freebsd-nq/sys/dev/cxgbe/common/t4_hw.c
Navdeep Parhar 6620004df5 cxgbe(4): Completely ignore all top level interrupts that are not enabled.
The driver used to log any non-zero cause and when running with a single
line interrupt it would spam the console/logs with reports of interrupts
that are of no interest to anyone.

MFC after:	1 week
Sponsored by:	Chelsio Communications
2019-07-12 20:59:10 +00:00

10781 lines
301 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2012, 2016 Chelsio Communications, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/eventhandler.h>
#include "common.h"
#include "t4_regs.h"
#include "t4_regs_values.h"
#include "firmware/t4fw_interface.h"
#undef msleep
#define msleep(x) do { \
if (cold) \
DELAY((x) * 1000); \
else \
pause("t4hw", (x) * hz / 1000); \
} while (0)
/**
* t4_wait_op_done_val - wait until an operation is completed
* @adapter: the adapter performing the operation
* @reg: the register to check for completion
* @mask: a single-bit field within @reg that indicates completion
* @polarity: the value of the field when the operation is completed
* @attempts: number of check iterations
* @delay: delay in usecs between iterations
* @valp: where to store the value of the register at completion time
*
* Wait until an operation is completed by checking a bit in a register
* up to @attempts times. If @valp is not NULL the value of the register
* at the time it indicated completion is stored there. Returns 0 if the
* operation completes and -EAGAIN otherwise.
*/
static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
int polarity, int attempts, int delay, u32 *valp)
{
while (1) {
u32 val = t4_read_reg(adapter, reg);
if (!!(val & mask) == polarity) {
if (valp)
*valp = val;
return 0;
}
if (--attempts == 0)
return -EAGAIN;
if (delay)
udelay(delay);
}
}
static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
int polarity, int attempts, int delay)
{
return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
delay, NULL);
}
/**
* t4_set_reg_field - set a register field to a value
* @adapter: the adapter to program
* @addr: the register address
* @mask: specifies the portion of the register to modify
* @val: the new value for the register field
*
* Sets a register field specified by the supplied mask to the
* given value.
*/
void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
u32 val)
{
u32 v = t4_read_reg(adapter, addr) & ~mask;
t4_write_reg(adapter, addr, v | val);
(void) t4_read_reg(adapter, addr); /* flush */
}
/**
* t4_read_indirect - read indirectly addressed registers
* @adap: the adapter
* @addr_reg: register holding the indirect address
* @data_reg: register holding the value of the indirect register
* @vals: where the read register values are stored
* @nregs: how many indirect registers to read
* @start_idx: index of first indirect register to read
*
* Reads registers that are accessed indirectly through an address/data
* register pair.
*/
void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
unsigned int data_reg, u32 *vals,
unsigned int nregs, unsigned int start_idx)
{
while (nregs--) {
t4_write_reg(adap, addr_reg, start_idx);
*vals++ = t4_read_reg(adap, data_reg);
start_idx++;
}
}
/**
* t4_write_indirect - write indirectly addressed registers
* @adap: the adapter
* @addr_reg: register holding the indirect addresses
* @data_reg: register holding the value for the indirect registers
* @vals: values to write
* @nregs: how many indirect registers to write
* @start_idx: address of first indirect register to write
*
* Writes a sequential block of registers that are accessed indirectly
* through an address/data register pair.
*/
void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
unsigned int data_reg, const u32 *vals,
unsigned int nregs, unsigned int start_idx)
{
while (nregs--) {
t4_write_reg(adap, addr_reg, start_idx++);
t4_write_reg(adap, data_reg, *vals++);
}
}
/*
* Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
* mechanism. This guarantees that we get the real value even if we're
* operating within a Virtual Machine and the Hypervisor is trapping our
* Configuration Space accesses.
*
* N.B. This routine should only be used as a last resort: the firmware uses
* the backdoor registers on a regular basis and we can end up
* conflicting with it's uses!
*/
u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
{
u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
u32 val;
if (chip_id(adap) <= CHELSIO_T5)
req |= F_ENABLE;
else
req |= F_T6_ENABLE;
if (is_t4(adap))
req |= F_LOCALCFG;
t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
/*
* Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
* Configuration Space read. (None of the other fields matter when
* F_ENABLE is 0 so a simple register write is easier than a
* read-modify-write via t4_set_reg_field().)
*/
t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
return val;
}
/*
* t4_report_fw_error - report firmware error
* @adap: the adapter
*
* The adapter firmware can indicate error conditions to the host.
* If the firmware has indicated an error, print out the reason for
* the firmware error.
*/
static void t4_report_fw_error(struct adapter *adap)
{
static const char *const reason[] = {
"Crash", /* PCIE_FW_EVAL_CRASH */
"During Device Preparation", /* PCIE_FW_EVAL_PREP */
"During Device Configuration", /* PCIE_FW_EVAL_CONF */
"During Device Initialization", /* PCIE_FW_EVAL_INIT */
"Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
"Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
"Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
"Reserved", /* reserved */
};
u32 pcie_fw;
pcie_fw = t4_read_reg(adap, A_PCIE_FW);
if (pcie_fw & F_PCIE_FW_ERR) {
adap->flags &= ~FW_OK;
CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
if (pcie_fw != 0xffffffff)
t4_os_dump_devlog(adap);
}
}
/*
* Get the reply to a mailbox command and store it in @rpl in big-endian order.
*/
static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
u32 mbox_addr)
{
for ( ; nflit; nflit--, mbox_addr += 8)
*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
}
/*
* Handle a FW assertion reported in a mailbox.
*/
static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
{
CH_ALERT(adap,
"FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
asrt->u.assert.filename_0_7,
be32_to_cpu(asrt->u.assert.line),
be32_to_cpu(asrt->u.assert.x),
be32_to_cpu(asrt->u.assert.y));
}
struct port_tx_state {
uint64_t rx_pause;
uint64_t tx_frames;
};
static void
read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
{
uint32_t rx_pause_reg, tx_frames_reg;
if (is_t4(sc)) {
tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
} else {
tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
}
tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
}
static void
read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
{
int i;
for_each_port(sc, i)
read_tx_state_one(sc, i, &tx_state[i]);
}
static void
check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
{
uint32_t port_ctl_reg;
uint64_t tx_frames, rx_pause;
int i;
for_each_port(sc, i) {
rx_pause = tx_state[i].rx_pause;
tx_frames = tx_state[i].tx_frames;
read_tx_state_one(sc, i, &tx_state[i]); /* update */
if (is_t4(sc))
port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
else
port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
rx_pause != tx_state[i].rx_pause &&
tx_frames == tx_state[i].tx_frames) {
t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
mdelay(1);
t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
}
}
}
#define X_CIM_PF_NOACCESS 0xeeeeeeee
/**
* t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
* @adap: the adapter
* @mbox: index of the mailbox to use
* @cmd: the command to write
* @size: command length in bytes
* @rpl: where to optionally store the reply
* @sleep_ok: if true we may sleep while awaiting command completion
* @timeout: time to wait for command to finish before timing out
* (negative implies @sleep_ok=false)
*
* Sends the given command to FW through the selected mailbox and waits
* for the FW to execute the command. If @rpl is not %NULL it is used to
* store the FW's reply to the command. The command and its optional
* reply are of the same length. Some FW commands like RESET and
* INITIALIZE can take a considerable amount of time to execute.
* @sleep_ok determines whether we may sleep while awaiting the response.
* If sleeping is allowed we use progressive backoff otherwise we spin.
* Note that passing in a negative @timeout is an alternate mechanism
* for specifying @sleep_ok=false. This is useful when a higher level
* interface allows for specification of @timeout but not @sleep_ok ...
*
* The return value is 0 on success or a negative errno on failure. A
* failure can happen either because we are not able to execute the
* command or FW executes it but signals an error. In the latter case
* the return value is the error code indicated by FW (negated).
*/
int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
int size, void *rpl, bool sleep_ok, int timeout)
{
/*
* We delay in small increments at first in an effort to maintain
* responsiveness for simple, fast executing commands but then back
* off to larger delays to a maximum retry delay.
*/
static const int delay[] = {
1, 1, 3, 5, 10, 10, 20, 50, 100
};
u32 v;
u64 res;
int i, ms, delay_idx, ret, next_tx_check;
u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
u32 ctl;
__be64 cmd_rpl[MBOX_LEN/8];
u32 pcie_fw;
struct port_tx_state tx_state[MAX_NPORTS];
if (adap->flags & CHK_MBOX_ACCESS)
ASSERT_SYNCHRONIZED_OP(adap);
if (size <= 0 || (size & 15) || size > MBOX_LEN)
return -EINVAL;
if (adap->flags & IS_VF) {
if (is_t6(adap))
data_reg = FW_T6VF_MBDATA_BASE_ADDR;
else
data_reg = FW_T4VF_MBDATA_BASE_ADDR;
ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
}
/*
* If we have a negative timeout, that implies that we can't sleep.
*/
if (timeout < 0) {
sleep_ok = false;
timeout = -timeout;
}
/*
* Attempt to gain access to the mailbox.
*/
for (i = 0; i < 4; i++) {
ctl = t4_read_reg(adap, ctl_reg);
v = G_MBOWNER(ctl);
if (v != X_MBOWNER_NONE)
break;
}
/*
* If we were unable to gain access, report the error to our caller.
*/
if (v != X_MBOWNER_PL) {
t4_report_fw_error(adap);
ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
return ret;
}
/*
* If we gain ownership of the mailbox and there's a "valid" message
* in it, this is likely an asynchronous error message from the
* firmware. So we'll report that and then proceed on with attempting
* to issue our own command ... which may well fail if the error
* presaged the firmware crashing ...
*/
if (ctl & F_MBMSGVALID) {
CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
}
/*
* Copy in the new mailbox command and send it on its way ...
*/
memset(cmd_rpl, 0, sizeof(cmd_rpl));
memcpy(cmd_rpl, cmd, size);
CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
if (adap->flags & IS_VF) {
/*
* For the VFs, the Mailbox Data "registers" are
* actually backed by T4's "MA" interface rather than
* PL Registers (as is the case for the PFs). Because
* these are in different coherency domains, the write
* to the VF's PL-register-backed Mailbox Control can
* race in front of the writes to the MA-backed VF
* Mailbox Data "registers". So we need to do a
* read-back on at least one byte of the VF Mailbox
* Data registers before doing the write to the VF
* Mailbox Control register.
*/
t4_read_reg(adap, data_reg);
}
t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
read_tx_state(adap, &tx_state[0]); /* also flushes the write_reg */
next_tx_check = 1000;
delay_idx = 0;
ms = delay[0];
/*
* Loop waiting for the reply; bail out if we time out or the firmware
* reports an error.
*/
pcie_fw = 0;
for (i = 0; i < timeout; i += ms) {
if (!(adap->flags & IS_VF)) {
pcie_fw = t4_read_reg(adap, A_PCIE_FW);
if (pcie_fw & F_PCIE_FW_ERR)
break;
}
if (i >= next_tx_check) {
check_tx_state(adap, &tx_state[0]);
next_tx_check = i + 1000;
}
if (sleep_ok) {
ms = delay[delay_idx]; /* last element may repeat */
if (delay_idx < ARRAY_SIZE(delay) - 1)
delay_idx++;
msleep(ms);
} else {
mdelay(ms);
}
v = t4_read_reg(adap, ctl_reg);
if (v == X_CIM_PF_NOACCESS)
continue;
if (G_MBOWNER(v) == X_MBOWNER_PL) {
if (!(v & F_MBMSGVALID)) {
t4_write_reg(adap, ctl_reg,
V_MBOWNER(X_MBOWNER_NONE));
continue;
}
/*
* Retrieve the command reply and release the mailbox.
*/
get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
res = be64_to_cpu(cmd_rpl[0]);
if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
res = V_FW_CMD_RETVAL(EIO);
} else if (rpl)
memcpy(rpl, cmd_rpl, size);
return -G_FW_CMD_RETVAL((int)res);
}
}
/*
* We timed out waiting for a reply to our mailbox command. Report
* the error and also check to see if the firmware reported any
* errors ...
*/
CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
*(const u8 *)cmd, mbox, pcie_fw);
CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
if (pcie_fw & F_PCIE_FW_ERR) {
ret = -ENXIO;
t4_report_fw_error(adap);
} else {
ret = -ETIMEDOUT;
t4_os_dump_devlog(adap);
}
t4_fatal_err(adap, true);
return ret;
}
int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
void *rpl, bool sleep_ok)
{
return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
sleep_ok, FW_CMD_MAX_TIMEOUT);
}
static int t4_edc_err_read(struct adapter *adap, int idx)
{
u32 edc_ecc_err_addr_reg;
u32 edc_bist_status_rdata_reg;
if (is_t4(adap)) {
CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
return 0;
}
if (idx != MEM_EDC0 && idx != MEM_EDC1) {
CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
return 0;
}
edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
CH_WARN(adap,
"edc%d err addr 0x%x: 0x%x.\n",
idx, edc_ecc_err_addr_reg,
t4_read_reg(adap, edc_ecc_err_addr_reg));
CH_WARN(adap,
"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
edc_bist_status_rdata_reg,
(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
return 0;
}
/**
* t4_mc_read - read from MC through backdoor accesses
* @adap: the adapter
* @idx: which MC to access
* @addr: address of first byte requested
* @data: 64 bytes of data containing the requested address
* @ecc: where to store the corresponding 64-bit ECC word
*
* Read 64 bytes of data from MC starting at a 64-byte-aligned address
* that covers the requested address @addr. If @parity is not %NULL it
* is assigned the 64-bit ECC word for the read data.
*/
int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
{
int i;
u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
if (is_t4(adap)) {
mc_bist_cmd_reg = A_MC_BIST_CMD;
mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
} else {
mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
idx);
mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
idx);
}
if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
return -EBUSY;
t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
F_START_BIST | V_BIST_CMD_GAP(1));
i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
if (i)
return i;
#define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
for (i = 15; i >= 0; i--)
*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
if (ecc)
*ecc = t4_read_reg64(adap, MC_DATA(16));
#undef MC_DATA
return 0;
}
/**
* t4_edc_read - read from EDC through backdoor accesses
* @adap: the adapter
* @idx: which EDC to access
* @addr: address of first byte requested
* @data: 64 bytes of data containing the requested address
* @ecc: where to store the corresponding 64-bit ECC word
*
* Read 64 bytes of data from EDC starting at a 64-byte-aligned address
* that covers the requested address @addr. If @parity is not %NULL it
* is assigned the 64-bit ECC word for the read data.
*/
int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
{
int i;
u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
if (is_t4(adap)) {
edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
idx);
edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
idx);
} else {
/*
* These macro are missing in t4_regs.h file.
* Added temporarily for testing.
*/
#define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
#define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
idx);
edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
idx);
#undef EDC_REG_T5
#undef EDC_STRIDE_T5
}
if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
return -EBUSY;
t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
t4_write_reg(adap, edc_bist_cmd_reg,
V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
if (i)
return i;
#define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
for (i = 15; i >= 0; i--)
*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
if (ecc)
*ecc = t4_read_reg64(adap, EDC_DATA(16));
#undef EDC_DATA
return 0;
}
/**
* t4_mem_read - read EDC 0, EDC 1 or MC into buffer
* @adap: the adapter
* @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
* @addr: address within indicated memory type
* @len: amount of memory to read
* @buf: host memory buffer
*
* Reads an [almost] arbitrary memory region in the firmware: the
* firmware memory address, length and host buffer must be aligned on
* 32-bit boudaries. The memory is returned as a raw byte sequence from
* the firmware's memory. If this memory contains data structures which
* contain multi-byte integers, it's the callers responsibility to
* perform appropriate byte order conversions.
*/
int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
__be32 *buf)
{
u32 pos, start, end, offset;
int ret;
/*
* Argument sanity checks ...
*/
if ((addr & 0x3) || (len & 0x3))
return -EINVAL;
/*
* The underlaying EDC/MC read routines read 64 bytes at a time so we
* need to round down the start and round up the end. We'll start
* copying out of the first line at (addr - start) a word at a time.
