABLE) |
|
|
PAT_VALUE(4, PAT_WRITE_BACK) |
|
|
PAT_VALUE(5, PAT_WRITE_THROUGH) |
|
|
PAT_VALUE(6, PAT_UNCACHED) |
|
|
PAT_VALUE(7, PAT_UNCACHEABLE);
|
|
}
|
|
|
|
/*
|
|
* Initialize a virtual machine.
|
|
*/
|
|
static void *
|
|
svm_vminit(struct vm *vm, pmap_t pmap)
|
|
{
|
|
struct svm_softc *svm_sc;
|
|
struct svm_vcpu *vcpu;
|
|
vm_paddr_t msrpm_pa, iopm_pa, pml4_pa;
|
|
int i;
|
|
|
|
svm_sc = malloc(sizeof (struct svm_softc), M_SVM, M_WAITOK | M_ZERO);
|
|
svm_sc->vm = vm;
|
|
svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4);
|
|
|
|
/*
|
|
* Intercept read and write accesses to all MSRs.
|
|
*/
|
|
memset(svm_sc->msr_bitmap, 0xFF, sizeof(svm_sc->msr_bitmap));
|
|
|
|
/*
|
|
* Access to the following MSRs is redirected to the VMCB when the
|
|
* guest is executing. Therefore it is safe to allow the guest to
|
|
* read/write these MSRs directly without hypervisor involvement.
|
|
*/
|
|
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
|
|
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
|
|
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
|
|
|
|
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
|
|
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
|
|
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
|
|
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
|
|
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
|
|
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
|
|
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
|
|
svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
|
|
|
|
svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
|
|
|
|
/*
|
|
* Intercept writes to make sure that the EFER_SVM bit is not cleared.
|
|
*/
|
|
svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
|
|
|
|
/* Intercept access to all I/O ports. */
|
|
memset(svm_sc->iopm_bitmap, 0xFF, sizeof(svm_sc->iopm_bitmap));
|
|
|
|
iopm_pa = vtophys(svm_sc->iopm_bitmap);
|
|
msrpm_pa = vtophys(svm_sc->msr_bitmap);
|
|
pml4_pa = svm_sc->nptp;
|
|
for (i = 0; i < VM_MAXCPU; i++) {
|
|
vcpu = svm_get_vcpu(svm_sc, i);
|
|
vcpu->nextrip = ~0;
|
|
vcpu->lastcpu = NOCPU;
|
|
vcpu->vmcb_pa = vtophys(&vcpu->vmcb);
|
|
vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa);
|
|
svm_msr_guest_init(svm_sc, i);
|
|
}
|
|
return (svm_sc);
|
|
}
|
|
|
|
static int
|
|
svm_cpl(struct vmcb_state *state)
|
|
{
|
|
|
|
/*
|
|
* From APMv2:
|
|
* "Retrieve the CPL from the CPL field in the VMCB, not
|
|
* from any segment DPL"
|
|
*/
|
|
return (state->cpl);
|
|
}
|
|
|
|
static enum vm_cpu_mode
|
|
svm_vcpu_mode(struct vmcb *vmcb)
|
|
{
|
|
struct vmcb_segment seg;
|
|
struct vmcb_state *state;
|
|
int error;
|
|
|
|
state = &vmcb->state;
|
|
|
|
if (state->efer & EFER_LMA) {
|
|
error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
|
|
KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
|
|
error));
|
|
|
|
/*
|
|
* Section 4.8.1 for APM2, check if Code Segment has
|
|
* Long attribute set in descriptor.
|
|
*/
|
|
if (seg.attrib & VMCB_CS_ATTRIB_L)
|
|
return (CPU_MODE_64BIT);
|
|
else
|
|
return (CPU_MODE_COMPATIBILITY);
|
|
} else if (state->cr0 & CR0_PE) {
|
|
return (CPU_MODE_PROTECTED);
|
|
} else {
|
|
return (CPU_MODE_REAL);
|
|
}
|
|
}
|
|
|
|
static enum vm_paging_mode
|
|
svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
|
|
{
|
|
|
|
if ((cr0 & CR0_PG) == 0)
|
|
return (PAGING_MODE_FLAT);
|
|
if ((cr4 & CR4_PAE) == 0)
|
|
return (PAGING_MODE_32);
|
|
if (efer & EFER_LME)
|
|
return (PAGING_MODE_64);
|
|
else
|
|
return (PAGING_MODE_PAE);
|
|
}
|
|
|
|
/*
|
|
* ins/outs utility routines
|
|
*/
|
|
static uint64_t
|
|
svm_inout_str_index(struct svm_regctx *regs, int in)
|
|
{
|
|
uint64_t val;
|
|
|
|
val = in ? regs->sctx_rdi : regs->sctx_rsi;
|
|
|
|
return (val);
|
|
}
|
|
|
|
static uint64_t
|
|
svm_inout_str_count(struct svm_regctx *regs, int rep)
|
|
{
|
|
uint64_t val;
|
|
|
|
val = rep ? regs->sctx_rcx : 1;
|
|
|
|
return (val);
|
|
}
|
|
|
|
static void
|
|
svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1,
|
|
int in, struct vm_inout_str *vis)
|
|
{
|
|
int error, s;
|
|
|
|
if (in) {
|
|
vis->seg_name = VM_REG_GUEST_ES;
|
|
} else {
|
|
/* The segment field has standard encoding */
|
|
s = (info1 >> 10) & 0x7;
|
|
vis->seg_name = vm_segment_name(s);
|
|
}
|
|
|
|
error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc);
|
|
KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
|
|
}
|
|
|
|
static int
|
|
svm_inout_str_addrsize(uint64_t info1)
|
|
{
|
|
uint32_t size;
|
|
|
|
size = (info1 >> 7) & 0x7;
|
|
switch (size) {
|
|
case 1:
|
|
return (2); /* 16 bit */
|
|
case 2:
|
|
return (4); /* 32 bit */
|
|
case 4:
|
|
return (8); /* 64 bit */
|
|
default:
|
|
panic("%s: invalid size encoding %d", __func__, size);
|
|
}
|
|
}
|
|
|
|
static void
|
|
svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
|
|
{
|
|
struct vmcb_state *state;
|
|
|
|
state = &vmcb->state;
|
|
paging->cr3 = state->cr3;
|
|
paging->cpl = svm_cpl(state);
|
|
paging->cpu_mode = svm_vcpu_mode(vmcb);
|
|
paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
|
|
state->efer);
|
|
}
|
|
|
|
#define UNHANDLED 0
|
|
|
|
/*
|
|
* Handle guest I/O intercept.
|
|
*/
|
|
static int
|
|
svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
|
|
{
|
|
struct vmcb_ctrl *ctrl;
|
|
struct vmcb_state *state;
|
|
struct svm_regctx *regs;
|
|
struct vm_inout_str *vis;
|
|
uint64_t info1;
|
|
int inout_string;
|
|
|
|
state = svm_get_vmcb_state(svm_sc, vcpu);
|
|
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
|
|
regs = svm_get_guest_regctx(svm_sc, vcpu);
|
|
|
|
info1 = ctrl->exitinfo1;
|
|
inout_string = info1 & BIT(2) ? 1 : 0;
|
|
|
|
/*
|
|
* The effective segment number in EXITINFO1[12:10] is populated
|
|
* only if the processor has the DecodeAssist capability.
