640 lines
25 KiB
C++
640 lines
25 KiB
C++
//===-- xray_fdr_logging_impl.h ---------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of XRay, a dynamic runtime instrumentation system.
|
|
//
|
|
// Here we implement the thread local state management and record i/o for Flight
|
|
// Data Recorder mode for XRay, where we use compact structures to store records
|
|
// in memory as well as when writing out the data to files.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#ifndef XRAY_XRAY_FDR_LOGGING_IMPL_H
|
|
#define XRAY_XRAY_FDR_LOGGING_IMPL_H
|
|
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <sys/syscall.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
|
|
#include "sanitizer_common/sanitizer_common.h"
|
|
#include "xray/xray_log_interface.h"
|
|
#include "xray_buffer_queue.h"
|
|
#include "xray_defs.h"
|
|
#include "xray_fdr_log_records.h"
|
|
#include "xray_flags.h"
|
|
#include "xray_tsc.h"
|
|
|
|
namespace __xray {
|
|
|
|
/// We expose some of the state transitions when FDR logging mode is operating
|
|
/// such that we can simulate a series of log events that may occur without
|
|
/// and test with determinism without worrying about the real CPU time.
|
|
///
|
|
/// Because the code uses thread_local allocation extensively as part of its
|
|
/// design, callers that wish to test events occuring on different threads
|
|
/// will actually have to run them on different threads.
|
|
///
|
|
/// This also means that it is possible to break invariants maintained by
|
|
/// cooperation with xray_fdr_logging class, so be careful and think twice.
|
|
namespace __xray_fdr_internal {
|
|
|
|
/// Writes the new buffer record and wallclock time that begin a buffer for a
|
|
/// thread to MemPtr and increments MemPtr. Bypasses the thread local state
|
|
/// machine and writes directly to memory without checks.
|
|
static void writeNewBufferPreamble(pid_t Tid, timespec TS, char *&MemPtr);
|
|
|
|
/// Write a metadata record to switch to a new CPU to MemPtr and increments
|
|
/// MemPtr. Bypasses the thread local state machine and writes directly to
|
|
/// memory without checks.
|
|
static void writeNewCPUIdMetadata(uint16_t CPU, uint64_t TSC, char *&MemPtr);
|
|
|
|
/// Writes an EOB metadata record to MemPtr and increments MemPtr. Bypasses the
|
|
/// thread local state machine and writes directly to memory without checks.
|
|
static void writeEOBMetadata(char *&MemPtr);
|
|
|
|
/// Writes a TSC Wrap metadata record to MemPtr and increments MemPtr. Bypasses
|
|
/// the thread local state machine and directly writes to memory without checks.
|
|
static void writeTSCWrapMetadata(uint64_t TSC, char *&MemPtr);
|
|
|
|
/// Writes a Function Record to MemPtr and increments MemPtr. Bypasses the
|
|
/// thread local state machine and writes the function record directly to
|
|
/// memory.
|
|
static void writeFunctionRecord(int FuncId, uint32_t TSCDelta,
|
|
XRayEntryType EntryType, char *&MemPtr);
|
|
|
|
/// Sets up a new buffer in thread_local storage and writes a preamble. The
|
|
/// wall_clock_reader function is used to populate the WallTimeRecord entry.
|
|
static void setupNewBuffer(int (*wall_clock_reader)(clockid_t,
|
|
struct timespec *));
|
|
|
|
/// Called to record CPU time for a new CPU within the current thread.
|
|
static void writeNewCPUIdMetadata(uint16_t CPU, uint64_t TSC);
|
|
|
|
/// Called to close the buffer when the thread exhausts the buffer or when the
|
|
/// thread exits (via a thread local variable destructor).
|
|
static void writeEOBMetadata();
|
|
|
|
/// TSC Wrap records are written when a TSC delta encoding scheme overflows.
|
|
static void writeTSCWrapMetadata(uint64_t TSC);
|
|
|
|
/// Here's where the meat of the processing happens. The writer captures
|
|
/// function entry, exit and tail exit points with a time and will create
|
|
/// TSCWrap, NewCPUId and Function records as necessary. The writer might
|
|
/// walk backward through its buffer and erase trivial functions to avoid
|
|
/// polluting the log and may use the buffer queue to obtain or release a
|
|
/// buffer.
