freebsd-nq/sys/dev/sfxge/common/efx_nvram.c
Andrew Rybchenko 3c838a9f51 sfxge: add 7xxx NICs family support
Support 7xxx adapters including firmware-assisted TSO and VLAN tagging:

  - Solarflare Flareon Ultra 7000 series 10/40G adapters:
    - Solarflare SFN7042Q QSFP+ Server Adapter
    - Solarflare SFN7142Q QSFP+ Server Adapter

  - Solarflare Flareon Ultra 7000 series 10G adapters:
    - Solarflare SFN7022F SFP+ Server Adapter
    - Solarflare SFN7122F SFP+ Server Adapter
    - Solarflare SFN7322F Precision Time Synchronization Server Adapter

  - Solarflare Flareon 7000 series 10G adapters:
    - Solarflare SFN7002F SFP+ Server Adapter

Support utilities to configure adapters and update firmware.

The work is done by Solarflare developers
(Andy Moreton, Andrew Lee and many others),
Artem V. Andreev <Artem.Andreev at oktetlabs.ru> and me.

Sponsored by:   Solarflare Communications, Inc.
MFC after:      2 weeks
Causually read by: gnn
Differential Revision: https://reviews.freebsd.org/D2618
2015-05-25 08:34:55 +00:00

888 lines
20 KiB
C

/*-
* Copyright (c) 2009-2015 Solarflare Communications Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are
* those of the authors and should not be interpreted as representing official
* policies, either expressed or implied, of the FreeBSD Project.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "efsys.h"
#include "efx.h"
#include "efx_types.h"
#include "efx_regs.h"
#include "efx_impl.h"
#if EFSYS_OPT_NVRAM
#if EFSYS_OPT_FALCON
static efx_nvram_ops_t __efx_nvram_falcon_ops = {
#if EFSYS_OPT_DIAG
falcon_nvram_test, /* envo_test */
#endif /* EFSYS_OPT_DIAG */
falcon_nvram_size, /* envo_size */
falcon_nvram_get_version, /* envo_get_version */
falcon_nvram_rw_start, /* envo_rw_start */
falcon_nvram_read_chunk, /* envo_read_chunk */
falcon_nvram_erase, /* envo_erase */
falcon_nvram_write_chunk, /* envo_write_chunk */
falcon_nvram_rw_finish, /* envo_rw_finish */
falcon_nvram_set_version, /* envo_set_version */
};
#endif /* EFSYS_OPT_FALCON */
#if EFSYS_OPT_SIENA
static efx_nvram_ops_t __efx_nvram_siena_ops = {
#if EFSYS_OPT_DIAG
siena_nvram_test, /* envo_test */
#endif /* EFSYS_OPT_DIAG */
siena_nvram_size, /* envo_size */
siena_nvram_get_version, /* envo_get_version */
siena_nvram_rw_start, /* envo_rw_start */
siena_nvram_read_chunk, /* envo_read_chunk */
siena_nvram_erase, /* envo_erase */
siena_nvram_write_chunk, /* envo_write_chunk */
siena_nvram_rw_finish, /* envo_rw_finish */
siena_nvram_set_version, /* envo_set_version */
};
#endif /* EFSYS_OPT_SIENA */
#if EFSYS_OPT_HUNTINGTON
static efx_nvram_ops_t __efx_nvram_hunt_ops = {
#if EFSYS_OPT_DIAG
hunt_nvram_test, /* envo_test */
#endif /* EFSYS_OPT_DIAG */
hunt_nvram_size, /* envo_size */
hunt_nvram_get_version, /* envo_get_version */
hunt_nvram_rw_start, /* envo_rw_start */
hunt_nvram_read_chunk, /* envo_read_chunk */
hunt_nvram_erase, /* envo_erase */
hunt_nvram_write_chunk, /* envo_write_chunk */
hunt_nvram_rw_finish, /* envo_rw_finish */
hunt_nvram_set_version, /* envo_set_version */
};
#endif /* EFSYS_OPT_HUNTINGTON */
__checkReturn int
efx_nvram_init(
__in efx_nic_t *enp)
{
efx_nvram_ops_t *envop;
int rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_NVRAM));
switch (enp->en_family) {
#if EFSYS_OPT_FALCON
case EFX_FAMILY_FALCON:
envop = (efx_nvram_ops_t *)&__efx_nvram_falcon_ops;