|
|
*
|
|
* XXX this is not specified explicitly in APMv2 but can be verified
|
|
* empirically.
|
|
*/
|
|
if (inout_string && !decode_assist())
|
|
return (UNHANDLED);
|
|
|
|
vmexit->exitcode = VM_EXITCODE_INOUT;
|
|
vmexit->u.inout.in = (info1 & BIT(0)) ? 1 : 0;
|
|
vmexit->u.inout.string = inout_string;
|
|
vmexit->u.inout.rep = (info1 & BIT(3)) ? 1 : 0;
|
|
vmexit->u.inout.bytes = (info1 >> 4) & 0x7;
|
|
vmexit->u.inout.port = (uint16_t)(info1 >> 16);
|
|
vmexit->u.inout.eax = (uint32_t)(state->rax);
|
|
|
|
if (inout_string) {
|
|
vmexit->exitcode = VM_EXITCODE_INOUT_STR;
|
|
vis = &vmexit->u.inout_str;
|
|
svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging);
|
|
vis->rflags = state->rflags;
|
|
vis->cr0 = state->cr0;
|
|
vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
|
|
vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
|
|
vis->addrsize = svm_inout_str_addrsize(info1);
|
|
svm_inout_str_seginfo(svm_sc, vcpu, info1,
|
|
vmexit->u.inout.in, vis);
|
|
}
|
|
|
|
return (UNHANDLED);
|
|
}
|
|
|
|
static int
|
|
npf_fault_type(uint64_t exitinfo1)
|
|
{
|
|
|
|
if (exitinfo1 & VMCB_NPF_INFO1_W)
|
|
return (VM_PROT_WRITE);
|
|
else if (exitinfo1 & VMCB_NPF_INFO1_ID)
|
|
return (VM_PROT_EXECUTE);
|
|
else
|
|
return (VM_PROT_READ);
|
|
}
|
|
|
|
static bool
|
|
svm_npf_emul_fault(uint64_t exitinfo1)
|
|
{
|
|
|
|
if (exitinfo1 & VMCB_NPF_INFO1_ID) {
|
|
return (false);
|
|
}
|
|
|
|
if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
|
|
return (false);
|
|
}
|
|
|
|
if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
|
|
return (false);
|
|
}
|
|
|
|
return (true);
|
|
}
|
|
|
|
static void
|
|
svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
|
|
{
|
|
struct vm_guest_paging *paging;
|
|
struct vmcb_segment seg;
|
|
struct vmcb_ctrl *ctrl;
|
|
char *inst_bytes;
|
|
int error, inst_len;
|
|
|
|
ctrl = &vmcb->ctrl;
|
|
paging = &vmexit->u.inst_emul.paging;
|
|
|
|
vmexit->exitcode = VM_EXITCODE_INST_EMUL;
|
|
vmexit->u.inst_emul.gpa = gpa;
|
|
vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
|
|
svm_paging_info(vmcb, paging);
|
|
|
|
error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
|
|
KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
|
|
|
|
switch(paging->cpu_mode) {
|
|
case CPU_MODE_PROTECTED:
|
|
case CPU_MODE_COMPATIBILITY:
|
|
/*
|
|
* Section 4.8.1 of APM2, Default Operand Size or D bit.
|
|
*/
|
|
vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
|
|
1 : 0;
|
|
break;
|
|
default:
|
|
vmexit->u.inst_emul.cs_d = 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Copy the instruction bytes into 'vie' if available.
|
|
*/
|
|
if (decode_assist() && !disable_npf_assist) {
|
|
inst_len = ctrl->inst_len;
|
|
inst_bytes = ctrl->inst_bytes;
|
|
} else {
|
|
inst_len = 0;
|
|
inst_bytes = NULL;
|
|
}
|
|
vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
|
|
}
|
|
|
|
#ifdef KTR
|
|
static const char *
|
|
intrtype_to_str(int intr_type)
|
|
{
|
|
switch (intr_type) {
|
|
case VMCB_EVENTINJ_TYPE_INTR:
|
|
return ("hwintr");
|
|
case VMCB_EVENTINJ_TYPE_NMI:
|
|
return ("nmi");
|
|
case VMCB_EVENTINJ_TYPE_INTn:
|
|
return ("swintr");
|
|
case VMCB_EVENTINJ_TYPE_EXCEPTION:
|
|
return ("exception");
|
|
default:
|
|
panic("%s: unknown intr_type %d", __func__, intr_type);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Inject an event to vcpu as described in section 15.20, "Event injection".
|
|
*/
|
|
static void
|
|
svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector,
|
|
uint32_t error, bool ec_valid)
|
|
{
|
|
struct vmcb_ctrl *ctrl;
|
|
|
|
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
|
|
|
|
KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
|
|
("%s: event already pending %#lx", __func__, ctrl->eventinj));
|
|
|
|
KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
|
|
__func__, vector));
|
|
|
|
switch (intr_type) {
|
|
case VMCB_EVENTINJ_TYPE_INTR:
|
|
case VMCB_EVENTINJ_TYPE_NMI:
|
|
case VMCB_EVENTINJ_TYPE_INTn:
|
|
break;
|
|
case VMCB_EVENTINJ_TYPE_EXCEPTION:
|
|
if (vector >= 0 && vector <= 31 && vector != 2)
|
|
break;
|
|
/* FALLTHROUGH */
|
|
default:
|
|
panic("%s: invalid intr_type/vector: %d/%d", __func__,
|
|
intr_type, vector);
|
|
}
|
|
ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
|
|
if (ec_valid) {
|
|
ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
|
|
ctrl->eventinj |= (uint64_t)error << 32;
|
|
VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x",
|
|
intrtype_to_str(intr_type), vector, error);
|
|
} else {
|
|
VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d",
|
|
intrtype_to_str(intr_type), vector);
|
|
}
|
|
}
|
|
|
|
static void
|
|
svm_update_virqinfo(struct svm_softc *sc, int vcpu)
|
|
{
|
|
struct vm *vm;
|
|
struct vlapic *vlapic;
|
|
struct vmcb_ctrl *ctrl;
|
|
int pending;
|
|
|
|
vm = sc->vm;
|
|
vlapic = vm_lapic(vm, vcpu);
|
|
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
|
|
|
|
/* Update %cr8 in the emulated vlapic */
|
|
vlapic_set_cr8(vlapic, ctrl->v_tpr);
|
|
|
|
/*
|
|
* If V_IRQ indicates that the interrupt injection attempted on then
|
|
* last VMRUN was successful then update the vlapic accordingly.
|
|
*/
|
|
if (ctrl->v_intr_vector != 0) {
|
|
pending = ctrl->v_irq;
|
|
KASSERT(ctrl->v_intr_vector >= 16, ("%s: invalid "
|
|
"v_intr_vector %d", __func__, ctrl->v_intr_vector));
|
|
KASSERT(!ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
|
|
VCPU_CTR2(vm, vcpu, "v_intr_vector %d %s", ctrl->v_intr_vector,
|
|
pending ? "pending" : "accepted");
|
|
if (!pending)
|
|
vlapic_intr_accepted(vlapic, ctrl->v_intr_vector);
|
|
}
|
|
}
|
|
|
|
static void
|
|
svm_save_intinfo(struct svm_softc *svm_sc, int vcpu)
|
|
{
|
|
struct vmcb_ctrl *ctrl;
|
|
uint64_t intinfo;
|
|
|
|
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
|
|
intinfo = ctrl->exitintinfo;
|
|
if (!VMCB_EXITINTINFO_VALID(intinfo))
|
|
return;
|
|
|
|
/*
|
|
* From APMv2, Section "Intercepts during IDT interrupt delivery"
|
|
*
|
|
* If a #VMEXIT happened during event delivery then record the event
|
|
* that was being delivered.