*/
start = rounddown2(addr, 64);
end = roundup2(addr + len, 64);
offset = (addr - start)/sizeof(__be32);
for (pos = start; pos < end; pos += 64, offset = 0) {
__be32 data[16];
/*
* Read the chip's memory block and bail if there's an error.
*/
if ((mtype == MEM_MC) || (mtype == MEM_MC1))
ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
else
ret = t4_edc_read(adap, mtype, pos, data, NULL);
if (ret)
return ret;
/*
* Copy the data into the caller's memory buffer.
*/
while (offset < 16 && len > 0) {
*buf++ = data[offset++];
len -= sizeof(__be32);
}
}
return 0;
}
/*
* Return the specified PCI-E Configuration Space register from our Physical
* Function. We try first via a Firmware LDST Command (if fw_attach != 0)
* since we prefer to let the firmware own all of these registers, but if that
* fails we go for it directly ourselves.
*/
u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
{
/*
* If fw_attach != 0, construct and send the Firmware LDST Command to
* retrieve the specified PCI-E Configuration Space register.
*/
if (drv_fw_attach != 0) {
struct fw_ldst_cmd ldst_cmd;
int ret;
memset(&ldst_cmd, 0, sizeof(ldst_cmd));
ldst_cmd.op_to_addrspace =
cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_READ |
V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
ldst_cmd.u.pcie.ctrl_to_fn =
(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
ldst_cmd.u.pcie.r = reg;
/*
* If the LDST Command succeeds, return the result, otherwise
* fall through to reading it directly ourselves ...
*/
ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
&ldst_cmd);
if (ret == 0)
return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
CH_WARN(adap, "Firmware failed to return "
"Configuration Space register %d, err = %d\n",
reg, -ret);
}
/*
* Read the desired Configuration Space register via the PCI-E
* Backdoor mechanism.
*/
return t4_hw_pci_read_cfg4(adap, reg);
}
/**
* t4_get_regs_len - return the size of the chips register set
* @adapter: the adapter
*
* Returns the size of the chip's BAR0 register space.
*/
unsigned int t4_get_regs_len(struct adapter *adapter)
{
unsigned int chip_version = chip_id(adapter);
switch (chip_version) {
case CHELSIO_T4:
if (adapter->flags & IS_VF)
return FW_T4VF_REGMAP_SIZE;
return T4_REGMAP_SIZE;
case CHELSIO_T5:
case CHELSIO_T6:
if (adapter->flags & IS_VF)
return FW_T4VF_REGMAP_SIZE;
return T5_REGMAP_SIZE;
}
CH_ERR(adapter,
"Unsupported chip version %d\n", chip_version);
return 0;
}
/**
* t4_get_regs - read chip registers into provided buffer
* @adap: the adapter
* @buf: register buffer
* @buf_size: size (in bytes) of register buffer
*
* If the provided register buffer isn't large enough for the chip's
* full register range, the register dump will be truncated to the
* register buffer's size.
*/
void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
{
static const unsigned int t4_reg_ranges[] = {
0x1008, 0x1108,
0x1180, 0x1184,
0x1190, 0x1194,
0x11a0, 0x11a4,
0x11b0, 0x11b4,
0x11fc, 0x123c,
0x1300, 0x173c,
0x1800, 0x18fc,
0x3000, 0x30d8,
0x30e0, 0x30e4,
0x30ec, 0x5910,
0x5920, 0x5924,
0x5960, 0x5960,
0x5968, 0x5968,
0x5970, 0x5970,
0x5978, 0x5978,
0x5980, 0x5980,
0x5988, 0x5988,
0x5990, 0x5990,
0x5998, 0x5998,
0x59a0, 0x59d4,
0x5a00, 0x5ae0,
0x5ae8, 0x5ae8,
0x5af0, 0x5af0,
0x5af8, 0x5af8,
0x6000, 0x6098,
0x6100, 0x6150,
0x6200, 0x6208,
0x6240, 0x6248,
0x6280, 0x62b0,
0x62c0, 0x6338,
0x6370, 0x638c,
0x6400, 0x643c,
0x6500, 0x6524,
0x6a00, 0x6a04,
0x6a14, 0x6a38,
0x6a60, 0x6a70,
0x6a78, 0x6a78,
0x6b00, 0x6b0c,
0x6b1c, 0x6b84,
0x6bf0, 0x6bf8,
0x6c00, 0x6c0c,
0x6c1c, 0x6c84,
0x6cf0, 0x6cf8,
0x6d00, 0x6d0c,
0x6d1c, 0x6d84,
0x6df0, 0x6df8,
0x6e00, 0x6e0c,
0x6e1c, 0x6e84,
0x6ef0, 0x6ef8,
0x6f00, 0x6f0c,
0x6f1c, 0x6f84,
0x6ff0, 0x6ff8,
0x7000, 0x700c,
0x701c, 0x7084,
0x70f0, 0x70f8,
0x7100, 0x710c,
0x711c, 0x7184,
0x71f0, 0x71f8,
0x7200, 0x720c,
0x721c, 0x7284,
0x72f0, 0x72f8,
0x7300, 0x730c,
0x731c, 0x7384,
0x73f0, 0x73f8,
0x7400, 0x7450,
0x7500, 0x7530,
0x7600, 0x760c,
0x7614, 0x761c,
0x7680, 0x76cc,
0x7700, 0x7798,
0x77c0, 0x77fc,
0x7900, 0x79fc,
0x7b00, 0x7b58,
0x7b60, 0x7b84,
0x7b8c, 0x7c38,
0x7d00, 0x7d38,
0x7d40, 0x7d80,
0x7d8c, 0x7ddc,
0x7de4, 0x7e04,
0x7e10, 0x7e1c,
0x7e24, 0x7e38,
0x7e40, 0x7e44,
0x7e4c, 0x7e78,
0x7e80, 0x7ea4,
0x7eac, 0x7edc,
0x7ee8, 0x7efc,
0x8dc0, 0x8e04,
0x8e10, 0x8e1c,
0x8e30, 0x8e78,
0x8ea0, 0x8eb8,
0x8ec0, 0x8f6c,
0x8fc0, 0x9008,
0x9010, 0x9058,
0x9060, 0x9060,
0x9068, 0x9074,
0x90fc, 0x90fc,
0x9400, 0x9408,
0x9410, 0x9458,
0x9600, 0x9600,
0x9608, 0x9638,
0x9640, 0x96bc,
0x9800, 0x9808,
0x9820, 0x983c,
0x9850, 0x9864,
0x9c00, 0x9c6c,
0x9c80, 0x9cec,
0x9d00, 0x9d6c,
0x9d80, 0x9dec,
0x9e00, 0x9e6c,
0x9e80, 0x9eec,
0x9f00, 0x9f6c,
0x9f80, 0x9fec,
0xd004, 0xd004,
0xd010, 0xd03c,
0xdfc0, 0xdfe0,
0xe000, 0xea7c,
0xf000, 0x11110,
0x11118, 0x11190,
0x19040, 0x1906c,
0x19078, 0x19080,
0x1908c, 0x190e4,
0x190f0, 0x190f8,
0x19100, 0x19110,
0x19120, 0x19124,
0x19150, 0x19194,
0x1919c, 0x191b0,
0x191d0, 0x191e8,
0x19238, 0x1924c,
0x193f8, 0x1943c,
0x1944c, 0x19474,
0x19490, 0x194e0,
0x194f0, 0x194f8,
0x19800, 0x19c08,
0x19c10, 0x19c90,
0x19ca0, 0x19ce4,
0x19cf0, 0x19d40,
0x19d50, 0x19d94,
0x19da0, 0x19de8,
0x19df0, 0x19e40,
0x19e50, 0x19e90,
0x19ea0, 0x19f4c,
0x1a000, 0x1a004,
0x1a010, 0x1a06c,
0x1a0b0, 0x1a0e4,
0x1a0ec, 0x1a0f4,
0x1a100, 0x1a108,
0x1a114, 0x1a120,
0x1a128, 0x1a130,
0x1a138, 0x1a138,
0x1a190, 0x1a1c4,
0x1a1fc, 0x1a1fc,
0x1e040, 0x1e04c,
0x1e284, 0x1e28c,
0x1e2c0, 0x1e2c0,
0x1e2e0, 0x1e2e0,
0x1e300, 0x1e384,
0x1e3c0, 0x1e3c8,
0x1e440, 0x1e44c,
0x1e684, 0x1e68c,
0x1e6c0, 0x1e6c0,
0x1e6e0, 0x1e6e0,
0x1e700, 0x1e784,
0x1e7c0, 0x1e7c8,
0x1e840, 0x1e84c,
0x1ea84, 0x1ea8c,
0x1eac0, 0x1eac0,
0x1eae0, 0x1eae0,
0x1eb00, 0x1eb84,
0x1ebc0, 0x1ebc8,
0x1ec40, 0x1ec4c,
0x1ee84, 0x1ee8c,
0x1eec0, 0x1eec0,
0x1eee0, 0x1eee0,
0x1ef00, 0x1ef84,
0x1efc0, 0x1efc8,
0x1f040, 0x1f04c,
0x1f284, 0x1f28c,
0x1f2c0, 0x1f2c0,
0x1f2e0, 0x1f2e0,
0x1f300, 0x1f384,
0x1f3c0, 0x1f3c8,
0x1f440, 0x1f44c,
0x1f684, 0x1f68c,
0x1f6c0, 0x1f6c0,
0x1f6e0, 0x1f6e0,
0x1f700, 0x1f784,
0x1f7c0, 0x1f7c8,
0x1f840, 0x1f84c,
0x1fa84, 0x1fa8c,
0x1fac0, 0x1fac0,
0x1fae0, 0x1fae0,
0x1fb00, 0x1fb84,
0x1fbc0, 0x1fbc8,
0x1fc40, 0x1fc4c,
0x1fe84, 0x1fe8c,
0x1fec0, 0x1fec0,
0x1fee0, 0x1fee0,
0x1ff00, 0x1ff84,
0x1ffc0, 0x1ffc8,
0x20000, 0x2002c,
0x20100, 0x2013c,
0x20190, 0x201a0,
0x201a8, 0x201b8,
0x201c4, 0x201c8,
0x20200, 0x20318,
0x20400, 0x204b4,
0x204c0, 0x20528,
0x20540, 0x20614,
0x21000, 0x21040,
0x2104c, 0x21060,
0x210c0, 0x210ec,
0x21200, 0x21268,
0x21270, 0x21284,
0x212fc, 0x21388,
0x21400, 0x21404,
0x21500, 0x21500,
0x21510, 0x21518,
0x2152c, 0x21530,
0x2153c, 0x2153c,
0x21550, 0x21554,
0x21600, 0x21600,
0x21608, 0x2161c,
0x21624, 0x21628,
0x21630, 0x21634,
0x2163c, 0x2163c,
0x21700, 0x2171c,
0x21780, 0x2178c,
0x21800, 0x21818,
0x21820, 0x21828,
0x21830, 0x21848,
0x21850, 0x21854,
0x21860, 0x21868,
0x21870, 0x21870,
0x21878, 0x21898,
0x218a0, 0x218a8,
0x218b0, 0x218c8,
0x218d0, 0x218d4,
0x218e0, 0x218e8,
0x218f0, 0x218f0,
0x218f8, 0x21a18,
0x21a20, 0x21a28,
0x21a30, 0x21a48,
0x21a50, 0x21a54,
0x21a60, 0x21a68,
0x21a70, 0x21a70,
0x21a78, 0x21a98,
0x21aa0, 0x21aa8,
0x21ab0, 0x21ac8,
0x21ad0, 0x21ad4,
0x21ae0, 0x21ae8,
0x21af0, 0x21af0,
0x21af8, 0x21c18,
0x21c20, 0x21c20,
0x21c28, 0x21c30,
0x21c38, 0x21c38,
0x21c80, 0x21c98,
0x21ca0, 0x21ca8,
0x21cb0, 0x21cc8,
0x21cd0, 0x21cd4,
0x21ce0, 0x21ce8,
0x21cf0, 0x21cf0,
0x21cf8, 0x21d7c,
0x21e00, 0x21e04,
0x22000, 0x2202c,
0x22100, 0x2213c,
0x22190, 0x221a0,
0x221a8, 0x221b8,
0x221c4, 0x221c8,
0x22200, 0x22318,
0x22400, 0x224b4,
0x224c0, 0x22528,
0x22540, 0x22614,
0x23000, 0x23040,
0x2304c, 0x23060,
0x230c0, 0x230ec,
0x23200, 0x23268,
0x23270, 0x23284,
0x232fc, 0x23388,
0x23400, 0x23404,
0x23500, 0x23500,
0x23510, 0x23518,
0x2352c, 0x23530,
0x2353c, 0x2353c,
0x23550, 0x23554,
0x23600, 0x23600,
0x23608, 0x2361c,
0x23624, 0x23628,
0x23630, 0x23634,
0x2363c, 0x2363c,
0x23700, 0x2371c,
0x23780, 0x2378c,
0x23800, 0x23818,
0x23820, 0x23828,
0x23830, 0x23848,
0x23850, 0x23854,
0x23860, 0x23868,
0x23870, 0x23870,
0x23878, 0x23898,
0x238a0, 0x238a8,
0x238b0, 0x238c8,
0x238d0, 0x238d4,
0x238e0, 0x238e8,
0x238f0, 0x238f0,
0x238f8, 0x23a18,
0x23a20, 0x23a28,
0x23a30, 0x23a48,
0x23a50, 0x23a54,
0x23a60, 0x23a68,
0x23a70, 0x23a70,
0x23a78, 0x23a98,
0x23aa0, 0x23aa8,
0x23ab0, 0x23ac8,
0x23ad0, 0x23ad4,
0x23ae0, 0x23ae8,
0x23af0, 0x23af0,
0x23af8, 0x23c18,
0x23c20, 0x23c20,
0x23c28, 0x23c30,
0x23c38, 0x23c38,
0x23c80, 0x23c98,
0x23ca0, 0x23ca8,
0x23cb0, 0x23cc8,
0x23cd0, 0x23cd4,
0x23ce0, 0x23ce8,
0x23cf0, 0x23cf0,
0x23cf8, 0x23d7c,
0x23e00, 0x23e04,
0x24000, 0x2402c,
0x24100, 0x2413c,
0x24190, 0x241a0,
0x241a8, 0x241b8,
0x241c4, 0x241c8,
0x24200, 0x24318,
0x24400, 0x244b4,
0x244c0, 0x24528,
0x24540, 0x24614,
0x25000, 0x25040,
0x2504c, 0x25060,
0x250c0, 0x250ec,
0x25200, 0x25268,
0x25270, 0x25284,
0x252fc, 0x25388,
0x25400, 0x25404,
0x25500, 0x25500,
0x25510, 0x25518,