break;
#endif /* EFSYS_OPT_FALCON */
#if EFSYS_OPT_SIENA
case EFX_FAMILY_SIENA:
envop = (efx_nvram_ops_t *)&__efx_nvram_siena_ops;
break;
#endif /* EFSYS_OPT_SIENA */
#if EFSYS_OPT_HUNTINGTON
case EFX_FAMILY_HUNTINGTON:
envop = (efx_nvram_ops_t *)&__efx_nvram_hunt_ops;
break;
#endif /* EFSYS_OPT_HUNTINGTON */
default:
EFSYS_ASSERT(0);
rc = ENOTSUP;
goto fail1;
}
enp->en_envop = envop;
enp->en_mod_flags |= EFX_MOD_NVRAM;
return (0);
fail1:
EFSYS_PROBE1(fail1, int, rc);
return (rc);
}
#if EFSYS_OPT_DIAG
__checkReturn int
efx_nvram_test(
__in efx_nic_t *enp)
{
efx_nvram_ops_t *envop = enp->en_envop;
int rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
if ((rc = envop->envo_test(enp)) != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, int, rc);
return (rc);
}
#endif /* EFSYS_OPT_DIAG */
__checkReturn int
efx_nvram_size(
__in efx_nic_t *enp,
__in efx_nvram_type_t type,
__out size_t *sizep)
{
efx_nvram_ops_t *envop = enp->en_envop;
int rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES);
if ((rc = envop->envo_size(enp, type, sizep)) != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, int, rc);
return (rc);
}
__checkReturn int
efx_nvram_get_version(
__in efx_nic_t *enp,
__in efx_nvram_type_t type,
__out uint32_t *subtypep,
__out_ecount(4) uint16_t version[4])
{
efx_nvram_ops_t *envop = enp->en_envop;
int rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES);
if ((rc = envop->envo_get_version(enp, type, subtypep, version)) != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, int, rc);
return (rc);
}
__checkReturn int
efx_nvram_rw_start(
__in efx_nic_t *enp,
__in efx_nvram_type_t type,
__out_opt size_t *chunk_sizep)
{
efx_nvram_ops_t *envop = enp->en_envop;
int rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES);
EFSYS_ASSERT3U(type, !=, EFX_NVRAM_INVALID);
EFSYS_ASSERT3U(enp->en_nvram_locked, ==, EFX_NVRAM_INVALID);
if ((rc = envop->envo_rw_start(enp, type, chunk_sizep)) != 0)
goto fail1;
enp->en_nvram_locked = type;
return (0);
fail1:
EFSYS_PROBE1(fail1, int, rc);
return (rc);
}
__checkReturn int
efx_nvram_read_chunk(
__in efx_nic_t *enp,
__in efx_nvram_type_t type,
__in unsigned int offset,
__out_bcount(size) caddr_t data,
__in size_t size)
{
efx_nvram_ops_t *envop = enp->en_envop;
int rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES);
EFSYS_ASSERT3U(type, !=, EFX_NVRAM_INVALID);
EFSYS_ASSERT3U(enp->en_nvram_locked, ==, type);
if ((rc = envop->envo_read_chunk(enp, type, offset, data, size)) != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, int, rc);
return (rc);
}
__checkReturn int
efx_nvram_erase(
__in efx_nic_t *enp,
__in efx_nvram_type_t type)
{
efx_nvram_ops_t *envop = enp->en_envop;
int rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES);
EFSYS_ASSERT3U(type, !=, EFX_NVRAM_INVALID);
EFSYS_ASSERT3U(enp->en_nvram_locked, ==, type);
if ((rc = envop->envo_erase(enp, type)) != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, int, rc);
return (rc);
}
__checkReturn int
efx_nvram_write_chunk(
__in efx_nic_t *enp,
__in efx_nvram_type_t type,
__in unsigned int offset,
__in_bcount(size) caddr_t data,
__in size_t size)
{
efx_nvram_ops_t *envop = enp->en_envop;
int rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES);
EFSYS_ASSERT3U(type, !=, EFX_NVRAM_INVALID);
EFSYS_ASSERT3U(enp->en_nvram_locked, ==, type);