|
|
static void processFunctionHook(int32_t FuncId, XRayEntryType Entry,
|
|
uint64_t TSC, unsigned char CPU,
|
|
int (*wall_clock_reader)(clockid_t,
|
|
struct timespec *),
|
|
__sanitizer::atomic_sint32_t &LoggingStatus,
|
|
const std::shared_ptr<BufferQueue> &BQ);
|
|
|
|
//-----------------------------------------------------------------------------|
|
|
// The rest of the file is implementation. |
|
|
//-----------------------------------------------------------------------------|
|
|
// Functions are implemented in the header for inlining since we don't want |
|
|
// to grow the stack when we've hijacked the binary for logging. |
|
|
//-----------------------------------------------------------------------------|
|
|
|
|
namespace {
|
|
|
|
thread_local BufferQueue::Buffer Buffer;
|
|
thread_local char *RecordPtr = nullptr;
|
|
|
|
// The number of FunctionEntry records immediately preceding RecordPtr.
|
|
thread_local uint8_t NumConsecutiveFnEnters = 0;
|
|
|
|
// The number of adjacent, consecutive pairs of FunctionEntry, Tail Exit
|
|
// records preceding RecordPtr.
|
|
thread_local uint8_t NumTailCalls = 0;
|
|
|
|
constexpr auto MetadataRecSize = sizeof(MetadataRecord);
|
|
constexpr auto FunctionRecSize = sizeof(FunctionRecord);
|
|
|
|
class ThreadExitBufferCleanup {
|
|
std::weak_ptr<BufferQueue> Buffers;
|
|
BufferQueue::Buffer &Buffer;
|
|
|
|
public:
|
|
explicit ThreadExitBufferCleanup(std::weak_ptr<BufferQueue> BQ,
|
|
BufferQueue::Buffer &Buffer)
|
|
XRAY_NEVER_INSTRUMENT : Buffers(BQ),
|
|
Buffer(Buffer) {}
|
|
|
|
~ThreadExitBufferCleanup() noexcept XRAY_NEVER_INSTRUMENT {
|
|
if (RecordPtr == nullptr)
|
|
return;
|
|
|
|
// We make sure that upon exit, a thread will write out the EOB
|
|
// MetadataRecord in the thread-local log, and also release the buffer to
|
|
// the queue.
|
|
assert((RecordPtr + MetadataRecSize) - static_cast<char *>(Buffer.Buffer) >=
|
|
static_cast<ptrdiff_t>(MetadataRecSize));
|
|
if (auto BQ = Buffers.lock()) {
|
|
writeEOBMetadata();
|
|
auto EC = BQ->releaseBuffer(Buffer);
|
|
if (EC != BufferQueue::ErrorCode::Ok)
|
|
Report("Failed to release buffer at %p; error=%s\n", Buffer.Buffer,
|
|
BufferQueue::getErrorString(EC));
|
|
return;
|
|
}
|
|
}
|
|
};
|
|
|
|
class RecursionGuard {
|
|
bool &Running;
|
|
const bool Valid;
|
|
|
|
public:
|
|
explicit RecursionGuard(bool &R) : Running(R), Valid(!R) {
|
|
if (Valid)
|
|
Running = true;
|
|
}
|
|
|
|
RecursionGuard(const RecursionGuard &) = delete;
|
|
RecursionGuard(RecursionGuard &&) = delete;
|
|
RecursionGuard &operator=(const RecursionGuard &) = delete;
|
|
RecursionGuard &operator=(RecursionGuard &&) = delete;
|
|
|
|
explicit operator bool() const { return Valid; }
|
|
|
|
~RecursionGuard() noexcept {
|
|
if (Valid)
|
|
Running = false;
|
|
}
|
|
};
|
|
|
|
static inline bool loggingInitialized(
|
|
const __sanitizer::atomic_sint32_t &LoggingStatus) XRAY_NEVER_INSTRUMENT {
