freebsd-nq/sys/dev/netmap/netmap_freebsd.c
Pedro F. Giffuni 4d24901ac9 sys/dev: Replace zero with NULL for pointers.
Makes things easier to read, plus architectures may set NULL to something
different than zero.

Found with:	devel/coccinelle
MFC after:	3 weeks
2017-02-20 03:43:12 +00:00

1469 lines
35 KiB
C

/*
* Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* $FreeBSD$ */
#include "opt_inet.h"
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/module.h>
#include <sys/errno.h>
#include <sys/jail.h>
#include <sys/poll.h> /* POLLIN, POLLOUT */
#include <sys/kernel.h> /* types used in module initialization */
#include <sys/conf.h> /* DEV_MODULE_ORDERED */
#include <sys/endian.h>
#include <sys/syscallsubr.h> /* kern_ioctl() */
#include <sys/rwlock.h>
#include <vm/vm.h> /* vtophys */
#include <vm/pmap.h> /* vtophys */
#include <vm/vm_param.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/uma.h>
#include <sys/malloc.h>
#include <sys/socket.h> /* sockaddrs */
#include <sys/selinfo.h>
#include <sys/kthread.h> /* kthread_add() */
#include <sys/proc.h> /* PROC_LOCK() */
#include <sys/unistd.h> /* RFNOWAIT */
#include <sys/sched.h> /* sched_bind() */
#include <sys/smp.h> /* mp_maxid */
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_types.h> /* IFT_ETHER */
#include <net/ethernet.h> /* ether_ifdetach */
#include <net/if_dl.h> /* LLADDR */
#include <machine/bus.h> /* bus_dmamap_* */
#include <netinet/in.h> /* in6_cksum_pseudo() */
#include <machine/in_cksum.h> /* in_pseudo(), in_cksum_hdr() */
#include <net/netmap.h>
#include <dev/netmap/netmap_kern.h>
#include <net/netmap_virt.h>
#include <dev/netmap/netmap_mem2.h>
/* ======================== FREEBSD-SPECIFIC ROUTINES ================== */
void nm_os_selinfo_init(NM_SELINFO_T *si) {
struct mtx *m = &si->m;
mtx_init(m, "nm_kn_lock", NULL, MTX_DEF);
knlist_init_mtx(&si->si.si_note, m);
}
void
nm_os_selinfo_uninit(NM_SELINFO_T *si)
{
/* XXX kqueue(9) needed; these will mirror knlist_init. */
knlist_delete(&si->si.si_note, curthread, 0 /* not locked */ );
knlist_destroy(&si->si.si_note);
/* now we don't need the mutex anymore */
mtx_destroy(&si->m);
}
void
nm_os_ifnet_lock(void)
{
IFNET_RLOCK();
}
void
nm_os_ifnet_unlock(void)
{
IFNET_RUNLOCK();
}
static int netmap_use_count = 0;
void
nm_os_get_module(void)
{
netmap_use_count++;
}
void
nm_os_put_module(void)
{
netmap_use_count--;
}
static void
netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp)
{
netmap_undo_zombie(ifp);
}
static void
netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp)
{
netmap_make_zombie(ifp);
}
static eventhandler_tag nm_ifnet_ah_tag;
static eventhandler_tag nm_ifnet_dh_tag;
int
nm_os_ifnet_init(void)
{
nm_ifnet_ah_tag =
EVENTHANDLER_REGISTER(ifnet_arrival_event,
netmap_ifnet_arrival_handler,
NULL, EVENTHANDLER_PRI_ANY);
nm_ifnet_dh_tag =
EVENTHANDLER_REGISTER(ifnet_departure_event,
netmap_ifnet_departure_handler,
NULL, EVENTHANDLER_PRI_ANY);
return 0;
}
void
nm_os_ifnet_fini(void)
{
EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
nm_ifnet_ah_tag);
EVENTHANDLER_DEREGISTER(ifnet_departure_event,
nm_ifnet_dh_tag);
}
rawsum_t
nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum)
{
/* TODO XXX please use the FreeBSD implementation for this. */
uint16_t *words = (uint16_t *)data;
int nw = len / 2;
int i;
for (i = 0; i < nw; i++)
cur_sum += be16toh(words[i]);
if (len & 1)
cur_sum += (data[len-1] << 8);
return cur_sum;
}
/* Fold a raw checksum: 'cur_sum' is in host byte order, while the
* return value is in network byte order.
