freebsd-nq/sys/ufs/ffs/ffs_alloc.c
Konstantin Belousov cc9958bf22 ffs_reallocblks: change the guard for softdep_prealloc() call to DOINGSUJ()
instead of DOINGSOFTDEP().  The softdep_prealloc() function does nothing
in SU case.

Note that the call should be safe with regard to the vnode relock,
because it is called with MNT_NOWAIT, which does not descend into fsync.

Reviewed by:	mckusick
Tested by:	pho
MFC after:	1 week
Sponsored by:	The FreeBSD Foundation
2021-02-24 09:54:30 +02:00

3518 lines
101 KiB
C

/*-
* SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause)
*
* Copyright (c) 2002 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Marshall
* Kirk McKusick and Network Associates Laboratories, the Security
* Research Division of Network Associates, Inc. under DARPA/SPAWAR
* contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
* research program
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_quota.h"
#include <sys/param.h>
#include <sys/capsicum.h>
#include <sys/gsb_crc32.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/kernel.h>
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/taskqueue.h>
#include <security/audit/audit.h>
#include <geom/geom.h>
#include <geom/geom_vfs.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/extattr.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
#include <ufs/ffs/softdep.h>
typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref,
int size, int rsize);
static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int);
static ufs2_daddr_t
ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
static void ffs_blkfree_cg(struct ufsmount *, struct fs *,
struct vnode *, ufs2_daddr_t, long, ino_t,
struct workhead *);
#ifdef INVARIANTS
static int ffs_checkblk(struct inode *, ufs2_daddr_t, long);
#endif
static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int);
static ino_t ffs_dirpref(struct inode *);
static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t,
int, int);
static ufs2_daddr_t ffs_hashalloc
(struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *);
static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int,
int);
static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
static void ffs_ckhash_cg(struct buf *);
/*
* Allocate a block in the filesystem.
*
* The size of the requested block is given, which must be some
* multiple of fs_fsize and <= fs_bsize.
* A preference may be optionally specified. If a preference is given
* the following hierarchy is used to allocate a block:
* 1) allocate the requested block.
* 2) allocate a rotationally optimal block in the same cylinder.
* 3) allocate a block in the same cylinder group.
* 4) quadradically rehash into other cylinder groups, until an
* available block is located.
* If no block preference is given the following hierarchy is used
* to allocate a block:
* 1) allocate a block in the cylinder group that contains the
* inode for the file.
* 2) quadradically rehash into other cylinder groups, until an
* available block is located.
*/
int
ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp)
struct inode *ip;
ufs2_daddr_t lbn, bpref;
int size, flags;
struct ucred *cred;
ufs2_daddr_t *bnp;
{
struct fs *fs;
struct ufsmount *ump;
ufs2_daddr_t bno;
u_int cg, reclaimed;
int64_t delta;
#ifdef QUOTA
int error;
#endif
*bnp = 0;
ump = ITOUMP(ip);
fs = ump->um_fs;
mtx_assert(UFS_MTX(ump), MA_OWNED);
#ifdef INVARIANTS
if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
devtoname(ump->um_dev), (long)fs->fs_bsize, size,
fs->fs_fsmnt);
panic("ffs_alloc: bad size");
}
if (cred == NOCRED)
panic("ffs_alloc: missing credential");
#endif /* INVARIANTS */
reclaimed = 0;
retry:
#ifdef QUOTA
UFS_UNLOCK(ump);
error = chkdq(ip, btodb(size), cred, 0);
if (error)
return (error);
UFS_LOCK(ump);
#endif
if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
goto nospace;
if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) &&
freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
goto nospace;
if (bpref >= fs->fs_size)
bpref = 0;
if (bpref == 0)
cg = ino_to_cg(fs, ip->i_number);
else
cg = dtog(fs, bpref);
bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
if (bno > 0) {
delta = btodb(size);
DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
if (flags & IO_EXT)
UFS_INODE_SET_FLAG(ip, IN_CHANGE);
else
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
*bnp = bno;
return (0);
}
nospace:
#ifdef QUOTA
UFS_UNLOCK(ump);
/*
* Restore user's disk quota because allocation failed.
*/
(void) chkdq(ip, -btodb(size), cred, FORCE);
UFS_LOCK(ump);
#endif
if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
reclaimed = 1;
softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
goto retry;
}
if (ffs_fsfail_cleanup_locked(ump, 0)) {
UFS_UNLOCK(ump);
return (ENXIO);
}
if (reclaimed > 0 &&
ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
UFS_UNLOCK(ump);
ffs_fserr(fs, ip->i_number, "filesystem full");
uprintf("\n%s: write failed, filesystem is full\n",
fs->fs_fsmnt);
} else {
UFS_UNLOCK(ump);
}
return (ENOSPC);
}
/*
* Reallocate a fragment to a bigger size
*
* The number and size of the old block is given, and a preference
* and new size is also specified. The allocator attempts to extend
* the original block. Failing that, the regular block allocator is
* invoked to get an appropriate block.
*/
int
ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp)
struct inode *ip;
ufs2_daddr_t lbprev;
ufs2_daddr_t bprev;
ufs2_daddr_t bpref;
int osize, nsize, flags;
struct ucred *cred;
struct buf **bpp;
{
struct vnode *vp;
struct fs *fs;
struct buf *bp;
struct ufsmount *ump;
u_int cg, request, reclaimed;
int error, gbflags;
ufs2_daddr_t bno;
int64_t delta;
vp = ITOV(ip);
ump = ITOUMP(ip);
fs = ump->um_fs;
bp = NULL;
gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
mtx_assert(UFS_MTX(ump), MA_OWNED);
#ifdef INVARIANTS
if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
panic("ffs_realloccg: allocation on suspended filesystem");
if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
(u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
printf(
"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
devtoname(ump->um_dev), (long)fs->fs_bsize, osize,
nsize, fs->fs_fsmnt);
panic("ffs_realloccg: bad size");
}
if (cred == NOCRED)
panic("ffs_realloccg: missing credential");
#endif /* INVARIANTS */
reclaimed = 0;
retry:
if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) &&
freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) {
goto nospace;
}
if (bprev == 0) {
printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev,
fs->fs_fsmnt);
panic("ffs_realloccg: bad bprev");
}
UFS_UNLOCK(ump);
/*
* Allocate the extra space in the buffer.
*/
error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
if (error) {
return (error);
}
if (bp->b_blkno == bp->b_lblkno) {
if (lbprev >= UFS_NDADDR)
panic("ffs_realloccg: lbprev out of range");
bp->b_blkno = fsbtodb(fs, bprev);
}
#ifdef QUOTA
error = chkdq(ip, btodb(nsize - osize), cred, 0);
if (error) {
brelse(bp);
return (error);
}
#endif
/*
* Check for extension in the existing location.
*/
*bpp = NULL;
cg = dtog(fs, bprev);
UFS_LOCK(ump);
bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
if (bno) {
if (bp->b_blkno != fsbtodb(fs, bno))
panic("ffs_realloccg: bad blockno");
delta = btodb(nsize - osize);
DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
if (flags & IO_EXT)
UFS_INODE_SET_FLAG(ip, IN_CHANGE);
else
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
allocbuf(bp, nsize);
bp->b_flags |= B_DONE;
vfs_bio_bzero_buf(bp, osize, nsize - osize);
if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
vfs_bio_set_valid(bp, osize, nsize - osize);
*bpp = bp;
return (0);
}
/*
* Allocate a new disk location.
*/
if (bpref >= fs->fs_size)
bpref = 0;
switch ((int)fs->fs_optim) {
case FS_OPTSPACE:
/*
* Allocate an exact sized fragment. Although this makes
* best use of space, we will waste time relocating it if
* the file continues to grow. If the fragmentation is
* less than half of the minimum free reserve, we choose
* to begin optimizing for time.
*/
request = nsize;
if (fs->fs_minfree <= 5 ||
fs->fs_cstotal.cs_nffree >
(off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
break;
log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
fs->fs_fsmnt);
fs->fs_optim = FS_OPTTIME;
break;
case FS_OPTTIME:
/*
* At this point we have discovered a file that is trying to
* grow a small fragment to a larger fragment. To save time,
* we allocate a full sized block, then free the unused portion.
* If the file continues to grow, the `ffs_fragextend' call
* above will be able to grow it in place without further
* copying. If aberrant programs cause disk fragmentation to
* grow within 2% of the free reserve, we choose to begin
* optimizing for space.
*/
request = fs->fs_bsize;
if (fs->fs_cstotal.cs_nffree <
(off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
break;
log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
fs->fs_fsmnt);
fs->fs_optim = FS_OPTSPACE;
break;
default:
printf("dev = %s, optim = %ld, fs = %s\n",
devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt);
panic("ffs_realloccg: bad optim");
/* NOTREACHED */
}
bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
if (bno > 0) {
bp->b_blkno = fsbtodb(fs, bno);
if (!DOINGSOFTDEP(vp))
/*
* The usual case is that a smaller fragment that
* was just allocated has been replaced with a bigger
* fragment or a full-size block. If it is marked as
* B_DELWRI, the current contents have not been written
* to disk. It is possible that the block was written
* earlier, but very uncommon. If the block has never
* been written, there is no need to send a BIO_DELETE
* for it when it is freed. The gain from avoiding the
* TRIMs for the common case of unwritten blocks far
* exceeds the cost of the write amplification for the
* uncommon case of failing to send a TRIM for a block
* that had been written.
*/
ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize,
ip->i_number, vp->v_type, NULL,
(bp->b_flags & B_DELWRI) != 0 ?
NOTRIM_KEY : SINGLETON_KEY);
delta = btodb(nsize - osize);
DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
if (flags & IO_EXT)
UFS_INODE_SET_FLAG(ip, IN_CHANGE);
else
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
allocbuf(bp, nsize);
bp->b_flags |= B_DONE;
vfs_bio_bzero_buf(bp, osize, nsize - osize);
if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
vfs_bio_set_valid(bp, osize, nsize - osize);
*bpp = bp;
return (0);
}
#ifdef QUOTA
UFS_UNLOCK(ump);
/*
* Restore user's disk quota because allocation failed.
*/
(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
UFS_LOCK(ump);
#endif
nospace:
/*
* no space available
*/
if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
reclaimed = 1;
UFS_UNLOCK(ump);
if (bp) {
brelse(bp);
bp = NULL;
}
UFS_LOCK(ump);
softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
goto retry;
}
if (bp)
brelse(bp);
if (ffs_fsfail_cleanup_locked(ump, 0)) {
UFS_UNLOCK(ump);
return (ENXIO);
}
if (reclaimed > 0 &&
ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
UFS_UNLOCK(ump);
ffs_fserr(fs, ip->i_number, "filesystem full");
uprintf("\n%s: write failed, filesystem is full\n",
fs->fs_fsmnt);
} else {
UFS_UNLOCK(ump);
}
return (ENOSPC);
}
/*
* Reallocate a sequence of blocks into a contiguous sequence of blocks.
*
* The vnode and an array of buffer pointers for a range of sequential
* logical blocks to be made contiguous is given. The allocator attempts
* to find a range of sequential blocks starting as close as possible
* from the end of the allocation for the logical block immediately
* preceding the current range. If successful, the physical block numbers
* in the buffer pointers and in the inode are changed to reflect the new
* allocation. If unsuccessful, the allocation is left unchanged. The
* success in doing the reallocation is returned. Note that the error
* return is not reflected back to the user. Rather the previous block
* allocation will be used.
*/
SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"FFS filesystem");
static int doasyncfree = 1;
SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
"do not force synchronous writes when blocks are reallocated");
static int doreallocblks = 1;
SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0,
"enable block reallocation");
static int dotrimcons = 1;
SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0,
"enable BIO_DELETE / TRIM consolidation");
static int maxclustersearch = 10;
SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch,
0, "max number of cylinder group to search for contigous blocks");
#ifdef DIAGNOSTIC
static int prtrealloc = 0;
SYSCTL_INT(_debug, OID_AUTO, ffs_prtrealloc, CTLFLAG_RW, &prtrealloc, 0,
"print out FFS filesystem block reallocation operations");
#endif
int
ffs_reallocblks(ap)
struct vop_reallocblks_args /* {
struct vnode *a_vp;
struct cluster_save *a_buflist;
} */ *ap;
{
struct ufsmount *ump;
/*
* We used to skip reallocating the blocks of a file into a
* contiguous sequence if the underlying flash device requested
* BIO_DELETE notifications, because devices that benefit from
* BIO_DELETE also benefit from not moving the data. However,
* the destination for the data is usually moved before the data
* is written to the initially allocated location, so we rarely
* suffer the penalty of extra writes. With the addition of the
* consolidation of contiguous blocks into single BIO_DELETE
* operations, having fewer but larger contiguous blocks reduces
* the number of (slow and expensive) BIO_DELETE operations. So
* when doing BIO_DELETE consolidation, we do block reallocation.