0x2552c, 0x25530,
0x2553c, 0x2553c,
0x25550, 0x25554,
0x25600, 0x25600,
0x25608, 0x2561c,
0x25624, 0x25628,
0x25630, 0x25634,
0x2563c, 0x2563c,
0x25700, 0x2571c,
0x25780, 0x2578c,
0x25800, 0x25818,
0x25820, 0x25828,
0x25830, 0x25848,
0x25850, 0x25854,
0x25860, 0x25868,
0x25870, 0x25870,
0x25878, 0x25898,
0x258a0, 0x258a8,
0x258b0, 0x258c8,
0x258d0, 0x258d4,
0x258e0, 0x258e8,
0x258f0, 0x258f0,
0x258f8, 0x25a18,
0x25a20, 0x25a28,
0x25a30, 0x25a48,
0x25a50, 0x25a54,
0x25a60, 0x25a68,
0x25a70, 0x25a70,
0x25a78, 0x25a98,
0x25aa0, 0x25aa8,
0x25ab0, 0x25ac8,
0x25ad0, 0x25ad4,
0x25ae0, 0x25ae8,
0x25af0, 0x25af0,
0x25af8, 0x25c18,
0x25c20, 0x25c20,
0x25c28, 0x25c30,
0x25c38, 0x25c38,
0x25c80, 0x25c98,
0x25ca0, 0x25ca8,
0x25cb0, 0x25cc8,
0x25cd0, 0x25cd4,
0x25ce0, 0x25ce8,
0x25cf0, 0x25cf0,
0x25cf8, 0x25d7c,
0x25e00, 0x25e04,
0x26000, 0x2602c,
0x26100, 0x2613c,
0x26190, 0x261a0,
0x261a8, 0x261b8,
0x261c4, 0x261c8,
0x26200, 0x26318,
0x26400, 0x264b4,
0x264c0, 0x26528,
0x26540, 0x26614,
0x27000, 0x27040,
0x2704c, 0x27060,
0x270c0, 0x270ec,
0x27200, 0x27268,
0x27270, 0x27284,
0x272fc, 0x27388,
0x27400, 0x27404,
0x27500, 0x27500,
0x27510, 0x27518,
0x2752c, 0x27530,
0x2753c, 0x2753c,
0x27550, 0x27554,
0x27600, 0x27600,
0x27608, 0x2761c,
0x27624, 0x27628,
0x27630, 0x27634,
0x2763c, 0x2763c,
0x27700, 0x2771c,
0x27780, 0x2778c,
0x27800, 0x27818,
0x27820, 0x27828,
0x27830, 0x27848,
0x27850, 0x27854,
0x27860, 0x27868,
0x27870, 0x27870,
0x27878, 0x27898,
0x278a0, 0x278a8,
0x278b0, 0x278c8,
0x278d0, 0x278d4,
0x278e0, 0x278e8,
0x278f0, 0x278f0,
0x278f8, 0x27a18,
0x27a20, 0x27a28,
0x27a30, 0x27a48,
0x27a50, 0x27a54,
0x27a60, 0x27a68,
0x27a70, 0x27a70,
0x27a78, 0x27a98,
0x27aa0, 0x27aa8,
0x27ab0, 0x27ac8,
0x27ad0, 0x27ad4,
0x27ae0, 0x27ae8,
0x27af0, 0x27af0,
0x27af8, 0x27c18,
0x27c20, 0x27c20,
0x27c28, 0x27c30,
0x27c38, 0x27c38,
0x27c80, 0x27c98,
0x27ca0, 0x27ca8,
0x27cb0, 0x27cc8,
0x27cd0, 0x27cd4,
0x27ce0, 0x27ce8,
0x27cf0, 0x27cf0,
0x27cf8, 0x27d7c,
0x27e00, 0x27e04,
};
static const unsigned int t4vf_reg_ranges[] = {
VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
VF_MPS_REG(A_MPS_VF_CTL),
VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
FW_T4VF_MBDATA_BASE_ADDR,
FW_T4VF_MBDATA_BASE_ADDR +
((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
};
static const unsigned int t5_reg_ranges[] = {
0x1008, 0x10c0,
0x10cc, 0x10f8,
0x1100, 0x1100,
0x110c, 0x1148,
0x1180, 0x1184,
0x1190, 0x1194,
0x11a0, 0x11a4,
0x11b0, 0x11b4,
0x11fc, 0x123c,
0x1280, 0x173c,
0x1800, 0x18fc,
0x3000, 0x3028,
0x3060, 0x30b0,
0x30b8, 0x30d8,
0x30e0, 0x30fc,
0x3140, 0x357c,
0x35a8, 0x35cc,
0x35ec, 0x35ec,
0x3600, 0x5624,
0x56cc, 0x56ec,
0x56f4, 0x5720,
0x5728, 0x575c,
0x580c, 0x5814,
0x5890, 0x589c,
0x58a4, 0x58ac,
0x58b8, 0x58bc,
0x5940, 0x59c8,
0x59d0, 0x59dc,
0x59fc, 0x5a18,
0x5a60, 0x5a70,
0x5a80, 0x5a9c,
0x5b94, 0x5bfc,
0x6000, 0x6020,
0x6028, 0x6040,
0x6058, 0x609c,
0x60a8, 0x614c,
0x7700, 0x7798,
0x77c0, 0x78fc,
0x7b00, 0x7b58,
0x7b60, 0x7b84,
0x7b8c, 0x7c54,
0x7d00, 0x7d38,
0x7d40, 0x7d80,
0x7d8c, 0x7ddc,
0x7de4, 0x7e04,
0x7e10, 0x7e1c,
0x7e24, 0x7e38,
0x7e40, 0x7e44,
0x7e4c, 0x7e78,
0x7e80, 0x7edc,
0x7ee8, 0x7efc,
0x8dc0, 0x8de0,
0x8df8, 0x8e04,
0x8e10, 0x8e84,
0x8ea0, 0x8f84,
0x8fc0, 0x9058,
0x9060, 0x9060,
0x9068, 0x90f8,
0x9400, 0x9408,
0x9410, 0x9470,
0x9600, 0x9600,
0x9608, 0x9638,
0x9640, 0x96f4,
0x9800, 0x9808,
0x9820, 0x983c,
0x9850, 0x9864,
0x9c00, 0x9c6c,
0x9c80, 0x9cec,
0x9d00, 0x9d6c,
0x9d80, 0x9dec,
0x9e00, 0x9e6c,
0x9e80, 0x9eec,
0x9f00, 0x9f6c,
0x9f80, 0xa020,
0xd004, 0xd004,
0xd010, 0xd03c,
0xdfc0, 0xdfe0,
0xe000, 0x1106c,
0x11074, 0x11088,
0x1109c, 0x1117c,
0x11190, 0x11204,
0x19040, 0x1906c,
0x19078, 0x19080,
0x1908c, 0x190e8,
0x190f0, 0x190f8,
0x19100, 0x19110,
0x19120, 0x19124,
0x19150, 0x19194,
0x1919c, 0x191b0,
0x191d0, 0x191e8,
0x19238, 0x19290,
0x193f8, 0x19428,
0x19430, 0x19444,
0x1944c, 0x1946c,
0x19474, 0x19474,
0x19490, 0x194cc,
0x194f0, 0x194f8,
0x19c00, 0x19c08,
0x19c10, 0x19c60,
0x19c94, 0x19ce4,
0x19cf0, 0x19d40,
0x19d50, 0x19d94,
0x19da0, 0x19de8,
0x19df0, 0x19e10,
0x19e50, 0x19e90,
0x19ea0, 0x19f24,
0x19f34, 0x19f34,
0x19f40, 0x19f50,
0x19f90, 0x19fb4,
0x19fc4, 0x19fe4,
0x1a000, 0x1a004,
0x1a010, 0x1a06c,
0x1a0b0, 0x1a0e4,
0x1a0ec, 0x1a0f8,
0x1a100, 0x1a108,
0x1a114, 0x1a120,
0x1a128, 0x1a130,
0x1a138, 0x1a138,
0x1a190, 0x1a1c4,
0x1a1fc, 0x1a1fc,
0x1e008, 0x1e00c,
0x1e040, 0x1e044,
0x1e04c, 0x1e04c,
0x1e284, 0x1e290,
0x1e2c0, 0x1e2c0,
0x1e2e0, 0x1e2e0,
0x1e300, 0x1e384,
0x1e3c0, 0x1e3c8,
0x1e408, 0x1e40c,
0x1e440, 0x1e444,
0x1e44c, 0x1e44c,
0x1e684, 0x1e690,
0x1e6c0, 0x1e6c0,
0x1e6e0, 0x1e6e0,
0x1e700, 0x1e784,
0x1e7c0, 0x1e7c8,
0x1e808, 0x1e80c,
0x1e840, 0x1e844,
0x1e84c, 0x1e84c,
0x1ea84, 0x1ea90,
0x1eac0, 0x1eac0,
0x1eae0, 0x1eae0,
0x1eb00, 0x1eb84,
0x1ebc0, 0x1ebc8,
0x1ec08, 0x1ec0c,
0x1ec40, 0x1ec44,
0x1ec4c, 0x1ec4c,
0x1ee84, 0x1ee90,
0x1eec0, 0x1eec0,
0x1eee0, 0x1eee0,
0x1ef00, 0x1ef84,
0x1efc0, 0x1efc8,
0x1f008, 0x1f00c,
0x1f040, 0x1f044,
0x1f04c, 0x1f04c,
0x1f284, 0x1f290,
0x1f2c0, 0x1f2c0,
0x1f2e0, 0x1f2e0,
0x1f300, 0x1f384,
0x1f3c0, 0x1f3c8,
0x1f408, 0x1f40c,
0x1f440, 0x1f444,
0x1f44c, 0x1f44c,
0x1f684, 0x1f690,
0x1f6c0, 0x1f6c0,
0x1f6e0, 0x1f6e0,
0x1f700, 0x1f784,
0x1f7c0, 0x1f7c8,
0x1f808, 0x1f80c,
0x1f840, 0x1f844,
0x1f84c, 0x1f84c,
0x1fa84, 0x1fa90,
0x1fac0, 0x1fac0,
0x1fae0, 0x1fae0,
0x1fb00, 0x1fb84,
0x1fbc0, 0x1fbc8,
0x1fc08, 0x1fc0c,
0x1fc40, 0x1fc44,
0x1fc4c, 0x1fc4c,
0x1fe84, 0x1fe90,
0x1fec0, 0x1fec0,
0x1fee0, 0x1fee0,
0x1ff00, 0x1ff84,
0x1ffc0, 0x1ffc8,
0x30000, 0x30030,
0x30100, 0x30144,
0x30190, 0x301a0,
0x301a8, 0x301b8,
0x301c4, 0x301c8,
0x301d0, 0x301d0,
0x30200, 0x30318,
0x30400, 0x304b4,
0x304c0, 0x3052c,
0x30540, 0x3061c,
0x30800, 0x30828,
0x30834, 0x30834,
0x308c0, 0x30908,
0x30910, 0x309ac,
0x30a00, 0x30a14,
0x30a1c, 0x30a2c,
0x30a44, 0x30a50,
0x30a74, 0x30a74,
0x30a7c, 0x30afc,
0x30b08, 0x30c24,
0x30d00, 0x30d00,
0x30d08, 0x30d14,
0x30d1c, 0x30d20,
0x30d3c, 0x30d3c,
0x30d48, 0x30d50,
0x31200, 0x3120c,
0x31220, 0x31220,
0x31240, 0x31240,
0x31600, 0x3160c,
0x31a00, 0x31a1c,
0x31e00, 0x31e20,
0x31e38, 0x31e3c,
0x31e80, 0x31e80,
0x31e88, 0x31ea8,
0x31eb0, 0x31eb4,
0x31ec8, 0x31ed4,
0x31fb8, 0x32004,
0x32200, 0x32200,
0x32208, 0x32240,
0x32248, 0x32280,
0x32288, 0x322c0,
0x322c8, 0x322fc,
0x32600, 0x32630,
0x32a00, 0x32abc,
0x32b00, 0x32b10,
0x32b20, 0x32b30,
0x32b40, 0x32b50,
0x32b60, 0x32b70,
0x33000, 0x33028,
0x33030, 0x33048,
0x33060, 0x33068,
0x33070, 0x3309c,
0x330f0, 0x33128,
0x33130, 0x33148,
0x33160, 0x33168,
0x33170, 0x3319c,
0x331f0, 0x33238,
0x33240, 0x33240,
0x33248, 0x33250,
0x3325c, 0x33264,
0x33270, 0x332b8,
0x332c0, 0x332e4,
0x332f8, 0x33338,
0x33340, 0x33340,
0x33348, 0x33350,
0x3335c, 0x33364,
0x33370, 0x333b8,
0x333c0, 0x333e4,
0x333f8, 0x33428,
0x33430, 0x33448,
0x33460, 0x33468,
0x33470, 0x3349c,
0x334f0, 0x33528,
0x33530, 0x33548,
0x33560, 0x33568,
0x33570, 0x3359c,
0x335f0, 0x33638,
0x33640, 0x33640,
0x33648, 0x33650,
0x3365c, 0x33664,
0x33670, 0x336b8,
0x336c0, 0x336e4,
0x336f8, 0x33738,
0x33740, 0x33740,
0x33748, 0x33750,
0x3375c, 0x33764,
0x33770, 0x337b8,
0x337c0, 0x337e4,
0x337f8, 0x337fc,
0x33814, 0x33814,
0x3382c, 0x3382c,
0x33880, 0x3388c,
0x338e8, 0x338ec,
0x33900, 0x33928,
0x33930, 0x33948,
0x33960, 0x33968,
0x33970, 0x3399c,
0x339f0, 0x33a38,
0x33a40, 0x33a40,
0x33a48, 0x33a50,
0x33a5c, 0x33a64,
0x33a70, 0x33ab8,
0x33ac0, 0x33ae4,
0x33af8, 0x33b10,
0x33b28, 0x33b28,
0x33b3c, 0x33b50,
0x33bf0, 0x33c10,
0x33c28, 0x33c28,
0x33c3c, 0x33c50,
0x33cf0, 0x33cfc,
0x34000, 0x34030,
0x34100, 0x34144,
0x34190, 0x341a0,
0x341a8, 0x341b8,
0x341c4, 0x341c8,
0x341d0, 0x341d0,
0x34200, 0x34318,
0x34400, 0x344b4,
0x344c0, 0x3452c,
0x34540, 0x3461c,
0x34800, 0x34828,
0x34834, 0x34834,
0x348c0, 0x34908,
0x34910, 0x349ac,
0x34a00, 0x34a14,
0x34a1c, 0x34a2c,
0x34a44, 0x34a50,
0x34a74, 0x34a74,
0x34a7c, 0x34afc,
0x34b08, 0x34c24,
0x34d00, 0x34d00,
0x34d08, 0x34d14,
0x34d1c, 0x34d20,
0x34d3c, 0x34d3c,
0x34d48, 0x34d50,
0x35200, 0x3520c,
0x35220, 0x35220,
0x35240, 0x35240,
0x35600, 0x3560c,
0x35a00, 0x35a1c,
0x35e00, 0x35e20,
0x35e38, 0x35e3c,
0x35e80, 0x35e80,
0x35e88, 0x35ea8,
0x35eb0, 0x35eb4,
0x35ec8, 0x35ed4,
0x35fb8, 0x36004,
0x36200, 0x36200,
0x36208, 0x36240,
0x36248, 0x36280,
0x36288, 0x362c0,
0x362c8, 0x362fc,
0x36600, 0x36630,
0x36a00, 0x36abc,
0x36b00, 0x36b10,
0x36b20, 0x36b30,
0x36b40, 0x36b50,
0x36b60, 0x36b70,
0x37000, 0x37028,
0x37030, 0x37048,
0x37060, 0x37068,
0x37070, 0x3709c,
0x370f0, 0x37128,
0x37130, 0x37148,
0x37160, 0x37168,
0x37170, 0x3719c,
0x371f0, 0x37238,
0x37240, 0x37240,
0x37248, 0x37250,
0x3725c, 0x37264,
0x37270, 0x372b8,
0x372c0, 0x372e4,
0x372f8, 0x37338,
0x37340, 0x37340,
0x37348, 0x37350,
0x3735c, 0x37364,
0x37370, 0x373b8,
0x373c0, 0x373e4,
0x373f8, 0x37428,
0x37430, 0x37448,
0x37460, 0x37468,
0x37470, 0x3749c,
0x374f0, 0x37528,
0x37530, 0x37548,
0x37560, 0x37568,
0x37570, 0x3759c,
0x375f0, 0x37638,
0x37640, 0x37640,
0x37648, 0x37650,