*/
uint16_t
nm_os_csum_fold(rawsum_t cur_sum)
{
/* TODO XXX please use the FreeBSD implementation for this. */
while (cur_sum >> 16)
cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16);
return htobe16((~cur_sum) & 0xFFFF);
}
uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph)
{
#if 0
return in_cksum_hdr((void *)iph);
#else
return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0));
#endif
}
void
nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
size_t datalen, uint16_t *check)
{
#ifdef INET
uint16_t pseudolen = datalen + iph->protocol;
/* Compute and insert the pseudo-header cheksum. */
*check = in_pseudo(iph->saddr, iph->daddr,
htobe16(pseudolen));
/* Compute the checksum on TCP/UDP header + payload
* (includes the pseudo-header).
*/
*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
#else
static int notsupported = 0;
if (!notsupported) {
notsupported = 1;
D("inet4 segmentation not supported");
}
#endif
}
void
nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
size_t datalen, uint16_t *check)
{
#ifdef INET6
*check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0);
*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
#else
static int notsupported = 0;
if (!notsupported) {
notsupported = 1;
D("inet6 segmentation not supported");
}
#endif
}
/* on FreeBSD we send up one packet at a time */
void *
nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev)
{
NA(ifp)->if_input(ifp, m);
return NULL;
}
int
nm_os_mbuf_has_offld(struct mbuf *m)
{
return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP |
CSUM_TCP_IPV6 | CSUM_UDP_IPV6 |
CSUM_SCTP_IPV6 | CSUM_TSO);
}
static void
freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
{
struct netmap_generic_adapter *gna =
(struct netmap_generic_adapter *)NA(ifp);
int stolen = generic_rx_handler(ifp, m);
if (!stolen) {
gna->save_if_input(ifp, m);
}
}
/*
* Intercept the rx routine in the standard device driver.
* Second argument is non-zero to intercept, 0 to restore
*/
int
nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept)
{
struct netmap_adapter *na = &gna->up.up;
struct ifnet *ifp = na->ifp;
if (intercept) {
if (gna->save_if_input) {
D("cannot intercept again");
return EINVAL; /* already set */
}
gna->save_if_input = ifp->if_input;
ifp->if_input = freebsd_generic_rx_handler;
} else {
if (!gna->save_if_input){
D("cannot restore");
return EINVAL; /* not saved */
}
ifp->if_input = gna->save_if_input;
gna->save_if_input = NULL;
}
return 0;
}
/*
* Intercept the packet steering routine in the tx path,
* so that we can decide which queue is used for an mbuf.
* Second argument is non-zero to intercept, 0 to restore.
* On freebsd we just intercept if_transmit.
*/
int
nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept)
{
struct netmap_adapter *na = &gna->up.up;
struct ifnet *ifp = netmap_generic_getifp(gna);
if (intercept) {
na->if_transmit = ifp->if_transmit;
ifp->if_transmit = netmap_transmit;
} else {
ifp->if_transmit = na->if_transmit;
}
return 0;
}
/*
* Transmit routine used by generic_netmap_txsync(). Returns 0 on success
* and non-zero on error (which may be packet drops or other errors).
* addr and len identify the netmap buffer, m is the (preallocated)
* mbuf to use for transmissions.
*
* We should add a reference to the mbuf so the m_freem() at the end
* of the transmission does not consume resources.
*
* On FreeBSD, and on multiqueue cards, we can force the queue using
* if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
* i = m->m_pkthdr.flowid % adapter->num_queues;
* else
* i = curcpu % adapter->num_queues;
*
*/
int
nm_os_generic_xmit_frame(struct nm_os_gen_arg *a)
{
int ret;
u_int len = a->len;
struct ifnet *ifp = a->ifp;
struct mbuf *m = a->m;
#if __FreeBSD_version < 1100000
/*
* Old FreeBSD versions. The mbuf has a cluster attached,
* we need to copy from the cluster to the netmap buffer.
