freebsd-nq/lib/libkvm/kvm_pcpu.c
Robert Watson ccd8bad0bb A first cut at teaching libkvm how to deal with dynamic per-CPU storage
(DPCPU):

A new API, kvm_dpcpu_setcpu(3), selects the active CPU for the purposes
of DPCPU.  Calls to kvm_nlist(3) will automatically translate DPCPU
symbols and return a pointer to the current CPU's version of the data.
Consumers needing to read the same symbol on several CPUs will invoke a
series of setcpu/nlist calls, one per CPU of interest.

This addition makes it possible for tools like netstat(1) to query the
values of DPCPU variables during crashdump analysis, and is based on
similar code handling virtualized global variables.

MFC after:	1 week
Sponsored by:	Juniper Networks, Inc.
2010-03-01 00:27:55 +00:00

293 lines
6.9 KiB
C

/*-
* Copyright (c) 2010 Juniper Networks, Inc.
* Copyright (c) 2009 Robert N. M. Watson
* Copyright (c) 2009 Bjoern A. Zeeb <bz@FreeBSD.org>
* Copyright (c) 2008 Yahoo!, Inc.
* All rights reserved.
*
* Written by: John Baldwin <jhb@FreeBSD.org>
*
* This software was developed by Robert N. M. Watson under contract
* to Juniper Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/pcpu.h>
#include <sys/sysctl.h>
#include <kvm.h>
#include <limits.h>
#include <stdlib.h>
#include "kvm_private.h"
static struct nlist kvm_pcpu_nl[] = {
{ "_cpuid_to_pcpu" },
{ "_mp_maxcpus" },
{ NULL },
};
/*
* Kernel per-CPU data state. We cache this stuff on the first
* access.
*
* XXXRW: Possibly, this (and kvmpcpu_nl) should be per-kvm_t, in case the
* consumer has multiple handles in flight to differently configured
* kernels/crashdumps.
*/
static void **pcpu_data;
static int maxcpu;
#define NL_CPUID_TO_PCPU 0
#define NL_MP_MAXCPUS 1
static int
_kvm_pcpu_init(kvm_t *kd)
{
size_t len;
int max;
void *data;
if (kvm_nlist(kd, kvm_pcpu_nl) < 0)
return (-1);
if (kvm_pcpu_nl[NL_CPUID_TO_PCPU].n_value == 0) {
_kvm_err(kd, kd->program, "unable to find cpuid_to_pcpu");
return (-1);
}
if (kvm_pcpu_nl[NL_MP_MAXCPUS].n_value == 0) {
_kvm_err(kd, kd->program, "unable to find mp_maxcpus");
return (-1);
}
if (kvm_read(kd, kvm_pcpu_nl[NL_MP_MAXCPUS].n_value, &max,
sizeof(max)) != sizeof(max)) {
_kvm_err(kd, kd->program, "cannot read mp_maxcpus");
return (-1);
}
len = max * sizeof(void *);
data = malloc(len);
if (data == NULL) {
_kvm_err(kd, kd->program, "out of memory");
return (-1);
}
if (kvm_read(kd, kvm_pcpu_nl[NL_CPUID_TO_PCPU].n_value, data, len) !=
len) {
_kvm_err(kd, kd->program, "cannot read cpuid_to_pcpu array");
free(data);
return (-1);
}
pcpu_data = data;
maxcpu = max;
return (0);
}
static void
_kvm_pcpu_clear(void)
{
maxcpu = 0;
free(pcpu_data);
pcpu_data = NULL;
}
void *
kvm_getpcpu(kvm_t *kd, int cpu)
{
char *buf;
int i;
if (kd == NULL) {
_kvm_pcpu_clear();
return (NULL);
}
if (maxcpu == 0)
if (_kvm_pcpu_init(kd) < 0)
return ((void *)-1);
if (cpu >= maxcpu || pcpu_data[cpu] == NULL)
return (NULL);
buf = malloc(sizeof(struct pcpu));
if (buf == NULL) {
_kvm_err(kd, kd->program, "out of memory");
return ((void *)-1);
}