|
|
*/
|
|
VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n",
|
|
intinfo, VMCB_EXITINTINFO_VECTOR(intinfo));
|
|
vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1);
|
|
vm_exit_intinfo(svm_sc->vm, vcpu, intinfo);
|
|
}
|
|
|
|
static __inline int
|
|
vintr_intercept_enabled(struct svm_softc *sc, int vcpu)
|
|
{
|
|
|
|
return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
|
|
VMCB_INTCPT_VINTR));
|
|
}
|
|
|
|
static __inline void
|
|
enable_intr_window_exiting(struct svm_softc *sc, int vcpu)
|
|
{
|
|
struct vmcb_ctrl *ctrl;
|
|
|
|
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
|
|
|
|
if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
|
|
KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
|
|
KASSERT(vintr_intercept_enabled(sc, vcpu),
|
|
("%s: vintr intercept should be enabled", __func__));
|
|
return;
|
|
}
|
|
|
|
VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting");
|
|
ctrl->v_irq = 1;
|
|
ctrl->v_ign_tpr = 1;
|
|
ctrl->v_intr_vector = 0;
|
|
svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
|
|
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
|
|
}
|
|
|
|
static __inline void
|
|
disable_intr_window_exiting(struct svm_softc *sc, int vcpu)
|
|
{
|
|
struct vmcb_ctrl *ctrl;
|
|
|
|
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
|
|
|
|
if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
|
|
KASSERT(!vintr_intercept_enabled(sc, vcpu),
|
|
("%s: vintr intercept should be disabled", __func__));
|
|
return;
|
|
}
|
|
|
|
#ifdef KTR
|
|
if (ctrl->v_intr_vector == 0)
|
|
VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting");
|
|
else
|
|
VCPU_CTR0(sc->vm, vcpu, "Clearing V_IRQ interrupt injection");
|
|
#endif
|
|
ctrl->v_irq = 0;
|
|
ctrl->v_intr_vector = 0;
|
|
svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
|
|
svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
|
|
}
|
|
|
|
static int
|
|
svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val)
|
|
{
|
|
struct vmcb_ctrl *ctrl;
|
|
int oldval, newval;
|
|
|
|
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
|
|
oldval = ctrl->intr_shadow;
|
|
newval = val ? 1 : 0;
|
|
if (newval != oldval) {
|
|
ctrl->intr_shadow = newval;
|
|
VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val)
|
|
{
|
|
struct vmcb_ctrl *ctrl;
|
|
|
|
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
|
|
*val = ctrl->intr_shadow;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Once an NMI is injected it blocks delivery of further NMIs until the handler
|
|
* executes an IRET. The IRET intercept is enabled when an NMI is injected to
|
|
* to track when the vcpu is done handling the NMI.
|
|
*/
|
|
static int
|
|
nmi_blocked(struct svm_softc *sc, int vcpu)
|
|
{
|
|
int blocked;
|
|
|
|
blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
|
|
VMCB_INTCPT_IRET);
|
|
return (blocked);
|
|
}
|
|
|
|
static void
|
|
enable_nmi_blocking(struct svm_softc *sc, int vcpu)
|
|
{
|
|
|
|
KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked"));
|
|
VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled");
|
|
svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
|
|
}
|
|
|
|
static void
|
|
clear_nmi_blocking(struct svm_softc *sc, int vcpu)
|
|
{
|
|
int error;
|
|
|
|
KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked"));
|
|
VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared");
|
|
/*
|
|
* When the IRET intercept is cleared the vcpu will attempt to execute
|
|
* the "iret" when it runs next. However, it is possible to inject
|
|
* another NMI into the vcpu before the "iret" has actually executed.
|
|
*
|
|
* For e.g. if the "iret" encounters a #NPF when accessing the stack
|
|
* it will trap back into the hypervisor. If an NMI is pending for
|
|
* the vcpu it will be injected into the guest.
|
|
*
|
|
* XXX this needs to be fixed
|
|
*/
|
|
svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
|
|
|
|
/*
|
|
* Set 'intr_shadow' to prevent an NMI from being injected on the
|
|
* immediate VMRUN.
|
|
*/
|
|
error = svm_modify_intr_shadow(sc, vcpu, 1);
|
|
KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
|
|
}
|
|
|
|
static int
|
|
emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val,
|
|
bool *retu)
|
|
{
|
|
int error;
|
|
|
|
if (lapic_msr(num))
|
|
error = lapic_wrmsr(sc->vm, vcpu, num, val, retu);
|
|
else if (num == MSR_EFER)
|
|
error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, val);
|
|
else
|
|
error = svm_wrmsr(sc, vcpu, num, val, retu);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu)
|
|
{
|
|
struct vmcb_state *state;
|
|
struct svm_regctx *ctx;
|
|
uint64_t result;
|
|
int error;
|
|
|
|
if (lapic_msr(num))
|
|
error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu);
|
|
else
|
|
error = svm_rdmsr(sc, vcpu, num, &result, retu);
|
|
|
|
if (error == 0) {
|
|
state = svm_get_vmcb_state(sc, vcpu);
|
|
ctx = svm_get_guest_regctx(sc, vcpu);
|
|
state->rax = result & 0xffffffff;
|
|
ctx->sctx_rdx = result >> 32;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
#ifdef KTR
|
|
static const char *
|
|
exit_reason_to_str(uint64_t reason)
|
|
{
|
|
static char reasonbuf[32];
|
|
|
|
switch (reason) {
|
|
case VMCB_EXIT_INVALID:
|
|
return ("invalvmcb");
|
|
case VMCB_EXIT_SHUTDOWN:
|
|
return ("shutdown");
|
|
case VMCB_EXIT_NPF:
|
|
return ("nptfault");
|
|
case VMCB_EXIT_PAUSE:
|
|
return ("pause");
|
|
case VMCB_EXIT_HLT:
|
|
return ("hlt");
|
|
case VMCB_EXIT_CPUID:
|
|
return ("cpuid");
|
|
case VMCB_EXIT_IO:
|
|
return ("inout");
|
|
case VMCB_EXIT_MC:
|
|
return ("mchk");
|
|
case VMCB_EXIT_INTR:
|
|
return ("extintr");
|
|
case VMCB_EXIT_NMI:
|
|
return ("nmi");
|
|
case VMCB_EXIT_VINTR:
|
|
return ("vintr");
|
|
case VMCB_EXIT_MSR:
|
|
return ("msr");
|
|
case VMCB_EXIT_IRET:
|
|
return ("iret");
|
|
case VMCB_EXIT_MONITOR:
|
|
return ("monitor");
|
|
case VMCB_EXIT_MWAIT:
|
|
return ("mwait");
|
|
default:
|
|
snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
|
|
return (reasonbuf);
|
|
}
|
|
}
|
|
#endif /* KTR */
|
|
|
|
/*
|
|
* From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
|
|
* that are due to instruction intercepts as well as MSR and IOIO intercepts
|
|
* and exceptions caused by INT3, INTO and BOUND instructions.