*/
if (MBUF_REFCNT(m) != 1) {
D("invalid refcnt %d for %p", MBUF_REFCNT(m), m);
panic("in generic_xmit_frame");
}
if (m->m_ext.ext_size < len) {
RD(5, "size %d < len %d", m->m_ext.ext_size, len);
len = m->m_ext.ext_size;
}
bcopy(a->addr, m->m_data, len);
#else /* __FreeBSD_version >= 1100000 */
/* New FreeBSD versions. Link the external storage to
* the netmap buffer, so that no copy is necessary. */
m->m_ext.ext_buf = m->m_data = a->addr;
m->m_ext.ext_size = len;
#endif /* __FreeBSD_version >= 1100000 */
m->m_len = m->m_pkthdr.len = len;
/* mbuf refcnt is not contended, no need to use atomic
* (a memory barrier is enough). */
SET_MBUF_REFCNT(m, 2);
M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
m->m_pkthdr.flowid = a->ring_nr;
m->m_pkthdr.rcvif = ifp; /* used for tx notification */
ret = NA(ifp)->if_transmit(ifp, m);
return ret ? -1 : 0;
}
#if __FreeBSD_version >= 1100005
struct netmap_adapter *
netmap_getna(if_t ifp)
{
return (NA((struct ifnet *)ifp));
}
#endif /* __FreeBSD_version >= 1100005 */
/*
* The following two functions are empty until we have a generic
* way to extract the info from the ifp
*/
int
nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx)
{
D("called, in tx %d rx %d", *tx, *rx);
return 0;
}
void
nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq)
{
D("called, in txq %d rxq %d", *txq, *rxq);
*txq = netmap_generic_rings;
*rxq = netmap_generic_rings;
}
void
nm_os_generic_set_features(struct netmap_generic_adapter *gna)
{
gna->rxsg = 1; /* Supported through m_copydata. */
gna->txqdisc = 0; /* Not supported. */
}
void
nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na)
{
ND("called");
mit->mit_pending = 0;
mit->mit_ring_idx = idx;
mit->mit_na = na;
}
void
nm_os_mitigation_start(struct nm_generic_mit *mit)
{
ND("called");
}
void
nm_os_mitigation_restart(struct nm_generic_mit *mit)
{
ND("called");
}
int
nm_os_mitigation_active(struct nm_generic_mit *mit)
{
ND("called");
return 0;
}
void
nm_os_mitigation_cleanup(struct nm_generic_mit *mit)
{
ND("called");
}
static int
nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr)
{
return EINVAL;
}
static void
nm_vi_start(struct ifnet *ifp)
{
panic("nm_vi_start() must not be called");
}
/*
* Index manager of persistent virtual interfaces.
* It is used to decide the lowest byte of the MAC address.
* We use the same algorithm with management of bridge port index.
*/
#define NM_VI_MAX 255
static struct {
uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */
uint8_t active;
struct mtx lock;
} nm_vi_indices;
void
nm_os_vi_init_index(void)
{
int i;
for (i = 0; i < NM_VI_MAX; i++)
nm_vi_indices.index[i] = i;
nm_vi_indices.active = 0;
mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF);
}
/* return -1 if no index available */
static int
nm_vi_get_index(void)
{
int ret;
mtx_lock(&nm_vi_indices.lock);
ret = nm_vi_indices.active == NM_VI_MAX ? -1 :
nm_vi_indices.index[nm_vi_indices.active++];
mtx_unlock(&nm_vi_indices.lock);
return ret;
}
static void
nm_vi_free_index(uint8_t val)
{
int i, lim;
mtx_lock(&nm_vi_indices.lock);
lim = nm_vi_indices.active;
for (i = 0; i < lim; i++) {
if (nm_vi_indices.index[i] == val) {
/* swap index[lim-1] and j */
int tmp = nm_vi_indices.index[lim-1];
nm_vi_indices.index[lim-1] = val;
nm_vi_indices.index[i] = tmp;
nm_vi_indices.active--;
break;
}
}
if (lim == nm_vi_indices.active)
D("funny, index %u didn't found", val);
mtx_unlock(&nm_vi_indices.lock);
}
#undef NM_VI_MAX
/*
* Implementation of a netmap-capable virtual interface that
* registered to the system.
* It is based on if_tap.c and ip_fw_log.c in FreeBSD 9.
*
* Note: Linux sets refcount to 0 on allocation of net_device,
* then increments it on registration to the system.
* FreeBSD sets refcount to 1 on if_alloc(), and does not
* increment this refcount on if_attach().
*/
int
nm_os_vi_persist(const char *name, struct ifnet **ret)
{
struct ifnet *ifp;
u_short macaddr_hi;
uint32_t macaddr_mid;
u_char eaddr[6];
int unit = nm_vi_get_index(); /* just to decide MAC address */
if (unit < 0)
return EBUSY;
/*
* We use the same MAC address generation method with tap
* except for the highest octet is 00:be instead of 00:bd
*/
macaddr_hi = htons(0x00be); /* XXX tap + 1 */
macaddr_mid = (uint32_t) ticks;
bcopy(&macaddr_hi, eaddr, sizeof(short));
bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t));
eaddr[5] = (uint8_t)unit;
ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
D("if_alloc failed");
return ENOMEM;
}
if_initname(ifp, name, IF_DUNIT_NONE);
ifp->if_mtu = 65536;
ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = (void *)nm_vi_dummy;
ifp->if_ioctl = nm_vi_dummy;
ifp->if_start = nm_vi_start;
ifp->if_mtu = ETHERMTU;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_capabilities |= IFCAP_LINKSTATE;
ifp->if_capenable |= IFCAP_LINKSTATE;
ether_ifattach(ifp, eaddr);
*ret = ifp;
return 0;
}
/* unregister from the system and drop the final refcount */
void
nm_os_vi_detach(struct ifnet *ifp)
{
nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]);
ether_ifdetach(ifp);
if_free(ifp);
}
/* ======================== PTNETMAP SUPPORT ========================== */
#ifdef WITH_PTNETMAP_GUEST
#include <sys/bus.h>
#include <sys/rman.h>
#include <machine/bus.h> /* bus_dmamap_* */
#include <machine/resource.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
/*
* ptnetmap memory device (memdev) for freebsd guest,
* ssed to expose host netmap memory to the guest through a PCI BAR.