*
* Skip if reallocblks has been disabled globally.
*/
ump = ap->a_vp->v_mount->mnt_data;
if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) ||
doreallocblks == 0)
return (ENOSPC);
/*
* We can't wait in softdep prealloc as it may fsync and recurse
* here. Instead we simply fail to reallocate blocks if this
* rare condition arises.
*/
if (DOINGSUJ(ap->a_vp))
if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
return (ENOSPC);
if (ump->um_fstype == UFS1)
return (ffs_reallocblks_ufs1(ap));
return (ffs_reallocblks_ufs2(ap));
}
static int
ffs_reallocblks_ufs1(ap)
struct vop_reallocblks_args /* {
struct vnode *a_vp;
struct cluster_save *a_buflist;
} */ *ap;
{
struct fs *fs;
struct inode *ip;
struct vnode *vp;
struct buf *sbp, *ebp, *bp;
ufs1_daddr_t *bap, *sbap, *ebap;
struct cluster_save *buflist;
struct ufsmount *ump;
ufs_lbn_t start_lbn, end_lbn;
ufs1_daddr_t soff, newblk, blkno;
ufs2_daddr_t pref;
struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
int i, cg, len, start_lvl, end_lvl, ssize;
vp = ap->a_vp;
ip = VTOI(vp);
ump = ITOUMP(ip);
fs = ump->um_fs;
/*
* If we are not tracking block clusters or if we have less than 4%
* free blocks left, then do not attempt to cluster. Running with
* less than 5% free block reserve is not recommended and those that
* choose to do so do not expect to have good file layout.
*/
if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
return (ENOSPC);
buflist = ap->a_buflist;
len = buflist->bs_nchildren;
start_lbn = buflist->bs_children[0]->b_lblkno;
end_lbn = start_lbn + len - 1;
#ifdef INVARIANTS
for (i = 0; i < len; i++)
if (!ffs_checkblk(ip,
dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
panic("ffs_reallocblks: unallocated block 1");
for (i = 1; i < len; i++)
if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
panic("ffs_reallocblks: non-logical cluster");
blkno = buflist->bs_children[0]->b_blkno;
ssize = fsbtodb(fs, fs->fs_frag);
for (i = 1; i < len - 1; i++)
if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
panic("ffs_reallocblks: non-physical cluster %d", i);
#endif
/*
* If the cluster crosses the boundary for the first indirect
* block, leave space for the indirect block. Indirect blocks
* are initially laid out in a position after the last direct
* block. Block reallocation would usually destroy locality by
* moving the indirect block out of the way to make room for
* data blocks if we didn't compensate here. We should also do
* this for other indirect block boundaries, but it is only
* important for the first one.
*/
if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
return (ENOSPC);
/*
* If the latest allocation is in a new cylinder group, assume that
* the filesystem has decided to move and do not force it back to
* the previous cylinder group.
*/
if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
return (ENOSPC);
if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
return (ENOSPC);
/*
* Get the starting offset and block map for the first block.
*/
if (start_lvl == 0) {
sbap = &ip->i_din1->di_db[0];
soff = start_lbn;
} else {
idp = &start_ap[start_lvl - 1];
if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
brelse(sbp);
return (ENOSPC);
}
sbap = (ufs1_daddr_t *)sbp->b_data;
soff = idp->in_off;
}
/*
* If the block range spans two block maps, get the second map.
*/
ebap = NULL;
if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
ssize = len;
} else {
#ifdef INVARIANTS
if (start_lvl > 0 &&
start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
panic("ffs_reallocblk: start == end");
#endif
ssize = len - (idp->in_off + 1);
if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
goto fail;
ebap = (ufs1_daddr_t *)ebp->b_data;
}
/*
* Find the preferred location for the cluster. If we have not
* previously failed at this endeavor, then follow our standard
* preference calculation. If we have failed at it, then pick up
* where we last ended our search.
*/
UFS_LOCK(ump);
if (ip->i_nextclustercg == -1)
pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
else
pref = cgdata(fs, ip->i_nextclustercg);
/*
* Search the block map looking for an allocation of the desired size.
* To avoid wasting too much time, we limit the number of cylinder
* groups that we will search.
*/
cg = dtog(fs, pref);
for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
break;
cg += 1;
if (cg >= fs->fs_ncg)
cg = 0;
}
/*
* If we have failed in our search, record where we gave up for
* next time. Otherwise, fall back to our usual search citerion.
*/
if (newblk == 0) {
ip->i_nextclustercg = cg;
UFS_UNLOCK(ump);
goto fail;
}
ip->i_nextclustercg = -1;
/*
* We have found a new contiguous block.
*
* First we have to replace the old block pointers with the new
* block pointers in the inode and indirect blocks associated
* with the file.
*/
#ifdef DIAGNOSTIC
if (prtrealloc)
printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
(uintmax_t)ip->i_number,
(intmax_t)start_lbn, (intmax_t)end_lbn);
#endif
blkno = newblk;
for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
if (i == ssize) {
bap = ebap;
soff = -i;
}
#ifdef INVARIANTS
if (!ffs_checkblk(ip,
dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
panic("ffs_reallocblks: unallocated block 2");
if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
panic("ffs_reallocblks: alloc mismatch");
#endif
#ifdef DIAGNOSTIC
if (prtrealloc)
printf(" %d,", *bap);
#endif
if (DOINGSOFTDEP(vp)) {
if (sbap == &ip->i_din1->di_db[0] && i < ssize)
softdep_setup_allocdirect(ip, start_lbn + i,
blkno, *bap, fs->fs_bsize, fs->fs_bsize,
buflist->bs_children[i]);
else
softdep_setup_allocindir_page(ip, start_lbn + i,
i < ssize ? sbp : ebp, soff + i, blkno,
*bap, buflist->bs_children[i]);
}
*bap++ = blkno;
}
/*
* Next we must write out the modified inode and indirect blocks.
* For strict correctness, the writes should be synchronous since
* the old block values may have been written to disk. In practise
* they are almost never written, but if we are concerned about
* strict correctness, the `doasyncfree' flag should be set to zero.
*
* The test on `doasyncfree' should be changed to test a flag
* that shows whether the associated buffers and inodes have
* been written. The flag should be set when the cluster is
* started and cleared whenever the buffer or inode is flushed.
* We can then check below to see if it is set, and do the
* synchronous write only when it has been cleared.
*/
if (sbap != &ip->i_din1->di_db[0]) {
if (doasyncfree)
bdwrite(sbp);
else
bwrite(sbp);
} else {
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
if (!doasyncfree)
ffs_update(vp, 1);
}
if (ssize < len) {
if (doasyncfree)
bdwrite(ebp);
else
bwrite(ebp);
}
/*
* Last, free the old blocks and assign the new blocks to the buffers.
*/
#ifdef DIAGNOSTIC
if (prtrealloc)
printf("\n\tnew:");
#endif
for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
bp = buflist->bs_children[i];
if (!DOINGSOFTDEP(vp))
/*
* The usual case is that a set of N-contiguous blocks
* that was just allocated has been replaced with a
* set of N+1-contiguous blocks. If they are marked as
* B_DELWRI, the current contents have not been written
* to disk. It is possible that the blocks were written
* earlier, but very uncommon. If the blocks have never
* been written, there is no need to send a BIO_DELETE
* for them when they are freed. The gain from avoiding
* the TRIMs for the common case of unwritten blocks
* far exceeds the cost of the write amplification for
* the uncommon case of failing to send a TRIM for the
* blocks that had been written.
*/
ffs_blkfree(ump, fs, ump->um_devvp,
dbtofsb(fs, bp->b_blkno),
fs->fs_bsize, ip->i_number, vp->v_type, NULL,
(bp->b_flags & B_DELWRI) != 0 ?
NOTRIM_KEY : SINGLETON_KEY);
bp->b_blkno = fsbtodb(fs, blkno);
#ifdef INVARIANTS
if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize))
panic("ffs_reallocblks: unallocated block 3");
#endif
#ifdef DIAGNOSTIC
if (prtrealloc)
printf(" %d,", blkno);
#endif
}
#ifdef DIAGNOSTIC
if (prtrealloc) {
prtrealloc--;
printf("\n");
}
#endif
return (0);
fail:
if (ssize < len)
brelse(ebp);
if (sbap != &ip->i_din1->di_db[0])
brelse(sbp);
return (ENOSPC);
}
static int
ffs_reallocblks_ufs2(ap)
struct vop_reallocblks_args /* {
struct vnode *a_vp;
struct cluster_save *a_buflist;
} */ *ap;
{
struct fs *fs;
struct inode *ip;
struct vnode *vp;
struct buf *sbp, *ebp, *bp;
ufs2_daddr_t *bap, *sbap, *ebap;
struct cluster_save *buflist;
struct ufsmount *ump;
ufs_lbn_t start_lbn, end_lbn;
ufs2_daddr_t soff, newblk, blkno, pref;
struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
int i, cg, len, start_lvl, end_lvl, ssize;
vp = ap->a_vp;
ip = VTOI(vp);
ump = ITOUMP(ip);
fs = ump->um_fs;
/*
* If we are not tracking block clusters or if we have less than 4%
* free blocks left, then do not attempt to cluster. Running with
* less than 5% free block reserve is not recommended and those that
* choose to do so do not expect to have good file layout.
*/
if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
return (ENOSPC);
buflist = ap->a_buflist;
len = buflist->bs_nchildren;
start_lbn = buflist->bs_children[0]->b_lblkno;
end_lbn = start_lbn + len - 1;
#ifdef INVARIANTS
for (i = 0; i < len; i++)
if (!ffs_checkblk(ip,
dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
panic("ffs_reallocblks: unallocated block 1");
for (i = 1; i < len; i++)
if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
panic("ffs_reallocblks: non-logical cluster");
blkno = buflist->bs_children[0]->b_blkno;
ssize = fsbtodb(fs, fs->fs_frag);
for (i = 1; i < len - 1; i++)
if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
panic("ffs_reallocblks: non-physical cluster %d", i);
#endif
/*
* If the cluster crosses the boundary for the first indirect
* block, do not move anything in it. Indirect blocks are
* usually initially laid out in a position between the data
* blocks. Block reallocation would usually destroy locality by
* moving the indirect block out of the way to make room for
* data blocks if we didn't compensate here. We should also do
* this for other indirect block boundaries, but it is only
* important for the first one.
*/
if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
return (ENOSPC);
/*
* If the latest allocation is in a new cylinder group, assume that
* the filesystem has decided to move and do not force it back to
* the previous cylinder group.
*/
if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
return (ENOSPC);
if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
return (ENOSPC);
/*
* Get the starting offset and block map for the first block.
*/
if (start_lvl == 0) {
sbap = &ip->i_din2->di_db[0];
soff = start_lbn;
} else {
idp = &start_ap[start_lvl - 1];
if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
brelse(sbp);
return (ENOSPC);
}
sbap = (ufs2_daddr_t *)sbp->b_data;
soff = idp->in_off;
}
/*
* If the block range spans two block maps, get the second map.
*/
ebap = NULL;
if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
ssize = len;
} else {
#ifdef INVARIANTS
if (start_lvl > 0 &&
start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
panic("ffs_reallocblk: start == end");
#endif
ssize = len - (idp->in_off + 1);
if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
goto fail;
ebap = (ufs2_daddr_t *)ebp->b_data;
}
/*
* Find the preferred location for the cluster. If we have not
* previously failed at this endeavor, then follow our standard
* preference calculation. If we have failed at it, then pick up
* where we last ended our search.
