freebsd-nq/sys/x86/iommu/intel_fault.c
Ryan Stone 6749935455 Re-implement the DMAR I/O MMU code in terms of PCI RIDs
Under the hood the VT-d spec is really implemented in terms of
PCI RIDs instead of bus/slot/function, even though the spec makes
pains to convert back to bus/slot/function in examples.  However
working with bus/slot/function is not correct when PCI ARI is
in use, so convert to using RIDs in most cases.  bus/slot/function
will only be used when reporting errors to a user.

Reviewed by:	kib
MFC after:	2 months
Sponsored by:	Sandvine Inc.
2014-04-01 15:48:46 +00:00

327 lines
9.1 KiB
C

/*-
* Copyright (c) 2013 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_acpi.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/memdesc.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/taskqueue.h>
#include <sys/tree.h>
#include <machine/bus.h>
#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/accommon.h>
#include <dev/acpica/acpivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <x86/include/busdma_impl.h>
#include <x86/iommu/intel_reg.h>
#include <x86/iommu/busdma_dmar.h>
#include <x86/iommu/intel_dmar.h>
/*
* Fault interrupt handling for DMARs. If advanced fault logging is
* not implemented by hardware, the code emulates it. Fast interrupt
* handler flushes the fault registers into circular buffer at
* unit->fault_log, and schedules a task.
*
* The fast handler is used since faults usually come in bursts, and
* number of fault log registers is limited, e.g. down to one for 5400
* MCH. We are trying to reduce the latency for clearing the fault
* register file. The task is usually long-running, since printf() is
* slow, but this is not problematic because bursts are rare.
*
* For the same reason, each translation unit task is executed in its
* own thread.
*
* XXXKIB It seems there is no hardware available which implements
* advanced fault logging, so the code to handle AFL is not written.
*/
static int
dmar_fault_next(struct dmar_unit *unit, int faultp)
{
faultp += 2;
if (faultp == unit->fault_log_size)
faultp = 0;
return (faultp);
}
static void
dmar_fault_intr_clear(struct dmar_unit *unit, uint32_t fsts)
{
uint32_t clear;
clear = 0;
if ((fsts & DMAR_FSTS_ITE) != 0) {
printf("DMAR%d: Invalidation timed out\n", unit->unit);
clear |= DMAR_FSTS_ITE;
}
if ((fsts & DMAR_FSTS_ICE) != 0) {
printf("DMAR%d: Invalidation completion error\n",
unit->unit);
clear |= DMAR_FSTS_ICE;
}
if ((fsts & DMAR_FSTS_IQE) != 0) {
printf("DMAR%d: Invalidation queue error\n",
unit->unit);
clear |= DMAR_FSTS_IQE;
}
if ((fsts & DMAR_FSTS_APF) != 0) {
printf("DMAR%d: Advanced pending fault\n", unit->unit);
clear |= DMAR_FSTS_APF;
}
if ((fsts & DMAR_FSTS_AFO) != 0) {
printf("DMAR%d: Advanced fault overflow\n", unit->unit);
clear |= DMAR_FSTS_AFO;
}
if (clear != 0)
dmar_write4(unit, DMAR_FSTS_REG, clear);
}
int
dmar_fault_intr(void *arg)
{
struct dmar_unit *unit;
uint64_t fault_rec[2];
uint32_t fsts;
int fri, frir, faultp;
bool enqueue;
unit = arg;
enqueue = false;
fsts = dmar_read4(unit, DMAR_FSTS_REG);
dmar_fault_intr_clear(unit, fsts);
if ((fsts & DMAR_FSTS_PPF) == 0)
goto done;
fri = DMAR_FSTS_FRI(fsts);
for (;;) {
frir = (DMAR_CAP_FRO(unit->hw_cap) + fri) * 16;
fault_rec[1] = dmar_read8(unit, frir + 8);
if ((fault_rec[1] & DMAR_FRCD2_F) == 0)
break;
fault_rec[0] = dmar_read8(unit, frir);
dmar_write4(unit, frir + 12, DMAR_FRCD2_F32);
DMAR_FAULT_LOCK(unit);
faultp = unit->fault_log_head;
if (dmar_fault_next(unit, faultp) == unit->fault_log_tail) {
/* XXXKIB log overflow */
} else {
unit->fault_log[faultp] = fault_rec[0];
unit->fault_log[faultp + 1] = fault_rec[1];
unit->fault_log_head = dmar_fault_next(unit, faultp);
enqueue = true;
}
DMAR_FAULT_UNLOCK(unit);
fri += 1;
if (fri >= DMAR_CAP_NFR(unit->hw_cap))
fri = 0;
}
done:
/*
* On SandyBridge, due to errata BJ124, IvyBridge errata
* BV100, and Haswell errata HSD40, "Spurious Intel VT-d
* Interrupts May Occur When the PFO Bit is Set". Handle the