if (kvm_read(kd, (uintptr_t)pcpu_data[cpu], buf, sizeof(struct pcpu)) !=
sizeof(struct pcpu)) {
_kvm_err(kd, kd->program, "unable to read per-CPU data");
free(buf);
return ((void *)-1);
}
return (buf);
}
int
kvm_getmaxcpu(kvm_t *kd)
{
if (kd == NULL) {
_kvm_pcpu_clear();
return (0);
}
if (maxcpu == 0)
if (_kvm_pcpu_init(kd) < 0)
return (-1);
return (maxcpu);
}
static int
_kvm_dpcpu_setcpu(kvm_t *kd, u_int cpu, int report_error)
{
if (!kd->dpcpu_initialized) {
if (report_error)
_kvm_err(kd, kd->program, "%s: not initialized",
__func__);
return (-1);
}
if (cpu >= kd->dpcpu_maxcpus) {
if (report_error)
_kvm_err(kd, kd->program, "%s: CPU %u too big",
__func__, cpu);
return (-1);
}
if (kd->dpcpu_off[cpu] == 0) {
if (report_error)
_kvm_err(kd, kd->program, "%s: CPU %u not found",
__func__, cpu);
return (-1);
}
kd->dpcpu_curcpu = cpu;
kd->dpcpu_curoff = kd->dpcpu_off[cpu];
return (0);
}
/*
* Set up libkvm to handle dynamic per-CPU memory.
*/
static int
_kvm_dpcpu_init(kvm_t *kd)
{
struct nlist nl[] = {
#define NLIST_START_SET_PCPU 0
{ "___start_set_pcpu" },
#define NLIST_STOP_SET_PCPU 1
{ "___stop_set_pcpu" },
#define NLIST_DPCPU_OFF 2
{ "_dpcpu_off" },
#define NLIST_MP_MAXCPUS 3
{ "_mp_maxcpus" },
{ NULL },
};
uintptr_t *dpcpu_off_buf;
size_t len;
u_int dpcpu_maxcpus;
/*
* Locate and cache locations of important symbols using the internal
* version of _kvm_nlist, turning off initialization to avoid
* recursion in case of unresolveable symbols.
*/
if (_kvm_nlist(kd, nl, 0) != 0)
return (-1);
if (kvm_read(kd, nl[NLIST_MP_MAXCPUS].n_value, &dpcpu_maxcpus,
sizeof(dpcpu_maxcpus)) != sizeof(dpcpu_maxcpus))
return (-1);
len = dpcpu_maxcpus * sizeof(*dpcpu_off_buf);
dpcpu_off_buf = malloc(len);
if (dpcpu_off_buf == NULL)
return (-1);
if (kvm_read(kd, nl[NLIST_DPCPU_OFF].n_value, dpcpu_off_buf, len) !=
len) {
free(dpcpu_off_buf);
return (-1);
}
kd->dpcpu_start = nl[NLIST_START_SET_PCPU].n_value;
kd->dpcpu_stop = nl[NLIST_STOP_SET_PCPU].n_value;
kd->dpcpu_maxcpus = dpcpu_maxcpus;
kd->dpcpu_off = dpcpu_off_buf;
kd->dpcpu_initialized = 1;
(void)_kvm_dpcpu_setcpu(kd, 0, 0);
return (0);
}
/*
* Check whether the dpcpu module has been initialized sucessfully or not,
* initialize it if permitted.
*/
int
_kvm_dpcpu_initialized(kvm_t *kd, int intialize)
{
if (kd->dpcpu_initialized || !intialize)
return (kd->dpcpu_initialized);
(void)_kvm_dpcpu_init(kd);
return (kd->dpcpu_initialized);
}
/*
* Check whether the value is within the dpcpu symbol range and only if so
* adjust the offset relative to the current offset.
*/
uintptr_t
_kvm_dpcpu_validaddr(kvm_t *kd, uintptr_t value)
{
if (value == 0)
return (value);
if (!kd->dpcpu_initialized)
return (value);
if (value < kd->dpcpu_start || value >= kd->dpcpu_stop)
return (value);
return (kd->dpcpu_curoff + value);
}
int
kvm_dpcpu_setcpu(kvm_t *kd, u_int cpu)
{
int ret;
if (!kd->dpcpu_initialized) {
ret = _kvm_dpcpu_init(kd);
if (ret != 0) {
_kvm_err(kd, kd->program, "%s: init failed",
__func__);
return (ret);
}
}
return (_kvm_dpcpu_setcpu(kd, cpu, 1));
}