*/
/*
* ptnetmap memdev private data structure
*/
struct ptnetmap_memdev {
device_t dev;
struct resource *pci_io;
struct resource *pci_mem;
struct netmap_mem_d *nm_mem;
};
static int ptn_memdev_probe(device_t);
static int ptn_memdev_attach(device_t);
static int ptn_memdev_detach(device_t);
static int ptn_memdev_shutdown(device_t);
static device_method_t ptn_memdev_methods[] = {
DEVMETHOD(device_probe, ptn_memdev_probe),
DEVMETHOD(device_attach, ptn_memdev_attach),
DEVMETHOD(device_detach, ptn_memdev_detach),
DEVMETHOD(device_shutdown, ptn_memdev_shutdown),
DEVMETHOD_END
};
static driver_t ptn_memdev_driver = {
PTNETMAP_MEMDEV_NAME,
ptn_memdev_methods,
sizeof(struct ptnetmap_memdev),
};
/* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation
* below. */
static devclass_t ptnetmap_devclass;
DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, ptnetmap_devclass,
NULL, NULL, SI_ORDER_MIDDLE + 1);
/*
* Map host netmap memory through PCI-BAR in the guest OS,
* returning physical (nm_paddr) and virtual (nm_addr) addresses
* of the netmap memory mapped in the guest.
*/
int
nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr,
void **nm_addr, uint64_t *mem_size)
{
int rid;
D("ptn_memdev_driver iomap");
rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR);
*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI);
*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) |
(*mem_size << 32);
/* map memory allocator */
ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY,
&rid, 0, ~0, *mem_size, RF_ACTIVE);
if (ptn_dev->pci_mem == NULL) {
*nm_paddr = 0;
*nm_addr = NULL;
return ENOMEM;
}
*nm_paddr = rman_get_start(ptn_dev->pci_mem);
*nm_addr = rman_get_virtual(ptn_dev->pci_mem);
D("=== BAR %d start %lx len %lx mem_size %lx ===",
PTNETMAP_MEM_PCI_BAR,
(unsigned long)(*nm_paddr),
(unsigned long)rman_get_size(ptn_dev->pci_mem),
(unsigned long)*mem_size);
return (0);
}
uint32_t
nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg)
{
return bus_read_4(ptn_dev->pci_io, reg);
}
/* Unmap host netmap memory. */
void
nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev)
{
D("ptn_memdev_driver iounmap");
if (ptn_dev->pci_mem) {
bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY,
PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
ptn_dev->pci_mem = NULL;
}
}
/* Device identification routine, return BUS_PROBE_DEFAULT on success,
* positive on failure */
static int
ptn_memdev_probe(device_t dev)
{
char desc[256];
if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID)
return (ENXIO);
if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID)
return (ENXIO);
snprintf(desc, sizeof(desc), "%s PCI adapter",
PTNETMAP_MEMDEV_NAME);
device_set_desc_copy(dev, desc);
return (BUS_PROBE_DEFAULT);
}
/* Device initialization routine. */
static int
ptn_memdev_attach(device_t dev)
{
struct ptnetmap_memdev *ptn_dev;
int rid;
uint16_t mem_id;
D("ptn_memdev_driver attach");
ptn_dev = device_get_softc(dev);
ptn_dev->dev = dev;
pci_enable_busmaster(dev);
rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR);
ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
RF_ACTIVE);
if (ptn_dev->pci_io == NULL) {
device_printf(dev, "cannot map I/O space\n");
return (ENXIO);
}
mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID);
/* create guest allocator */
ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id);
if (ptn_dev->nm_mem == NULL) {
ptn_memdev_detach(dev);
return (ENOMEM);
}
netmap_mem_get(ptn_dev->nm_mem);
D("ptn_memdev_driver probe OK - host_mem_id: %d", mem_id);
return (0);
}
/* Device removal routine. */
static int
ptn_memdev_detach(device_t dev)
{
struct ptnetmap_memdev *ptn_dev;
D("ptn_memdev_driver detach");
ptn_dev = device_get_softc(dev);
if (ptn_dev->nm_mem) {
netmap_mem_put(ptn_dev->nm_mem);
ptn_dev->nm_mem = NULL;
}
if (ptn_dev->pci_mem) {
bus_release_resource(dev, SYS_RES_MEMORY,
PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
ptn_dev->pci_mem = NULL;
}
if (ptn_dev->pci_io) {
bus_release_resource(dev, SYS_RES_IOPORT,
PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io);
ptn_dev->pci_io = NULL;
}
return (0);
}
static int
ptn_memdev_shutdown(device_t dev)
{
D("ptn_memdev_driver shutdown");
return bus_generic_shutdown(dev);
}
#endif /* WITH_PTNETMAP_GUEST */
/*
* In order to track whether pages are still mapped, we hook into
* the standard cdev_pager and intercept the constructor and
* destructor.