0x3765c, 0x37664,
0x37670, 0x376b8,
0x376c0, 0x376e4,
0x376f8, 0x37738,
0x37740, 0x37740,
0x37748, 0x37750,
0x3775c, 0x37764,
0x37770, 0x377b8,
0x377c0, 0x377e4,
0x377f8, 0x377fc,
0x37814, 0x37814,
0x3782c, 0x3782c,
0x37880, 0x3788c,
0x378e8, 0x378ec,
0x37900, 0x37928,
0x37930, 0x37948,
0x37960, 0x37968,
0x37970, 0x3799c,
0x379f0, 0x37a38,
0x37a40, 0x37a40,
0x37a48, 0x37a50,
0x37a5c, 0x37a64,
0x37a70, 0x37ab8,
0x37ac0, 0x37ae4,
0x37af8, 0x37b10,
0x37b28, 0x37b28,
0x37b3c, 0x37b50,
0x37bf0, 0x37c10,
0x37c28, 0x37c28,
0x37c3c, 0x37c50,
0x37cf0, 0x37cfc,
0x38000, 0x38030,
0x38100, 0x38144,
0x38190, 0x381a0,
0x381a8, 0x381b8,
0x381c4, 0x381c8,
0x381d0, 0x381d0,
0x38200, 0x38318,
0x38400, 0x384b4,
0x384c0, 0x3852c,
0x38540, 0x3861c,
0x38800, 0x38828,
0x38834, 0x38834,
0x388c0, 0x38908,
0x38910, 0x389ac,
0x38a00, 0x38a14,
0x38a1c, 0x38a2c,
0x38a44, 0x38a50,
0x38a74, 0x38a74,
0x38a7c, 0x38afc,
0x38b08, 0x38c24,
0x38d00, 0x38d00,
0x38d08, 0x38d14,
0x38d1c, 0x38d20,
0x38d3c, 0x38d3c,
0x38d48, 0x38d50,
0x39200, 0x3920c,
0x39220, 0x39220,
0x39240, 0x39240,
0x39600, 0x3960c,
0x39a00, 0x39a1c,
0x39e00, 0x39e20,
0x39e38, 0x39e3c,
0x39e80, 0x39e80,
0x39e88, 0x39ea8,
0x39eb0, 0x39eb4,
0x39ec8, 0x39ed4,
0x39fb8, 0x3a004,
0x3a200, 0x3a200,
0x3a208, 0x3a240,
0x3a248, 0x3a280,
0x3a288, 0x3a2c0,
0x3a2c8, 0x3a2fc,
0x3a600, 0x3a630,
0x3aa00, 0x3aabc,
0x3ab00, 0x3ab10,
0x3ab20, 0x3ab30,
0x3ab40, 0x3ab50,
0x3ab60, 0x3ab70,
0x3b000, 0x3b028,
0x3b030, 0x3b048,
0x3b060, 0x3b068,
0x3b070, 0x3b09c,
0x3b0f0, 0x3b128,
0x3b130, 0x3b148,
0x3b160, 0x3b168,
0x3b170, 0x3b19c,
0x3b1f0, 0x3b238,
0x3b240, 0x3b240,
0x3b248, 0x3b250,
0x3b25c, 0x3b264,
0x3b270, 0x3b2b8,
0x3b2c0, 0x3b2e4,
0x3b2f8, 0x3b338,
0x3b340, 0x3b340,
0x3b348, 0x3b350,
0x3b35c, 0x3b364,
0x3b370, 0x3b3b8,
0x3b3c0, 0x3b3e4,
0x3b3f8, 0x3b428,
0x3b430, 0x3b448,
0x3b460, 0x3b468,
0x3b470, 0x3b49c,
0x3b4f0, 0x3b528,
0x3b530, 0x3b548,
0x3b560, 0x3b568,
0x3b570, 0x3b59c,
0x3b5f0, 0x3b638,
0x3b640, 0x3b640,
0x3b648, 0x3b650,
0x3b65c, 0x3b664,
0x3b670, 0x3b6b8,
0x3b6c0, 0x3b6e4,
0x3b6f8, 0x3b738,
0x3b740, 0x3b740,
0x3b748, 0x3b750,
0x3b75c, 0x3b764,
0x3b770, 0x3b7b8,
0x3b7c0, 0x3b7e4,
0x3b7f8, 0x3b7fc,
0x3b814, 0x3b814,
0x3b82c, 0x3b82c,
0x3b880, 0x3b88c,
0x3b8e8, 0x3b8ec,
0x3b900, 0x3b928,
0x3b930, 0x3b948,
0x3b960, 0x3b968,
0x3b970, 0x3b99c,
0x3b9f0, 0x3ba38,
0x3ba40, 0x3ba40,
0x3ba48, 0x3ba50,
0x3ba5c, 0x3ba64,
0x3ba70, 0x3bab8,
0x3bac0, 0x3bae4,
0x3baf8, 0x3bb10,
0x3bb28, 0x3bb28,
0x3bb3c, 0x3bb50,
0x3bbf0, 0x3bc10,
0x3bc28, 0x3bc28,
0x3bc3c, 0x3bc50,
0x3bcf0, 0x3bcfc,
0x3c000, 0x3c030,
0x3c100, 0x3c144,
0x3c190, 0x3c1a0,
0x3c1a8, 0x3c1b8,
0x3c1c4, 0x3c1c8,
0x3c1d0, 0x3c1d0,
0x3c200, 0x3c318,
0x3c400, 0x3c4b4,
0x3c4c0, 0x3c52c,
0x3c540, 0x3c61c,
0x3c800, 0x3c828,
0x3c834, 0x3c834,
0x3c8c0, 0x3c908,
0x3c910, 0x3c9ac,
0x3ca00, 0x3ca14,
0x3ca1c, 0x3ca2c,
0x3ca44, 0x3ca50,
0x3ca74, 0x3ca74,
0x3ca7c, 0x3cafc,
0x3cb08, 0x3cc24,
0x3cd00, 0x3cd00,
0x3cd08, 0x3cd14,
0x3cd1c, 0x3cd20,
0x3cd3c, 0x3cd3c,
0x3cd48, 0x3cd50,
0x3d200, 0x3d20c,
0x3d220, 0x3d220,
0x3d240, 0x3d240,
0x3d600, 0x3d60c,
0x3da00, 0x3da1c,
0x3de00, 0x3de20,
0x3de38, 0x3de3c,
0x3de80, 0x3de80,
0x3de88, 0x3dea8,
0x3deb0, 0x3deb4,
0x3dec8, 0x3ded4,
0x3dfb8, 0x3e004,
0x3e200, 0x3e200,
0x3e208, 0x3e240,
0x3e248, 0x3e280,
0x3e288, 0x3e2c0,
0x3e2c8, 0x3e2fc,
0x3e600, 0x3e630,
0x3ea00, 0x3eabc,
0x3eb00, 0x3eb10,
0x3eb20, 0x3eb30,
0x3eb40, 0x3eb50,
0x3eb60, 0x3eb70,
0x3f000, 0x3f028,
0x3f030, 0x3f048,
0x3f060, 0x3f068,
0x3f070, 0x3f09c,
0x3f0f0, 0x3f128,
0x3f130, 0x3f148,
0x3f160, 0x3f168,
0x3f170, 0x3f19c,
0x3f1f0, 0x3f238,
0x3f240, 0x3f240,
0x3f248, 0x3f250,
0x3f25c, 0x3f264,
0x3f270, 0x3f2b8,
0x3f2c0, 0x3f2e4,
0x3f2f8, 0x3f338,
0x3f340, 0x3f340,
0x3f348, 0x3f350,
0x3f35c, 0x3f364,
0x3f370, 0x3f3b8,
0x3f3c0, 0x3f3e4,
0x3f3f8, 0x3f428,
0x3f430, 0x3f448,
0x3f460, 0x3f468,
0x3f470, 0x3f49c,
0x3f4f0, 0x3f528,
0x3f530, 0x3f548,
0x3f560, 0x3f568,
0x3f570, 0x3f59c,
0x3f5f0, 0x3f638,
0x3f640, 0x3f640,
0x3f648, 0x3f650,
0x3f65c, 0x3f664,
0x3f670, 0x3f6b8,
0x3f6c0, 0x3f6e4,
0x3f6f8, 0x3f738,
0x3f740, 0x3f740,
0x3f748, 0x3f750,
0x3f75c, 0x3f764,
0x3f770, 0x3f7b8,
0x3f7c0, 0x3f7e4,
0x3f7f8, 0x3f7fc,
0x3f814, 0x3f814,
0x3f82c, 0x3f82c,
0x3f880, 0x3f88c,
0x3f8e8, 0x3f8ec,
0x3f900, 0x3f928,
0x3f930, 0x3f948,
0x3f960, 0x3f968,
0x3f970, 0x3f99c,
0x3f9f0, 0x3fa38,
0x3fa40, 0x3fa40,
0x3fa48, 0x3fa50,
0x3fa5c, 0x3fa64,
0x3fa70, 0x3fab8,
0x3fac0, 0x3fae4,
0x3faf8, 0x3fb10,
0x3fb28, 0x3fb28,
0x3fb3c, 0x3fb50,
0x3fbf0, 0x3fc10,
0x3fc28, 0x3fc28,
0x3fc3c, 0x3fc50,
0x3fcf0, 0x3fcfc,
0x40000, 0x4000c,
0x40040, 0x40050,
0x40060, 0x40068,
0x4007c, 0x4008c,
0x40094, 0x400b0,
0x400c0, 0x40144,
0x40180, 0x4018c,
0x40200, 0x40254,
0x40260, 0x40264,
0x40270, 0x40288,
0x40290, 0x40298,
0x402ac, 0x402c8,
0x402d0, 0x402e0,
0x402f0, 0x402f0,
0x40300, 0x4033c,
0x403f8, 0x403fc,
0x41304, 0x413c4,
0x41400, 0x4140c,
0x41414, 0x4141c,
0x41480, 0x414d0,
0x44000, 0x44054,
0x4405c, 0x44078,
0x440c0, 0x44174,
0x44180, 0x441ac,
0x441b4, 0x441b8,
0x441c0, 0x44254,
0x4425c, 0x44278,
0x442c0, 0x44374,
0x44380, 0x443ac,
0x443b4, 0x443b8,
0x443c0, 0x44454,
0x4445c, 0x44478,
0x444c0, 0x44574,
0x44580, 0x445ac,
0x445b4, 0x445b8,
0x445c0, 0x44654,
0x4465c, 0x44678,
0x446c0, 0x44774,
0x44780, 0x447ac,
0x447b4, 0x447b8,
0x447c0, 0x44854,
0x4485c, 0x44878,
0x448c0, 0x44974,
0x44980, 0x449ac,
0x449b4, 0x449b8,
0x449c0, 0x449fc,
0x45000, 0x45004,
0x45010, 0x45030,
0x45040, 0x45060,
0x45068, 0x45068,
0x45080, 0x45084,
0x450a0, 0x450b0,
0x45200, 0x45204,
0x45210, 0x45230,
0x45240, 0x45260,
0x45268, 0x45268,
0x45280, 0x45284,
0x452a0, 0x452b0,
0x460c0, 0x460e4,
0x47000, 0x4703c,
0x47044, 0x4708c,
0x47200, 0x47250,
0x47400, 0x47408,
0x47414, 0x47420,
0x47600, 0x47618,
0x47800, 0x47814,
0x48000, 0x4800c,
0x48040, 0x48050,
0x48060, 0x48068,
0x4807c, 0x4808c,
0x48094, 0x480b0,
0x480c0, 0x48144,
0x48180, 0x4818c,
0x48200, 0x48254,
0x48260, 0x48264,
0x48270, 0x48288,
0x48290, 0x48298,
0x482ac, 0x482c8,
0x482d0, 0x482e0,
0x482f0, 0x482f0,
0x48300, 0x4833c,
0x483f8, 0x483fc,
0x49304, 0x493c4,
0x49400, 0x4940c,
0x49414, 0x4941c,
0x49480, 0x494d0,
0x4c000, 0x4c054,
0x4c05c, 0x4c078,
0x4c0c0, 0x4c174,
0x4c180, 0x4c1ac,
0x4c1b4, 0x4c1b8,
0x4c1c0, 0x4c254,
0x4c25c, 0x4c278,
0x4c2c0, 0x4c374,
0x4c380, 0x4c3ac,
0x4c3b4, 0x4c3b8,
0x4c3c0, 0x4c454,
0x4c45c, 0x4c478,
0x4c4c0, 0x4c574,
0x4c580, 0x4c5ac,
0x4c5b4, 0x4c5b8,
0x4c5c0, 0x4c654,
0x4c65c, 0x4c678,
0x4c6c0, 0x4c774,
0x4c780, 0x4c7ac,
0x4c7b4, 0x4c7b8,
0x4c7c0, 0x4c854,
0x4c85c, 0x4c878,
0x4c8c0, 0x4c974,
0x4c980, 0x4c9ac,
0x4c9b4, 0x4c9b8,
0x4c9c0, 0x4c9fc,
0x4d000, 0x4d004,
0x4d010, 0x4d030,
0x4d040, 0x4d060,
0x4d068, 0x4d068,
0x4d080, 0x4d084,
0x4d0a0, 0x4d0b0,
0x4d200, 0x4d204,
0x4d210, 0x4d230,
0x4d240, 0x4d260,
0x4d268, 0x4d268,
0x4d280, 0x4d284,
0x4d2a0, 0x4d2b0,
0x4e0c0, 0x4e0e4,
0x4f000, 0x4f03c,
0x4f044, 0x4f08c,
0x4f200, 0x4f250,
0x4f400, 0x4f408,
0x4f414, 0x4f420,
0x4f600, 0x4f618,
0x4f800, 0x4f814,
0x50000, 0x50084,
0x50090, 0x500cc,
0x50400, 0x50400,
0x50800, 0x50884,
0x50890, 0x508cc,
0x50c00, 0x50c00,
0x51000, 0x5101c,
0x51300, 0x51308,
};
static const unsigned int t5vf_reg_ranges[] = {
VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
VF_MPS_REG(A_MPS_VF_CTL),
VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
FW_T4VF_MBDATA_BASE_ADDR,
FW_T4VF_MBDATA_BASE_ADDR +
((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
};
static const unsigned int t6_reg_ranges[] = {
0x1008, 0x101c,
0x1024, 0x10a8,
0x10b4, 0x10f8,
0x1100, 0x1114,
0x111c, 0x112c,
0x1138, 0x113c,
0x1144, 0x114c,
0x1180, 0x1184,
0x1190, 0x1194,
0x11a0, 0x11a4,
0x11b0, 0x11b4,
0x11fc, 0x1274,
0x1280, 0x133c,
0x1800, 0x18fc,
0x3000, 0x302c,
0x3060, 0x30b0,
0x30b8, 0x30d8,
0x30e0, 0x30fc,
0x3140, 0x357c,
0x35a8, 0x35cc,
0x35ec, 0x35ec,
0x3600, 0x5624,
0x56cc, 0x56ec,
0x56f4, 0x5720,
0x5728, 0x575c,
0x580c, 0x5814,
0x5890, 0x589c,
0x58a4, 0x58ac,
0x58b8, 0x58bc,
0x5940, 0x595c,
0x5980, 0x598c,
0x59b0, 0x59c8,
0x59d0, 0x59dc,
0x59fc, 0x5a18,
0x5a60, 0x5a6c,
0x5a80, 0x5a8c,
0x5a94, 0x5a9c,
0x5b94, 0x5bfc,
0x5c10, 0x5e48,
0x5e50, 0x5e94,
0x5ea0, 0x5eb0,
0x5ec0, 0x5ec0,
0x5ec8, 0x5ed0,
0x5ee0, 0x5ee0,
0x5ef0, 0x5ef0,
0x5f00, 0x5f00,
0x6000, 0x6020,
0x6028, 0x6040,
0x6058, 0x609c,
0x60a8, 0x619c,
0x7700, 0x7798,
0x77c0, 0x7880,
0x78cc, 0x78fc,
0x7b00, 0x7b58,
0x7b60, 0x7b84,
0x7b8c, 0x7c54,
0x7d00, 0x7d38,
0x7d40, 0x7d84,
0x7d8c, 0x7ddc,
0x7de4, 0x7e04,
0x7e10, 0x7e1c,
0x7e24, 0x7e38,
0x7e40, 0x7e44,
0x7e4c, 0x7e78,
0x7e80, 0x7edc,
0x7ee8, 0x7efc,
0x8dc0, 0x8de4,
0x8df8, 0x8e04,
0x8e10, 0x8e84,
0x8ea0, 0x8f88,
0x8fb8, 0x9058,
0x9060, 0x9060,
0x9068, 0x90f8,
0x9100, 0x9124,
0x9400, 0x9470,
0x9600, 0x9600,
0x9608, 0x9638,
0x9640, 0x9704,
0x9710, 0x971c,
0x9800, 0x9808,
0x9820, 0x983c,
0x9850, 0x9864,
0x9c00, 0x9c6c,
0x9c80, 0x9cec,
0x9d00, 0x9d6c,
0x9d80, 0x9dec,
0x9e00, 0x9e6c,
0x9e80, 0x9eec,
0x9f00, 0x9f6c,
0x9f80, 0xa020,
0xd004, 0xd03c,
0xd100, 0xd118,
0xd200, 0xd214,