|
|
*
|
|
* Return 1 if the nRIP is valid and 0 otherwise.
|
|
*/
|
|
static int
|
|
nrip_valid(uint64_t exitcode)
|
|
{
|
|
switch (exitcode) {
|
|
case 0x00 ... 0x0F: /* read of CR0 through CR15 */
|
|
case 0x10 ... 0x1F: /* write of CR0 through CR15 */
|
|
case 0x20 ... 0x2F: /* read of DR0 through DR15 */
|
|
case 0x30 ... 0x3F: /* write of DR0 through DR15 */
|
|
case 0x43: /* INT3 */
|
|
case 0x44: /* INTO */
|
|
case 0x45: /* BOUND */
|
|
case 0x65 ... 0x7C: /* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
|
|
case 0x80 ... 0x8D: /* VMEXIT_VMRUN ... VMEXIT_XSETBV */
|
|
return (1);
|
|
default:
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Collateral for a generic SVM VM-exit.
|
|
*/
|
|
static void
|
|
vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
|
|
{
|
|
|
|
vme->exitcode = VM_EXITCODE_SVM;
|
|
vme->u.svm.exitcode = code;
|
|
vme->u.svm.exitinfo1 = info1;
|
|
vme->u.svm.exitinfo2 = info2;
|
|
}
|
|
|
|
static int
|
|
svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
|
|
{
|
|
struct vmcb *vmcb;
|
|
struct vmcb_state *state;
|
|
struct vmcb_ctrl *ctrl;
|
|
struct svm_regctx *ctx;
|
|
uint64_t code, info1, info2, val;
|
|
uint32_t eax, ecx, edx;
|
|
int error, errcode_valid, handled, idtvec, reflect;
|
|
bool retu;
|
|
|
|
ctx = svm_get_guest_regctx(svm_sc, vcpu);
|
|
vmcb = svm_get_vmcb(svm_sc, vcpu);
|
|
state = &vmcb->state;
|
|
ctrl = &vmcb->ctrl;
|
|
|
|
handled = 0;
|
|
code = ctrl->exitcode;
|
|
info1 = ctrl->exitinfo1;
|
|
info2 = ctrl->exitinfo2;
|
|
|
|
vmexit->exitcode = VM_EXITCODE_BOGUS;
|
|
vmexit->rip = state->rip;
|
|
vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
|
|
|
|
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1);
|
|
|
|
/*
|
|
* #VMEXIT(INVALID) needs to be handled early because the VMCB is
|
|
* in an inconsistent state and can trigger assertions that would
|
|
* never happen otherwise.
|
|
*/
|
|
if (code == VMCB_EXIT_INVALID) {
|
|
vm_exit_svm(vmexit, code, info1, info2);
|
|
return (0);
|
|
}
|
|
|
|
KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
|
|
"injection valid bit is set %#lx", __func__, ctrl->eventinj));
|
|
|
|
KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
|
|
("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
|
|
vmexit->inst_length, code, info1, info2));
|
|
|
|
svm_update_virqinfo(svm_sc, vcpu);
|
|
svm_save_intinfo(svm_sc, vcpu);
|
|
|
|
switch (code) {
|
|
case VMCB_EXIT_IRET:
|
|
/*
|
|
* Restart execution at "iret" but with the intercept cleared.
|
|
*/
|
|
vmexit->inst_length = 0;
|
|
clear_nmi_blocking(svm_sc, vcpu);
|
|
handled = 1;
|
|
break;
|
|
case VMCB_EXIT_VINTR: /* interrupt window exiting */
|
|
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1);
|
|
handled = 1;
|
|
break;
|
|
case VMCB_EXIT_INTR: /* external interrupt */
|
|
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1);
|
|
handled = 1;
|
|
break;
|
|
case VMCB_EXIT_NMI: /* external NMI */
|
|
handled = 1;
|
|
break;
|
|
case 0x40 ... 0x5F:
|
|
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1);
|
|
reflect = 1;
|
|
idtvec = code - 0x40;
|
|
switch (idtvec) {
|
|
case IDT_MC:
|
|
/*
|
|
* Call the machine check handler by hand. Also don't
|
|
* reflect the machine check back into the guest.
|
|
*/
|
|
reflect = 0;
|
|
VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler");
|
|
__asm __volatile("int $18");
|
|
break;
|
|
case IDT_PF:
|
|
error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2,
|
|
info2);
|
|
KASSERT(error == 0, ("%s: error %d updating cr2",
|
|
__func__, error));
|
|
/* fallthru */
|
|
case IDT_NP:
|
|
case IDT_SS:
|
|
case IDT_GP:
|
|
case IDT_AC:
|
|
case IDT_TS:
|
|
errcode_valid = 1;
|
|
break;
|
|
|
|
case IDT_DF:
|
|
errcode_valid = 1;
|
|
info1 = 0;
|
|
break;
|
|
|
|
case IDT_BP:
|
|
case IDT_OF:
|
|
case IDT_BR:
|
|
/*
|
|
* The 'nrip' field is populated for INT3, INTO and
|
|
* BOUND exceptions and this also implies that
|
|
* 'inst_length' is non-zero.
|
|
*
|
|
* Reset 'inst_length' to zero so the guest %rip at
|
|
* event injection is identical to what it was when
|
|
* the exception originally happened.