if ((rc = envop->envo_write_chunk(enp, type, offset, data, size)) != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, int, rc);
return (rc);
}
void
efx_nvram_rw_finish(
__in efx_nic_t *enp,
__in efx_nvram_type_t type)
{
efx_nvram_ops_t *envop = enp->en_envop;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES);
EFSYS_ASSERT3U(type, !=, EFX_NVRAM_INVALID);
EFSYS_ASSERT3U(enp->en_nvram_locked, ==, type);
envop->envo_rw_finish(enp, type);
enp->en_nvram_locked = EFX_NVRAM_INVALID;
}
__checkReturn int
efx_nvram_set_version(
__in efx_nic_t *enp,
__in efx_nvram_type_t type,
__in_ecount(4) uint16_t version[4])
{
efx_nvram_ops_t *envop = enp->en_envop;
int rc;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES);
/*
* The Siena implementation of envo_set_version() will attempt to
* acquire the NVRAM_UPDATE lock for the DYNAMIC_CONFIG sector.
* Therefore, you can't have already acquired the NVRAM_UPDATE lock.
*/
EFSYS_ASSERT3U(enp->en_nvram_locked, ==, EFX_NVRAM_INVALID);
if ((rc = envop->envo_set_version(enp, type, version)) != 0)
goto fail1;
return (0);
fail1:
EFSYS_PROBE1(fail1, int, rc);
return (rc);
}
void
efx_nvram_fini(
__in efx_nic_t *enp)
{
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
EFSYS_ASSERT3U(enp->en_nvram_locked, ==, EFX_NVRAM_INVALID);
enp->en_envop = NULL;
enp->en_mod_flags &= ~EFX_MOD_NVRAM;
}
#endif /* EFSYS_OPT_NVRAM */
#if EFSYS_OPT_NVRAM || EFSYS_OPT_VPD
/*
* Internal MCDI request handling
*/
__checkReturn int
efx_mcdi_nvram_partitions(
__in efx_nic_t *enp,
__out_bcount(size) caddr_t data,
__in size_t size,
__out unsigned int *npartnp)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_NVRAM_PARTITIONS_IN_LEN,
MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX)];
unsigned int npartn;
int rc;
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_NVRAM_PARTITIONS;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_NVRAM_PARTITIONS_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN) {
rc = EMSGSIZE;
goto fail2;
}
npartn = MCDI_OUT_DWORD(req, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
if (req.emr_out_length_used < MC_CMD_NVRAM_PARTITIONS_OUT_LEN(npartn)) {
rc = ENOENT;
goto fail3;
}
if (size < npartn * sizeof (uint32_t)) {
rc = ENOSPC;
goto fail3;
}
*npartnp = npartn;
memcpy(data,
MCDI_OUT2(req, uint32_t, NVRAM_PARTITIONS_OUT_TYPE_ID),
(npartn * sizeof (uint32_t)));
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, int, rc);
return (rc);
}
__checkReturn int
efx_mcdi_nvram_metadata(
__in efx_nic_t *enp,
__in uint32_t partn,
__out uint32_t *subtypep,
__out_ecount(4) uint16_t version[4],
__out_bcount_opt(size) char *descp,
__in size_t size)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_NVRAM_METADATA_IN_LEN,
MC_CMD_NVRAM_METADATA_OUT_LENMAX)];
int rc;
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_NVRAM_METADATA;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_NVRAM_METADATA_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_NVRAM_METADATA_OUT_LENMAX;
MCDI_IN_SET_DWORD(req, NVRAM_METADATA_IN_TYPE, partn);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_NVRAM_METADATA_OUT_LENMIN) {
rc = EMSGSIZE;
goto fail2;
}
if (MCDI_OUT_DWORD_FIELD(req, NVRAM_METADATA_OUT_FLAGS,
NVRAM_METADATA_OUT_SUBTYPE_VALID)) {
*subtypep = MCDI_OUT_DWORD(req, NVRAM_METADATA_OUT_SUBTYPE);