0xd220, 0xd234,
0xd240, 0xd254,
0xd260, 0xd274,
0xd280, 0xd294,
0xd2a0, 0xd2b4,
0xd2c0, 0xd2d4,
0xd2e0, 0xd2f4,
0xd300, 0xd31c,
0xdfc0, 0xdfe0,
0xe000, 0xf008,
0xf010, 0xf018,
0xf020, 0xf028,
0x11000, 0x11014,
0x11048, 0x1106c,
0x11074, 0x11088,
0x11098, 0x11120,
0x1112c, 0x1117c,
0x11190, 0x112e0,
0x11300, 0x1130c,
0x12000, 0x1206c,
0x19040, 0x1906c,
0x19078, 0x19080,
0x1908c, 0x190e8,
0x190f0, 0x190f8,
0x19100, 0x19110,
0x19120, 0x19124,
0x19150, 0x19194,
0x1919c, 0x191b0,
0x191d0, 0x191e8,
0x19238, 0x19290,
0x192a4, 0x192b0,
0x192bc, 0x192bc,
0x19348, 0x1934c,
0x193f8, 0x19418,
0x19420, 0x19428,
0x19430, 0x19444,
0x1944c, 0x1946c,
0x19474, 0x19474,
0x19490, 0x194cc,
0x194f0, 0x194f8,
0x19c00, 0x19c48,
0x19c50, 0x19c80,
0x19c94, 0x19c98,
0x19ca0, 0x19cbc,
0x19ce4, 0x19ce4,
0x19cf0, 0x19cf8,
0x19d00, 0x19d28,
0x19d50, 0x19d78,
0x19d94, 0x19d98,
0x19da0, 0x19dc8,
0x19df0, 0x19e10,
0x19e50, 0x19e6c,
0x19ea0, 0x19ebc,
0x19ec4, 0x19ef4,
0x19f04, 0x19f2c,
0x19f34, 0x19f34,
0x19f40, 0x19f50,
0x19f90, 0x19fac,
0x19fc4, 0x19fc8,
0x19fd0, 0x19fe4,
0x1a000, 0x1a004,
0x1a010, 0x1a06c,
0x1a0b0, 0x1a0e4,
0x1a0ec, 0x1a0f8,
0x1a100, 0x1a108,
0x1a114, 0x1a120,
0x1a128, 0x1a130,
0x1a138, 0x1a138,
0x1a190, 0x1a1c4,
0x1a1fc, 0x1a1fc,
0x1e008, 0x1e00c,
0x1e040, 0x1e044,
0x1e04c, 0x1e04c,
0x1e284, 0x1e290,
0x1e2c0, 0x1e2c0,
0x1e2e0, 0x1e2e0,
0x1e300, 0x1e384,
0x1e3c0, 0x1e3c8,
0x1e408, 0x1e40c,
0x1e440, 0x1e444,
0x1e44c, 0x1e44c,
0x1e684, 0x1e690,
0x1e6c0, 0x1e6c0,
0x1e6e0, 0x1e6e0,
0x1e700, 0x1e784,
0x1e7c0, 0x1e7c8,
0x1e808, 0x1e80c,
0x1e840, 0x1e844,
0x1e84c, 0x1e84c,
0x1ea84, 0x1ea90,
0x1eac0, 0x1eac0,
0x1eae0, 0x1eae0,
0x1eb00, 0x1eb84,
0x1ebc0, 0x1ebc8,
0x1ec08, 0x1ec0c,
0x1ec40, 0x1ec44,
0x1ec4c, 0x1ec4c,
0x1ee84, 0x1ee90,
0x1eec0, 0x1eec0,
0x1eee0, 0x1eee0,
0x1ef00, 0x1ef84,
0x1efc0, 0x1efc8,
0x1f008, 0x1f00c,
0x1f040, 0x1f044,
0x1f04c, 0x1f04c,
0x1f284, 0x1f290,
0x1f2c0, 0x1f2c0,
0x1f2e0, 0x1f2e0,
0x1f300, 0x1f384,
0x1f3c0, 0x1f3c8,
0x1f408, 0x1f40c,
0x1f440, 0x1f444,
0x1f44c, 0x1f44c,
0x1f684, 0x1f690,
0x1f6c0, 0x1f6c0,
0x1f6e0, 0x1f6e0,
0x1f700, 0x1f784,
0x1f7c0, 0x1f7c8,
0x1f808, 0x1f80c,
0x1f840, 0x1f844,
0x1f84c, 0x1f84c,
0x1fa84, 0x1fa90,
0x1fac0, 0x1fac0,
0x1fae0, 0x1fae0,
0x1fb00, 0x1fb84,
0x1fbc0, 0x1fbc8,
0x1fc08, 0x1fc0c,
0x1fc40, 0x1fc44,
0x1fc4c, 0x1fc4c,
0x1fe84, 0x1fe90,
0x1fec0, 0x1fec0,
0x1fee0, 0x1fee0,
0x1ff00, 0x1ff84,
0x1ffc0, 0x1ffc8,
0x30000, 0x30030,
0x30100, 0x30168,
0x30190, 0x301a0,
0x301a8, 0x301b8,
0x301c4, 0x301c8,
0x301d0, 0x301d0,
0x30200, 0x30320,
0x30400, 0x304b4,
0x304c0, 0x3052c,
0x30540, 0x3061c,
0x30800, 0x308a0,
0x308c0, 0x30908,
0x30910, 0x309b8,
0x30a00, 0x30a04,
0x30a0c, 0x30a14,
0x30a1c, 0x30a2c,
0x30a44, 0x30a50,
0x30a74, 0x30a74,
0x30a7c, 0x30afc,
0x30b08, 0x30c24,
0x30d00, 0x30d14,
0x30d1c, 0x30d3c,
0x30d44, 0x30d4c,
0x30d54, 0x30d74,
0x30d7c, 0x30d7c,
0x30de0, 0x30de0,
0x30e00, 0x30ed4,
0x30f00, 0x30fa4,
0x30fc0, 0x30fc4,
0x31000, 0x31004,
0x31080, 0x310fc,
0x31208, 0x31220,
0x3123c, 0x31254,
0x31300, 0x31300,
0x31308, 0x3131c,
0x31338, 0x3133c,
0x31380, 0x31380,
0x31388, 0x313a8,
0x313b4, 0x313b4,
0x31400, 0x31420,
0x31438, 0x3143c,
0x31480, 0x31480,
0x314a8, 0x314a8,
0x314b0, 0x314b4,
0x314c8, 0x314d4,
0x31a40, 0x31a4c,
0x31af0, 0x31b20,
0x31b38, 0x31b3c,
0x31b80, 0x31b80,
0x31ba8, 0x31ba8,
0x31bb0, 0x31bb4,
0x31bc8, 0x31bd4,
0x32140, 0x3218c,
0x321f0, 0x321f4,
0x32200, 0x32200,
0x32218, 0x32218,
0x32400, 0x32400,
0x32408, 0x3241c,
0x32618, 0x32620,
0x32664, 0x32664,
0x326a8, 0x326a8,
0x326ec, 0x326ec,
0x32a00, 0x32abc,
0x32b00, 0x32b18,
0x32b20, 0x32b38,
0x32b40, 0x32b58,
0x32b60, 0x32b78,
0x32c00, 0x32c00,
0x32c08, 0x32c3c,
0x33000, 0x3302c,
0x33034, 0x33050,
0x33058, 0x33058,
0x33060, 0x3308c,
0x3309c, 0x330ac,
0x330c0, 0x330c0,
0x330c8, 0x330d0,
0x330d8, 0x330e0,
0x330ec, 0x3312c,
0x33134, 0x33150,
0x33158, 0x33158,
0x33160, 0x3318c,
0x3319c, 0x331ac,
0x331c0, 0x331c0,
0x331c8, 0x331d0,
0x331d8, 0x331e0,
0x331ec, 0x33290,
0x33298, 0x332c4,
0x332e4, 0x33390,
0x33398, 0x333c4,
0x333e4, 0x3342c,
0x33434, 0x33450,
0x33458, 0x33458,
0x33460, 0x3348c,
0x3349c, 0x334ac,
0x334c0, 0x334c0,
0x334c8, 0x334d0,
0x334d8, 0x334e0,
0x334ec, 0x3352c,
0x33534, 0x33550,
0x33558, 0x33558,
0x33560, 0x3358c,
0x3359c, 0x335ac,
0x335c0, 0x335c0,
0x335c8, 0x335d0,
0x335d8, 0x335e0,
0x335ec, 0x33690,
0x33698, 0x336c4,
0x336e4, 0x33790,
0x33798, 0x337c4,
0x337e4, 0x337fc,
0x33814, 0x33814,
0x33854, 0x33868,
0x33880, 0x3388c,
0x338c0, 0x338d0,
0x338e8, 0x338ec,
0x33900, 0x3392c,
0x33934, 0x33950,
0x33958, 0x33958,
0x33960, 0x3398c,
0x3399c, 0x339ac,
0x339c0, 0x339c0,
0x339c8, 0x339d0,
0x339d8, 0x339e0,
0x339ec, 0x33a90,
0x33a98, 0x33ac4,
0x33ae4, 0x33b10,
0x33b24, 0x33b28,
0x33b38, 0x33b50,
0x33bf0, 0x33c10,
0x33c24, 0x33c28,
0x33c38, 0x33c50,
0x33cf0, 0x33cfc,
0x34000, 0x34030,
0x34100, 0x34168,
0x34190, 0x341a0,
0x341a8, 0x341b8,
0x341c4, 0x341c8,
0x341d0, 0x341d0,
0x34200, 0x34320,
0x34400, 0x344b4,
0x344c0, 0x3452c,
0x34540, 0x3461c,
0x34800, 0x348a0,
0x348c0, 0x34908,
0x34910, 0x349b8,
0x34a00, 0x34a04,
0x34a0c, 0x34a14,
0x34a1c, 0x34a2c,
0x34a44, 0x34a50,
0x34a74, 0x34a74,
0x34a7c, 0x34afc,
0x34b08, 0x34c24,
0x34d00, 0x34d14,
0x34d1c, 0x34d3c,
0x34d44, 0x34d4c,
0x34d54, 0x34d74,
0x34d7c, 0x34d7c,
0x34de0, 0x34de0,
0x34e00, 0x34ed4,
0x34f00, 0x34fa4,
0x34fc0, 0x34fc4,
0x35000, 0x35004,
0x35080, 0x350fc,
0x35208, 0x35220,
0x3523c, 0x35254,
0x35300, 0x35300,
0x35308, 0x3531c,
0x35338, 0x3533c,
0x35380, 0x35380,
0x35388, 0x353a8,
0x353b4, 0x353b4,
0x35400, 0x35420,
0x35438, 0x3543c,
0x35480, 0x35480,
0x354a8, 0x354a8,
0x354b0, 0x354b4,
0x354c8, 0x354d4,
0x35a40, 0x35a4c,
0x35af0, 0x35b20,
0x35b38, 0x35b3c,
0x35b80, 0x35b80,
0x35ba8, 0x35ba8,
0x35bb0, 0x35bb4,
0x35bc8, 0x35bd4,
0x36140, 0x3618c,
0x361f0, 0x361f4,
0x36200, 0x36200,
0x36218, 0x36218,
0x36400, 0x36400,
0x36408, 0x3641c,
0x36618, 0x36620,
0x36664, 0x36664,
0x366a8, 0x366a8,
0x366ec, 0x366ec,
0x36a00, 0x36abc,
0x36b00, 0x36b18,
0x36b20, 0x36b38,
0x36b40, 0x36b58,
0x36b60, 0x36b78,
0x36c00, 0x36c00,
0x36c08, 0x36c3c,
0x37000, 0x3702c,
0x37034, 0x37050,
0x37058, 0x37058,
0x37060, 0x3708c,
0x3709c, 0x370ac,
0x370c0, 0x370c0,
0x370c8, 0x370d0,
0x370d8, 0x370e0,
0x370ec, 0x3712c,
0x37134, 0x37150,
0x37158, 0x37158,
0x37160, 0x3718c,
0x3719c, 0x371ac,
0x371c0, 0x371c0,
0x371c8, 0x371d0,
0x371d8, 0x371e0,
0x371ec, 0x37290,
0x37298, 0x372c4,
0x372e4, 0x37390,
0x37398, 0x373c4,
0x373e4, 0x3742c,
0x37434, 0x37450,
0x37458, 0x37458,
0x37460, 0x3748c,
0x3749c, 0x374ac,
0x374c0, 0x374c0,
0x374c8, 0x374d0,
0x374d8, 0x374e0,
0x374ec, 0x3752c,
0x37534, 0x37550,
0x37558, 0x37558,
0x37560, 0x3758c,
0x3759c, 0x375ac,
0x375c0, 0x375c0,
0x375c8, 0x375d0,
0x375d8, 0x375e0,
0x375ec, 0x37690,
0x37698, 0x376c4,
0x376e4, 0x37790,
0x37798, 0x377c4,
0x377e4, 0x377fc,
0x37814, 0x37814,
0x37854, 0x37868,
0x37880, 0x3788c,
0x378c0, 0x378d0,
0x378e8, 0x378ec,
0x37900, 0x3792c,
0x37934, 0x37950,
0x37958, 0x37958,
0x37960, 0x3798c,
0x3799c, 0x379ac,
0x379c0, 0x379c0,
0x379c8, 0x379d0,
0x379d8, 0x379e0,
0x379ec, 0x37a90,
0x37a98, 0x37ac4,
0x37ae4, 0x37b10,
0x37b24, 0x37b28,
0x37b38, 0x37b50,
0x37bf0, 0x37c10,
0x37c24, 0x37c28,
0x37c38, 0x37c50,
0x37cf0, 0x37cfc,
0x40040, 0x40040,
0x40080, 0x40084,
0x40100, 0x40100,
0x40140, 0x401bc,
0x40200, 0x40214,
0x40228, 0x40228,
0x40240, 0x40258,
0x40280, 0x40280,
0x40304, 0x40304,
0x40330, 0x4033c,
0x41304, 0x413c8,
0x413d0, 0x413dc,
0x413f0, 0x413f0,
0x41400, 0x4140c,
0x41414, 0x4141c,
0x41480, 0x414d0,
0x44000, 0x4407c,
0x440c0, 0x441ac,
0x441b4, 0x4427c,
0x442c0, 0x443ac,
0x443b4, 0x4447c,
0x444c0, 0x445ac,
0x445b4, 0x4467c,
0x446c0, 0x447ac,
0x447b4, 0x4487c,
0x448c0, 0x449ac,
0x449b4, 0x44a7c,
0x44ac0, 0x44bac,
0x44bb4, 0x44c7c,
0x44cc0, 0x44dac,
0x44db4, 0x44e7c,
0x44ec0, 0x44fac,
0x44fb4, 0x4507c,
0x450c0, 0x451ac,
0x451b4, 0x451fc,
0x45800, 0x45804,
0x45810, 0x45830,
0x45840, 0x45860,
0x45868, 0x45868,
0x45880, 0x45884,
0x458a0, 0x458b0,
0x45a00, 0x45a04,
0x45a10, 0x45a30,
0x45a40, 0x45a60,
0x45a68, 0x45a68,
0x45a80, 0x45a84,
0x45aa0, 0x45ab0,
0x460c0, 0x460e4,
0x47000, 0x4703c,
0x47044, 0x4708c,
0x47200, 0x47250,
0x47400, 0x47408,
0x47414, 0x47420,
0x47600, 0x47618,
0x47800, 0x47814,
0x47820, 0x4782c,
0x50000, 0x50084,
0x50090, 0x500cc,
0x50300, 0x50384,
0x50400, 0x50400,
0x50800, 0x50884,
0x50890, 0x508cc,
0x50b00, 0x50b84,
0x50c00, 0x50c00,
0x51000, 0x51020,
0x51028, 0x510b0,
0x51300, 0x51324,
};
static const unsigned int t6vf_reg_ranges[] = {
VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
VF_MPS_REG(A_MPS_VF_CTL),
VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
FW_T6VF_MBDATA_BASE_ADDR,
FW_T6VF_MBDATA_BASE_ADDR +
((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
};
u32 *buf_end = (u32 *)(buf + buf_size);
const unsigned int *reg_ranges;
int reg_ranges_size, range;
unsigned int chip_version = chip_id(adap);
/*
* Select the right set of register ranges to dump depending on the
* adapter chip type.