|
|
*/
|
|
VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d "
|
|
"to zero before injecting exception %d",
|
|
vmexit->inst_length, idtvec);
|
|
vmexit->inst_length = 0;
|
|
/* fallthru */
|
|
default:
|
|
errcode_valid = 0;
|
|
info1 = 0;
|
|
break;
|
|
}
|
|
KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) "
|
|
"when reflecting exception %d into guest",
|
|
vmexit->inst_length, idtvec));
|
|
|
|
if (reflect) {
|
|
/* Reflect the exception back into the guest */
|
|
VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception "
|
|
"%d/%#x into the guest", idtvec, (int)info1);
|
|
error = vm_inject_exception(svm_sc->vm, vcpu, idtvec,
|
|
errcode_valid, info1, 0);
|
|
KASSERT(error == 0, ("%s: vm_inject_exception error %d",
|
|
__func__, error));
|
|
}
|
|
handled = 1;
|
|
break;
|
|
case VMCB_EXIT_MSR: /* MSR access. */
|
|
eax = state->rax;
|
|
ecx = ctx->sctx_rcx;
|
|
edx = ctx->sctx_rdx;
|
|
retu = false;
|
|
|
|
if (info1) {
|
|
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1);
|
|
val = (uint64_t)edx << 32 | eax;
|
|
VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx",
|
|
ecx, val);
|
|
if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
|
|
vmexit->exitcode = VM_EXITCODE_WRMSR;
|
|
vmexit->u.msr.code = ecx;
|
|
vmexit->u.msr.wval = val;
|
|
} else if (!retu) {
|
|
handled = 1;
|
|
} else {
|
|
KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
|
|
("emulate_wrmsr retu with bogus exitcode"));
|
|
}
|
|
} else {
|
|
VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx);
|
|
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1);
|
|
if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) {
|
|
vmexit->exitcode = VM_EXITCODE_RDMSR;
|
|
vmexit->u.msr.code = ecx;
|
|
} else if (!retu) {
|
|
handled = 1;
|
|
} else {
|
|
KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
|
|
("emulate_rdmsr retu with bogus exitcode"));
|
|
}
|
|
}
|
|
break;
|
|
case VMCB_EXIT_IO:
|
|
handled = svm_handle_io(svm_sc, vcpu, vmexit);
|
|
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1);
|
|
break;
|
|
case VMCB_EXIT_CPUID:
|
|
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1);
|
|
handled = x86_emulate_cpuid(svm_sc->vm, vcpu,
|
|
(uint32_t *)&state->rax,
|
|
(uint32_t *)&ctx->sctx_rbx,
|
|
(uint32_t *)&ctx->sctx_rcx,
|
|
(uint32_t *)&ctx->sctx_rdx);
|
|
break;
|
|
case VMCB_EXIT_HLT:
|
|
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1);
|
|
vmexit->exitcode = VM_EXITCODE_HLT;
|
|
vmexit->u.hlt.rflags = state->rflags;
|
|
break;
|
|
case VMCB_EXIT_PAUSE:
|
|
vmexit->exitcode = VM_EXITCODE_PAUSE;
|
|
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1);
|
|
break;
|
|
case VMCB_EXIT_NPF:
|
|
/* EXITINFO2 contains the faulting guest physical address */
|
|
if (info1 & VMCB_NPF_INFO1_RSV) {
|
|
VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with "
|
|
"reserved bits set: info1(%#lx) info2(%#lx)",
|
|
info1, info2);
|
|
} else if (vm_mem_allocated(svm_sc->vm, info2)) {
|
|
vmexit->exitcode = VM_EXITCODE_PAGING;
|
|
vmexit->u.paging.gpa = info2;
|
|
vmexit->u.paging.fault_type = npf_fault_type(info1);
|
|
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
|
|
VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault "
|
|
"on gpa %#lx/%#lx at rip %#lx",
|
|
info2, info1, state->rip);
|
|
} else if (svm_npf_emul_fault(info1)) {
|
|
svm_handle_inst_emul(vmcb, info2, vmexit);
|
|
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1);
|
|
VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault "
|
|
"for gpa %#lx/%#lx at rip %#lx",
|
|
info2, info1, state->rip);
|
|
}
|
|
break;
|
|
case VMCB_EXIT_MONITOR:
|
|
vmexit->exitcode = VM_EXITCODE_MONITOR;
|
|
break;
|
|
case VMCB_EXIT_MWAIT:
|
|
vmexit->exitcode = VM_EXITCODE_MWAIT;
|
|
break;
|
|
default:
|
|
vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1);
|
|
break;
|
|
}
|
|
|
|
VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d",
|
|
handled ? "handled" : "unhandled", exit_reason_to_str(code),
|
|
vmexit->rip, vmexit->inst_length);
|
|
|
|
if (handled) {
|
|
vmexit->rip += vmexit->inst_length;
|
|
vmexit->inst_length = 0;
|
|
state->rip = vmexit->rip;
|
|
} else {
|
|
if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
|
|
/*
|
|
* If this VM exit was not claimed by anybody then
|
|
* treat it as a generic SVM exit.
|
|
*/
|
|
vm_exit_svm(vmexit, code, info1, info2);
|
|
} else {
|
|
/*
|
|
* The exitcode and collateral have been populated.
|
|
* The VM exit will be processed further in userland.
|
|
*/
|
|
}
|
|
}
|
|
return (handled);
|
|
}
|
|
|
|
static void
|
|
svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu)
|
|
{
|
|
uint64_t intinfo;
|
|
|
|
if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo))
|
|
return;
|
|
|
|
KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
|
|
"valid: %#lx", __func__, intinfo));
|
|
|
|
svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
|
|
VMCB_EXITINTINFO_VECTOR(intinfo),
|
|
VMCB_EXITINTINFO_EC(intinfo),
|
|
VMCB_EXITINTINFO_EC_VALID(intinfo));
|
|
vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1);
|
|
VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo);
|
|
}
|
|
|
|
/*
|
|
* Inject event to virtual cpu.
|
|
*/
|
|
static void
|
|
svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic)
|
|
{
|
|
struct vmcb_ctrl *ctrl;
|
|
struct vmcb_state *state;
|
|
struct svm_vcpu *vcpustate;
|
|
uint8_t v_tpr;
|
|
int vector, need_intr_window, pending_apic_vector;
|
|
|
|
state = svm_get_vmcb_state(sc, vcpu);
|
|
ctrl = svm_get_vmcb_ctrl(sc, vcpu);
|
|
vcpustate = svm_get_vcpu(sc, vcpu);
|
|
|
|
need_intr_window = 0;
|
|
pending_apic_vector = 0;
|
|
|
|
if (vcpustate->nextrip != state->rip) {
|
|
ctrl->intr_shadow = 0;
|
|
VCPU_CTR2(sc->vm, vcpu, "Guest interrupt blocking "
|
|
"cleared due to rip change: %#lx/%#lx",
|
|
vcpustate->nextrip, state->rip);
|
|
}
|
|
|
|
/*
|
|
* Inject pending events or exceptions for this vcpu.
|
|
*
|
|
* An event might be pending because the previous #VMEXIT happened
|
|
* during event delivery (i.e. ctrl->exitintinfo).
|
|
*
|
|
* An event might also be pending because an exception was injected
|
|
* by the hypervisor (e.g. #PF during instruction emulation).
|
|
*/
|
|
svm_inj_intinfo(sc, vcpu);
|
|
|
|
/* NMI event has priority over interrupts. */
|
|
if (vm_nmi_pending(sc->vm, vcpu)) {
|
|
if (nmi_blocked(sc, vcpu)) {
|
|
/*
|
|
* Can't inject another NMI if the guest has not
|
|
* yet executed an "iret" after the last NMI.
|
|
*/
|
|
VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due "
|
|
"to NMI-blocking");
|
|
} else if (ctrl->intr_shadow) {
|
|
/*
|
|
* Can't inject an NMI if the vcpu is in an intr_shadow.
|
|
*/
|
|
VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to "
|
|
"interrupt shadow");
|
|
need_intr_window = 1;
|
|
goto done;
|
|
} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
|
|
/*
|
|
* If there is already an exception/interrupt pending
|
|
* then defer the NMI until after that.
|
|
*/
|
|
VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to "
|
|
"eventinj %#lx", ctrl->eventinj);
|
|
|
|
/*
|
|
* Use self-IPI to trigger a VM-exit as soon as
|
|
* possible after the event injection is completed.
|
|
*
|
|
* This works only if the external interrupt exiting
|
|
* is at a lower priority than the event injection.
|
|
*
|
|
* Although not explicitly specified in APMv2 the
|
|
* relative priorities were verified empirically.
|
|
*/
|
|
ipi_cpu(curcpu, IPI_AST); /* XXX vmm_ipinum? */
|
|
} else {
|
|
vm_nmi_clear(sc->vm, vcpu);
|
|
|
|
/* Inject NMI, vector number is not used */
|
|
svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI,
|
|
IDT_NMI, 0, false);
|
|
|
|
/* virtual NMI blocking is now in effect */
|
|
enable_nmi_blocking(sc, vcpu);
|
|
|
|
VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI");
|
|
}
|
|
}
|
|
|
|
if (!vm_extint_pending(sc->vm, vcpu)) {
|
|
/*
|
|
* APIC interrupts are delivered using the V_IRQ offload.