} else {
*subtypep = 0;
}
if (MCDI_OUT_DWORD_FIELD(req, NVRAM_METADATA_OUT_FLAGS,
NVRAM_METADATA_OUT_VERSION_VALID)) {
version[0] = MCDI_OUT_WORD(req, NVRAM_METADATA_OUT_VERSION_W);
version[1] = MCDI_OUT_WORD(req, NVRAM_METADATA_OUT_VERSION_X);
version[2] = MCDI_OUT_WORD(req, NVRAM_METADATA_OUT_VERSION_Y);
version[3] = MCDI_OUT_WORD(req, NVRAM_METADATA_OUT_VERSION_Z);
} else {
version[0] = version[1] = version[2] = version[3] = 0;
}
if (MCDI_OUT_DWORD_FIELD(req, NVRAM_METADATA_OUT_FLAGS,
NVRAM_METADATA_OUT_DESCRIPTION_VALID)) {
/* Return optional descrition string */
if ((descp != NULL) && (size > 0)) {
size_t desclen;
descp[0] = '\0';
desclen = (req.emr_out_length_used
- MC_CMD_NVRAM_METADATA_OUT_LEN(0));
EFSYS_ASSERT3U(desclen, <=,
MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_MAXNUM);
if (size < desclen) {
rc = ENOSPC;
goto fail3;
}
memcpy(descp, MCDI_OUT2(req, char,
NVRAM_METADATA_OUT_DESCRIPTION),
desclen);
/* Ensure string is NUL terminated */
descp[desclen] = '\0';
}
}
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, int, rc);
return (rc);
}
__checkReturn int
efx_mcdi_nvram_info(
__in efx_nic_t *enp,
__in uint32_t partn,
__out_opt size_t *sizep,
__out_opt uint32_t *addressp,
__out_opt uint32_t *erase_sizep)
{
uint8_t payload[MAX(MC_CMD_NVRAM_INFO_IN_LEN,
MC_CMD_NVRAM_INFO_OUT_LEN)];
efx_mcdi_req_t req;
int rc;
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_NVRAM_INFO;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_NVRAM_INFO_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_NVRAM_INFO_OUT_LEN;
MCDI_IN_SET_DWORD(req, NVRAM_INFO_IN_TYPE, partn);
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_NVRAM_INFO_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
if (sizep)
*sizep = MCDI_OUT_DWORD(req, NVRAM_INFO_OUT_SIZE);
if (addressp)
*addressp = MCDI_OUT_DWORD(req, NVRAM_INFO_OUT_PHYSADDR);
if (erase_sizep)
*erase_sizep = MCDI_OUT_DWORD(req, NVRAM_INFO_OUT_ERASESIZE);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, int, rc);
return (rc);
}
__checkReturn int
efx_mcdi_nvram_update_start(
__in efx_nic_t *enp,
__in uint32_t partn)
{
uint8_t payload[MAX(MC_CMD_NVRAM_UPDATE_START_IN_LEN,
MC_CMD_NVRAM_UPDATE_START_OUT_LEN)];
efx_mcdi_req_t req;
int rc;
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_NVRAM_UPDATE_START;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_NVRAM_UPDATE_START_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_NVRAM_UPDATE_START_OUT_LEN;
MCDI_IN_SET_DWORD(req, NVRAM_UPDATE_START_IN_TYPE, partn);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, int, rc);
return (rc);
}
__checkReturn int
efx_mcdi_nvram_read(
__in efx_nic_t *enp,
__in uint32_t partn,
__in uint32_t offset,
__out_bcount(size) caddr_t data,
__in size_t size)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_NVRAM_READ_IN_LEN,
MC_CMD_NVRAM_READ_OUT_LENMAX)];
int rc;
if (size > MC_CMD_NVRAM_READ_OUT_LENMAX) {
rc = EINVAL;
goto fail1;
}
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_NVRAM_READ;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_NVRAM_READ_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_NVRAM_READ_OUT_LENMAX;
MCDI_IN_SET_DWORD(req, NVRAM_READ_IN_TYPE, partn);
MCDI_IN_SET_DWORD(req, NVRAM_READ_IN_OFFSET, offset);
MCDI_IN_SET_DWORD(req, NVRAM_READ_IN_LENGTH, size);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_NVRAM_READ_OUT_LEN(size)) {