*/
struct netmap_vm_handle_t {
struct cdev *dev;
struct netmap_priv_d *priv;
};
static int
netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
vm_ooffset_t foff, struct ucred *cred, u_short *color)
{
struct netmap_vm_handle_t *vmh = handle;
if (netmap_verbose)
D("handle %p size %jd prot %d foff %jd",
handle, (intmax_t)size, prot, (intmax_t)foff);
if (color)
*color = 0;
dev_ref(vmh->dev);
return 0;
}
static void
netmap_dev_pager_dtor(void *handle)
{
struct netmap_vm_handle_t *vmh = handle;
struct cdev *dev = vmh->dev;
struct netmap_priv_d *priv = vmh->priv;
if (netmap_verbose)
D("handle %p", handle);
netmap_dtor(priv);
free(vmh, M_DEVBUF);
dev_rel(dev);
}
static int
netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset,
int prot, vm_page_t *mres)
{
struct netmap_vm_handle_t *vmh = object->handle;
struct netmap_priv_d *priv = vmh->priv;
struct netmap_adapter *na = priv->np_na;
vm_paddr_t paddr;
vm_page_t page;
vm_memattr_t memattr;
vm_pindex_t pidx;
ND("object %p offset %jd prot %d mres %p",
object, (intmax_t)offset, prot, mres);
memattr = object->memattr;
pidx = OFF_TO_IDX(offset);
paddr = netmap_mem_ofstophys(na->nm_mem, offset);
if (paddr == 0)
return VM_PAGER_FAIL;
if (((*mres)->flags & PG_FICTITIOUS) != 0) {
/*
* If the passed in result page is a fake page, update it with
* the new physical address.
*/
page = *mres;
vm_page_updatefake(page, paddr, memattr);
} else {
/*
* Replace the passed in reqpage page with our own fake page and
* free up the all of the original pages.
*/
#ifndef VM_OBJECT_WUNLOCK /* FreeBSD < 10.x */
#define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK
#define VM_OBJECT_WLOCK VM_OBJECT_LOCK
#endif /* VM_OBJECT_WUNLOCK */
VM_OBJECT_WUNLOCK(object);
page = vm_page_getfake(paddr, memattr);
VM_OBJECT_WLOCK(object);
vm_page_lock(*mres);
vm_page_free(*mres);
vm_page_unlock(*mres);
*mres = page;
vm_page_insert(page, object, pidx);
}
page->valid = VM_PAGE_BITS_ALL;
return (VM_PAGER_OK);
}
static struct cdev_pager_ops netmap_cdev_pager_ops = {
.cdev_pg_ctor = netmap_dev_pager_ctor,
.cdev_pg_dtor = netmap_dev_pager_dtor,
.cdev_pg_fault = netmap_dev_pager_fault,
};
static int
netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
vm_size_t objsize, vm_object_t *objp, int prot)
{
int error;
struct netmap_vm_handle_t *vmh;
struct netmap_priv_d *priv;
vm_object_t obj;
if (netmap_verbose)
D("cdev %p foff %jd size %jd objp %p prot %d", cdev,
(intmax_t )*foff, (intmax_t )objsize, objp, prot);
vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (vmh == NULL)
return ENOMEM;
vmh->dev = cdev;
NMG_LOCK();
error = devfs_get_cdevpriv((void**)&priv);
if (error)
goto err_unlock;
if (priv->np_nifp == NULL) {
error = EINVAL;
goto err_unlock;
}
vmh->priv = priv;
priv->np_refs++;
NMG_UNLOCK();
obj = cdev_pager_allocate(vmh, OBJT_DEVICE,
&netmap_cdev_pager_ops, objsize, prot,
*foff, NULL);
if (obj == NULL) {
D("cdev_pager_allocate failed");
error = EINVAL;
goto err_deref;
}
*objp = obj;
return 0;
err_deref:
NMG_LOCK();
priv->np_refs--;
err_unlock:
NMG_UNLOCK();
// err:
free(vmh, M_DEVBUF);
return error;
}
/*
* On FreeBSD the close routine is only called on the last close on
* the device (/dev/netmap) so we cannot do anything useful.