|
|
return __sanitizer::atomic_load(&LoggingStatus,
|
|
__sanitizer::memory_order_acquire) ==
|
|
XRayLogInitStatus::XRAY_LOG_INITIALIZED;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
static inline void writeNewBufferPreamble(pid_t Tid, timespec TS,
|
|
char *&MemPtr) XRAY_NEVER_INSTRUMENT {
|
|
static constexpr int InitRecordsCount = 2;
|
|
std::aligned_storage<sizeof(MetadataRecord)>::type Records[InitRecordsCount];
|
|
{
|
|
// Write out a MetadataRecord to signify that this is the start of a new
|
|
// buffer, associated with a particular thread, with a new CPU. For the
|
|
// data, we have 15 bytes to squeeze as much information as we can. At this
|
|
// point we only write down the following bytes:
|
|
// - Thread ID (pid_t, 4 bytes)
|
|
auto &NewBuffer = *reinterpret_cast<MetadataRecord *>(&Records[0]);
|
|
NewBuffer.Type = uint8_t(RecordType::Metadata);
|
|
NewBuffer.RecordKind = uint8_t(MetadataRecord::RecordKinds::NewBuffer);
|
|
std::memcpy(&NewBuffer.Data, &Tid, sizeof(pid_t));
|
|
}
|
|
// Also write the WalltimeMarker record.
|
|
{
|
|
static_assert(sizeof(time_t) <= 8, "time_t needs to be at most 8 bytes");
|
|
auto &WalltimeMarker = *reinterpret_cast<MetadataRecord *>(&Records[1]);
|
|
WalltimeMarker.Type = uint8_t(RecordType::Metadata);
|
|
WalltimeMarker.RecordKind =
|
|
uint8_t(MetadataRecord::RecordKinds::WalltimeMarker);
|
|
|
|
// We only really need microsecond precision here, and enforce across
|
|
// platforms that we need 64-bit seconds and 32-bit microseconds encoded in
|
|
// the Metadata record.
|
|
int32_t Micros = TS.tv_nsec / 1000;
|
|
int64_t Seconds = TS.tv_sec;
|
|
std::memcpy(WalltimeMarker.Data, &Seconds, sizeof(Seconds));
|
|
std::memcpy(WalltimeMarker.Data + sizeof(Seconds), &Micros, sizeof(Micros));
|
|
}
|
|
std::memcpy(MemPtr, Records, sizeof(MetadataRecord) * InitRecordsCount);
|
|
MemPtr += sizeof(MetadataRecord) * InitRecordsCount;
|
|
NumConsecutiveFnEnters = 0;
|
|
NumTailCalls = 0;
|
|
}
|
|
|
|
static inline void setupNewBuffer(int (*wall_clock_reader)(clockid_t,
|
|
struct timespec *))
|
|
XRAY_NEVER_INSTRUMENT {
|
|
RecordPtr = static_cast<char *>(Buffer.Buffer);
|
|
pid_t Tid = syscall(SYS_gettid);
|
|
timespec TS{0, 0};
|
|
// This is typically clock_gettime, but callers have injection ability.
|
|
wall_clock_reader(CLOCK_MONOTONIC, &TS);
|
|
writeNewBufferPreamble(Tid, TS, RecordPtr);
|
|
NumConsecutiveFnEnters = 0;
|
|
NumTailCalls = 0;
|
|
}
|
|
|
|
static inline void writeNewCPUIdMetadata(uint16_t CPU, uint64_t TSC,
|
|
char *&MemPtr) XRAY_NEVER_INSTRUMENT {
|
|
MetadataRecord NewCPUId;
|
|
NewCPUId.Type = uint8_t(RecordType::Metadata);
|
|
NewCPUId.RecordKind = uint8_t(MetadataRecord::RecordKinds::NewCPUId);
|
|
|
|
// The data for the New CPU will contain the following bytes:
|
|
// - CPU ID (uint16_t, 2 bytes)
|
|
// - Full TSC (uint64_t, 8 bytes)
|
|
// Total = 10 bytes.