*/
UFS_LOCK(ump);
if (ip->i_nextclustercg == -1)
pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
else
pref = cgdata(fs, ip->i_nextclustercg);
/*
* Search the block map looking for an allocation of the desired size.
* To avoid wasting too much time, we limit the number of cylinder
* groups that we will search.
*/
cg = dtog(fs, pref);
for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
break;
cg += 1;
if (cg >= fs->fs_ncg)
cg = 0;
}
/*
* If we have failed in our search, record where we gave up for
* next time. Otherwise, fall back to our usual search citerion.
*/
if (newblk == 0) {
ip->i_nextclustercg = cg;
UFS_UNLOCK(ump);
goto fail;
}
ip->i_nextclustercg = -1;
/*
* We have found a new contiguous block.
*
* First we have to replace the old block pointers with the new
* block pointers in the inode and indirect blocks associated
* with the file.
*/
#ifdef DIAGNOSTIC
if (prtrealloc)
printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number,
(intmax_t)start_lbn, (intmax_t)end_lbn);
#endif
blkno = newblk;
for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
if (i == ssize) {
bap = ebap;
soff = -i;
}
#ifdef INVARIANTS
if (!ffs_checkblk(ip,
dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
panic("ffs_reallocblks: unallocated block 2");
if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
panic("ffs_reallocblks: alloc mismatch");
#endif
#ifdef DIAGNOSTIC
if (prtrealloc)
printf(" %jd,", (intmax_t)*bap);
#endif
if (DOINGSOFTDEP(vp)) {
if (sbap == &ip->i_din2->di_db[0] && i < ssize)
softdep_setup_allocdirect(ip, start_lbn + i,
blkno, *bap, fs->fs_bsize, fs->fs_bsize,
buflist->bs_children[i]);
else
softdep_setup_allocindir_page(ip, start_lbn + i,
i < ssize ? sbp : ebp, soff + i, blkno,
*bap, buflist->bs_children[i]);
}
*bap++ = blkno;
}
/*
* Next we must write out the modified inode and indirect blocks.
* For strict correctness, the writes should be synchronous since
* the old block values may have been written to disk. In practise
* they are almost never written, but if we are concerned about
* strict correctness, the `doasyncfree' flag should be set to zero.
*
* The test on `doasyncfree' should be changed to test a flag
* that shows whether the associated buffers and inodes have
* been written. The flag should be set when the cluster is
* started and cleared whenever the buffer or inode is flushed.
* We can then check below to see if it is set, and do the
* synchronous write only when it has been cleared.
*/
if (sbap != &ip->i_din2->di_db[0]) {
if (doasyncfree)
bdwrite(sbp);
else
bwrite(sbp);
} else {
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
if (!doasyncfree)
ffs_update(vp, 1);
}
if (ssize < len) {
if (doasyncfree)
bdwrite(ebp);
else
bwrite(ebp);
}
/*
* Last, free the old blocks and assign the new blocks to the buffers.
*/
#ifdef DIAGNOSTIC
if (prtrealloc)
printf("\n\tnew:");
#endif
for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
bp = buflist->bs_children[i];
if (!DOINGSOFTDEP(vp))
/*
* The usual case is that a set of N-contiguous blocks
* that was just allocated has been replaced with a
* set of N+1-contiguous blocks. If they are marked as
* B_DELWRI, the current contents have not been written
* to disk. It is possible that the blocks were written
* earlier, but very uncommon. If the blocks have never
* been written, there is no need to send a BIO_DELETE
* for them when they are freed. The gain from avoiding
* the TRIMs for the common case of unwritten blocks
* far exceeds the cost of the write amplification for
* the uncommon case of failing to send a TRIM for the
* blocks that had been written.
*/
ffs_blkfree(ump, fs, ump->um_devvp,
dbtofsb(fs, bp->b_blkno),
fs->fs_bsize, ip->i_number, vp->v_type, NULL,
(bp->b_flags & B_DELWRI) != 0 ?
NOTRIM_KEY : SINGLETON_KEY);
bp->b_blkno = fsbtodb(fs, blkno);
#ifdef INVARIANTS
if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize))
panic("ffs_reallocblks: unallocated block 3");
#endif
#ifdef DIAGNOSTIC
if (prtrealloc)
printf(" %jd,", (intmax_t)blkno);
#endif
}
#ifdef DIAGNOSTIC
if (prtrealloc) {
prtrealloc--;
printf("\n");
}
#endif
return (0);
fail:
if (ssize < len)
brelse(ebp);
if (sbap != &ip->i_din2->di_db[0])
brelse(sbp);
return (ENOSPC);
}
/*
* Allocate an inode in the filesystem.
*
* If allocating a directory, use ffs_dirpref to select the inode.
* If allocating in a directory, the following hierarchy is followed:
* 1) allocate the preferred inode.
* 2) allocate an inode in the same cylinder group.
* 3) quadradically rehash into other cylinder groups, until an
* available inode is located.
* If no inode preference is given the following hierarchy is used
* to allocate an inode:
* 1) allocate an inode in cylinder group 0.
* 2) quadradically rehash into other cylinder groups, until an
* available inode is located.
*/
int
ffs_valloc(pvp, mode, cred, vpp)
struct vnode *pvp;
int mode;
struct ucred *cred;
struct vnode **vpp;
{
struct inode *pip;
struct fs *fs;
struct inode *ip;
struct timespec ts;
struct ufsmount *ump;
ino_t ino, ipref;
u_int cg;
int error, reclaimed;
*vpp = NULL;
pip = VTOI(pvp);
ump = ITOUMP(pip);
fs = ump->um_fs;
UFS_LOCK(ump);
reclaimed = 0;
retry:
if (fs->fs_cstotal.cs_nifree == 0)
goto noinodes;
if ((mode & IFMT) == IFDIR)
ipref = ffs_dirpref(pip);
else
ipref = pip->i_number;
if (ipref >= fs->fs_ncg * fs->fs_ipg)
ipref = 0;
cg = ino_to_cg(fs, ipref);
/*
* Track number of dirs created one after another
* in a same cg without intervening by files.
*/
if ((mode & IFMT) == IFDIR) {
if (fs->fs_contigdirs[cg] < 255)
fs->fs_contigdirs[cg]++;
} else {
if (fs->fs_contigdirs[cg] > 0)
fs->fs_contigdirs[cg]--;
}
ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
(allocfcn_t *)ffs_nodealloccg);
if (ino == 0)
goto noinodes;
/*
* Get rid of the cached old vnode, force allocation of a new vnode
* for this inode. If this fails, release the allocated ino and
* return the error.
*/
if ((error = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
FFSV_FORCEINSMQ | FFSV_REPLACE)) != 0) {
ffs_vfree(pvp, ino, mode);
return (error);
}
/*
* We got an inode, so check mode and panic if it is already allocated.
*/
ip = VTOI(*vpp);
if (ip->i_mode) {
printf("mode = 0%o, inum = %ju, fs = %s\n",
ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt);
panic("ffs_valloc: dup alloc");
}
if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */
printf("free inode %s/%lu had %ld blocks\n",
fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
DIP_SET(ip, i_blocks, 0);
}
ip->i_flags = 0;
DIP_SET(ip, i_flags, 0);
/*
* Set up a new generation number for this inode.
*/
while (ip->i_gen == 0 || ++ip->i_gen == 0)
ip->i_gen = arc4random();
DIP_SET(ip, i_gen, ip->i_gen);
if (fs->fs_magic == FS_UFS2_MAGIC) {
vfs_timestamp(&ts);
ip->i_din2->di_birthtime = ts.tv_sec;
ip->i_din2->di_birthnsec = ts.tv_nsec;
}
ip->i_flag = 0;
(*vpp)->v_vflag = 0;
(*vpp)->v_type = VNON;
if (fs->fs_magic == FS_UFS2_MAGIC) {
(*vpp)->v_op = &ffs_vnodeops2;
UFS_INODE_SET_FLAG(ip, IN_UFS2);
} else {
(*vpp)->v_op = &ffs_vnodeops1;
}
return (0);
noinodes:
if (reclaimed == 0) {
reclaimed = 1;
softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
goto retry;
}
if (ffs_fsfail_cleanup_locked(ump, 0)) {
UFS_UNLOCK(ump);
return (ENXIO);
}
if (ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
UFS_UNLOCK(ump);
ffs_fserr(fs, pip->i_number, "out of inodes");
uprintf("\n%s: create/symlink failed, no inodes free\n",
fs->fs_fsmnt);
} else {
UFS_UNLOCK(ump);
}
return (ENOSPC);
}
/*
* Find a cylinder group to place a directory.
*
* The policy implemented by this algorithm is to allocate a
* directory inode in the same cylinder group as its parent
* directory, but also to reserve space for its files inodes
* and data. Restrict the number of directories which may be
* allocated one after another in the same cylinder group
* without intervening allocation of files.
*
* If we allocate a first level directory then force allocation
* in another cylinder group.
*/
static ino_t
ffs_dirpref(pip)
struct inode *pip;
{
struct fs *fs;
int cg, prefcg, dirsize, cgsize;
u_int avgifree, avgbfree, avgndir, curdirsize;
u_int minifree, minbfree, maxndir;
u_int mincg, minndir;
u_int maxcontigdirs;
mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED);
fs = ITOFS(pip);
avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
/*
* Force allocation in another cg if creating a first level dir.
*/
ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
if (ITOV(pip)->v_vflag & VV_ROOT) {
prefcg = arc4random() % fs->fs_ncg;
mincg = prefcg;
minndir = fs->fs_ipg;
for (cg = prefcg; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
mincg = cg;
minndir = fs->fs_cs(fs, cg).cs_ndir;
}
for (cg = 0; cg < prefcg; cg++)
if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
mincg = cg;
minndir = fs->fs_cs(fs, cg).cs_ndir;
}
return ((ino_t)(fs->fs_ipg * mincg));
}
/*
* Count various limits which used for
* optimal allocation of a directory inode.
*/
maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
minifree = avgifree - avgifree / 4;
if (minifree < 1)
minifree = 1;
minbfree = avgbfree - avgbfree / 4;
if (minbfree < 1)
minbfree = 1;
cgsize = fs->fs_fsize * fs->fs_fpg;
dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
if (dirsize < curdirsize)
dirsize = curdirsize;
if (dirsize <= 0)
maxcontigdirs = 0; /* dirsize overflowed */
else
maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
if (fs->fs_avgfpdir > 0)
maxcontigdirs = min(maxcontigdirs,
fs->fs_ipg / fs->fs_avgfpdir);
if (maxcontigdirs == 0)
maxcontigdirs = 1;
/*
* Limit number of dirs in one cg and reserve space for
* regular files, but only if we have no deficit in
* inodes or space.
*
* We are trying to find a suitable cylinder group nearby
* our preferred cylinder group to place a new directory.
* We scan from our preferred cylinder group forward looking
* for a cylinder group that meets our criterion. If we get
* to the final cylinder group and do not find anything,
* we start scanning forwards from the beginning of the
* filesystem. While it might seem sensible to start scanning
* backwards or even to alternate looking forward and backward,
* this approach fails badly when the filesystem is nearly full.
* Specifically, we first search all the areas that have no space
* and finally try the one preceding that. We repeat this on
* every request and in the case of the final block end up
* searching the entire filesystem. By jumping to the front
* of the filesystem, our future forward searches always look
* in new cylinder groups so finds every possible block after
* one pass over the filesystem.
*/
prefcg = ino_to_cg(fs, pip->i_number);
for (cg = prefcg; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
fs->fs_cs(fs, cg).cs_nifree >= minifree &&
fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
if (fs->fs_contigdirs[cg] < maxcontigdirs)
return ((ino_t)(fs->fs_ipg * cg));
}
for (cg = 0; cg < prefcg; cg++)
if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
fs->fs_cs(fs, cg).cs_nifree >= minifree &&
fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
if (fs->fs_contigdirs[cg] < maxcontigdirs)
return ((ino_t)(fs->fs_ipg * cg));
}
/*
* This is a backstop when we have deficit in space.
*/
for (cg = prefcg; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
return ((ino_t)(fs->fs_ipg * cg));
for (cg = 0; cg < prefcg; cg++)
if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
break;
return ((ino_t)(fs->fs_ipg * cg));
}
/*
* Select the desired position for the next block in a file. The file is
* logically divided into sections. The first section is composed of the
* direct blocks and the next fs_maxbpg blocks. Each additional section
* contains fs_maxbpg blocks.