* To track close() on individual file descriptors we pass netmap_dtor() to
* devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor
* when the last fd pointing to the device is closed.
*
* Note that FreeBSD does not even munmap() on close() so we also have
* to track mmap() ourselves, and postpone the call to
* netmap_dtor() is called when the process has no open fds and no active
* memory maps on /dev/netmap, as in linux.
*/
static int
netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
if (netmap_verbose)
D("dev %p fflag 0x%x devtype %d td %p",
dev, fflag, devtype, td);
return 0;
}
static int
netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
struct netmap_priv_d *priv;
int error;
(void)dev;
(void)oflags;
(void)devtype;
(void)td;
NMG_LOCK();
priv = netmap_priv_new();
if (priv == NULL) {
error = ENOMEM;
goto out;
}
error = devfs_set_cdevpriv(priv, netmap_dtor);
if (error) {
netmap_priv_delete(priv);
}
out:
NMG_UNLOCK();
return error;
}
/******************** kthread wrapper ****************/
#include <sys/sysproto.h>
u_int
nm_os_ncpus(void)
{
return mp_maxid + 1;
}
struct nm_kthread_ctx {
struct thread *user_td; /* thread user-space (kthread creator) to send ioctl */
struct ptnetmap_cfgentry_bhyve cfg;
/* worker function and parameter */
nm_kthread_worker_fn_t worker_fn;
void *worker_private;
struct nm_kthread *nmk;
/* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */
long type;
};
struct nm_kthread {
struct thread *worker;
struct mtx worker_lock;
uint64_t scheduled; /* pending wake_up request */
struct nm_kthread_ctx worker_ctx;
int run; /* used to stop kthread */
int attach_user; /* kthread attached to user_process */
int affinity;
};
void inline
nm_os_kthread_wakeup_worker(struct nm_kthread *nmk)
{
/*
* There may be a race between FE and BE,
* which call both this function, and worker kthread,
* that reads nmk->scheduled.
*
* For us it is not important the counter value,
* but simply that it has changed since the last
* time the kthread saw it.
*/
mtx_lock(&nmk->worker_lock);
nmk->scheduled++;
if (nmk->worker_ctx.cfg.wchan) {
wakeup((void *)(uintptr_t)nmk->worker_ctx.cfg.wchan);
}
mtx_unlock(&nmk->worker_lock);
}
void inline
nm_os_kthread_send_irq(struct nm_kthread *nmk)
{
struct nm_kthread_ctx *ctx = &nmk->worker_ctx;
int err;
if (ctx->user_td && ctx->cfg.ioctl_fd > 0) {
err = kern_ioctl(ctx->user_td, ctx->cfg.ioctl_fd, ctx->cfg.ioctl_cmd,
(caddr_t)&ctx->cfg.ioctl_data);
if (err) {
D("kern_ioctl error: %d ioctl parameters: fd %d com %lu data %p",
err, ctx->cfg.ioctl_fd, (unsigned long)ctx->cfg.ioctl_cmd,
&ctx->cfg.ioctl_data);
}
}
}
static void
nm_kthread_worker(void *data)
{
struct nm_kthread *nmk = data;
struct nm_kthread_ctx *ctx = &nmk->worker_ctx;
uint64_t old_scheduled = nmk->scheduled;
if (nmk->affinity >= 0) {
thread_lock(curthread);
sched_bind(curthread, nmk->affinity);
thread_unlock(curthread);
}
while (nmk->run) {
/*
* check if the parent process dies
* (when kthread is attached to user process)
*/
if (ctx->user_td) {
PROC_LOCK(curproc);
thread_suspend_check(0);
PROC_UNLOCK(curproc);
} else {
kthread_suspend_check();
}
/*
* if wchan is not defined, we don't have notification
* mechanism and we continually execute worker_fn()
*/
if (!ctx->cfg.wchan) {
ctx->worker_fn(ctx->worker_private); /* worker body */
} else {
/* checks if there is a pending notification */
mtx_lock(&nmk->worker_lock);
if (likely(nmk->scheduled != old_scheduled)) {
old_scheduled = nmk->scheduled;
mtx_unlock(&nmk->worker_lock);
ctx->worker_fn(ctx->worker_private); /* worker body */
continue;
} else if (nmk->run) {
/* wait on event with one second timeout */
msleep((void *)(uintptr_t)ctx->cfg.wchan,
&nmk->worker_lock, 0, "nmk_ev", hz);
nmk->scheduled++;
}
mtx_unlock(&nmk->worker_lock);
}
}
kthread_exit();
}
void
nm_os_kthread_set_affinity(struct nm_kthread *nmk, int affinity)
{
nmk->affinity = affinity;
}
struct nm_kthread *
nm_os_kthread_create(struct nm_kthread_cfg *cfg, unsigned int cfgtype,
void *opaque)
{