|
|
std::memcpy(&NewCPUId.Data, &CPU, sizeof(CPU));
|
|
std::memcpy(&NewCPUId.Data[sizeof(CPU)], &TSC, sizeof(TSC));
|
|
std::memcpy(MemPtr, &NewCPUId, sizeof(MetadataRecord));
|
|
MemPtr += sizeof(MetadataRecord);
|
|
NumConsecutiveFnEnters = 0;
|
|
NumTailCalls = 0;
|
|
}
|
|
|
|
static inline void writeNewCPUIdMetadata(uint16_t CPU,
|
|
uint64_t TSC) XRAY_NEVER_INSTRUMENT {
|
|
writeNewCPUIdMetadata(CPU, TSC, RecordPtr);
|
|
}
|
|
|
|
static inline void writeEOBMetadata(char *&MemPtr) XRAY_NEVER_INSTRUMENT {
|
|
MetadataRecord EOBMeta;
|
|
EOBMeta.Type = uint8_t(RecordType::Metadata);
|
|
EOBMeta.RecordKind = uint8_t(MetadataRecord::RecordKinds::EndOfBuffer);
|
|
// For now we don't write any bytes into the Data field.
|
|
std::memcpy(MemPtr, &EOBMeta, sizeof(MetadataRecord));
|
|
MemPtr += sizeof(MetadataRecord);
|
|
NumConsecutiveFnEnters = 0;
|
|
NumTailCalls = 0;
|
|
}
|
|
|
|
static inline void writeEOBMetadata() XRAY_NEVER_INSTRUMENT {
|
|
writeEOBMetadata(RecordPtr);
|
|
}
|
|
|
|
static inline void writeTSCWrapMetadata(uint64_t TSC,
|
|
char *&MemPtr) XRAY_NEVER_INSTRUMENT {
|
|
MetadataRecord TSCWrap;
|
|
TSCWrap.Type = uint8_t(RecordType::Metadata);
|
|
TSCWrap.RecordKind = uint8_t(MetadataRecord::RecordKinds::TSCWrap);
|
|
|
|
// The data for the TSCWrap record contains the following bytes:
|
|
// - Full TSC (uint64_t, 8 bytes)
|
|
// Total = 8 bytes.
|
|
std::memcpy(&TSCWrap.Data, &TSC, sizeof(TSC));
|
|
std::memcpy(MemPtr, &TSCWrap, sizeof(MetadataRecord));
|
|
MemPtr += sizeof(MetadataRecord);
|
|
NumConsecutiveFnEnters = 0;
|
|
NumTailCalls = 0;
|
|
}
|
|
|
|
static inline void writeTSCWrapMetadata(uint64_t TSC) XRAY_NEVER_INSTRUMENT {
|
|
writeTSCWrapMetadata(TSC, RecordPtr);
|
|
}
|
|
|
|
static inline void writeFunctionRecord(int FuncId, uint32_t TSCDelta,
|
|
XRayEntryType EntryType,
|
|
char *&MemPtr) XRAY_NEVER_INSTRUMENT {
|
|
std::aligned_storage<sizeof(FunctionRecord), alignof(FunctionRecord)>::type
|
|
AlignedFuncRecordBuffer;
|
|
auto &FuncRecord =
|
|
*reinterpret_cast<FunctionRecord *>(&AlignedFuncRecordBuffer);
|
|
FuncRecord.Type = uint8_t(RecordType::Function);
|
|
// Only take 28 bits of the function id.
|
|
FuncRecord.FuncId = FuncId & ~(0x0F << 28);
|
|
FuncRecord.TSCDelta = TSCDelta;
|
|
|
|
switch (EntryType) {
|
|
case XRayEntryType::ENTRY:
|
|
++NumConsecutiveFnEnters;
|
|
FuncRecord.RecordKind = uint8_t(FunctionRecord::RecordKinds::FunctionEnter);
|
|
break;
|
|
case XRayEntryType::LOG_ARGS_ENTRY:
|
|
// We should not rewind functions with logged args.
|
|
NumConsecutiveFnEnters = 0;
|
|
NumTailCalls = 0;
|
|
FuncRecord.RecordKind = uint8_t(FunctionRecord::RecordKinds::FunctionEnter);
|
|
break;
|
|
case XRayEntryType::EXIT:
|
|
// If we've decided to log the function exit, we will never erase the log
|
|
// before it.