|
|
*
|
|
* The primary benefit is that the hypervisor doesn't need to
|
|
* deal with the various conditions that inhibit interrupts.
|
|
* It also means that TPR changes via CR8 will be handled
|
|
* without any hypervisor involvement.
|
|
*
|
|
* Note that the APIC vector must remain pending in the vIRR
|
|
* until it is confirmed that it was delivered to the guest.
|
|
* This can be confirmed based on the value of V_IRQ at the
|
|
* next #VMEXIT (1 = pending, 0 = delivered).
|
|
*
|
|
* Also note that it is possible that another higher priority
|
|
* vector can become pending before this vector is delivered
|
|
* to the guest. This is alright because vcpu_notify_event()
|
|
* will send an IPI and force the vcpu to trap back into the
|
|
* hypervisor. The higher priority vector will be injected on
|
|
* the next VMRUN.
|
|
*/
|
|
if (vlapic_pending_intr(vlapic, &vector)) {
|
|
KASSERT(vector >= 16 && vector <= 255,
|
|
("invalid vector %d from local APIC", vector));
|
|
pending_apic_vector = vector;
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
/* Ask the legacy pic for a vector to inject */
|
|
vatpic_pending_intr(sc->vm, &vector);
|
|
KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d from INTR",
|
|
vector));
|
|
|
|
/*
|
|
* If the guest has disabled interrupts or is in an interrupt shadow
|
|
* then we cannot inject the pending interrupt.
|
|
*/
|
|
if ((state->rflags & PSL_I) == 0) {
|
|
VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
|
|
"rflags %#lx", vector, state->rflags);
|
|
need_intr_window = 1;
|
|
goto done;
|
|
}
|
|
|
|
if (ctrl->intr_shadow) {
|
|
VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to "
|
|
"interrupt shadow", vector);
|
|
need_intr_window = 1;
|
|
goto done;
|
|
}
|
|
|
|
if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
|
|
VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
|
|
"eventinj %#lx", vector, ctrl->eventinj);
|
|
need_intr_window = 1;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Legacy PIC interrupts are delivered via the event injection
|
|
* mechanism.
|
|
*/
|
|
svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
|
|
|
|
vm_extint_clear(sc->vm, vcpu);
|
|
vatpic_intr_accepted(sc->vm, vector);
|
|
|
|
/*
|
|
* Force a VM-exit as soon as the vcpu is ready to accept another
|
|
* interrupt. This is done because the PIC might have another vector
|
|
* that it wants to inject. Also, if the APIC has a pending interrupt
|
|
* that was preempted by the ExtInt then it allows us to inject the
|
|
* APIC vector as soon as possible.
|
|
*/
|
|
need_intr_window = 1;
|
|
done:
|
|
/*
|
|
* The guest can modify the TPR by writing to %CR8. In guest mode
|
|
* the processor reflects this write to V_TPR without hypervisor
|
|
* intervention.
|
|
*
|
|
* The guest can also modify the TPR by writing to it via the memory
|
|
* mapped APIC page. In this case, the write will be emulated by the
|
|
* hypervisor. For this reason V_TPR must be updated before every
|
|
* VMRUN.
|
|
*/
|
|
v_tpr = vlapic_get_cr8(vlapic);
|
|
KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
|
|
if (ctrl->v_tpr != v_tpr) {
|
|
VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x",
|
|
ctrl->v_tpr, v_tpr);
|
|
ctrl->v_tpr = v_tpr;
|
|
svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
|
|
}
|
|
|
|
if (pending_apic_vector) {
|
|
/*
|
|
* If an APIC vector is being injected then interrupt window
|
|
* exiting is not possible on this VMRUN.
|
|
*/
|
|
KASSERT(!need_intr_window, ("intr_window exiting impossible"));
|
|
VCPU_CTR1(sc->vm, vcpu, "Injecting vector %d using V_IRQ",
|
|
pending_apic_vector);
|
|
|
|
ctrl->v_irq = 1;
|
|
ctrl->v_ign_tpr = 0;
|
|
ctrl->v_intr_vector = pending_apic_vector;
|
|
ctrl->v_intr_prio = pending_apic_vector >> 4;
|
|
svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
|
|
} else if (need_intr_window) {
|
|
/*
|
|
* We use V_IRQ in conjunction with the VINTR intercept to
|
|
* trap into the hypervisor as soon as a virtual interrupt
|
|
* can be delivered.
|
|
*
|
|
* Since injected events are not subject to intercept checks
|
|
* we need to ensure that the V_IRQ is not actually going to
|
|
* be delivered on VM entry. The KASSERT below enforces this.
|
|
*/
|
|
KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
|
|
(state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
|
|
("Bogus intr_window_exiting: eventinj (%#lx), "
|
|
"intr_shadow (%u), rflags (%#lx)",
|
|
ctrl->eventinj, ctrl->intr_shadow, state->rflags));
|
|
enable_intr_window_exiting(sc, vcpu);
|
|
} else {
|
|
disable_intr_window_exiting(sc, vcpu);
|
|
}
|
|
}
|
|
|
|
static __inline void
|
|
restore_host_tss(void)
|
|
{
|
|
struct system_segment_descriptor *tss_sd;
|
|
|
|
/*
|
|
* The TSS descriptor was in use prior to launching the guest so it
|
|
* has been marked busy.
|
|
*
|
|
* 'ltr' requires the descriptor to be marked available so change the
|
|
* type to "64-bit available TSS".
|
|
*/
|
|
tss_sd = PCPU_GET(tss);
|
|
tss_sd->sd_type = SDT_SYSTSS;
|
|
ltr(GSEL(GPROC0_SEL, SEL_KPL));
|
|
}
|
|
|
|
static void
|
|
check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu)
|
|
{
|
|
struct svm_vcpu *vcpustate;
|
|
struct vmcb_ctrl *ctrl;
|
|
long eptgen;
|
|
bool alloc_asid;
|
|
|
|
KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not "
|
|
"active on cpu %u", __func__, thiscpu));
|
|
|
|
vcpustate = svm_get_vcpu(sc, vcpuid);
|
|
ctrl = svm_get_vmcb_ctrl(sc, vcpuid);
|
|
|
|
/*
|
|
* The TLB entries associated with the vcpu's ASID are not valid
|
|
* if either of the following conditions is true:
|
|
*
|
|
* 1. The vcpu's ASID generation is different than the host cpu's
|
|
* ASID generation. This happens when the vcpu migrates to a new
|
|
* host cpu. It can also happen when the number of vcpus executing
|
|
* on a host cpu is greater than the number of ASIDs available.
|
|
*
|
|
* 2. The pmap generation number is different than the value cached in
|
|
* the 'vcpustate'. This happens when the host invalidates pages
|
|
* belonging to the guest.
|
|
*
|
|
* asidgen eptgen Action
|
|
* mismatch mismatch
|
|
* 0 0 (a)
|
|
* 0 1 (b1) or (b2)
|
|
* 1 0 (c)
|
|
* 1 1 (d)
|
|
*
|
|
* (a) There is no mismatch in eptgen or ASID generation and therefore
|
|
* no further action is needed.
|
|
*
|
|
* (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
|
|
* retained and the TLB entries associated with this ASID
|
|
* are flushed by VMRUN.
|
|
*
|
|
* (b2) If the cpu does not support FlushByAsid then a new ASID is
|
|
* allocated.