struct nm_kthread *nmk = NULL;
if (cfgtype != PTNETMAP_CFGTYPE_BHYVE) {
D("Unsupported cfgtype %u", cfgtype);
return NULL;
}
nmk = malloc(sizeof(*nmk), M_DEVBUF, M_NOWAIT | M_ZERO);
if (!nmk)
return NULL;
mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF);
nmk->worker_ctx.worker_fn = cfg->worker_fn;
nmk->worker_ctx.worker_private = cfg->worker_private;
nmk->worker_ctx.type = cfg->type;
nmk->affinity = -1;
/* attach kthread to user process (ptnetmap) */
nmk->attach_user = cfg->attach_user;
/* store kick/interrupt configuration */
if (opaque) {
nmk->worker_ctx.cfg = *((struct ptnetmap_cfgentry_bhyve *)opaque);
}
return nmk;
}
int
nm_os_kthread_start(struct nm_kthread *nmk)
{
struct proc *p = NULL;
int error = 0;
if (nmk->worker) {
return EBUSY;
}
/* check if we want to attach kthread to user process */
if (nmk->attach_user) {
nmk->worker_ctx.user_td = curthread;
p = curthread->td_proc;
}
/* enable kthread main loop */
nmk->run = 1;
/* create kthread */
if((error = kthread_add(nm_kthread_worker, nmk, p,
&nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld",
nmk->worker_ctx.type))) {
goto err;
}
D("nm_kthread started td %p", nmk->worker);
return 0;
err:
D("nm_kthread start failed err %d", error);
nmk->worker = NULL;
return error;
}
void
nm_os_kthread_stop(struct nm_kthread *nmk)
{
if (!nmk->worker) {
return;
}
/* tell to kthread to exit from main loop */
nmk->run = 0;
/* wake up kthread if it sleeps */
kthread_resume(nmk->worker);
nm_os_kthread_wakeup_worker(nmk);
nmk->worker = NULL;
}
void
nm_os_kthread_delete(struct nm_kthread *nmk)
{
if (!nmk)
return;
if (nmk->worker) {
nm_os_kthread_stop(nmk);
}
memset(&nmk->worker_ctx.cfg, 0, sizeof(nmk->worker_ctx.cfg));
free(nmk, M_DEVBUF);
}
/******************** kqueue support ****************/
/*
* nm_os_selwakeup also needs to issue a KNOTE_UNLOCKED.
* We use a non-zero argument to distinguish the call from the one
* in kevent_scan() which instead also needs to run netmap_poll().
* The knote uses a global mutex for the time being. We might
* try to reuse the one in the si, but it is not allocated
* permanently so it might be a bit tricky.
*
* The *kqfilter function registers one or another f_event
* depending on read or write mode.
* In the call to f_event() td_fpop is NULL so any child function
* calling devfs_get_cdevpriv() would fail - and we need it in
* netmap_poll(). As a workaround we store priv into kn->kn_hook
* and pass it as first argument to netmap_poll(), which then
* uses the failure to tell that we are called from f_event()
* and do not need the selrecord().
*/
void
nm_os_selwakeup(struct nm_selinfo *si)
{
if (netmap_verbose)
D("on knote %p", &si->si.si_note);
selwakeuppri(&si->si, PI_NET);
/* use a non-zero hint to tell the notification from the
* call done in kqueue_scan() which uses 0
*/
KNOTE_UNLOCKED(&si->si.si_note, 0x100 /* notification */);
}
void
nm_os_selrecord(struct thread *td, struct nm_selinfo *si)
{
selrecord(td, &si->si);
}
static void
netmap_knrdetach(struct knote *kn)
{
struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
struct selinfo *si = &priv->np_si[NR_RX]->si;
D("remove selinfo %p", si);
knlist_remove(&si->si_note, kn, 0);
}
static void
netmap_knwdetach(struct knote *kn)
{
struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
struct selinfo *si = &priv->np_si[NR_TX]->si;
D("remove selinfo %p", si);
knlist_remove(&si->si_note, kn, 0);
}
/*
* callback from notifies (generated externally) and our
* calls to kevent(). The former we just return 1 (ready)
* since we do not know better.
* In the latter we call netmap_poll and return 0/1 accordingly.
*/
static int
netmap_knrw(struct knote *kn, long hint, int events)
{
struct netmap_priv_d *priv;
int revents;
if (hint != 0) {
ND(5, "call from notify");
return 1; /* assume we are ready */
}
priv = kn->kn_hook;
/* the notification may come from an external thread,
* in which case we do not want to run the netmap_poll
* This should be filtered above, but check just in case.