|
|
NumConsecutiveFnEnters = 0;
|
|
NumTailCalls = 0;
|
|
FuncRecord.RecordKind = uint8_t(FunctionRecord::RecordKinds::FunctionExit);
|
|
break;
|
|
case XRayEntryType::TAIL:
|
|
// If we just entered the function we're tail exiting from or erased every
|
|
// invocation since then, this function entry tail pair is a candidate to
|
|
// be erased when the child function exits.
|
|
if (NumConsecutiveFnEnters > 0) {
|
|
++NumTailCalls;
|
|
NumConsecutiveFnEnters = 0;
|
|
} else {
|
|
// We will never be able to erase this tail call since we have logged
|
|
// something in between the function entry and tail exit.
|
|
NumTailCalls = 0;
|
|
NumConsecutiveFnEnters = 0;
|
|
}
|
|
FuncRecord.RecordKind =
|
|
uint8_t(FunctionRecord::RecordKinds::FunctionTailExit);
|
|
break;
|
|
}
|
|
|
|
std::memcpy(MemPtr, &AlignedFuncRecordBuffer, sizeof(FunctionRecord));
|
|
MemPtr += sizeof(FunctionRecord);
|
|
}
|
|
|
|
static uint64_t thresholdTicks() {
|
|
static uint64_t TicksPerSec = probeRequiredCPUFeatures() ? getTSCFrequency() :
|
|
__xray::NanosecondsPerSecond;
|
|
static const uint64_t ThresholdTicks =
|
|
TicksPerSec * flags()->xray_fdr_log_func_duration_threshold_us / 1000000;
|
|
return ThresholdTicks;
|
|
}
|
|
|
|
// Re-point the thread local pointer into this thread's Buffer before the recent
|
|
// "Function Entry" record and any "Tail Call Exit" records after that.
|
|
static void rewindRecentCall(uint64_t TSC, uint64_t &LastTSC,
|
|
uint64_t &LastFunctionEntryTSC, int32_t FuncId) {
|
|
using AlignedFuncStorage =
|
|
std::aligned_storage<sizeof(FunctionRecord),
|
|
alignof(FunctionRecord)>::type;
|
|
RecordPtr -= FunctionRecSize;
|
|
AlignedFuncStorage AlignedFuncRecordBuffer;
|
|
const auto &FuncRecord = *reinterpret_cast<FunctionRecord *>(
|
|
std::memcpy(&AlignedFuncRecordBuffer, RecordPtr, FunctionRecSize));
|
|
assert(FuncRecord.RecordKind ==
|
|
uint8_t(FunctionRecord::RecordKinds::FunctionEnter) &&
|
|
"Expected to find function entry recording when rewinding.");
|
|
assert(FuncRecord.FuncId == (FuncId & ~(0x0F << 28)) &&
|
|
"Expected matching function id when rewinding Exit");
|
|
--NumConsecutiveFnEnters;
|
|
LastTSC -= FuncRecord.TSCDelta;
|
|
|
|
// We unwound one call. Update the state and return without writing a log.
|
|
if (NumConsecutiveFnEnters != 0) {
|
|
LastFunctionEntryTSC -= FuncRecord.TSCDelta;
|
|
return;
|
|
}
|
|
|
|
// Otherwise we've rewound the stack of all function entries, we might be
|
|
// able to rewind further by erasing tail call functions that are being
|
|
// exited from via this exit.
|
|
LastFunctionEntryTSC = 0;
|
|
auto RewindingTSC = LastTSC;
|
|
auto RewindingRecordPtr = RecordPtr - FunctionRecSize;
|
|
while (NumTailCalls > 0) {
|
|
AlignedFuncStorage TailExitRecordBuffer;
|
|
// Rewind the TSC back over the TAIL EXIT record.