*
* If no blocks have been allocated in the first section, the policy is to
* request a block in the same cylinder group as the inode that describes
* the file. The first indirect is allocated immediately following the last
* direct block and the data blocks for the first indirect immediately
* follow it.
*
* If no blocks have been allocated in any other section, the indirect
* block(s) are allocated in the same cylinder group as its inode in an
* area reserved immediately following the inode blocks. The policy for
* the data blocks is to place them in a cylinder group with a greater than
* average number of free blocks. An appropriate cylinder group is found
* by using a rotor that sweeps the cylinder groups. When a new group of
* blocks is needed, the sweep begins in the cylinder group following the
* cylinder group from which the previous allocation was made. The sweep
* continues until a cylinder group with greater than the average number
* of free blocks is found. If the allocation is for the first block in an
* indirect block or the previous block is a hole, then the information on
* the previous allocation is unavailable; here a best guess is made based
* on the logical block number being allocated.
*
* If a section is already partially allocated, the policy is to
* allocate blocks contiguously within the section if possible.
*/
ufs2_daddr_t
ffs_blkpref_ufs1(ip, lbn, indx, bap)
struct inode *ip;
ufs_lbn_t lbn;
int indx;
ufs1_daddr_t *bap;
{
struct fs *fs;
u_int cg, inocg;
u_int avgbfree, startcg;
ufs2_daddr_t pref, prevbn;
KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
fs = ITOFS(ip);
/*
* Allocation of indirect blocks is indicated by passing negative
* values in indx: -1 for single indirect, -2 for double indirect,
* -3 for triple indirect. As noted below, we attempt to allocate
* the first indirect inline with the file data. For all later
* indirect blocks, the data is often allocated in other cylinder
* groups. However to speed random file access and to speed up
* fsck, the filesystem reserves the first fs_metaspace blocks
* (typically half of fs_minfree) of the data area of each cylinder
* group to hold these later indirect blocks.
*/
inocg = ino_to_cg(fs, ip->i_number);
if (indx < 0) {
/*
* Our preference for indirect blocks is the zone at the
* beginning of the inode's cylinder group data area that
* we try to reserve for indirect blocks.
*/
pref = cgmeta(fs, inocg);
/*
* If we are allocating the first indirect block, try to
* place it immediately following the last direct block.
*/
if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
ip->i_din1->di_db[UFS_NDADDR - 1] != 0)
pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag;
return (pref);
}
/*
* If we are allocating the first data block in the first indirect
* block and the indirect has been allocated in the data block area,
* try to place it immediately following the indirect block.
*/
if (lbn == UFS_NDADDR) {
pref = ip->i_din1->di_ib[0];
if (pref != 0 && pref >= cgdata(fs, inocg) &&
pref < cgbase(fs, inocg + 1))
return (pref + fs->fs_frag);
}
/*
* If we are at the beginning of a file, or we have already allocated
* the maximum number of blocks per cylinder group, or we do not
* have a block allocated immediately preceding us, then we need
* to decide where to start allocating new blocks.
*/
if (indx == 0) {
prevbn = 0;
} else {
prevbn = bap[indx - 1];
if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
fs->fs_bsize) != 0)
prevbn = 0;
}
if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
/*
* If we are allocating a directory data block, we want
* to place it in the metadata area.
*/
if ((ip->i_mode & IFMT) == IFDIR)
return (cgmeta(fs, inocg));
/*
* Until we fill all the direct and all the first indirect's
* blocks, we try to allocate in the data area of the inode's
* cylinder group.
*/
if (lbn < UFS_NDADDR + NINDIR(fs))
return (cgdata(fs, inocg));
/*
* Find a cylinder with greater than average number of
* unused data blocks.
*/
if (indx == 0 || prevbn == 0)
startcg = inocg + lbn / fs->fs_maxbpg;
else
startcg = dtog(fs, prevbn) + 1;
startcg %= fs->fs_ncg;
avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
for (cg = startcg; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
fs->fs_cgrotor = cg;
return (cgdata(fs, cg));
}
for (cg = 0; cg <= startcg; cg++)
if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
fs->fs_cgrotor = cg;
return (cgdata(fs, cg));
}
return (0);
}
/*
* Otherwise, we just always try to lay things out contiguously.
*/
return (prevbn + fs->fs_frag);
}
/*
* Same as above, but for UFS2
*/
ufs2_daddr_t
ffs_blkpref_ufs2(ip, lbn, indx, bap)
struct inode *ip;
ufs_lbn_t lbn;
int indx;
ufs2_daddr_t *bap;
{
struct fs *fs;
u_int cg, inocg;
u_int avgbfree, startcg;
ufs2_daddr_t pref, prevbn;
KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
fs = ITOFS(ip);
/*
* Allocation of indirect blocks is indicated by passing negative
* values in indx: -1 for single indirect, -2 for double indirect,
* -3 for triple indirect. As noted below, we attempt to allocate
* the first indirect inline with the file data. For all later
* indirect blocks, the data is often allocated in other cylinder
* groups. However to speed random file access and to speed up
* fsck, the filesystem reserves the first fs_metaspace blocks
* (typically half of fs_minfree) of the data area of each cylinder
* group to hold these later indirect blocks.
*/
inocg = ino_to_cg(fs, ip->i_number);
if (indx < 0) {
/*
* Our preference for indirect blocks is the zone at the
* beginning of the inode's cylinder group data area that
* we try to reserve for indirect blocks.
*/
pref = cgmeta(fs, inocg);
/*
* If we are allocating the first indirect block, try to
* place it immediately following the last direct block.
*/
if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
ip->i_din2->di_db[UFS_NDADDR - 1] != 0)
pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag;
return (pref);
}
/*
* If we are allocating the first data block in the first indirect
* block and the indirect has been allocated in the data block area,
* try to place it immediately following the indirect block.
*/
if (lbn == UFS_NDADDR) {
pref = ip->i_din2->di_ib[0];
if (pref != 0 && pref >= cgdata(fs, inocg) &&
pref < cgbase(fs, inocg + 1))
return (pref + fs->fs_frag);
}
/*
* If we are at the beginning of a file, or we have already allocated
* the maximum number of blocks per cylinder group, or we do not
* have a block allocated immediately preceding us, then we need
* to decide where to start allocating new blocks.
*/
if (indx == 0) {
prevbn = 0;
} else {
prevbn = bap[indx - 1];
if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
fs->fs_bsize) != 0)
prevbn = 0;
}
if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
/*
* If we are allocating a directory data block, we want
* to place it in the metadata area.
*/
if ((ip->i_mode & IFMT) == IFDIR)
return (cgmeta(fs, inocg));
/*
* Until we fill all the direct and all the first indirect's
* blocks, we try to allocate in the data area of the inode's
* cylinder group.
*/
if (lbn < UFS_NDADDR + NINDIR(fs))
return (cgdata(fs, inocg));
/*
* Find a cylinder with greater than average number of
* unused data blocks.
*/
if (indx == 0 || prevbn == 0)
startcg = inocg + lbn / fs->fs_maxbpg;
else
startcg = dtog(fs, prevbn) + 1;
startcg %= fs->fs_ncg;
avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
for (cg = startcg; cg < fs->fs_ncg; cg++)
if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
fs->fs_cgrotor = cg;
return (cgdata(fs, cg));
}
for (cg = 0; cg <= startcg; cg++)
if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
fs->fs_cgrotor = cg;
return (cgdata(fs, cg));
}
return (0);
}
/*
* Otherwise, we just always try to lay things out contiguously.
*/
return (prevbn + fs->fs_frag);
}
/*
* Implement the cylinder overflow algorithm.
*
* The policy implemented by this algorithm is:
* 1) allocate the block in its requested cylinder group.
* 2) quadradically rehash on the cylinder group number.
* 3) brute force search for a free block.
*
* Must be called with the UFS lock held. Will release the lock on success
* and return with it held on failure.
*/
/*VARARGS5*/
static ufs2_daddr_t
ffs_hashalloc(ip, cg, pref, size, rsize, allocator)
struct inode *ip;
u_int cg;
ufs2_daddr_t pref;
int size; /* Search size for data blocks, mode for inodes */
int rsize; /* Real allocated size. */
allocfcn_t *allocator;
{
struct fs *fs;
ufs2_daddr_t result;
u_int i, icg = cg;
mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
#ifdef INVARIANTS
if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
panic("ffs_hashalloc: allocation on suspended filesystem");
#endif
fs = ITOFS(ip);
/*
* 1: preferred cylinder group
*/
result = (*allocator)(ip, cg, pref, size, rsize);
if (result)
return (result);
/*
* 2: quadratic rehash
*/
for (i = 1; i < fs->fs_ncg; i *= 2) {
cg += i;
if (cg >= fs->fs_ncg)
cg -= fs->fs_ncg;
result = (*allocator)(ip, cg, 0, size, rsize);
if (result)
return (result);
}
/*
* 3: brute force search
* Note that we start at i == 2, since 0 was checked initially,
* and 1 is always checked in the quadratic rehash.
*/
cg = (icg + 2) % fs->fs_ncg;
for (i = 2; i < fs->fs_ncg; i++) {
result = (*allocator)(ip, cg, 0, size, rsize);
if (result)
return (result);
cg++;
if (cg == fs->fs_ncg)
cg = 0;
}
return (0);
}
/*
* Determine whether a fragment can be extended.
*
* Check to see if the necessary fragments are available, and
* if they are, allocate them.
*/
static ufs2_daddr_t
ffs_fragextend(ip, cg, bprev, osize, nsize)
struct inode *ip;
u_int cg;
ufs2_daddr_t bprev;
int osize, nsize;
{
struct fs *fs;
struct cg *cgp;
struct buf *bp;
struct ufsmount *ump;
int nffree;
long bno;
int frags, bbase;
int i, error;
u_int8_t *blksfree;
ump = ITOUMP(ip);
fs = ump->um_fs;
if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
return (0);
frags = numfrags(fs, nsize);
bbase = fragnum(fs, bprev);
if (bbase > fragnum(fs, (bprev + frags - 1))) {
/* cannot extend across a block boundary */
return (0);
}
UFS_UNLOCK(ump);
if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0)
goto fail;
bno = dtogd(fs, bprev);
blksfree = cg_blksfree(cgp);
for (i = numfrags(fs, osize); i < frags; i++)
if (isclr(blksfree, bno + i))
goto fail;
/*
* the current fragment can be extended
* deduct the count on fragment being extended into
* increase the count on the remaining fragment (if any)
* allocate the extended piece
*/
for (i = frags; i < fs->fs_frag - bbase; i++)
if (isclr(blksfree, bno + i))
break;
cgp->cg_frsum[i - numfrags(fs, osize)]--;
if (i != frags)
cgp->cg_frsum[i - frags]++;
for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
clrbit(blksfree, bno + i);
cgp->cg_cs.cs_nffree--;
nffree++;
}
UFS_LOCK(ump);
fs->fs_cstotal.cs_nffree -= nffree;
fs->fs_cs(fs, cg).cs_nffree -= nffree;
fs->fs_fmod = 1;
ACTIVECLEAR(fs, cg);
UFS_UNLOCK(ump);
if (DOINGSOFTDEP(ITOV(ip)))
softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
frags, numfrags(fs, osize));
bdwrite(bp);
return (bprev);
fail:
brelse(bp);
UFS_LOCK(ump);
return (0);
}
/*
* Determine whether a block can be allocated.
*
* Check to see if a block of the appropriate size is available,
* and if it is, allocate it.