|
|
*
|
|
* (c) A new ASID is allocated.
|
|
*
|
|
* (d) A new ASID is allocated.
|
|
*/
|
|
|
|
alloc_asid = false;
|
|
eptgen = pmap->pm_eptgen;
|
|
ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
|
|
|
|
if (vcpustate->asid.gen != asid[thiscpu].gen) {
|
|
alloc_asid = true; /* (c) and (d) */
|
|
} else if (vcpustate->eptgen != eptgen) {
|
|
if (flush_by_asid())
|
|
ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; /* (b1) */
|
|
else
|
|
alloc_asid = true; /* (b2) */
|
|
} else {
|
|
/*
|
|
* This is the common case (a).
|
|
*/
|
|
KASSERT(!alloc_asid, ("ASID allocation not necessary"));
|
|
KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
|
|
("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
|
|
}
|
|
|
|
if (alloc_asid) {
|
|
if (++asid[thiscpu].num >= nasid) {
|
|
asid[thiscpu].num = 1;
|
|
if (++asid[thiscpu].gen == 0)
|
|
asid[thiscpu].gen = 1;
|
|
/*
|
|
* If this cpu does not support "flush-by-asid"
|
|
* then flush the entire TLB on a generation
|
|
* bump. Subsequent ASID allocation in this
|
|
* generation can be done without a TLB flush.
|
|
*/
|
|
if (!flush_by_asid())
|
|
ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
|
|
}
|
|
vcpustate->asid.gen = asid[thiscpu].gen;
|
|
vcpustate->asid.num = asid[thiscpu].num;
|
|
|
|
ctrl->asid = vcpustate->asid.num;
|
|
svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID);
|
|
/*
|
|
* If this cpu supports "flush-by-asid" then the TLB
|
|
* was not flushed after the generation bump. The TLB
|
|
* is flushed selectively after every new ASID allocation.
|
|
*/
|
|
if (flush_by_asid())
|
|
ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
|
|
}
|
|
vcpustate->eptgen = eptgen;
|
|
|
|
KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
|
|
KASSERT(ctrl->asid == vcpustate->asid.num,
|
|
("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num));
|
|
}
|
|
|
|
static __inline void
|
|
disable_gintr(void)
|
|
{
|
|
|
|
__asm __volatile("clgi");
|
|
}
|
|
|
|
static __inline void
|
|
enable_gintr(void)
|
|
{
|
|
|
|
__asm __volatile("stgi");
|
|
}
|
|
|
|
/*
|
|
* Start vcpu with specified RIP.
|
|
*/
|
|
static int
|
|
svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap,
|
|
void *rend_cookie, void *suspended_cookie)
|
|
{
|
|
struct svm_regctx *gctx;
|
|
struct svm_softc *svm_sc;
|
|
struct svm_vcpu *vcpustate;
|
|
struct vmcb_state *state;
|
|
struct vmcb_ctrl *ctrl;
|
|
struct vm_exit *vmexit;
|
|
struct vlapic *vlapic;
|
|
struct vm *vm;
|
|
uint64_t vmcb_pa;
|
|
u_int thiscpu;
|
|
int handled;
|
|
|
|
svm_sc = arg;
|
|
vm = svm_sc->vm;
|
|
|
|
vcpustate = svm_get_vcpu(svm_sc, vcpu);
|
|
state = svm_get_vmcb_state(svm_sc, vcpu);
|
|
ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
|
|
vmexit = vm_exitinfo(vm, vcpu);
|
|
vlapic = vm_lapic(vm, vcpu);
|
|
|
|
/*
|
|
* Stash 'curcpu' on the stack as 'thiscpu'.
|
|
*
|
|
* The per-cpu data area is not accessible until MSR_GSBASE is restored
|
|
* after the #VMEXIT. Since VMRUN is executed inside a critical section
|
|
* 'curcpu' and 'thiscpu' are guaranteed to identical.
|
|
*/
|
|
thiscpu = curcpu;
|
|
|
|
gctx = svm_get_guest_regctx(svm_sc, vcpu);
|
|
vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa;
|
|
|
|
if (vcpustate->lastcpu != thiscpu) {
|
|
/*
|
|
* Force new ASID allocation by invalidating the generation.
|
|
*/
|
|
vcpustate->asid.gen = 0;
|
|
|
|
/*
|
|
* Invalidate the VMCB state cache by marking all fields dirty.
|
|
*/
|
|
svm_set_dirty(svm_sc, vcpu, 0xffffffff);
|
|
|
|
/*
|
|
* XXX
|
|
* Setting 'vcpustate->lastcpu' here is bit premature because
|
|
* we may return from this function without actually executing
|
|
* the VMRUN instruction. This could happen if a rendezvous
|
|
* or an AST is pending on the first time through the loop.
|
|
*
|
|
* This works for now but any new side-effects of vcpu
|
|
* migration should take this case into account.
|
|
*/
|
|
vcpustate->lastcpu = thiscpu;
|
|
vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1);
|
|
}
|
|
|
|
svm_msr_guest_enter(svm_sc, vcpu);
|
|
|
|
/* Update Guest RIP */
|
|
state->rip = rip;
|
|
|
|
do {
|
|
/*
|
|
* Disable global interrupts to guarantee atomicity during
|
|
* loading of guest state. This includes not only the state
|
|
* loaded by the "vmrun" instruction but also software state
|
|
* maintained by the hypervisor: suspended and rendezvous
|
|
* state, NPT generation number, vlapic interrupts etc.
|
|
*/
|
|
disable_gintr();
|
|
|
|
if (vcpu_suspended(suspended_cookie)) {
|
|
enable_gintr();
|
|
vm_exit_suspended(vm, vcpu, state->rip);
|
|
break;
|
|
}
|
|
|
|
if (vcpu_rendezvous_pending(rend_cookie)) {
|
|
enable_gintr();
|
|
vm_exit_rendezvous(vm, vcpu, state->rip);
|
|
break;
|
|
}
|
|
|
|
/* We are asked to give the cpu by scheduler. */
|
|
if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) {
|
|
enable_gintr();
|
|
vm_exit_astpending(vm, vcpu, state->rip);
|
|
break;
|
|
}
|
|
|
|
svm_inj_interrupts(svm_sc, vcpu, vlapic);
|
|
|
|
/* Activate the nested pmap on 'thiscpu' */
|
|
CPU_SET_ATOMIC_ACQ(thiscpu, &pmap->pm_active);
|
|
|
|
/*
|
|
* Check the pmap generation and the ASID generation to
|
|
* ensure that the vcpu does not use stale TLB mappings.
|
|
*/
|
|
check_asid(svm_sc, vcpu, pmap, thiscpu);
|
|
|
|
ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty;
|
|
vcpustate->dirty = 0;
|
|
VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
|
|
|
|
/* Launch Virtual Machine. */
|
|
VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip);
|
|
svm_launch(vmcb_pa, gctx);
|
|
|
|
CPU_CLR_ATOMIC(thiscpu, &pmap->pm_active);
|
|
|
|
/*
|
|
* Restore MSR_GSBASE to point to the pcpu data area.
|
|
*
|
|
* Note that accesses done via PCPU_GET/PCPU_SET will work
|
|
* only after MSR_GSBASE is restored.
|
|
*
|
|
* Also note that we don't bother restoring MSR_KGSBASE
|
|
* since it is not used in the kernel and will be restored
|
|
* when the VMRUN ioctl returns to userspace.