|
|
const auto &ExpectedTailExit =
|
|
*reinterpret_cast<FunctionRecord *>(std::memcpy(
|
|
&TailExitRecordBuffer, RewindingRecordPtr, FunctionRecSize));
|
|
|
|
assert(ExpectedTailExit.RecordKind ==
|
|
uint8_t(FunctionRecord::RecordKinds::FunctionTailExit) &&
|
|
"Expected to find tail exit when rewinding.");
|
|
RewindingRecordPtr -= FunctionRecSize;
|
|
RewindingTSC -= ExpectedTailExit.TSCDelta;
|
|
AlignedFuncStorage FunctionEntryBuffer;
|
|
const auto &ExpectedFunctionEntry =
|
|
*reinterpret_cast<FunctionRecord *>(std::memcpy(
|
|
&FunctionEntryBuffer, RewindingRecordPtr, FunctionRecSize));
|
|
assert(ExpectedFunctionEntry.RecordKind ==
|
|
uint8_t(FunctionRecord::RecordKinds::FunctionEnter) &&
|
|
"Expected to find function entry when rewinding tail call.");
|
|
assert(ExpectedFunctionEntry.FuncId == ExpectedTailExit.FuncId &&
|
|
"Expected funcids to match when rewinding tail call.");
|
|
|
|
// This tail call exceeded the threshold duration. It will not be erased.
|
|
if ((TSC - RewindingTSC) >= thresholdTicks()) {
|
|
NumTailCalls = 0;
|
|
return;
|
|
}
|
|
|
|
// We can erase a tail exit pair that we're exiting through since
|
|
// its duration is under threshold.
|
|
--NumTailCalls;
|
|
RewindingRecordPtr -= FunctionRecSize;
|
|
RewindingTSC -= ExpectedFunctionEntry.TSCDelta;
|
|
RecordPtr -= 2 * FunctionRecSize;
|
|
LastTSC = RewindingTSC;
|
|
}
|
|
}
|
|
|
|
static inline bool releaseThreadLocalBuffer(BufferQueue *BQ) {
|
|
auto EC = BQ->releaseBuffer(Buffer);
|
|
if (EC != BufferQueue::ErrorCode::Ok) {
|
|
Report("Failed to release buffer at %p; error=%s\n", Buffer.Buffer,
|
|
BufferQueue::getErrorString(EC));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline void processFunctionHook(
|
|
int32_t FuncId, XRayEntryType Entry, uint64_t TSC, unsigned char CPU,
|
|
int (*wall_clock_reader)(clockid_t, struct timespec *),
|
|
__sanitizer::atomic_sint32_t &LoggingStatus,
|
|
const std::shared_ptr<BufferQueue> &BQ) XRAY_NEVER_INSTRUMENT {
|
|
// Bail out right away if logging is not initialized yet.
|
|
// We should take the opportunity to release the buffer though.
|
|
auto Status = __sanitizer::atomic_load(&LoggingStatus,
|
|
__sanitizer::memory_order_acquire);
|
|
if (Status != XRayLogInitStatus::XRAY_LOG_INITIALIZED) {
|
|
if (RecordPtr != nullptr &&
|
|
(Status == XRayLogInitStatus::XRAY_LOG_FINALIZING ||
|
|
Status == XRayLogInitStatus::XRAY_LOG_FINALIZED)) {
|
|
writeEOBMetadata();
|
|
if (!releaseThreadLocalBuffer(BQ.get()))
|
|
return;
|
|
RecordPtr = nullptr;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// We use a thread_local variable to keep track of which CPUs we've already
|
|
// run, and the TSC times for these CPUs. This allows us to stop repeating the
|
|
// CPU field in the function records.
|
|
//
|
|
// We assume that we'll support only 65536 CPUs for x86_64.
|
|
thread_local uint16_t CurrentCPU = std::numeric_limits<uint16_t>::max();
|
|
thread_local uint64_t LastTSC = 0;
|
|
thread_local uint64_t LastFunctionEntryTSC = 0;
|
|
|
|
// Make sure a thread that's ever called handleArg0 has a thread-local
|
|
// live reference to the buffer queue for this particular instance of
|
|
// FDRLogging, and that we're going to clean it up when the thread exits.