*/
switch (chip_version) {
case CHELSIO_T4:
if (adap->flags & IS_VF) {
reg_ranges = t4vf_reg_ranges;
reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
} else {
reg_ranges = t4_reg_ranges;
reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
}
break;
case CHELSIO_T5:
if (adap->flags & IS_VF) {
reg_ranges = t5vf_reg_ranges;
reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
} else {
reg_ranges = t5_reg_ranges;
reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
}
break;
case CHELSIO_T6:
if (adap->flags & IS_VF) {
reg_ranges = t6vf_reg_ranges;
reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
} else {
reg_ranges = t6_reg_ranges;
reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
}
break;
default:
CH_ERR(adap,
"Unsupported chip version %d\n", chip_version);
return;
}
/*
* Clear the register buffer and insert the appropriate register
* values selected by the above register ranges.
*/
memset(buf, 0, buf_size);
for (range = 0; range < reg_ranges_size; range += 2) {
unsigned int reg = reg_ranges[range];
unsigned int last_reg = reg_ranges[range + 1];
u32 *bufp = (u32 *)(buf + reg);
/*
* Iterate across the register range filling in the register
* buffer but don't write past the end of the register buffer.
*/
while (reg <= last_reg && bufp < buf_end) {
*bufp++ = t4_read_reg(adap, reg);
reg += sizeof(u32);
}
}
}
/*
* Partial EEPROM Vital Product Data structure. The VPD starts with one ID
* header followed by one or more VPD-R sections, each with its own header.
*/
struct t4_vpd_hdr {
u8 id_tag;
u8 id_len[2];
u8 id_data[ID_LEN];
};
struct t4_vpdr_hdr {
u8 vpdr_tag;
u8 vpdr_len[2];
};
/*
* EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
*/
#define EEPROM_DELAY 10 /* 10us per poll spin */
#define EEPROM_MAX_POLL 5000 /* x 5000 == 50ms */
#define EEPROM_STAT_ADDR 0x7bfc
#define VPD_SIZE 0x800
#define VPD_BASE 0x400
#define VPD_BASE_OLD 0
#define VPD_LEN 1024
#define VPD_INFO_FLD_HDR_SIZE 3
#define CHELSIO_VPD_UNIQUE_ID 0x82
/*
* Small utility function to wait till any outstanding VPD Access is complete.
* We have a per-adapter state variable "VPD Busy" to indicate when we have a
* VPD Access in flight. This allows us to handle the problem of having a
* previous VPD Access time out and prevent an attempt to inject a new VPD
* Request before any in-flight VPD reguest has completed.
*/
static int t4_seeprom_wait(struct adapter *adapter)
{
unsigned int base = adapter->params.pci.vpd_cap_addr;
int max_poll;
/*
* If no VPD Access is in flight, we can just return success right
* away.
*/
if (!adapter->vpd_busy)
return 0;
/*
* Poll the VPD Capability Address/Flag register waiting for it
* to indicate that the operation is complete.
*/
max_poll = EEPROM_MAX_POLL;
do {
u16 val;
udelay(EEPROM_DELAY);
t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
/*
* If the operation is complete, mark the VPD as no longer
* busy and return success.
*/
if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
adapter->vpd_busy = 0;
return 0;
}
} while (--max_poll);
/*
* Failure! Note that we leave the VPD Busy status set in order to
* avoid pushing a new VPD Access request into the VPD Capability till
* the current operation eventually succeeds. It's a bug to issue a
* new request when an existing request is in flight and will result
* in corrupt hardware state.
*/
return -ETIMEDOUT;
}
/**
* t4_seeprom_read - read a serial EEPROM location
* @adapter: adapter to read
* @addr: EEPROM virtual address
* @data: where to store the read data
*
* Read a 32-bit word from a location in serial EEPROM using the card's PCI
* VPD capability. Note that this function must be called with a virtual
* address.
*/
int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
{
unsigned int base = adapter->params.pci.vpd_cap_addr;
int ret;
/*
* VPD Accesses must alway be 4-byte aligned!
*/
if (addr >= EEPROMVSIZE || (addr & 3))
return -EINVAL;
/*
* Wait for any previous operation which may still be in flight to
* complete.
*/
ret = t4_seeprom_wait(adapter);
if (ret) {
CH_ERR(adapter, "VPD still busy from previous operation\n");
return ret;
}
/*
* Issue our new VPD Read request, mark the VPD as being busy and wait
* for our request to complete. If it doesn't complete, note the
* error and return it to our caller. Note that we do not reset the
* VPD Busy status!
*/
t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
adapter->vpd_busy = 1;
adapter->vpd_flag = PCI_VPD_ADDR_F;
ret = t4_seeprom_wait(adapter);
if (ret) {
CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
return ret;
}
/*
* Grab the returned data, swizzle it into our endianness and
* return success.
*/
t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
*data = le32_to_cpu(*data);
return 0;
}
/**
* t4_seeprom_write - write a serial EEPROM location
* @adapter: adapter to write
* @addr: virtual EEPROM address
* @data: value to write
*
* Write a 32-bit word to a location in serial EEPROM using the card's PCI
* VPD capability. Note that this function must be called with a virtual
* address.
*/
int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
{
unsigned int base = adapter->params.pci.vpd_cap_addr;
int ret;
u32 stats_reg;
int max_poll;
/*
* VPD Accesses must alway be 4-byte aligned!
*/
if (addr >= EEPROMVSIZE || (addr & 3))
return -EINVAL;
/*
* Wait for any previous operation which may still be in flight to
* complete.
*/
ret = t4_seeprom_wait(adapter);
if (ret) {
CH_ERR(adapter, "VPD still busy from previous operation\n");
return ret;
}
/*
* Issue our new VPD Read request, mark the VPD as being busy and wait
* for our request to complete. If it doesn't complete, note the
* error and return it to our caller. Note that we do not reset the
* VPD Busy status!
*/
t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
cpu_to_le32(data));
t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
(u16)addr | PCI_VPD_ADDR_F);
adapter->vpd_busy = 1;
adapter->vpd_flag = 0;
ret = t4_seeprom_wait(adapter);
if (ret) {
CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
return ret;
}
/*
* Reset PCI_VPD_DATA register after a transaction and wait for our
* request to complete. If it doesn't complete, return error.
*/
t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
max_poll = EEPROM_MAX_POLL;
do {
udelay(EEPROM_DELAY);
t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
} while ((stats_reg & 0x1) && --max_poll);
if (!max_poll)
return -ETIMEDOUT;
/* Return success! */
return 0;
}
/**
* t4_eeprom_ptov - translate a physical EEPROM address to virtual
* @phys_addr: the physical EEPROM address
* @fn: the PCI function number
* @sz: size of function-specific area
*
* Translate a physical EEPROM address to virtual. The first 1K is
* accessed through virtual addresses starting at 31K, the rest is
* accessed through virtual addresses starting at 0.
*
* The mapping is as follows:
* [0..1K) -> [31K..32K)
* [1K..1K+A) -> [ES-A..ES)
* [1K+A..ES) -> [0..ES-A-1K)
*
* where A = @fn * @sz, and ES = EEPROM size.
*/
int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
{
fn *= sz;
if (phys_addr < 1024)
return phys_addr + (31 << 10);
if (phys_addr < 1024 + fn)
return EEPROMSIZE - fn + phys_addr - 1024;
if (phys_addr < EEPROMSIZE)
return phys_addr - 1024 - fn;
return -EINVAL;
}
/**
* t4_seeprom_wp - enable/disable EEPROM write protection
* @adapter: the adapter
* @enable: whether to enable or disable write protection
*
* Enables or disables write protection on the serial EEPROM.
*/
int t4_seeprom_wp(struct adapter *adapter, int enable)
{
return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
}
/**
* get_vpd_keyword_val - Locates an information field keyword in the VPD
* @vpd: Pointer to buffered vpd data structure
* @kw: The keyword to search for
* @region: VPD region to search (starting from 0)
*
* Returns the value of the information field keyword or
* -ENOENT otherwise.
*/
static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
{
int i, tag;
unsigned int offset, len;
const struct t4_vpdr_hdr *vpdr;
offset = sizeof(struct t4_vpd_hdr);
vpdr = (const void *)(vpd + offset);
tag = vpdr->vpdr_tag;
len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
while (region--) {
offset += sizeof(struct t4_vpdr_hdr) + len;
vpdr = (const void *)(vpd + offset);
if (++tag != vpdr->vpdr_tag)
return -ENOENT;
len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
}
offset += sizeof(struct t4_vpdr_hdr);
if (offset + len > VPD_LEN) {
return -ENOENT;
}
for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
if (memcmp(vpd + i , kw , 2) == 0){
i += VPD_INFO_FLD_HDR_SIZE;
return i;
}
i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
}
return -ENOENT;
}
/**
* get_vpd_params - read VPD parameters from VPD EEPROM
* @adapter: adapter to read
* @p: where to store the parameters
* @vpd: caller provided temporary space to read the VPD into
*
* Reads card parameters stored in VPD EEPROM.
*/
static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
uint16_t device_id, u32 *buf)
{
int i, ret, addr;
int ec, sn, pn, na, md;
u8 csum;
const u8 *vpd = (const u8 *)buf;
/*
* Card information normally starts at VPD_BASE but early cards had
* it at 0.
*/
ret = t4_seeprom_read(adapter, VPD_BASE, buf);
if (ret)
return (ret);
/*
* The VPD shall have a unique identifier specified by the PCI SIG.
* For chelsio adapters, the identifier is 0x82. The first byte of a VPD
* shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
* is expected to automatically put this entry at the
* beginning of the VPD.
*/
addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
for (i = 0; i < VPD_LEN; i += 4) {
ret = t4_seeprom_read(adapter, addr + i, buf++);
if (ret)
return ret;
}
#define FIND_VPD_KW(var,name) do { \
var = get_vpd_keyword_val(vpd, name, 0); \
if (var < 0) { \
CH_ERR(adapter, "missing VPD keyword " name "\n"); \
return -EINVAL; \
} \
} while (0)
FIND_VPD_KW(i, "RV");
for (csum = 0; i >= 0; i--)
csum += vpd[i];
if (csum) {
CH_ERR(adapter,
"corrupted VPD EEPROM, actual csum %u\n", csum);
return -EINVAL;
}
FIND_VPD_KW(ec, "EC");
FIND_VPD_KW(sn, "SN");
FIND_VPD_KW(pn, "PN");
FIND_VPD_KW(na, "NA");
#undef FIND_VPD_KW
memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
strstrip(p->id);
memcpy(p->ec, vpd + ec, EC_LEN);
strstrip(p->ec);
i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
strstrip(p->sn);
i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
memcpy(p->pn, vpd + pn, min(i, PN_LEN));
strstrip((char *)p->pn);
i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
strstrip((char *)p->na);
if (device_id & 0x80)
return 0; /* Custom card */
md = get_vpd_keyword_val(vpd, "VF", 1);
if (md < 0) {
snprintf(p->md, sizeof(p->md), "unknown");
} else {
i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
memcpy(p->md, vpd + md, min(i, MD_LEN));
strstrip((char *)p->md);
}
return 0;
}
/* serial flash and firmware constants and flash config file constants */
enum {
SF_ATTEMPTS = 10, /* max retries for SF operations */
/* flash command opcodes */
SF_PROG_PAGE = 2, /* program 256B page */
SF_WR_DISABLE = 4, /* disable writes */
SF_RD_STATUS = 5, /* read status register */
SF_WR_ENABLE = 6, /* enable writes */
SF_RD_DATA_FAST = 0xb, /* read flash */
SF_RD_ID = 0x9f, /* read ID */
SF_ERASE_SECTOR = 0xd8, /* erase 64KB sector */
};
/**
* sf1_read - read data from the serial flash
* @adapter: the adapter
* @byte_cnt: number of bytes to read
* @cont: whether another operation will be chained
* @lock: whether to lock SF for PL access only
* @valp: where to store the read data
*
* Reads up to 4 bytes of data from the serial flash. The location of
* the read needs to be specified prior to calling this by issuing the
* appropriate commands to the serial flash.
*/
static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
int lock, u32 *valp)
{
int ret;
if (!byte_cnt || byte_cnt > 4)
return -EINVAL;
if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
return -EBUSY;
t4_write_reg(adapter, A_SF_OP,
V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
if (!ret)
*valp = t4_read_reg(adapter, A_SF_DATA);
return ret;
}
/**
* sf1_write - write data to the serial flash
* @adapter: the adapter
* @byte_cnt: number of bytes to write
* @cont: whether another operation will be chained
* @lock: whether to lock SF for PL access only
* @val: value to write
*
* Writes up to 4 bytes of data to the serial flash. The location of
* the write needs to be specified prior to calling this by issuing the
* appropriate commands to the serial flash.
*/
static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
int lock, u32 val)
{
if (!byte_cnt || byte_cnt > 4)
return -EINVAL;
if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
return -EBUSY;
t4_write_reg(adapter, A_SF_DATA, val);
t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
}
/**
* flash_wait_op - wait for a flash operation to complete
* @adapter: the adapter
* @attempts: max number of polls of the status register
* @delay: delay between polls in ms
*
* Wait for a flash operation to complete by polling the status register.
*/
static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
{
int ret;
u32 status;
while (1) {
if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
(ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
return ret;
if (!(status & 1))
return 0;
if (--attempts == 0)
return -EAGAIN;
if (delay)
msleep(delay);
}
}
/**
* t4_read_flash - read words from serial flash
* @adapter: the adapter
* @addr: the start address for the read
* @nwords: how many 32-bit words to read
* @data: where to store the read data
* @byte_oriented: whether to store data as bytes or as words
*
* Read the specified number of 32-bit words from the serial flash.
* If @byte_oriented is set the read data is stored as a byte array
* (i.e., big-endian), otherwise as 32-bit words in the platform's
* natural endianness.
*/
int t4_read_flash(struct adapter *adapter, unsigned int addr,
unsigned int nwords, u32 *data, int byte_oriented)
{
int ret;
if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
return -EINVAL;
addr = swab32(addr) | SF_RD_DATA_FAST;
if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
(ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
return ret;
for ( ; nwords; nwords--, data++) {
ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
if (nwords == 1)
t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */
if (ret)
return ret;
if (byte_oriented)
*data = (__force __u32)(cpu_to_be32(*data));
}
return 0;
}
/**
* t4_write_flash - write up to a page of data to the serial flash
* @adapter: the adapter
* @addr: the start address to write
* @n: length of data to write in bytes
* @data: the data to write
* @byte_oriented: whether to store data as bytes or as words
*
* Writes up to a page of data (256 bytes) to the serial flash starting
* at the given address. All the data must be written to the same page.
* If @byte_oriented is set the write data is stored as byte stream
* (i.e. matches what on disk), otherwise in big-endian.