*/
static ufs2_daddr_t
ffs_alloccg(ip, cg, bpref, size, rsize)
struct inode *ip;
u_int cg;
ufs2_daddr_t bpref;
int size;
int rsize;
{
struct fs *fs;
struct cg *cgp;
struct buf *bp;
struct ufsmount *ump;
ufs1_daddr_t bno;
ufs2_daddr_t blkno;
int i, allocsiz, error, frags;
u_int8_t *blksfree;
ump = ITOUMP(ip);
fs = ump->um_fs;
if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
return (0);
UFS_UNLOCK(ump);
if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0 ||
(cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
goto fail;
if (size == fs->fs_bsize) {
UFS_LOCK(ump);
blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
ACTIVECLEAR(fs, cg);
UFS_UNLOCK(ump);
bdwrite(bp);
return (blkno);
}
/*
* check to see if any fragments are already available
* allocsiz is the size which will be allocated, hacking
* it down to a smaller size if necessary
*/
blksfree = cg_blksfree(cgp);
frags = numfrags(fs, size);
for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
if (cgp->cg_frsum[allocsiz] != 0)
break;
if (allocsiz == fs->fs_frag) {
/*
* no fragments were available, so a block will be
* allocated, and hacked up
*/
if (cgp->cg_cs.cs_nbfree == 0)
goto fail;
UFS_LOCK(ump);
blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
ACTIVECLEAR(fs, cg);
UFS_UNLOCK(ump);
bdwrite(bp);
return (blkno);
}
KASSERT(size == rsize,
("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
if (bno < 0)
goto fail;
for (i = 0; i < frags; i++)
clrbit(blksfree, bno + i);
cgp->cg_cs.cs_nffree -= frags;
cgp->cg_frsum[allocsiz]--;
if (frags != allocsiz)
cgp->cg_frsum[allocsiz - frags]++;
UFS_LOCK(ump);
fs->fs_cstotal.cs_nffree -= frags;
fs->fs_cs(fs, cg).cs_nffree -= frags;
fs->fs_fmod = 1;
blkno = cgbase(fs, cg) + bno;
ACTIVECLEAR(fs, cg);
UFS_UNLOCK(ump);
if (DOINGSOFTDEP(ITOV(ip)))
softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
bdwrite(bp);
return (blkno);
fail:
brelse(bp);
UFS_LOCK(ump);
return (0);
}
/*
* Allocate a block in a cylinder group.
*
* This algorithm implements the following policy:
* 1) allocate the requested block.
* 2) allocate a rotationally optimal block in the same cylinder.
* 3) allocate the next available block on the block rotor for the
* specified cylinder group.
* Note that this routine only allocates fs_bsize blocks; these
* blocks may be fragmented by the routine that allocates them.
*/
static ufs2_daddr_t
ffs_alloccgblk(ip, bp, bpref, size)
struct inode *ip;
struct buf *bp;
ufs2_daddr_t bpref;
int size;
{
struct fs *fs;
struct cg *cgp;
struct ufsmount *ump;
ufs1_daddr_t bno;
ufs2_daddr_t blkno;
u_int8_t *blksfree;
int i, cgbpref;
ump = ITOUMP(ip);
fs = ump->um_fs;
mtx_assert(UFS_MTX(ump), MA_OWNED);
cgp = (struct cg *)bp->b_data;
blksfree = cg_blksfree(cgp);
if (bpref == 0) {
bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
} else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
/* map bpref to correct zone in this cg */
if (bpref < cgdata(fs, cgbpref))
bpref = cgmeta(fs, cgp->cg_cgx);
else
bpref = cgdata(fs, cgp->cg_cgx);
}
/*
* if the requested block is available, use it
*/
bno = dtogd(fs, blknum(fs, bpref));
if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
goto gotit;
/*
* Take the next available block in this cylinder group.
*/
bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
if (bno < 0)
return (0);
/* Update cg_rotor only if allocated from the data zone */
if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
cgp->cg_rotor = bno;
gotit:
blkno = fragstoblks(fs, bno);
ffs_clrblock(fs, blksfree, (long)blkno);
ffs_clusteracct(fs, cgp, blkno, -1);
cgp->cg_cs.cs_nbfree--;
fs->fs_cstotal.cs_nbfree--;
fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
fs->fs_fmod = 1;
blkno = cgbase(fs, cgp->cg_cgx) + bno;
/*
* If the caller didn't want the whole block free the frags here.
*/
size = numfrags(fs, size);
if (size != fs->fs_frag) {
bno = dtogd(fs, blkno);
for (i = size; i < fs->fs_frag; i++)
setbit(blksfree, bno + i);
i = fs->fs_frag - size;
cgp->cg_cs.cs_nffree += i;
fs->fs_cstotal.cs_nffree += i;
fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
fs->fs_fmod = 1;
cgp->cg_frsum[i]++;
}
/* XXX Fixme. */
UFS_UNLOCK(ump);
if (DOINGSOFTDEP(ITOV(ip)))
softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0);
UFS_LOCK(ump);
return (blkno);
}
/*
* Determine whether a cluster can be allocated.
*
* We do not currently check for optimal rotational layout if there
* are multiple choices in the same cylinder group. Instead we just
* take the first one that we find following bpref.
*/
static ufs2_daddr_t
ffs_clusteralloc(ip, cg, bpref, len)
struct inode *ip;
u_int cg;
ufs2_daddr_t bpref;
int len;
{
struct fs *fs;
struct cg *cgp;
struct buf *bp;
struct ufsmount *ump;
int i, run, bit, map, got, error;
ufs2_daddr_t bno;
u_char *mapp;
int32_t *lp;
u_int8_t *blksfree;
ump = ITOUMP(ip);
fs = ump->um_fs;
if (fs->fs_maxcluster[cg] < len)
return (0);
UFS_UNLOCK(ump);
if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
UFS_LOCK(ump);
return (0);
}
/*
* Check to see if a cluster of the needed size (or bigger) is
* available in this cylinder group.
*/
lp = &cg_clustersum(cgp)[len];
for (i = len; i <= fs->fs_contigsumsize; i++)
if (*lp++ > 0)
break;
if (i > fs->fs_contigsumsize) {
/*
* This is the first time looking for a cluster in this
* cylinder group. Update the cluster summary information
* to reflect the true maximum sized cluster so that
* future cluster allocation requests can avoid reading
* the cylinder group map only to find no clusters.
*/
lp = &cg_clustersum(cgp)[len - 1];
for (i = len - 1; i > 0; i--)
if (*lp-- > 0)
break;
UFS_LOCK(ump);
fs->fs_maxcluster[cg] = i;
brelse(bp);
return (0);
}
/*
* Search the cluster map to find a big enough cluster.
* We take the first one that we find, even if it is larger
* than we need as we prefer to get one close to the previous
* block allocation. We do not search before the current
* preference point as we do not want to allocate a block
* that is allocated before the previous one (as we will
* then have to wait for another pass of the elevator
* algorithm before it will be read). We prefer to fail and
* be recalled to try an allocation in the next cylinder group.
*/
if (dtog(fs, bpref) != cg)
bpref = cgdata(fs, cg);
else
bpref = blknum(fs, bpref);
bpref = fragstoblks(fs, dtogd(fs, bpref));
mapp = &cg_clustersfree(cgp)[bpref / NBBY];
map = *mapp++;
bit = 1 << (bpref % NBBY);
for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
if ((map & bit) == 0) {
run = 0;
} else {
run++;
if (run == len)
break;
}
if ((got & (NBBY - 1)) != (NBBY - 1)) {
bit <<= 1;
} else {
map = *mapp++;
bit = 1;
}
}
if (got >= cgp->cg_nclusterblks) {
UFS_LOCK(ump);
brelse(bp);
return (0);
}
/*
* Allocate the cluster that we have found.
*/
blksfree = cg_blksfree(cgp);
for (i = 1; i <= len; i++)
if (!ffs_isblock(fs, blksfree, got - run + i))
panic("ffs_clusteralloc: map mismatch");
bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
if (dtog(fs, bno) != cg)
panic("ffs_clusteralloc: allocated out of group");
len = blkstofrags(fs, len);
UFS_LOCK(ump);
for (i = 0; i < len; i += fs->fs_frag)
if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
panic("ffs_clusteralloc: lost block");
ACTIVECLEAR(fs, cg);
UFS_UNLOCK(ump);
bdwrite(bp);
return (bno);
}
static inline struct buf *
getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags)
{
struct fs *fs;
fs = ITOFS(ip);
return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs,
cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
gbflags));
}
/*
* Synchronous inode initialization is needed only when barrier writes do not
* work as advertised, and will impose a heavy cost on file creation in a newly
* created filesystem.
*/
static int doasyncinodeinit = 1;
SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN,
&doasyncinodeinit, 0,
"Perform inode block initialization using asynchronous writes");
/*
* Determine whether an inode can be allocated.
*
* Check to see if an inode is available, and if it is,
* allocate it using the following policy:
* 1) allocate the requested inode.
* 2) allocate the next available inode after the requested
* inode in the specified cylinder group.
*/
static ufs2_daddr_t
ffs_nodealloccg(ip, cg, ipref, mode, unused)
struct inode *ip;
u_int cg;
ufs2_daddr_t ipref;
int mode;
int unused;
{
struct fs *fs;
struct cg *cgp;
struct buf *bp, *ibp;
struct ufsmount *ump;
u_int8_t *inosused, *loc;
struct ufs2_dinode *dp2;
int error, start, len, i;
u_int32_t old_initediblk;
ump = ITOUMP(ip);
fs = ump->um_fs;
check_nifree:
if (fs->fs_cs(fs, cg).cs_nifree == 0)
return (0);
UFS_UNLOCK(ump);
if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
UFS_LOCK(ump);
return (0);
}
restart:
if (cgp->cg_cs.cs_nifree == 0) {
brelse(bp);
UFS_LOCK(ump);
return (0);
}
inosused = cg_inosused(cgp);
if (ipref) {
ipref %= fs->fs_ipg;
if (isclr(inosused, ipref))
goto gotit;
}
start = cgp->cg_irotor / NBBY;
len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
loc = memcchr(&inosused[start], 0xff, len);
if (loc == NULL) {
len = start + 1;
start = 0;
loc = memcchr(&inosused[start], 0xff, len);
if (loc == NULL) {
printf("cg = %d, irotor = %ld, fs = %s\n",
cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
panic("ffs_nodealloccg: map corrupted");
/* NOTREACHED */
}
}
ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
gotit:
/*
* Check to see if we need to initialize more inodes.
*/
if (fs->fs_magic == FS_UFS2_MAGIC &&
ipref + INOPB(fs) > cgp->cg_initediblk &&
cgp->cg_initediblk < cgp->cg_niblk) {
old_initediblk = cgp->cg_initediblk;
/*
* Free the cylinder group lock before writing the
* initialized inode block. Entering the
* babarrierwrite() with the cylinder group lock
* causes lock order violation between the lock and
* snaplk.
*
* Another thread can decide to initialize the same
* inode block, but whichever thread first gets the
* cylinder group lock after writing the newly
* allocated inode block will update it and the other
* will realize that it has lost and leave the
* cylinder group unchanged.
*/
ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
brelse(bp);
if (ibp == NULL) {
/*
* The inode block buffer is already owned by
* another thread, which must initialize it.
* Wait on the buffer to allow another thread
* to finish the updates, with dropped cg
* buffer lock, then retry.
*/
ibp = getinobuf(ip, cg, old_initediblk, 0);
brelse(ibp);
UFS_LOCK(ump);
goto check_nifree;
}
bzero(ibp->b_data, (int)fs->fs_bsize);
dp2 = (struct ufs2_dinode *)(ibp->b_data);
for (i = 0; i < INOPB(fs); i++) {
while (dp2->di_gen == 0)
dp2->di_gen = arc4random();
dp2++;
}
/*
* Rather than adding a soft updates dependency to ensure
* that the new inode block is written before it is claimed
* by the cylinder group map, we just do a barrier write
* here. The barrier write will ensure that the inode block
* gets written before the updated cylinder group map can be
* written. The barrier write should only slow down bulk
* loading of newly created filesystems.
*/
if (doasyncinodeinit)
babarrierwrite(ibp);
else
bwrite(ibp);
/*
* After the inode block is written, try to update the
* cg initediblk pointer. If another thread beat us
* to it, then leave it unchanged as the other thread
* has already set it correctly.
*/
error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp);
UFS_LOCK(ump);
ACTIVECLEAR(fs, cg);
UFS_UNLOCK(ump);
if (error != 0)
return (error);
if (cgp->cg_initediblk == old_initediblk)
cgp->cg_initediblk += INOPB(fs);
goto restart;
}
cgp->cg_irotor = ipref;
UFS_LOCK(ump);
ACTIVECLEAR(fs, cg);
setbit(inosused, ipref);
cgp->cg_cs.cs_nifree--;
fs->fs_cstotal.cs_nifree--;
fs->fs_cs(fs, cg).cs_nifree--;
fs->fs_fmod = 1;
if ((mode & IFMT) == IFDIR) {
cgp->cg_cs.cs_ndir++;
fs->fs_cstotal.cs_ndir++;
fs->fs_cs(fs, cg).cs_ndir++;
}
UFS_UNLOCK(ump);
if (DOINGSOFTDEP(ITOV(ip)))
softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
bdwrite(bp);
return ((ino_t)(cg * fs->fs_ipg + ipref));
}
/*
* Free a block or fragment.