|
|
thread_local auto LocalBQ = BQ;
|
|
thread_local ThreadExitBufferCleanup Cleanup(LocalBQ, Buffer);
|
|
|
|
// Prevent signal handler recursion, so in case we're already in a log writing
|
|
// mode and the signal handler comes in (and is also instrumented) then we
|
|
// don't want to be clobbering potentially partial writes already happening in
|
|
// the thread. We use a simple thread_local latch to only allow one on-going
|
|
// handleArg0 to happen at any given time.
|
|
thread_local bool Running = false;
|
|
RecursionGuard Guard{Running};
|
|
if (!Guard) {
|
|
assert(Running == true && "RecursionGuard is buggy!");
|
|
return;
|
|
}
|
|
|
|
if (!loggingInitialized(LoggingStatus) || LocalBQ->finalizing()) {
|
|
writeEOBMetadata();
|
|
if (!releaseThreadLocalBuffer(BQ.get()))
|
|
return;
|
|
RecordPtr = nullptr;
|
|
}
|
|
|
|
if (Buffer.Buffer == nullptr) {
|
|
auto EC = LocalBQ->getBuffer(Buffer);
|
|
if (EC != BufferQueue::ErrorCode::Ok) {
|
|
auto LS = __sanitizer::atomic_load(&LoggingStatus,
|
|
__sanitizer::memory_order_acquire);
|
|
if (LS != XRayLogInitStatus::XRAY_LOG_FINALIZING &&
|
|
LS != XRayLogInitStatus::XRAY_LOG_FINALIZED)
|
|
Report("Failed to acquire a buffer; error=%s\n",
|
|
BufferQueue::getErrorString(EC));
|
|
return;
|
|
}
|
|
|
|
setupNewBuffer(wall_clock_reader);
|
|
}
|
|
|
|
if (CurrentCPU == std::numeric_limits<uint16_t>::max()) {
|
|
// This means this is the first CPU this thread has ever run on. We set the
|
|
// current CPU and record this as the first TSC we've seen.
|
|
CurrentCPU = CPU;
|
|
writeNewCPUIdMetadata(CPU, TSC);
|
|
}
|
|
|
|
// Before we go setting up writing new function entries, we need to be really
|
|
// careful about the pointer math we're doing. This means we need to ensure
|
|
// that the record we are about to write is going to fit into the buffer,
|
|
// without overflowing the buffer.
|
|
//
|
|
// To do this properly, we use the following assumptions:
|
|
//
|
|
// - The least number of bytes we will ever write is 8
|
|
// (sizeof(FunctionRecord)) only if the delta between the previous entry
|
|
// and this entry is within 32 bits.
|
|
// - The most number of bytes we will ever write is 8 + 16 = 24. This is
|
|
// computed by:
|
|
//
|
|
// sizeof(FunctionRecord) + sizeof(MetadataRecord)
|
|
//
|
|
// These arise in the following cases:
|
|
//
|
|
// 1. When the delta between the TSC we get and the previous TSC for the
|
|
// same CPU is outside of the uint32_t range, we end up having to
|
|
// write a MetadataRecord to indicate a "tsc wrap" before the actual
|
|
// FunctionRecord.
|
|
// 2. When we learn that we've moved CPUs, we need to write a
|
|
// MetadataRecord to indicate a "cpu change", and thus write out the
|
|
// current TSC for that CPU before writing out the actual
|
|
// FunctionRecord.
|
|
// 3. When we learn about a new CPU ID, we need to write down a "new cpu
|
|
// id" MetadataRecord before writing out the actual FunctionRecord.
|
|
//
|
|
// - An End-of-Buffer (EOB) MetadataRecord is 16 bytes.
|
|
//
|
|
// So the math we need to do is to determine whether writing 24 bytes past the
|
|
// current pointer leaves us with enough bytes to write the EOB
|
|
// MetadataRecord. If we don't have enough space after writing as much as 24
|
|
// bytes in the end of the buffer, we need to write out the EOB, get a new
|
|
// Buffer, set it up properly before doing any further writing.