* cases by clearing overflow bit even if no fault is
* reported.
*
* On IvyBridge, errata BV30 states that clearing clear
* DMAR_FRCD2_F bit in the fault register causes spurious
* interrupt. Do nothing.
*
*/
if ((fsts & DMAR_FSTS_PFO) != 0) {
printf("DMAR%d: Fault Overflow\n", unit->unit);
dmar_write4(unit, DMAR_FSTS_REG, DMAR_FSTS_PFO);
}
if (enqueue) {
taskqueue_enqueue_fast(unit->fault_taskqueue,
&unit->fault_task);
}
return (FILTER_HANDLED);
}
static void
dmar_fault_task(void *arg, int pending __unused)
{
struct dmar_unit *unit;
struct dmar_ctx *ctx;
uint64_t fault_rec[2];
int sid, bus, slot, func, faultp;
unit = arg;
DMAR_FAULT_LOCK(unit);
for (;;) {
faultp = unit->fault_log_tail;
if (faultp == unit->fault_log_head)
break;
fault_rec[0] = unit->fault_log[faultp];
fault_rec[1] = unit->fault_log[faultp + 1];
unit->fault_log_tail = dmar_fault_next(unit, faultp);
DMAR_FAULT_UNLOCK(unit);
sid = DMAR_FRCD2_SID(fault_rec[1]);
printf("DMAR%d: ", unit->unit);
DMAR_LOCK(unit);
ctx = dmar_find_ctx_locked(unit, sid);
if (ctx == NULL) {
printf("<unknown dev>:");
/*
* Note that the slot and function will not be correct
* if ARI is in use, but without a ctx entry we have
* no way of knowing whether ARI is in use or not.
*/
bus = PCI_RID2BUS(sid);
slot = PCI_RID2SLOT(sid);
func = PCI_RID2FUNC(sid);
} else {
ctx->flags |= DMAR_CTX_FAULTED;
ctx->last_fault_rec[0] = fault_rec[0];
ctx->last_fault_rec[1] = fault_rec[1];
device_print_prettyname(ctx->ctx_tag.owner);
bus = pci_get_bus(ctx->ctx_tag.owner);
slot = pci_get_slot(ctx->ctx_tag.owner);
func = pci_get_function(ctx->ctx_tag.owner);
}
DMAR_UNLOCK(unit);
printf(
"pci%d:%d:%d fault acc %x adt 0x%x reason 0x%x addr %jx\n",
bus, slot, func, DMAR_FRCD2_T(fault_rec[1]),
DMAR_FRCD2_AT(fault_rec[1]), DMAR_FRCD2_FR(fault_rec[1]),
(uintmax_t)fault_rec[0]);
DMAR_FAULT_LOCK(unit);
}
DMAR_FAULT_UNLOCK(unit);
}
static void
dmar_clear_faults(struct dmar_unit *unit)
{
uint32_t frec, frir, fsts;
int i;
for (i = 0; i < DMAR_CAP_NFR(unit->hw_cap); i++) {
frir = (DMAR_CAP_FRO(unit->hw_cap) + i) * 16;
frec = dmar_read4(unit, frir + 12);
if ((frec & DMAR_FRCD2_F32) == 0)
continue;
dmar_write4(unit, frir + 12, DMAR_FRCD2_F32);
}
fsts = dmar_read4(unit, DMAR_FSTS_REG);
dmar_write4(unit, DMAR_FSTS_REG, fsts);
}
int
dmar_init_fault_log(struct dmar_unit *unit)
{
mtx_init(&unit->fault_lock, "dmarflt", NULL, MTX_SPIN);
unit->fault_log_size = 256; /* 128 fault log entries */
TUNABLE_INT_FETCH("hw.dmar.fault_log_size", &unit->fault_log_size);
if (unit->fault_log_size % 2 != 0)
panic("hw.dmar_fault_log_size must be even");
unit->fault_log = malloc(sizeof(uint64_t) * unit->fault_log_size,
M_DEVBUF, M_WAITOK | M_ZERO);
TASK_INIT(&unit->fault_task, 0, dmar_fault_task, unit);
unit->fault_taskqueue = taskqueue_create_fast("dmar", M_WAITOK,
taskqueue_thread_enqueue, &unit->fault_taskqueue);
taskqueue_start_threads(&unit->fault_taskqueue, 1, PI_AV,
"dmar%d fault taskq", unit->unit);
DMAR_LOCK(unit);
dmar_disable_fault_intr(unit);
dmar_clear_faults(unit);
dmar_enable_fault_intr(unit);
DMAR_UNLOCK(unit);
return (0);
}
void
dmar_fini_fault_log(struct dmar_unit *unit)
{
DMAR_LOCK(unit);
dmar_disable_fault_intr(unit);
DMAR_UNLOCK(unit);
if (unit->fault_taskqueue == NULL)
return;
taskqueue_drain(unit->fault_taskqueue, &unit->fault_task);
taskqueue_free(unit->fault_taskqueue);
unit->fault_taskqueue = NULL;
mtx_destroy(&unit->fault_lock);
free(unit->fault_log, M_DEVBUF);
unit->fault_log = NULL;
unit->fault_log_head = unit->fault_log_tail = 0;
}
void
dmar_enable_fault_intr(struct dmar_unit *unit)
{
uint32_t fectl;
DMAR_ASSERT_LOCKED(unit);
fectl = dmar_read4(unit, DMAR_FECTL_REG);
fectl &= ~DMAR_FECTL_IM;
dmar_write4(unit, DMAR_FECTL_REG, fectl);
}
void
dmar_disable_fault_intr(struct dmar_unit *unit)
{
uint32_t fectl;
DMAR_ASSERT_LOCKED(unit);
fectl = dmar_read4(unit, DMAR_FECTL_REG);
dmar_write4(unit, DMAR_FECTL_REG, fectl | DMAR_FECTL_IM);
}