*
* The specified block or fragment is placed back in the
* free map. If a fragment is deallocated, a possible
* block reassembly is checked.
*/
static void
ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd)
struct ufsmount *ump;
struct fs *fs;
struct vnode *devvp;
ufs2_daddr_t bno;
long size;
ino_t inum;
struct workhead *dephd;
{
struct mount *mp;
struct cg *cgp;
struct buf *bp;
daddr_t dbn;
ufs1_daddr_t fragno, cgbno;
int i, blk, frags, bbase, error;
u_int cg;
u_int8_t *blksfree;
struct cdev *dev;
cg = dtog(fs, bno);
if (devvp->v_type == VREG) {
/* devvp is a snapshot */
MPASS(devvp->v_mount->mnt_data == ump);
dev = ump->um_devvp->v_rdev;
} else if (devvp->v_type == VCHR) {
/* devvp is a normal disk device */
dev = devvp->v_rdev;
ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg");
} else
return;
#ifdef INVARIANTS
if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
size, fs->fs_fsmnt);
panic("ffs_blkfree_cg: bad size");
}
#endif
if ((u_int)bno >= fs->fs_size) {
printf("bad block %jd, ino %lu\n", (intmax_t)bno,
(u_long)inum);
ffs_fserr(fs, inum, "bad block");
return;
}
if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) {
if (!ffs_fsfail_cleanup(ump, error) ||
!MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR)
return;
if (devvp->v_type == VREG)
dbn = fragstoblks(fs, cgtod(fs, cg));
else
dbn = fsbtodb(fs, cgtod(fs, cg));
error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp);
KASSERT(error == 0, ("getblkx failed"));
softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
numfrags(fs, size), dephd);
bp->b_flags |= B_RELBUF | B_NOCACHE;
bp->b_flags &= ~B_CACHE;
bawrite(bp);
return;
}
cgbno = dtogd(fs, bno);
blksfree = cg_blksfree(cgp);
UFS_LOCK(ump);
if (size == fs->fs_bsize) {
fragno = fragstoblks(fs, cgbno);
if (!ffs_isfreeblock(fs, blksfree, fragno)) {
if (devvp->v_type == VREG) {
UFS_UNLOCK(ump);
/* devvp is a snapshot */
brelse(bp);
return;
}
printf("dev = %s, block = %jd, fs = %s\n",
devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
panic("ffs_blkfree_cg: freeing free block");
}
ffs_setblock(fs, blksfree, fragno);
ffs_clusteracct(fs, cgp, fragno, 1);
cgp->cg_cs.cs_nbfree++;
fs->fs_cstotal.cs_nbfree++;
fs->fs_cs(fs, cg).cs_nbfree++;
} else {
bbase = cgbno - fragnum(fs, cgbno);
/*
* decrement the counts associated with the old frags
*/
blk = blkmap(fs, blksfree, bbase);
ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
/*
* deallocate the fragment
*/
frags = numfrags(fs, size);
for (i = 0; i < frags; i++) {
if (isset(blksfree, cgbno + i)) {
printf("dev = %s, block = %jd, fs = %s\n",
devtoname(dev), (intmax_t)(bno + i),
fs->fs_fsmnt);
panic("ffs_blkfree_cg: freeing free frag");
}
setbit(blksfree, cgbno + i);
}
cgp->cg_cs.cs_nffree += i;
fs->fs_cstotal.cs_nffree += i;
fs->fs_cs(fs, cg).cs_nffree += i;
/*
* add back in counts associated with the new frags
*/
blk = blkmap(fs, blksfree, bbase);
ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
/*
* if a complete block has been reassembled, account for it
*/
fragno = fragstoblks(fs, bbase);
if (ffs_isblock(fs, blksfree, fragno)) {
cgp->cg_cs.cs_nffree -= fs->fs_frag;
fs->fs_cstotal.cs_nffree -= fs->fs_frag;
fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
ffs_clusteracct(fs, cgp, fragno, 1);
cgp->cg_cs.cs_nbfree++;
fs->fs_cstotal.cs_nbfree++;
fs->fs_cs(fs, cg).cs_nbfree++;
}
}
fs->fs_fmod = 1;
ACTIVECLEAR(fs, cg);
UFS_UNLOCK(ump);
mp = UFSTOVFS(ump);
if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR)
softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
numfrags(fs, size), dephd);
bdwrite(bp);
}
/*
* Structures and routines associated with trim management.
*
* The following requests are passed to trim_lookup to indicate
* the actions that should be taken.
*/
#define NEW 1 /* if found, error else allocate and hash it */
#define OLD 2 /* if not found, error, else return it */
#define REPLACE 3 /* if not found, error else unhash and reallocate it */
#define DONE 4 /* if not found, error else unhash and return it */
#define SINGLE 5 /* don't look up, just allocate it and don't hash it */
MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures");
#define TRIMLIST_HASH(ump, key) \
(&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize])
/*
* These structures describe each of the block free requests aggregated
* together to make up a trim request.
*/
struct trim_blkreq {
TAILQ_ENTRY(trim_blkreq) blkreqlist;
ufs2_daddr_t bno;
long size;
struct workhead *pdephd;
struct workhead dephd;
};
/*
* Description of a trim request.
*/
struct ffs_blkfree_trim_params {
TAILQ_HEAD(, trim_blkreq) blklist;
LIST_ENTRY(ffs_blkfree_trim_params) hashlist;
struct task task;
struct ufsmount *ump;
struct vnode *devvp;
ino_t inum;
ufs2_daddr_t bno;
long size;
long key;
};
static void ffs_blkfree_trim_completed(struct buf *);
static void ffs_blkfree_trim_task(void *ctx, int pending __unused);
static struct ffs_blkfree_trim_params *trim_lookup(struct ufsmount *,
struct vnode *, ufs2_daddr_t, long, ino_t, u_long, int);
static void ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *);
/*
* Called on trim completion to start a task to free the associated block(s).
*/
static void
ffs_blkfree_trim_completed(bp)
struct buf *bp;
{
struct ffs_blkfree_trim_params *tp;
tp = bp->b_fsprivate1;
free(bp, M_TRIM);
TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task);
}
/*
* Trim completion task that free associated block(s).
*/
static void
ffs_blkfree_trim_task(ctx, pending)
void *ctx;
int pending;
{
struct ffs_blkfree_trim_params *tp;
struct trim_blkreq *blkelm;
struct ufsmount *ump;
tp = ctx;
ump = tp->ump;
while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) {
ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno,
blkelm->size, tp->inum, blkelm->pdephd);
TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist);
free(blkelm, M_TRIM);
}
vn_finished_secondary_write(UFSTOVFS(ump));
UFS_LOCK(ump);
ump->um_trim_inflight -= 1;
ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size);
UFS_UNLOCK(ump);
free(tp, M_TRIM);
}
/*
* Lookup a trim request by inode number.
* Allocate if requested (NEW, REPLACE, SINGLE).
*/
static struct ffs_blkfree_trim_params *
trim_lookup(ump, devvp, bno, size, inum, key, alloctype)
struct ufsmount *ump;
struct vnode *devvp;
ufs2_daddr_t bno;
long size;
ino_t inum;
u_long key;
int alloctype;
{
struct trimlist_hashhead *tphashhead;
struct ffs_blkfree_trim_params *tp, *ntp;
ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK);
if (alloctype != SINGLE) {
KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key"));
UFS_LOCK(ump);
tphashhead = TRIMLIST_HASH(ump, key);
LIST_FOREACH(tp, tphashhead, hashlist)
if (key == tp->key)
break;
}
switch (alloctype) {
case NEW:
KASSERT(tp == NULL, ("trim_lookup: found trim"));
break;
case OLD:
KASSERT(tp != NULL,
("trim_lookup: missing call to ffs_blkrelease_start()"));
UFS_UNLOCK(ump);
free(ntp, M_TRIM);
return (tp);
case REPLACE:
KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim"));
LIST_REMOVE(tp, hashlist);
/* tp will be freed by caller */
break;
case DONE:
KASSERT(tp != NULL, ("trim_lookup: missing DONE trim"));
LIST_REMOVE(tp, hashlist);
UFS_UNLOCK(ump);
free(ntp, M_TRIM);
return (tp);
}
TAILQ_INIT(&ntp->blklist);
ntp->ump = ump;
ntp->devvp = devvp;
ntp->bno = bno;
ntp->size = size;
ntp->inum = inum;
ntp->key = key;
if (alloctype != SINGLE) {
LIST_INSERT_HEAD(tphashhead, ntp, hashlist);
UFS_UNLOCK(ump);
}
return (ntp);
}
/*
* Dispatch a trim request.
*/
static void
ffs_blkfree_sendtrim(tp)
struct ffs_blkfree_trim_params *tp;
{
struct ufsmount *ump;
struct mount *mp;
struct buf *bp;
/*
* Postpone the set of the free bit in the cg bitmap until the
* BIO_DELETE is completed. Otherwise, due to disk queue
* reordering, TRIM might be issued after we reuse the block
* and write some new data into it.
*/
ump = tp->ump;
bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
bp->b_iocmd = BIO_DELETE;
bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno));
bp->b_iodone = ffs_blkfree_trim_completed;
bp->b_bcount = tp->size;
bp->b_fsprivate1 = tp;
UFS_LOCK(ump);
ump->um_trim_total += 1;
ump->um_trim_inflight += 1;
ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size);
ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size);
UFS_UNLOCK(ump);
mp = UFSTOVFS(ump);
vn_start_secondary_write(NULL, &mp, 0);
g_vfs_strategy(ump->um_bo, bp);
}
/*
* Allocate a new key to use to identify a range of blocks.
*/
u_long
ffs_blkrelease_start(ump, devvp, inum)
struct ufsmount *ump;
struct vnode *devvp;
ino_t inum;
{
static u_long masterkey;
u_long key;
if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
return (SINGLETON_KEY);
do {
key = atomic_fetchadd_long(&masterkey, 1);
} while (key < FIRST_VALID_KEY);
(void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW);
return (key);
}
/*
* Deallocate a key that has been used to identify a range of blocks.
*/
void
ffs_blkrelease_finish(ump, key)
struct ufsmount *ump;
u_long key;
{
struct ffs_blkfree_trim_params *tp;
if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
return;
/*
* If the vfs.ffs.dotrimcons sysctl option is enabled while
* a file deletion is active, specifically after a call
* to ffs_blkrelease_start() but before the call to
* ffs_blkrelease_finish(), ffs_blkrelease_start() will
* have handed out SINGLETON_KEY rather than starting a
* collection sequence. Thus if we get a SINGLETON_KEY
* passed to ffs_blkrelease_finish(), we just return rather
* than trying to finish the nonexistent sequence.
*/
if (key == SINGLETON_KEY) {
#ifdef INVARIANTS
printf("%s: vfs.ffs.dotrimcons enabled on active filesystem\n",
ump->um_mountp->mnt_stat.f_mntonname);
#endif
return;
}
/*
* We are done with sending blocks using this key. Look up the key
* using the DONE alloctype (in tp) to request that it be unhashed
* as we will not be adding to it. If the key has never been used,
* tp->size will be zero, so we can just free tp. Otherwise the call
* to ffs_blkfree_sendtrim(tp) causes the block range described by
* tp to be issued (and then tp to be freed).
*/
tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE);
if (tp->size == 0)
free(tp, M_TRIM);
else
ffs_blkfree_sendtrim(tp);
}
/*
* Setup to free a block or fragment.
*
* Check for snapshots that might want to claim the block.
* If trims are requested, prepare a trim request. Attempt to
* aggregate consecutive blocks into a single trim request.