|
|
//
|
|
char *BufferStart = static_cast<char *>(Buffer.Buffer);
|
|
if ((RecordPtr + (MetadataRecSize + FunctionRecSize)) - BufferStart <
|
|
static_cast<ptrdiff_t>(MetadataRecSize)) {
|
|
writeEOBMetadata();
|
|
if (!releaseThreadLocalBuffer(LocalBQ.get()))
|
|
return;
|
|
auto EC = LocalBQ->getBuffer(Buffer);
|
|
if (EC != BufferQueue::ErrorCode::Ok) {
|
|
Report("Failed to acquire a buffer; error=%s\n",
|
|
BufferQueue::getErrorString(EC));
|
|
return;
|
|
}
|
|
setupNewBuffer(wall_clock_reader);
|
|
}
|
|
|
|
// By this point, we are now ready to write at most 24 bytes (one metadata
|
|
// record and one function record).
|
|
BufferStart = static_cast<char *>(Buffer.Buffer);
|
|
assert((RecordPtr + (MetadataRecSize + FunctionRecSize)) - BufferStart >=
|
|
static_cast<ptrdiff_t>(MetadataRecSize) &&
|
|
"Misconfigured BufferQueue provided; Buffer size not large enough.");
|
|
|
|
// Here we compute the TSC Delta. There are a few interesting situations we
|
|
// need to account for:
|
|
//
|
|
// - The thread has migrated to a different CPU. If this is the case, then
|
|
// we write down the following records:
|
|
//
|
|
// 1. A 'NewCPUId' Metadata record.
|
|
// 2. A FunctionRecord with a 0 for the TSCDelta field.
|
|
//
|
|
// - The TSC delta is greater than the 32 bits we can store in a
|
|
// FunctionRecord. In this case we write down the following records:
|
|
//
|
|
// 1. A 'TSCWrap' Metadata record.
|
|
// 2. A FunctionRecord with a 0 for the TSCDelta field.
|
|
//
|
|
// - The TSC delta is representable within the 32 bits we can store in a
|
|
// FunctionRecord. In this case we write down just a FunctionRecord with
|
|
// the correct TSC delta.
|
|
//
|
|
|
|
uint32_t RecordTSCDelta = 0;
|
|
if (CPU != CurrentCPU) {
|
|
// We've moved to a new CPU.
|
|
writeNewCPUIdMetadata(CPU, TSC);
|
|
} else {
|
|
// If the delta is greater than the range for a uint32_t, then we write out
|
|
// the TSC wrap metadata entry with the full TSC, and the TSC for the
|
|
// function record be 0.
|
|
auto Delta = TSC - LastTSC;
|
|
if (Delta > (1ULL << 32) - 1)
|
|
writeTSCWrapMetadata(TSC);
|
|
else
|
|
RecordTSCDelta = Delta;
|
|
}
|
|
|
|
LastTSC = TSC;
|
|
CurrentCPU = CPU;
|
|
switch (Entry) {
|
|
case XRayEntryType::ENTRY:
|
|
case XRayEntryType::LOG_ARGS_ENTRY:
|
|
// Update the thread local state for the next invocation.
|
|
LastFunctionEntryTSC = TSC;
|
|
break;
|
|
case XRayEntryType::TAIL:
|
|
break;
|
|
case XRayEntryType::EXIT:
|
|
// Break out and write the exit record if we can't erase any functions.
|
|
if (NumConsecutiveFnEnters == 0 ||
|
|
(TSC - LastFunctionEntryTSC) >= thresholdTicks())
|
|
break;
|
|
rewindRecentCall(TSC, LastTSC, LastFunctionEntryTSC, FuncId);
|
|
return; // without writing log.
|
|
}
|
|
|
|
writeFunctionRecord(FuncId, RecordTSCDelta, Entry, RecordPtr);
|
|
|
|
// If we've exhausted the buffer by this time, we then release the buffer to
|
|
// make sure that other threads may start using this buffer.
|
|
if ((RecordPtr + MetadataRecSize) - BufferStart == MetadataRecSize) {
|
|
writeEOBMetadata();
|
|
if (!releaseThreadLocalBuffer(LocalBQ.get()))
|
|
return;
|
|
RecordPtr = nullptr;
|
|
}
|
|
}
|
|
|
|
} // namespace __xray_fdr_internal
|
|
|
|
} // namespace __xray
|
|
#endif // XRAY_XRAY_FDR_LOGGING_IMPL_H
|