*/
int t4_write_flash(struct adapter *adapter, unsigned int addr,
unsigned int n, const u8 *data, int byte_oriented)
{
int ret;
u32 buf[SF_PAGE_SIZE / 4];
unsigned int i, c, left, val, offset = addr & 0xff;
if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
return -EINVAL;
val = swab32(addr) | SF_PROG_PAGE;
if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
(ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
goto unlock;
for (left = n; left; left -= c) {
c = min(left, 4U);
for (val = 0, i = 0; i < c; ++i)
val = (val << 8) + *data++;
if (!byte_oriented)
val = cpu_to_be32(val);
ret = sf1_write(adapter, c, c != left, 1, val);
if (ret)
goto unlock;
}
ret = flash_wait_op(adapter, 8, 1);
if (ret)
goto unlock;
t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */
/* Read the page to verify the write succeeded */
ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
byte_oriented);
if (ret)
return ret;
if (memcmp(data - n, (u8 *)buf + offset, n)) {
CH_ERR(adapter,
"failed to correctly write the flash page at %#x\n",
addr);
return -EIO;
}
return 0;
unlock:
t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */
return ret;
}
/**
* t4_get_fw_version - read the firmware version
* @adapter: the adapter
* @vers: where to place the version
*
* Reads the FW version from flash.
*/
int t4_get_fw_version(struct adapter *adapter, u32 *vers)
{
return t4_read_flash(adapter, FLASH_FW_START +
offsetof(struct fw_hdr, fw_ver), 1,
vers, 0);
}
/**
* t4_get_fw_hdr - read the firmware header
* @adapter: the adapter
* @hdr: where to place the version
*
* Reads the FW header from flash into caller provided buffer.
*/
int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
{
return t4_read_flash(adapter, FLASH_FW_START,
sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
}
/**
* t4_get_bs_version - read the firmware bootstrap version
* @adapter: the adapter
* @vers: where to place the version
*
* Reads the FW Bootstrap version from flash.
*/
int t4_get_bs_version(struct adapter *adapter, u32 *vers)
{
return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
offsetof(struct fw_hdr, fw_ver), 1,
vers, 0);
}
/**
* t4_get_tp_version - read the TP microcode version
* @adapter: the adapter
* @vers: where to place the version
*
* Reads the TP microcode version from flash.
*/
int t4_get_tp_version(struct adapter *adapter, u32 *vers)
{
return t4_read_flash(adapter, FLASH_FW_START +
offsetof(struct fw_hdr, tp_microcode_ver),
1, vers, 0);
}
/**
* t4_get_exprom_version - return the Expansion ROM version (if any)
* @adapter: the adapter
* @vers: where to place the version
*
* Reads the Expansion ROM header from FLASH and returns the version
* number (if present) through the @vers return value pointer. We return
* this in the Firmware Version Format since it's convenient. Return
* 0 on success, -ENOENT if no Expansion ROM is present.
*/
int t4_get_exprom_version(struct adapter *adap, u32 *vers)
{
struct exprom_header {
unsigned char hdr_arr[16]; /* must start with 0x55aa */
unsigned char hdr_ver[4]; /* Expansion ROM version */
} *hdr;
u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
sizeof(u32))];
int ret;
ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
0);
if (ret)
return ret;
hdr = (struct exprom_header *)exprom_header_buf;
if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
return -ENOENT;
*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
return 0;
}
/**
* t4_get_scfg_version - return the Serial Configuration version
* @adapter: the adapter
* @vers: where to place the version
*
* Reads the Serial Configuration Version via the Firmware interface
* (thus this can only be called once we're ready to issue Firmware
* commands). The format of the Serial Configuration version is
* adapter specific. Returns 0 on success, an error on failure.
*
* Note that early versions of the Firmware didn't include the ability
* to retrieve the Serial Configuration version, so we zero-out the
* return-value parameter in that case to avoid leaving it with
* garbage in it.
*
* Also note that the Firmware will return its cached copy of the Serial
* Initialization Revision ID, not the actual Revision ID as written in
* the Serial EEPROM. This is only an issue if a new VPD has been written
* and the Firmware/Chip haven't yet gone through a RESET sequence. So
* it's best to defer calling this routine till after a FW_RESET_CMD has
* been issued if the Host Driver will be performing a full adapter
* initialization.
*/
int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
{
u32 scfgrev_param;
int ret;
scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
1, &scfgrev_param, vers);
if (ret)
*vers = 0;
return ret;
}
/**
* t4_get_vpd_version - return the VPD version
* @adapter: the adapter
* @vers: where to place the version
*
* Reads the VPD via the Firmware interface (thus this can only be called
* once we're ready to issue Firmware commands). The format of the
* VPD version is adapter specific. Returns 0 on success, an error on
* failure.
*
* Note that early versions of the Firmware didn't include the ability
* to retrieve the VPD version, so we zero-out the return-value parameter
* in that case to avoid leaving it with garbage in it.
*
* Also note that the Firmware will return its cached copy of the VPD
* Revision ID, not the actual Revision ID as written in the Serial
* EEPROM. This is only an issue if a new VPD has been written and the
* Firmware/Chip haven't yet gone through a RESET sequence. So it's best
* to defer calling this routine till after a FW_RESET_CMD has been issued
* if the Host Driver will be performing a full adapter initialization.
*/
int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
{
u32 vpdrev_param;
int ret;
vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
1, &vpdrev_param, vers);
if (ret)
*vers = 0;
return ret;
}
/**
* t4_get_version_info - extract various chip/firmware version information
* @adapter: the adapter
*
* Reads various chip/firmware version numbers and stores them into the
* adapter Adapter Parameters structure. If any of the efforts fails
* the first failure will be returned, but all of the version numbers
* will be read.
*/
int t4_get_version_info(struct adapter *adapter)
{
int ret = 0;
#define FIRST_RET(__getvinfo) \
do { \
int __ret = __getvinfo; \
if (__ret && !ret) \
ret = __ret; \
} while (0)
FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
#undef FIRST_RET
return ret;
}
/**
* t4_flash_erase_sectors - erase a range of flash sectors
* @adapter: the adapter
* @start: the first sector to erase
* @end: the last sector to erase
*
* Erases the sectors in the given inclusive range.
*/
int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
{
int ret = 0;
if (end >= adapter->params.sf_nsec)
return -EINVAL;
while (start <= end) {
if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
(ret = sf1_write(adapter, 4, 0, 1,
SF_ERASE_SECTOR | (start << 8))) != 0 ||
(ret = flash_wait_op(adapter, 14, 500)) != 0) {
CH_ERR(adapter,
"erase of flash sector %d failed, error %d\n",
start, ret);
break;
}
start++;
}
t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */
return ret;
}
/**
* t4_flash_cfg_addr - return the address of the flash configuration file
* @adapter: the adapter
*
* Return the address within the flash where the Firmware Configuration
* File is stored, or an error if the device FLASH is too small to contain
* a Firmware Configuration File.
*/
int t4_flash_cfg_addr(struct adapter *adapter)
{
/*
* If the device FLASH isn't large enough to hold a Firmware
* Configuration File, return an error.
*/
if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
return -ENOSPC;
return FLASH_CFG_START;
}
/*
* Return TRUE if the specified firmware matches the adapter. I.e. T4
* firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
* and emit an error message for mismatched firmware to save our caller the
* effort ...
*/
static int t4_fw_matches_chip(struct adapter *adap,
const struct fw_hdr *hdr)
{
/*
* The expression below will return FALSE for any unsupported adapter
* which will keep us "honest" in the future ...
*/
if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
(is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
(is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
return 1;
CH_ERR(adap,
"FW image (%d) is not suitable for this adapter (%d)\n",
hdr->chip, chip_id(adap));
return 0;
}
/**
* t4_load_fw - download firmware
* @adap: the adapter
* @fw_data: the firmware image to write
* @size: image size
*
* Write the supplied firmware image to the card's serial flash.
*/
int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
{
u32 csum;
int ret, addr;
unsigned int i;
u8 first_page[SF_PAGE_SIZE];
const u32 *p = (const u32 *)fw_data;
const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
unsigned int fw_start_sec;
unsigned int fw_start;
unsigned int fw_size;
if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
fw_start = FLASH_FWBOOTSTRAP_START;
fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
} else {
fw_start_sec = FLASH_FW_START_SEC;
fw_start = FLASH_FW_START;
fw_size = FLASH_FW_MAX_SIZE;
}
if (!size) {
CH_ERR(adap, "FW image has no data\n");
return -EINVAL;
}
if (size & 511) {
CH_ERR(adap,
"FW image size not multiple of 512 bytes\n");
return -EINVAL;
}
if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
CH_ERR(adap,
"FW image size differs from size in FW header\n");
return -EINVAL;
}
if (size > fw_size) {
CH_ERR(adap, "FW image too large, max is %u bytes\n",
fw_size);
return -EFBIG;
}
if (!t4_fw_matches_chip(adap, hdr))
return -EINVAL;
for (csum = 0, i = 0; i < size / sizeof(csum); i++)
csum += be32_to_cpu(p[i]);
if (csum != 0xffffffff) {
CH_ERR(adap,
"corrupted firmware image, checksum %#x\n", csum);
return -EINVAL;
}
i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
if (ret)
goto out;
/*
* We write the correct version at the end so the driver can see a bad
* version if the FW write fails. Start by writing a copy of the
* first page with a bad version.
*/
memcpy(first_page, fw_data, SF_PAGE_SIZE);
((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
if (ret)
goto out;
addr = fw_start;
for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
addr += SF_PAGE_SIZE;
fw_data += SF_PAGE_SIZE;
ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
if (ret)
goto out;
}
ret = t4_write_flash(adap,
fw_start + offsetof(struct fw_hdr, fw_ver),
sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
out:
if (ret)
CH_ERR(adap, "firmware download failed, error %d\n",
ret);
return ret;
}
/**
* t4_fwcache - firmware cache operation
* @adap: the adapter
* @op : the operation (flush or flush and invalidate)
*/
int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
{
struct fw_params_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn =
cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
V_FW_PARAMS_CMD_PFN(adap->pf) |
V_FW_PARAMS_CMD_VFN(0));
c.retval_len16 = cpu_to_be32(FW_LEN16(c));
c.param[0].mnem =
cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
c.param[0].val = (__force __be32)op;
return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
}
void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
unsigned int *pif_req_wrptr,
unsigned int *pif_rsp_wrptr)
{
int i, j;
u32 cfg, val, req, rsp;
cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
if (cfg & F_LADBGEN)
t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
val = t4_read_reg(adap, A_CIM_DEBUGSTS);
req = G_POLADBGWRPTR(val);
rsp = G_PILADBGWRPTR(val);
if (pif_req_wrptr)
*pif_req_wrptr = req;
if (pif_rsp_wrptr)
*pif_rsp_wrptr = rsp;
for (i = 0; i < CIM_PIFLA_SIZE; i++) {
for (j = 0; j < 6; j++) {
t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
V_PILADBGRDPTR(rsp));
*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
req++;
rsp++;
}
req = (req + 2) & M_POLADBGRDPTR;
rsp = (rsp + 2) & M_PILADBGRDPTR;
}
t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
}
void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
{
u32 cfg;
int i, j, idx;
cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
if (cfg & F_LADBGEN)
t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
for (i = 0; i < CIM_MALA_SIZE; i++) {
for (j = 0; j < 5; j++) {
idx = 8 * i + j;
t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
V_PILADBGRDPTR(idx));
*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
}
}
t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
}
void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
{
unsigned int i, j;
for (i = 0; i < 8; i++) {
u32 *p = la_buf + i;
t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
}
}
/**
* fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
* @caps16: a 16-bit Port Capabilities value
*
* Returns the equivalent 32-bit Port Capabilities value.
*/
static uint32_t fwcaps16_to_caps32(uint16_t caps16)
{
uint32_t caps32 = 0;
#define CAP16_TO_CAP32(__cap) \
do { \
if (caps16 & FW_PORT_CAP_##__cap) \
caps32 |= FW_PORT_CAP32_##__cap; \
} while (0)
CAP16_TO_CAP32(SPEED_100M);
CAP16_TO_CAP32(SPEED_1G);
CAP16_TO_CAP32(SPEED_25G);
CAP16_TO_CAP32(SPEED_10G);
CAP16_TO_CAP32(SPEED_40G);
CAP16_TO_CAP32(SPEED_100G);
CAP16_TO_CAP32(FC_RX);
CAP16_TO_CAP32(FC_TX);
CAP16_TO_CAP32(ANEG);
CAP16_TO_CAP32(FORCE_PAUSE);
CAP16_TO_CAP32(MDIAUTO);
CAP16_TO_CAP32(MDISTRAIGHT);
CAP16_TO_CAP32(FEC_RS);
CAP16_TO_CAP32(FEC_BASER_RS);
CAP16_TO_CAP32(802_3_PAUSE);
CAP16_TO_CAP32(802_3_ASM_DIR);
#undef CAP16_TO_CAP32
return caps32;
}
/**
* fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
* @caps32: a 32-bit Port Capabilities value
*
* Returns the equivalent 16-bit Port Capabilities value. Note that
* not all 32-bit Port Capabilities can be represented in the 16-bit
* Port Capabilities and some fields/values may not make it.
*/
static uint16_t fwcaps32_to_caps16(uint32_t caps32)
{
uint16_t caps16 = 0;
#define CAP32_TO_CAP16(__cap) \
do { \
if (caps32 & FW_PORT_CAP32_##__cap) \
caps16 |= FW_PORT_CAP_##__cap; \
} while (0)
CAP32_TO_CAP16(SPEED_100M);
CAP32_TO_CAP16(SPEED_1G);
CAP32_TO_CAP16(SPEED_10G);
CAP32_TO_CAP16(SPEED_25G);
CAP32_TO_CAP16(SPEED_40G);
CAP32_TO_CAP16(SPEED_100G);
CAP32_TO_CAP16(FC_RX);
CAP32_TO_CAP16(FC_TX);
CAP32_TO_CAP16(802_3_PAUSE);
CAP32_TO_CAP16(802_3_ASM_DIR);
CAP32_TO_CAP16(ANEG);
CAP32_TO_CAP16(FORCE_PAUSE);
CAP32_TO_CAP16(MDIAUTO);
CAP32_TO_CAP16(MDISTRAIGHT);
CAP32_TO_CAP16(FEC_RS);
CAP32_TO_CAP16(FEC_BASER_RS);
#undef CAP32_TO_CAP16
return caps16;
}
static bool
is_bt(struct port_info *pi)
{
return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
pi->port_type == FW_PORT_TYPE_BT_XFI ||
pi->port_type == FW_PORT_TYPE_BT_XAUI);
}
/**
* t4_link_l1cfg - apply link configuration to MAC/PHY
* @phy: the PHY to setup
* @mac: the MAC to setup
* @lc: the requested link configuration
*
* Set up a port's MAC and PHY according to a desired link configuration.
* - If the PHY can auto-negotiate first decide what to advertise, then
* enable/disable auto-negotiation as desired, and reset.
* - If the PHY does not auto-negotiate just reset it.
* - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
* otherwise do it later based on the outcome of auto-negotiation.