*/
void
ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd, key)
struct ufsmount *ump;
struct fs *fs;
struct vnode *devvp;
ufs2_daddr_t bno;
long size;
ino_t inum;
enum vtype vtype;
struct workhead *dephd;
u_long key;
{
struct ffs_blkfree_trim_params *tp, *ntp;
struct trim_blkreq *blkelm;
/*
* Check to see if a snapshot wants to claim the block.
* Check that devvp is a normal disk device, not a snapshot,
* it has a snapshot(s) associated with it, and one of the
* snapshots wants to claim the block.
*/
if (devvp->v_type == VCHR &&
(devvp->v_vflag & VV_COPYONWRITE) &&
ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
return;
}
/*
* Nothing to delay if TRIM is not required for this block or TRIM
* is disabled or the operation is performed on a snapshot.
*/
if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) ||
devvp->v_type == VREG) {
ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
return;
}
blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK);
blkelm->bno = bno;
blkelm->size = size;
if (dephd == NULL) {
blkelm->pdephd = NULL;
} else {
LIST_INIT(&blkelm->dephd);
LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list);
blkelm->pdephd = &blkelm->dephd;
}
if (key == SINGLETON_KEY) {
/*
* Just a single non-contiguous piece. Use the SINGLE
* alloctype to return a trim request that will not be
* hashed for future lookup.
*/
tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE);
TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
ffs_blkfree_sendtrim(tp);
return;
}
/*
* The callers of this function are not tracking whether or not
* the blocks are contiguous. They are just saying that they
* are freeing a set of blocks. It is this code that determines
* the pieces of that range that are actually contiguous.
*
* Calling ffs_blkrelease_start() will have created an entry
* that we will use.
*/
tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD);
if (tp->size == 0) {
/*
* First block of a potential range, set block and size
* for the trim block.
*/
tp->bno = bno;
tp->size = size;
TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
return;
}
/*
* If this block is a continuation of the range (either
* follows at the end or preceeds in the front) then we
* add it to the front or back of the list and return.
*
* If it is not a continuation of the trim that we were
* building, using the REPLACE alloctype, we request that
* the old trim request (still in tp) be unhashed and a
* new range started (in ntp). The ffs_blkfree_sendtrim(tp)
* call causes the block range described by tp to be issued
* (and then tp to be freed).
*/
if (bno + numfrags(fs, size) == tp->bno) {
TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
tp->bno = bno;
tp->size += size;
return;
} else if (bno == tp->bno + numfrags(fs, tp->size)) {
TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist);
tp->size += size;
return;
}
ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE);
TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist);
ffs_blkfree_sendtrim(tp);
}
#ifdef INVARIANTS
/*
* Verify allocation of a block or fragment. Returns true if block or
* fragment is allocated, false if it is free.
*/
static int
ffs_checkblk(ip, bno, size)
struct inode *ip;
ufs2_daddr_t bno;
long size;
{
struct fs *fs;
struct cg *cgp;
struct buf *bp;
ufs1_daddr_t cgbno;
int i, error, frags, free;
u_int8_t *blksfree;
fs = ITOFS(ip);
if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
printf("bsize = %ld, size = %ld, fs = %s\n",
(long)fs->fs_bsize, size, fs->fs_fsmnt);
panic("ffs_checkblk: bad size");
}
if ((u_int)bno >= fs->fs_size)
panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
error = ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), 0, &bp, &cgp);
if (error)
panic("ffs_checkblk: cylinder group read failed");
blksfree = cg_blksfree(cgp);
cgbno = dtogd(fs, bno);
if (size == fs->fs_bsize) {
free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
} else {
frags = numfrags(fs, size);
for (free = 0, i = 0; i < frags; i++)
if (isset(blksfree, cgbno + i))
free++;
if (free != 0 && free != frags)
panic("ffs_checkblk: partially free fragment");
}
brelse(bp);
return (!free);
}
#endif /* INVARIANTS */
/*
* Free an inode.
*/
int
ffs_vfree(pvp, ino, mode)
struct vnode *pvp;
ino_t ino;
int mode;
{
struct ufsmount *ump;
if (DOINGSOFTDEP(pvp)) {
softdep_freefile(pvp, ino, mode);
return (0);
}
ump = VFSTOUFS(pvp->v_mount);
return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL));
}
/*
* Do the actual free operation.
* The specified inode is placed back in the free map.
*/
int
ffs_freefile(ump, fs, devvp, ino, mode, wkhd)
struct ufsmount *ump;
struct fs *fs;
struct vnode *devvp;
ino_t ino;
int mode;
struct workhead *wkhd;
{
struct cg *cgp;
struct buf *bp;
daddr_t dbn;
int error;
u_int cg;
u_int8_t *inosused;
struct cdev *dev;
ino_t cgino;
cg = ino_to_cg(fs, ino);
if (devvp->v_type == VREG) {
/* devvp is a snapshot */
MPASS(devvp->v_mount->mnt_data == ump);
dev = ump->um_devvp->v_rdev;
} else if (devvp->v_type == VCHR) {
/* devvp is a normal disk device */
dev = devvp->v_rdev;
} else {
bp = NULL;
return (0);
}
if (ino >= fs->fs_ipg * fs->fs_ncg)
panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) {
if (!ffs_fsfail_cleanup(ump, error) ||
!MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR)
return (error);
if (devvp->v_type == VREG)
dbn = fragstoblks(fs, cgtod(fs, cg));
else
dbn = fsbtodb(fs, cgtod(fs, cg));
error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp);
KASSERT(error == 0, ("getblkx failed"));
softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd);
bp->b_flags |= B_RELBUF | B_NOCACHE;
bp->b_flags &= ~B_CACHE;
bawrite(bp);
return (error);
}
inosused = cg_inosused(cgp);
cgino = ino % fs->fs_ipg;
if (isclr(inosused, cgino)) {
printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
(uintmax_t)ino, fs->fs_fsmnt);
if (fs->fs_ronly == 0)
panic("ffs_freefile: freeing free inode");
}
clrbit(inosused, cgino);
if (cgino < cgp->cg_irotor)
cgp->cg_irotor = cgino;
cgp->cg_cs.cs_nifree++;
UFS_LOCK(ump);
fs->fs_cstotal.cs_nifree++;
fs->fs_cs(fs, cg).cs_nifree++;
if ((mode & IFMT) == IFDIR) {
cgp->cg_cs.cs_ndir--;
fs->fs_cstotal.cs_ndir--;
fs->fs_cs(fs, cg).cs_ndir--;
}
fs->fs_fmod = 1;
ACTIVECLEAR(fs, cg);
UFS_UNLOCK(ump);
if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR)
softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd);
bdwrite(bp);
return (0);
}
/*
* Check to see if a file is free.
* Used to check for allocated files in snapshots.
*/
int
ffs_checkfreefile(fs, devvp, ino)
struct fs *fs;
struct vnode *devvp;
ino_t ino;
{
struct cg *cgp;
struct buf *bp;
int ret, error;
u_int cg;
u_int8_t *inosused;
cg = ino_to_cg(fs, ino);
if ((devvp->v_type != VREG) && (devvp->v_type != VCHR))
return (1);
if (ino >= fs->fs_ipg * fs->fs_ncg)
return (1);
if ((error = ffs_getcg(fs, devvp, cg, 0, &bp, &cgp)) != 0)
return (1);
inosused = cg_inosused(cgp);
ino %= fs->fs_ipg;
ret = isclr(inosused, ino);
brelse(bp);
return (ret);
}
/*
* Find a block of the specified size in the specified cylinder group.
*
* It is a panic if a request is made to find a block if none are
* available.
*/
static ufs1_daddr_t
ffs_mapsearch(fs, cgp, bpref, allocsiz)
struct fs *fs;
struct cg *cgp;
ufs2_daddr_t bpref;
int allocsiz;
{
ufs1_daddr_t bno;
int start, len, loc, i;
int blk, field, subfield, pos;
u_int8_t *blksfree;
/*
* find the fragment by searching through the free block
* map for an appropriate bit pattern
*/
if (bpref)
start = dtogd(fs, bpref) / NBBY;
else
start = cgp->cg_frotor / NBBY;
blksfree = cg_blksfree(cgp);
len = howmany(fs->fs_fpg, NBBY) - start;
loc = scanc((u_int)len, (u_char *)&blksfree[start],
fragtbl[fs->fs_frag],
(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
if (loc == 0) {
len = start + 1;
start = 0;
loc = scanc((u_int)len, (u_char *)&blksfree[0],
fragtbl[fs->fs_frag],
(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
if (loc == 0) {
printf("start = %d, len = %d, fs = %s\n",
start, len, fs->fs_fsmnt);
panic("ffs_alloccg: map corrupted");
/* NOTREACHED */
}
}
bno = (start + len - loc) * NBBY;
cgp->cg_frotor = bno;
/*
* found the byte in the map
* sift through the bits to find the selected frag
*/
for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
blk = blkmap(fs, blksfree, bno);
blk <<= 1;
field = around[allocsiz];
subfield = inside[allocsiz];
for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
if ((blk & field) == subfield)
return (bno + pos);
field <<= 1;
subfield <<= 1;
}
}
printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
panic("ffs_alloccg: block not in map");
return (-1);
}
static const struct statfs *
ffs_getmntstat(struct vnode *devvp)
{
if (devvp->v_type == VCHR)
return (&devvp->v_rdev->si_mountpt->mnt_stat);
return (ffs_getmntstat(VFSTOUFS(devvp->v_mount)->um_devvp));
}
/*
* Fetch and verify a cylinder group.
*/
int
ffs_getcg(fs, devvp, cg, flags, bpp, cgpp)
struct fs *fs;
struct vnode *devvp;
u_int cg;
int flags;
struct buf **bpp;
struct cg **cgpp;
{
struct buf *bp;
struct cg *cgp;
const struct statfs *sfs;
daddr_t blkno;
int error;
*bpp = NULL;
*cgpp = NULL;
if ((fs->fs_metackhash & CK_CYLGRP) != 0)
flags |= GB_CKHASH;
if (devvp->v_type == VREG)
blkno = fragstoblks(fs, cgtod(fs, cg));
else
blkno = fsbtodb(fs, cgtod(fs, cg));
error = breadn_flags(devvp, blkno, blkno, (int)fs->fs_cgsize, NULL,
NULL, 0, NOCRED, flags, ffs_ckhash_cg, &bp);
if (error != 0)
return (error);
cgp = (struct cg *)bp->b_data;
if ((fs->fs_metackhash & CK_CYLGRP) != 0 &&
(bp->b_flags & B_CKHASH) != 0 &&
cgp->cg_ckhash != bp->b_ckhash) {
sfs = ffs_getmntstat(devvp);
printf("UFS %s%s (%s) cylinder checksum failed: cg %u, cgp: "
"0x%x != bp: 0x%jx\n",
devvp->v_type == VCHR ? "" : "snapshot of ",
sfs->f_mntfromname, sfs->f_mntonname,
cg, cgp->cg_ckhash, (uintmax_t)bp->b_ckhash);
bp->b_flags &= ~B_CKHASH;
bp->b_flags |= B_INVAL | B_NOCACHE;
brelse(bp);
return (EIO);
}
if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) {
sfs = ffs_getmntstat(devvp);
printf("UFS %s%s (%s)",
devvp->v_type == VCHR ? "" : "snapshot of ",
sfs->f_mntfromname, sfs->f_mntonname);
if (!cg_chkmagic(cgp))
printf(" cg %u: bad magic number 0x%x should be 0x%x\n",
cg, cgp->cg_magic, CG_MAGIC);
else
printf(": wrong cylinder group cg %u != cgx %u\n", cg,
cgp->cg_cgx);
bp->b_flags &= ~B_CKHASH;
bp->b_flags |= B_INVAL | B_NOCACHE;
brelse(bp);
return (EIO);
}
bp->b_flags &= ~B_CKHASH;
bp->b_xflags |= BX_BKGRDWRITE;
/*
* If we are using check hashes on the cylinder group then we want
* to limit changing the cylinder group time to when we are actually
* going to write it to disk so that its check hash remains correct
* in memory. If the CK_CYLGRP flag is set the time is updated in
* ffs_bufwrite() as the buffer is queued for writing. Otherwise we
* update the time here as we have done historically.