|
|
*/
|
|
wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[thiscpu]);
|
|
KASSERT(curcpu == thiscpu, ("thiscpu/curcpu (%u/%u) mismatch",
|
|
thiscpu, curcpu));
|
|
|
|
/*
|
|
* The host GDTR and IDTR is saved by VMRUN and restored
|
|
* automatically on #VMEXIT. However, the host TSS needs
|
|
* to be restored explicitly.
|
|
*/
|
|
restore_host_tss();
|
|
|
|
/* #VMEXIT disables interrupts so re-enable them here. */
|
|
enable_gintr();
|
|
|
|
/* Update 'nextrip' */
|
|
vcpustate->nextrip = state->rip;
|
|
|
|
/* Handle #VMEXIT and if required return to user space. */
|
|
handled = svm_vmexit(svm_sc, vcpu, vmexit);
|
|
} while (handled);
|
|
|
|
svm_msr_guest_exit(svm_sc, vcpu);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
svm_vmcleanup(void *arg)
|
|
{
|
|
struct svm_softc *sc = arg;
|
|
|
|
free(sc, M_SVM);
|
|
}
|
|
|
|
static register_t *
|
|
swctx_regptr(struct svm_regctx *regctx, int reg)
|
|
{
|
|
|
|
switch (reg) {
|
|
case VM_REG_GUEST_RBX:
|
|
return (®ctx->sctx_rbx);
|
|
case VM_REG_GUEST_RCX:
|
|
return (®ctx->sctx_rcx);
|
|
case VM_REG_GUEST_RDX:
|
|
return (®ctx->sctx_rdx);
|
|
case VM_REG_GUEST_RDI:
|
|
return (®ctx->sctx_rdi);
|
|
case VM_REG_GUEST_RSI:
|
|
return (®ctx->sctx_rsi);
|
|
case VM_REG_GUEST_RBP:
|
|
return (®ctx->sctx_rbp);
|
|
case VM_REG_GUEST_R8:
|
|
return (®ctx->sctx_r8);
|
|
case VM_REG_GUEST_R9:
|
|
return (®ctx->sctx_r9);
|
|
case VM_REG_GUEST_R10:
|
|
return (®ctx->sctx_r10);
|
|
case VM_REG_GUEST_R11:
|
|
return (®ctx->sctx_r11);
|
|
case VM_REG_GUEST_R12:
|
|
return (®ctx->sctx_r12);
|
|
case VM_REG_GUEST_R13:
|
|
return (®ctx->sctx_r13);
|
|
case VM_REG_GUEST_R14:
|
|
return (®ctx->sctx_r14);
|
|
case VM_REG_GUEST_R15:
|
|
return (®ctx->sctx_r15);
|
|
default:
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
static int
|
|
svm_getreg(void *arg, int vcpu, int ident, uint64_t *val)
|
|
{
|
|
struct svm_softc *svm_sc;
|
|
register_t *reg;
|
|
|
|
svm_sc = arg;
|
|
|
|
if (ident == VM_REG_GUEST_INTR_SHADOW) {
|
|
return (svm_get_intr_shadow(svm_sc, vcpu, val));
|
|
}
|
|
|
|
if (vmcb_read(svm_sc, vcpu, ident, val) == 0) {
|
|
return (0);
|
|
}
|
|
|
|
reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
|
|
|
|
if (reg != NULL) {
|
|
*val = *reg;
|
|
return (0);
|
|
}
|
|
|
|
VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident);
|
|
return (EINVAL);
|
|
}
|
|
|
|
static int
|
|
svm_setreg(void *arg, int vcpu, int ident, uint64_t val)
|
|
{
|
|
struct svm_softc *svm_sc;
|
|
register_t *reg;
|
|
|
|
svm_sc = arg;
|
|
|
|
if (ident == VM_REG_GUEST_INTR_SHADOW) {
|
|
return (svm_modify_intr_shadow(svm_sc, vcpu, val));
|
|
}
|
|
|
|
if (vmcb_write(svm_sc, vcpu, ident, val) == 0) {
|
|
return (0);
|
|
}
|
|
|
|
reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
|
|
|
|
if (reg != NULL) {
|
|
*reg = val;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* XXX deal with CR3 and invalidate TLB entries tagged with the
|
|
* vcpu's ASID. This needs to be treated differently depending on
|
|
* whether 'running' is true/false.
|
|
*/
|
|
|
|
VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident);
|
|
return (EINVAL);
|
|
}
|
|
|
|
static int
|
|
svm_setcap(void *arg, int vcpu, int type, int val)
|
|
{
|
|
struct svm_softc *sc;
|
|
int error;
|
|
|
|
sc = arg;
|
|
error = 0;
|
|
switch (type) {
|
|
case VM_CAP_HALT_EXIT:
|
|
svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
|
|
VMCB_INTCPT_HLT, val);
|
|
break;
|
|
case VM_CAP_PAUSE_EXIT:
|
|
svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
|
|
VMCB_INTCPT_PAUSE, val);
|
|
break;
|
|
case VM_CAP_UNRESTRICTED_GUEST:
|
|
/* Unrestricted guest execution cannot be disabled in SVM */
|
|
if (val == 0)
|
|
error = EINVAL;
|
|
break;
|
|
default:
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
svm_getcap(void *arg, int vcpu, int type, int *retval)
|
|
{
|
|
struct svm_softc *sc;
|
|
int error;
|
|
|
|
sc = arg;
|
|
error = 0;
|
|
|
|
switch (type) {
|
|
case VM_CAP_HALT_EXIT:
|
|
*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
|
|
VMCB_INTCPT_HLT);
|
|
break;
|
|
case VM_CAP_PAUSE_EXIT:
|
|
*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
|
|
VMCB_INTCPT_PAUSE);
|
|
break;
|
|
case VM_CAP_UNRESTRICTED_GUEST:
|
|
*retval = 1; /* unrestricted guest is always enabled */
|
|
break;
|
|
default:
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static struct vlapic *
|
|
svm_vlapic_init(void *arg, int vcpuid)
|
|
{
|
|
struct svm_softc *svm_sc;
|
|
struct vlapic *vlapic;
|
|
|
|
svm_sc = arg;
|
|
vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
|
|
vlapic->vm = svm_sc->vm;
|
|
vlapic->vcpuid = vcpuid;
|
|
vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid];
|
|
|
|
vlapic_init(vlapic);
|
|
|
|
return (vlapic);
|
|
}
|
|
|
|
static void
|
|
svm_vlapic_cleanup(void *arg, struct vlapic *vlapic)
|
|
{
|
|
|
|
vlapic_cleanup(vlapic);
|
|
free(vlapic, M_SVM_VLAPIC);
|
|
}
|
|
|
|
struct vmm_ops vmm_ops_amd = {
|
|
svm_init,
|
|
svm_cleanup,
|
|
svm_restore,
|
|
svm_vminit,
|
|
svm_vmrun,
|
|
svm_vmcleanup,
|
|
svm_getreg,
|
|
svm_setreg,
|
|
vmcb_getdesc,
|
|
vmcb_setdesc,
|
|
svm_getcap,
|
|
svm_setcap,
|
|
svm_npt_alloc,
|
|
svm_npt_free,
|
|
svm_vlapic_init,
|
|
svm_vlapic_cleanup
|
|
};
|