rc = EMSGSIZE;
goto fail2;
}
memcpy(data,
MCDI_OUT2(req, uint8_t, NVRAM_READ_OUT_READ_BUFFER),
size);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, int, rc);
return (rc);
}
__checkReturn int
efx_mcdi_nvram_erase(
__in efx_nic_t *enp,
__in uint32_t partn,
__in uint32_t offset,
__in size_t size)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_NVRAM_ERASE_IN_LEN,
MC_CMD_NVRAM_ERASE_OUT_LEN)];
int rc;
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_NVRAM_ERASE;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_NVRAM_ERASE_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_NVRAM_ERASE_OUT_LEN;
MCDI_IN_SET_DWORD(req, NVRAM_ERASE_IN_TYPE, partn);
MCDI_IN_SET_DWORD(req, NVRAM_ERASE_IN_OFFSET, offset);
MCDI_IN_SET_DWORD(req, NVRAM_ERASE_IN_LENGTH, size);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, int, rc);
return (rc);
}
__checkReturn int
efx_mcdi_nvram_write(
__in efx_nic_t *enp,
__in uint32_t partn,
__in uint32_t offset,
__out_bcount(size) caddr_t data,
__in size_t size)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_NVRAM_WRITE_IN_LENMAX,
MC_CMD_NVRAM_WRITE_OUT_LEN)];
int rc;
if (size > MC_CMD_NVRAM_WRITE_IN_LENMAX) {
rc = EINVAL;
goto fail1;
}
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_NVRAM_WRITE;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_NVRAM_WRITE_IN_LEN(size);
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_NVRAM_WRITE_OUT_LEN;
MCDI_IN_SET_DWORD(req, NVRAM_WRITE_IN_TYPE, partn);
MCDI_IN_SET_DWORD(req, NVRAM_WRITE_IN_OFFSET, offset);
MCDI_IN_SET_DWORD(req, NVRAM_WRITE_IN_LENGTH, size);
memcpy(MCDI_IN2(req, uint8_t, NVRAM_WRITE_IN_WRITE_BUFFER),
data, size);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail2;
}
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, int, rc);
return (rc);
}
__checkReturn int
efx_mcdi_nvram_update_finish(
__in efx_nic_t *enp,
__in uint32_t partn,
__in boolean_t reboot)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN,
MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN)];
int rc;
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_NVRAM_UPDATE_FINISH;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN;
MCDI_IN_SET_DWORD(req, NVRAM_UPDATE_FINISH_IN_TYPE, partn);
MCDI_IN_SET_DWORD(req, NVRAM_UPDATE_FINISH_IN_REBOOT, reboot);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, int, rc);
return (rc);
}
#if EFSYS_OPT_DIAG
__checkReturn int
efx_mcdi_nvram_test(
__in efx_nic_t *enp,
__in uint32_t partn)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_NVRAM_TEST_IN_LEN,
MC_CMD_NVRAM_TEST_OUT_LEN)];
int result;
int rc;
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_NVRAM_TEST;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_NVRAM_TEST_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_NVRAM_TEST_OUT_LEN;
MCDI_IN_SET_DWORD(req, NVRAM_TEST_IN_TYPE, partn);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_NVRAM_TEST_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
result = MCDI_OUT_DWORD(req, NVRAM_TEST_OUT_RESULT);
if (result == MC_CMD_NVRAM_TEST_FAIL) {
EFSYS_PROBE1(nvram_test_failure, int, partn);
rc = (EINVAL);
goto fail3;
}
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, int, rc);
return (rc);
}
#endif /* EFSYS_OPT_DIAG */
#endif /* EFSYS_OPT_NVRAM || EFSYS_OPT_VPD */