*/
if ((fs->fs_metackhash & CK_CYLGRP) != 0)
bp->b_xflags |= BX_CYLGRP;
else
cgp->cg_old_time = cgp->cg_time = time_second;
*bpp = bp;
*cgpp = cgp;
return (0);
}
static void
ffs_ckhash_cg(bp)
struct buf *bp;
{
uint32_t ckhash;
struct cg *cgp;
cgp = (struct cg *)bp->b_data;
ckhash = cgp->cg_ckhash;
cgp->cg_ckhash = 0;
bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount);
cgp->cg_ckhash = ckhash;
}
/*
* Fserr prints the name of a filesystem with an error diagnostic.
*
* The form of the error message is:
* fs: error message
*/
void
ffs_fserr(fs, inum, cp)
struct fs *fs;
ino_t inum;
char *cp;
{
struct thread *td = curthread; /* XXX */
struct proc *p = td->td_proc;
log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
fs->fs_fsmnt, cp);
}
/*
* This function provides the capability for the fsck program to
* update an active filesystem. Fourteen operations are provided:
*
* adjrefcnt(inode, amt) - adjusts the reference count on the
* specified inode by the specified amount. Under normal
* operation the count should always go down. Decrementing
* the count to zero will cause the inode to be freed.
* adjblkcnt(inode, amt) - adjust the number of blocks used by the
* inode by the specified amount.
* setsize(inode, size) - set the size of the inode to the
* specified size.
* adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
* adjust the superblock summary.
* freedirs(inode, count) - directory inodes [inode..inode + count - 1]
* are marked as free. Inodes should never have to be marked
* as in use.
* freefiles(inode, count) - file inodes [inode..inode + count - 1]
* are marked as free. Inodes should never have to be marked
* as in use.
* freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
* are marked as free. Blocks should never have to be marked
* as in use.
* setflags(flags, set/clear) - the fs_flags field has the specified
* flags set (second parameter +1) or cleared (second parameter -1).
* setcwd(dirinode) - set the current directory to dirinode in the
* filesystem associated with the snapshot.
* setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
* in the current directory is oldvalue then change it to newvalue.
* unlink(nameptr, oldvalue) - Verify that the inode number associated
* with nameptr in the current directory is oldvalue then unlink it.
*/
static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt,
CTLFLAG_WR | CTLTYPE_STRUCT | CTLFLAG_NEEDGIANT,
0, 0, sysctl_ffs_fsck, "S,fsck",
"Adjust Inode Reference Count");
static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt,
CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
"Adjust Inode Used Blocks Count");
static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize,
CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
"Set the inode size");
static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir,
CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
"Adjust number of directories");
static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree,
CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
"Adjust number of free blocks");
static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree,
CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
"Adjust number of free inodes");
static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree,
CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
"Adjust number of free frags");
static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters,
CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
"Adjust number of free clusters");
static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs,
CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
"Free Range of Directory Inodes");
static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles,
CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
"Free Range of File Inodes");
static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks,
CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
"Free Range of Blocks");
static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags,
CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
"Change Filesystem Flags");
static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd,
CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
"Set Current Working Directory");
static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot,
CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
"Change Value of .. Entry");
static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink,
CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
"Unlink a Duplicate Name");
#ifdef DIAGNOSTIC
static int fsckcmds = 0;
SYSCTL_INT(_debug, OID_AUTO, ffs_fsckcmds, CTLFLAG_RW, &fsckcmds, 0,
"print out fsck_ffs-based filesystem update commands");
#endif /* DIAGNOSTIC */
static int
sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
{
struct thread *td = curthread;
struct fsck_cmd cmd;
struct ufsmount *ump;
struct vnode *vp, *dvp, *fdvp;
struct inode *ip, *dp;
struct mount *mp;
struct fs *fs;
struct pwd *pwd;
ufs2_daddr_t blkno;
long blkcnt, blksize;
u_long key;
struct file *fp;
cap_rights_t rights;
int filetype, error;
if (req->newlen > sizeof cmd)
return (EBADRPC);
if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
return (error);
if (cmd.version != FFS_CMD_VERSION)
return (ERPCMISMATCH);
if ((error = getvnode(td, cmd.handle,
cap_rights_init_one(&rights, CAP_FSCK), &fp)) != 0)
return (error);
vp = fp->f_vnode;
if (vp->v_type != VREG && vp->v_type != VDIR) {
fdrop(fp, td);
return (EINVAL);
}
vn_start_write(vp, &mp, V_WAIT);
if (mp == NULL ||
strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
vn_finished_write(mp);
fdrop(fp, td);
return (EINVAL);
}
ump = VFSTOUFS(mp);
if ((mp->mnt_flag & MNT_RDONLY) &&
ump->um_fsckpid != td->td_proc->p_pid) {
vn_finished_write(mp);
fdrop(fp, td);
return (EROFS);
}
fs = ump->um_fs;
filetype = IFREG;
switch (oidp->oid_number) {
case FFS_SET_FLAGS:
#ifdef DIAGNOSTIC
if (fsckcmds)
printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
cmd.size > 0 ? "set" : "clear");
#endif /* DIAGNOSTIC */
if (cmd.size > 0)
fs->fs_flags |= (long)cmd.value;
else
fs->fs_flags &= ~(long)cmd.value;
break;
case FFS_ADJ_REFCNT:
#ifdef DIAGNOSTIC
if (fsckcmds) {
printf("%s: adjust inode %jd link count by %jd\n",
mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
(intmax_t)cmd.size);
}
#endif /* DIAGNOSTIC */
if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
break;
ip = VTOI(vp);
ip->i_nlink += cmd.size;
DIP_SET(ip, i_nlink, ip->i_nlink);
ip->i_effnlink += cmd.size;
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
error = ffs_update(vp, 1);
if (DOINGSOFTDEP(vp))
softdep_change_linkcnt(ip);
vput(vp);
break;
case FFS_ADJ_BLKCNT:
#ifdef DIAGNOSTIC
if (fsckcmds) {
printf("%s: adjust inode %jd block count by %jd\n",
mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
(intmax_t)cmd.size);
}
#endif /* DIAGNOSTIC */
if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
break;
ip = VTOI(vp);
DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
error = ffs_update(vp, 1);
vput(vp);
break;
case FFS_SET_SIZE:
#ifdef DIAGNOSTIC
if (fsckcmds) {
printf("%s: set inode %jd size to %jd\n",
mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
(intmax_t)cmd.size);
}
#endif /* DIAGNOSTIC */
if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
break;
ip = VTOI(vp);
DIP_SET(ip, i_size, cmd.size);
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_MODIFIED);
error = ffs_update(vp, 1);
vput(vp);
break;
case FFS_DIR_FREE:
filetype = IFDIR;
/* fall through */
case FFS_FILE_FREE:
#ifdef DIAGNOSTIC
if (fsckcmds) {
if (cmd.size == 1)
printf("%s: free %s inode %ju\n",
mp->mnt_stat.f_mntonname,
filetype == IFDIR ? "directory" : "file",
(uintmax_t)cmd.value);
else
printf("%s: free %s inodes %ju-%ju\n",
mp->mnt_stat.f_mntonname,
filetype == IFDIR ? "directory" : "file",
(uintmax_t)cmd.value,
(uintmax_t)(cmd.value + cmd.size - 1));
}
#endif /* DIAGNOSTIC */
while (cmd.size > 0) {
if ((error = ffs_freefile(ump, fs, ump->um_devvp,
cmd.value, filetype, NULL)))
break;
cmd.size -= 1;
cmd.value += 1;
}
break;
case FFS_BLK_FREE:
#ifdef DIAGNOSTIC
if (fsckcmds) {
if (cmd.size == 1)
printf("%s: free block %jd\n",
mp->mnt_stat.f_mntonname,
(intmax_t)cmd.value);
else
printf("%s: free blocks %jd-%jd\n",
mp->mnt_stat.f_mntonname,
(intmax_t)cmd.value,
(intmax_t)cmd.value + cmd.size - 1);
}
#endif /* DIAGNOSTIC */
blkno = cmd.value;
blkcnt = cmd.size;
blksize = fs->fs_frag - (blkno % fs->fs_frag);
key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO);
while (blkcnt > 0) {
if (blkcnt < blksize)
blksize = blkcnt;
ffs_blkfree(ump, fs, ump->um_devvp, blkno,
blksize * fs->fs_fsize, UFS_ROOTINO,
VDIR, NULL, key);
blkno += blksize;
blkcnt -= blksize;
blksize = fs->fs_frag;
}
ffs_blkrelease_finish(ump, key);
break;
/*
* Adjust superblock summaries. fsck(8) is expected to
* submit deltas when necessary.
*/
case FFS_ADJ_NDIR:
#ifdef DIAGNOSTIC
if (fsckcmds) {
printf("%s: adjust number of directories by %jd\n",
mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
}
#endif /* DIAGNOSTIC */
fs->fs_cstotal.cs_ndir += cmd.value;
break;
case FFS_ADJ_NBFREE:
#ifdef DIAGNOSTIC
if (fsckcmds) {
printf("%s: adjust number of free blocks by %+jd\n",
mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
}
#endif /* DIAGNOSTIC */
fs->fs_cstotal.cs_nbfree += cmd.value;
break;
case FFS_ADJ_NIFREE:
#ifdef DIAGNOSTIC
if (fsckcmds) {
printf("%s: adjust number of free inodes by %+jd\n",
mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
}
#endif /* DIAGNOSTIC */
fs->fs_cstotal.cs_nifree += cmd.value;
break;
case FFS_ADJ_NFFREE:
#ifdef DIAGNOSTIC
if (fsckcmds) {
printf("%s: adjust number of free frags by %+jd\n",
mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
}
#endif /* DIAGNOSTIC */
fs->fs_cstotal.cs_nffree += cmd.value;
break;
case FFS_ADJ_NUMCLUSTERS:
#ifdef DIAGNOSTIC
if (fsckcmds) {
printf("%s: adjust number of free clusters by %+jd\n",
mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
}
#endif /* DIAGNOSTIC */
fs->fs_cstotal.cs_numclusters += cmd.value;
break;
case FFS_SET_CWD:
#ifdef DIAGNOSTIC
if (fsckcmds) {
printf("%s: set current directory to inode %jd\n",
mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
}
#endif /* DIAGNOSTIC */
if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
break;
AUDIT_ARG_VNODE1(vp);
if ((error = change_dir(vp, td)) != 0) {
vput(vp);
break;
}
VOP_UNLOCK(vp);
pwd_chdir(td, vp);
break;
case FFS_SET_DOTDOT:
#ifdef DIAGNOSTIC
if (fsckcmds) {
printf("%s: change .. in cwd from %jd to %jd\n",
mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
(intmax_t)cmd.size);
}
#endif /* DIAGNOSTIC */
/*
* First we have to get and lock the parent directory
* to which ".." points.
*/
error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
if (error)
break;
/*
* Now we get and lock the child directory containing "..".
*/
pwd = pwd_hold(td);
dvp = pwd->pwd_cdir;
if ((error = vget(dvp, LK_EXCLUSIVE)) != 0) {
vput(fdvp);
pwd_drop(pwd);
break;
}
dp = VTOI(dvp);
SET_I_OFFSET(dp, 12); /* XXX mastertemplate.dot_reclen */
error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
DT_DIR, 0);
cache_purge(fdvp);
cache_purge(dvp);
vput(dvp);
vput(fdvp);
pwd_drop(pwd);
break;
case FFS_UNLINK:
#ifdef DIAGNOSTIC
if (fsckcmds) {
char buf[32];
if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
strncpy(buf, "Name_too_long", 32);
printf("%s: unlink %s (inode %jd)\n",
mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
}
#endif /* DIAGNOSTIC */
/*
* kern_funlinkat will do its own start/finish writes and
* they do not nest, so drop ours here. Setting mp == NULL
* indicates that vn_finished_write is not needed down below.
*/
vn_finished_write(mp);
mp = NULL;
error = kern_funlinkat(td, AT_FDCWD,
(char *)(intptr_t)cmd.value, FD_NONE, UIO_USERSPACE,
0, (ino_t)cmd.size);
break;
default:
#ifdef DIAGNOSTIC
if (fsckcmds) {
printf("Invalid request %d from fsck\n",
oidp->oid_number);
}
#endif /* DIAGNOSTIC */
error = EINVAL;
break;
}
fdrop(fp, td);
vn_finished_write(mp);
return (error);
}