*/
if (curthread != priv->np_td) { /* should not happen */
RD(5, "curthread changed %p %p", curthread, priv->np_td);
return 1;
} else {
revents = netmap_poll(priv, events, NULL);
return (events & revents) ? 1 : 0;
}
}
static int
netmap_knread(struct knote *kn, long hint)
{
return netmap_knrw(kn, hint, POLLIN);
}
static int
netmap_knwrite(struct knote *kn, long hint)
{
return netmap_knrw(kn, hint, POLLOUT);
}
static struct filterops netmap_rfiltops = {
.f_isfd = 1,
.f_detach = netmap_knrdetach,
.f_event = netmap_knread,
};
static struct filterops netmap_wfiltops = {
.f_isfd = 1,
.f_detach = netmap_knwdetach,
.f_event = netmap_knwrite,
};
/*
* This is called when a thread invokes kevent() to record
* a change in the configuration of the kqueue().
* The 'priv' should be the same as in the netmap device.
*/
static int
netmap_kqfilter(struct cdev *dev, struct knote *kn)
{
struct netmap_priv_d *priv;
int error;
struct netmap_adapter *na;
struct nm_selinfo *si;
int ev = kn->kn_filter;
if (ev != EVFILT_READ && ev != EVFILT_WRITE) {
D("bad filter request %d", ev);
return 1;
}
error = devfs_get_cdevpriv((void**)&priv);
if (error) {
D("device not yet setup");
return 1;
}
na = priv->np_na;
if (na == NULL) {
D("no netmap adapter for this file descriptor");
return 1;
}
/* the si is indicated in the priv */
si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX];
// XXX lock(priv) ?
kn->kn_fop = (ev == EVFILT_WRITE) ?
&netmap_wfiltops : &netmap_rfiltops;
kn->kn_hook = priv;
knlist_add(&si->si.si_note, kn, 1);
// XXX unlock(priv)
ND("register %p %s td %p priv %p kn %p np_nifp %p kn_fp/fpop %s",
na, na->ifp->if_xname, curthread, priv, kn,
priv->np_nifp,
kn->kn_fp == curthread->td_fpop ? "match" : "MISMATCH");
return 0;
}
static int
freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td)
{
struct netmap_priv_d *priv;
if (devfs_get_cdevpriv((void **)&priv)) {
return POLLERR;
}
return netmap_poll(priv, events, td);
}
static int
freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data,
int ffla __unused, struct thread *td)
{
int error;
struct netmap_priv_d *priv;
CURVNET_SET(TD_TO_VNET(td));
error = devfs_get_cdevpriv((void **)&priv);
if (error) {
/* XXX ENOENT should be impossible, since the priv
* is now created in the open */
if (error == ENOENT)
error = ENXIO;
goto out;
}
error = netmap_ioctl(priv, cmd, data, td);
out:
CURVNET_RESTORE();
return error;
}
extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */
struct cdevsw netmap_cdevsw = {
.d_version = D_VERSION,
.d_name = "netmap",
.d_open = netmap_open,
.d_mmap_single = netmap_mmap_single,
.d_ioctl = freebsd_netmap_ioctl,
.d_poll = freebsd_netmap_poll,
.d_kqfilter = netmap_kqfilter,
.d_close = netmap_close,
};
/*--- end of kqueue support ----*/
/*
* Kernel entry point.
*
* Initialize/finalize the module and return.
*
* Return 0 on success, errno on failure.
*/
static int
netmap_loader(__unused struct module *module, int event, __unused void *arg)
{
int error = 0;
switch (event) {
case MOD_LOAD:
error = netmap_init();
break;
case MOD_UNLOAD:
/*
* if some one is still using netmap,
* then the module can not be unloaded.
*/
if (netmap_use_count) {
D("netmap module can not be unloaded - netmap_use_count: %d",
netmap_use_count);
error = EBUSY;
break;
}
netmap_fini();
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
#ifdef DEV_MODULE_ORDERED
/*
* The netmap module contains three drivers: (i) the netmap character device
* driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI
* device driver. The attach() routines of both (ii) and (iii) need the
* lock of the global allocator, and such lock is initialized in netmap_init(),
* which is part of (i).
* Therefore, we make sure that (i) is loaded before (ii) and (iii), using
* the 'order' parameter of driver declaration macros. For (i), we specify
* SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED
* macros for (ii) and (iii).
*/
DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE);
#else /* !DEV_MODULE_ORDERED */
DEV_MODULE(netmap, netmap_loader, NULL);
#endif /* DEV_MODULE_ORDERED */
MODULE_DEPEND(netmap, pci, 1, 1, 1);
MODULE_VERSION(netmap, 1);
/* reduce conditional code */
// linux API, use for the knlist in FreeBSD
/* use a private mutex for the knlist */