*/
int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
struct link_config *lc)
{
struct fw_port_cmd c;
unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
unsigned int aneg, fc, fec, speed, rcap;
fc = 0;
if (lc->requested_fc & PAUSE_RX)
fc |= FW_PORT_CAP32_FC_RX;
if (lc->requested_fc & PAUSE_TX)
fc |= FW_PORT_CAP32_FC_TX;
if (!(lc->requested_fc & PAUSE_AUTONEG))
fc |= FW_PORT_CAP32_FORCE_PAUSE;
fec = 0;
if (lc->requested_fec == FEC_AUTO)
fec = lc->fec_hint;
else {
if (lc->requested_fec & FEC_RS)
fec |= FW_PORT_CAP32_FEC_RS;
if (lc->requested_fec & FEC_BASER_RS)
fec |= FW_PORT_CAP32_FEC_BASER_RS;
}
if (lc->requested_aneg == AUTONEG_DISABLE)
aneg = 0;
else if (lc->requested_aneg == AUTONEG_ENABLE)
aneg = FW_PORT_CAP32_ANEG;
else
aneg = lc->supported & FW_PORT_CAP32_ANEG;
if (aneg) {
speed = lc->supported & V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
} else if (lc->requested_speed != 0)
speed = speed_to_fwcap(lc->requested_speed);
else
speed = fwcap_top_speed(lc->supported);
/* Force AN on for BT cards. */
if (is_bt(adap->port[adap->chan_map[port]]))
aneg = lc->supported & FW_PORT_CAP32_ANEG;
rcap = aneg | speed | fc | fec;
if ((rcap | lc->supported) != lc->supported) {
#ifdef INVARIANTS
CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
lc->supported);
#endif
rcap &= lc->supported;
}
rcap |= mdi;
memset(&c, 0, sizeof(c));
c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
V_FW_PORT_CMD_PORTID(port));
if (adap->params.port_caps32) {
c.action_to_len16 =
cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
FW_LEN16(c));
c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
} else {
c.action_to_len16 =
cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
FW_LEN16(c));
c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
}
return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_restart_aneg - restart autonegotiation
* @adap: the adapter
* @mbox: mbox to use for the FW command
* @port: the port id
*
* Restarts autonegotiation for the selected port.
*/
int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
{
struct fw_port_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
V_FW_PORT_CMD_PORTID(port));
c.action_to_len16 =
cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
FW_LEN16(c));
c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
struct intr_details {
u32 mask;
const char *msg;
};
struct intr_action {
u32 mask;
int arg;
bool (*action)(struct adapter *, int, bool);
};
#define NONFATAL_IF_DISABLED 1
struct intr_info {
const char *name; /* name of the INT_CAUSE register */
int cause_reg; /* INT_CAUSE register */
int enable_reg; /* INT_ENABLE register */
u32 fatal; /* bits that are fatal */
int flags; /* hints */
const struct intr_details *details;
const struct intr_action *actions;
};
static inline char
intr_alert_char(u32 cause, u32 enable, u32 fatal)
{
if (cause & fatal)
return ('!');
if (cause & enable)
return ('*');
return ('-');
}
static void
t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
{
u32 enable, fatal, leftover;
const struct intr_details *details;
char alert;
enable = t4_read_reg(adap, ii->enable_reg);
if (ii->flags & NONFATAL_IF_DISABLED)
fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
else
fatal = ii->fatal;
alert = intr_alert_char(cause, enable, fatal);
CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
alert, ii->name, ii->cause_reg, cause, enable, fatal);
leftover = cause;
for (details = ii->details; details && details->mask != 0; details++) {
u32 msgbits = details->mask & cause;
if (msgbits == 0)
continue;
alert = intr_alert_char(msgbits, enable, ii->fatal);
CH_ALERT(adap, " %c [0x%08x] %s\n", alert, msgbits,
details->msg);
leftover &= ~msgbits;
}
if (leftover != 0 && leftover != cause)
CH_ALERT(adap, " ? [0x%08x]\n", leftover);
}
/*
* Returns true for fatal error.
*/
static bool
t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
u32 additional_cause, bool verbose)
{
u32 cause, fatal;
bool rc;
const struct intr_action *action;
/*
* Read and display cause. Note that the top level PL_INT_CAUSE is a
* bit special and we need to completely ignore the bits that are not in
* PL_INT_ENABLE.
*/
cause = t4_read_reg(adap, ii->cause_reg);
if (ii->cause_reg == A_PL_INT_CAUSE)
cause &= t4_read_reg(adap, ii->enable_reg);
if (verbose || cause != 0)
t4_show_intr_info(adap, ii, cause);
fatal = cause & ii->fatal;
if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
fatal &= t4_read_reg(adap, ii->enable_reg);
cause |= additional_cause;
if (cause == 0)
return (false);
rc = fatal != 0;
for (action = ii->actions; action && action->mask != 0; action++) {
if (!(action->mask & cause))
continue;
rc |= (action->action)(adap, action->arg, verbose);
}
/* clear */
t4_write_reg(adap, ii->cause_reg, cause);
(void)t4_read_reg(adap, ii->cause_reg);
return (rc);
}
/*
* Interrupt handler for the PCIE module.
*/
static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
{
static const struct intr_details sysbus_intr_details[] = {
{ F_RNPP, "RXNP array parity error" },
{ F_RPCP, "RXPC array parity error" },
{ F_RCIP, "RXCIF array parity error" },
{ F_RCCP, "Rx completions control array parity error" },
{ F_RFTP, "RXFT array parity error" },
{ 0 }
};
static const struct intr_info sysbus_intr_info = {
.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
.flags = 0,
.details = sysbus_intr_details,
.actions = NULL,
};
static const struct intr_details pcie_port_intr_details[] = {
{ F_TPCP, "TXPC array parity error" },
{ F_TNPP, "TXNP array parity error" },
{ F_TFTP, "TXFT array parity error" },
{ F_TCAP, "TXCA array parity error" },
{ F_TCIP, "TXCIF array parity error" },
{ F_RCAP, "RXCA array parity error" },
{ F_OTDD, "outbound request TLP discarded" },
{ F_RDPE, "Rx data parity error" },
{ F_TDUE, "Tx uncorrectable data error" },
{ 0 }
};
static const struct intr_info pcie_port_intr_info = {
.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
F_OTDD | F_RDPE | F_TDUE,
.flags = 0,
.details = pcie_port_intr_details,
.actions = NULL,
};
static const struct intr_details pcie_intr_details[] = {
{ F_MSIADDRLPERR, "MSI AddrL parity error" },
{ F_MSIADDRHPERR, "MSI AddrH parity error" },
{ F_MSIDATAPERR, "MSI data parity error" },
{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
{ F_MSIXDATAPERR, "MSI-X data parity error" },
{ F_MSIXDIPERR, "MSI-X DI parity error" },
{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
{ F_CCNTPERR, "PCIe CMD channel count parity error" },
{ F_CREQPERR, "PCIe CMD channel request parity error" },
{ F_CRSPPERR, "PCIe CMD channel response parity error" },
{ F_DCNTPERR, "PCIe DMA channel count parity error" },
{ F_DREQPERR, "PCIe DMA channel request parity error" },
{ F_DRSPPERR, "PCIe DMA channel response parity error" },
{ F_HCNTPERR, "PCIe HMA channel count parity error" },
{ F_HREQPERR, "PCIe HMA channel request parity error" },
{ F_HRSPPERR, "PCIe HMA channel response parity error" },
{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
{ F_FIDPERR, "PCIe FID parity error" },
{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
{ F_MATAGPERR, "PCIe MA tag parity error" },
{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
{ F_RXCPLPERR, "PCIe Rx completion parity error" },
{ F_RXWRPERR, "PCIe Rx write parity error" },
{ F_RPLPERR, "PCIe replay buffer parity error" },
{ F_PCIESINT, "PCIe core secondary fault" },
{ F_PCIEPINT, "PCIe core primary fault" },
{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
{ 0 }
};
static const struct intr_details t5_pcie_intr_details[] = {
{ F_IPGRPPERR, "Parity errors observed by IP" },
{ F_NONFATALERR, "PCIe non-fatal error" },
{ F_READRSPERR, "Outbound read error" },
{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
{ F_MAGRPPERR, "MA group FIFO parity error" },
{ F_VFIDPERR, "VFID SRAM parity error" },
{ F_FIDPERR, "FID SRAM parity error" },
{ F_CFGSNPPERR, "config snoop FIFO parity error" },
{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
{ 0 }
};
struct intr_info pcie_intr_info = {
.name = "PCIE_INT_CAUSE",
.cause_reg = A_PCIE_INT_CAUSE,
.enable_reg = A_PCIE_INT_ENABLE,
.fatal = 0xffffffff,
.flags = NONFATAL_IF_DISABLED,
.details = NULL,
.actions = NULL,
};
bool fatal = false;
if (is_t4(adap)) {
fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
pcie_intr_info.details = pcie_intr_details;
} else {
pcie_intr_info.details = t5_pcie_intr_details;
}
fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
return (fatal);
}
/*
* TP interrupt handler.
*/
static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
{
static const struct intr_details tp_intr_details[] = {
{ 0x3fffffff, "TP parity error" },
{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
{ 0 }
};
static const struct intr_info tp_intr_info = {
.name = "TP_INT_CAUSE",
.cause_reg = A_TP_INT_CAUSE,
.enable_reg = A_TP_INT_ENABLE,
.fatal = 0x7fffffff,
.flags = NONFATAL_IF_DISABLED,
.details = tp_intr_details,
.actions = NULL,
};
return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
}
/*
* SGE interrupt handler.
*/
static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
{
static const struct intr_info sge_int1_info = {
.name = "SGE_INT_CAUSE1",
.cause_reg = A_SGE_INT_CAUSE1,
.enable_reg = A_SGE_INT_ENABLE1,
.fatal = 0xffffffff,
.flags = NONFATAL_IF_DISABLED,
.details = NULL,
.actions = NULL,
};
static const struct intr_info sge_int2_info = {
.name = "SGE_INT_CAUSE2",
.cause_reg = A_SGE_INT_CAUSE2,
.enable_reg = A_SGE_INT_ENABLE2,
.fatal = 0xffffffff,
.flags = NONFATAL_IF_DISABLED,
.details = NULL,
.actions = NULL,
};
static const struct intr_details sge_int3_details[] = {
{ F_ERR_FLM_DBP,
"DBP pointer delivery for invalid context or QID" },
{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
"Invalid QID or header request by IDMA" },
{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
{ F_ERR_TIMER_ABOVE_MAX_QID,
"SGE GTS with timer 0-5 for IQID > 1023" },
{ F_ERR_CPL_EXCEED_IQE_SIZE,
"SGE received CPL exceeding IQE size" },
{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
{ F_ERR_DROPPED_DB, "SGE DB dropped" },
{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
"SGE IQID > 1023 received CPL for FL" },
{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
{ F_ERR_ING_CTXT_PRIO,
"Ingress context manager priority user error" },
{ F_ERR_EGR_CTXT_PRIO,
"Egress context manager priority user error" },
{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
{ 0x0000000f, "SGE context access for invalid queue" },
{ 0 }
};
static const struct intr_details t6_sge_int3_details[] = {
{ F_ERR_FLM_DBP,
"DBP pointer delivery for invalid context or QID" },
{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
"Invalid QID or header request by IDMA" },
{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
{ F_ERR_TIMER_ABOVE_MAX_QID,
"SGE GTS with timer 0-5 for IQID > 1023" },
{ F_ERR_CPL_EXCEED_IQE_SIZE,
"SGE received CPL exceeding IQE size" },
{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
{ F_ERR_DROPPED_DB, "SGE DB dropped" },
{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
"SGE IQID > 1023 received CPL for FL" },
{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
{ F_ERR_ING_CTXT_PRIO,
"Ingress context manager priority user error" },
{ F_ERR_EGR_CTXT_PRIO,
"Egress context manager priority user error" },
{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
{ F_FATAL_WRE_LEN,
"SGE WRE packet less than advertized length" },
{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
{ 0x0000000f, "SGE context access for invalid queue" },
{ 0 }
};
struct intr_info sge_int3_info = {
.name = "SGE_INT_CAUSE3",
.cause_reg = A_SGE_INT_CAUSE3,
.enable_reg = A_SGE_INT_ENABLE3,
.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
.flags = 0,
.details = NULL,
.actions = NULL,
};
static const struct intr_info sge_int4_info = {
.name = "SGE_INT_CAUSE4",
.cause_reg = A_SGE_INT_CAUSE4,
.enable_reg = A_SGE_INT_ENABLE4,
.fatal = 0,
.flags = 0,
.details = NULL,
.actions = NULL,
};
static const struct intr_info sge_int5_info = {
.name = "SGE_INT_CAUSE5",
.cause_reg = A_SGE_INT_CAUSE5,
.enable_reg = A_SGE_INT_ENABLE5,
.fatal = 0xffffffff,
.flags = NONFATAL_IF_DISABLED,
.details = NULL,
.actions = NULL,
};
static const struct intr_info sge_int6_info = {
.name = "SGE_INT_CAUSE6",
.cause_reg = A_SGE_INT_CAUSE6,
.enable_reg = A_SGE_INT_ENABLE6,
.fatal = 0,
.flags = 0,
.details = NULL,
.actions = NULL,
};
bool fatal;
u32 v;
if (chip_id(adap) <= CHELSIO_T5) {
sge_int3_info.details = sge_int3_details;
} else {
sge_int3_info.details = t6_sge_int3_details;
}
fatal = false;
fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
if (chip_id(adap) >= CHELSIO_T5)
fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
if (chip_id(adap) >= CHELSIO_T6)
fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
v = t4_read_reg(adap, A_SGE_ERROR_STATS);
if (v & F_ERROR_QID_VALID) {
CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
if (v & F_UNCAPTURED_ERROR)
CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
t4_write_reg(adap, A_SGE_ERROR_STATS,
F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
}
return (fatal);
}
/*
* CIM interrupt handler.
*/
static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
{
static const struct intr_action cim_host_intr_actions[] = {
{ F_TIMER0INT, 0, t4_os_dump_cimla },
{ 0 },
};
static const struct intr_details cim_host_intr_details[] = {
/* T6+ */
{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
/* T5+ */
{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
{ F_PLCIM_MSTRSPDATAPARERR,
"PL2CIM master response data parity error" },
{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
/* T4+ */
{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
{ F_MBUPPARERR, "CIM mailbox uP parity error" },
{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR, /* same bit */
"CIM IBQ PCIe/SGE_HI parity error" },
{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
{ F_TIMER1INT, "CIM TIMER0 interrupt" },
{ F_TIMER0INT, "CIM TIMER0 interrupt" },
{ F_PREFDROPINT, "CIM control register prefetch drop" },
{ 0}
};
static const struct intr_info cim_host_intr_info = {
.name = "CIM_HOST_INT_CAUSE",
.cause_reg = A_CIM_HOST_INT_CAUSE,
.enable_reg = A_CIM_HOST_INT_ENABLE,
.fatal = 0x007fffe6,
.flags = NONFATAL_IF_DISABLED,
.details = cim_host_intr_details,
.actions = cim_host_intr_actions,
};
static const struct intr_details cim_host_upacc_intr_details[] = {
{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
{ F_TIMEOUTINT, "CIM PIF timeout" },
{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
{ F_BLKWRPLINT, "CIM block write to PL space" },
{ F_BLKRDPLINT, "CIM block read from PL space" },
{ F_SGLWRPLINT,
"CIM single write to PL space with illegal BEs" },
{ F_SGLRDPLINT,
"CIM single read from PL space with illegal BEs" },
{ F_BLKWRCTLINT, "CIM block write to CTL space" },
{ F_BLKRDCTLINT, "CIM block read from CTL space" },
{ F_SGLWRCTLINT,
"CIM single write to CTL space with illegal BEs" },
{ F_SGLRDCTLINT,
"CIM single read from CTL space with illegal BEs" },
{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
{ F_SGLWREEPROMINT,
"CIM single write to EEPROM space with illegal BEs" },
{ F_SGLRDEEPROMINT,
"CIM single read from EEPROM space with illegal BEs" },
{ F_BLKWRFLASHINT, "CIM block write to flash space" },
{ F_BLKRDFLASHINT, "CIM block read from flash space" },
{ F_SGLWRFLASHINT, "CIM single write to flash space" },
{ F_SGLRDFLASHINT,
"CIM single read from flash space with illegal BEs" },
{ F_BLKWRBOOTINT, "CIM block write to boot space" },
{ F_BLKRDBOOTINT, "CIM block read from boot space" },
{ F_SGLWRBOOTINT, "CIM single write to boot space" },
{ F_SGLRDBOOTINT,
"CIM single read from boot space with illegal BEs" },
{ F_ILLWRBEINT, "CIM illegal write BEs" },
{ F_ILLRDBEINT, "CIM illegal read BEs" },
{ F_ILLRDINT, "CIM illegal read" },
{ F_ILLWRINT, "CIM illegal write" },
{ F_ILLTRANSINT, "CIM illegal transaction" },
{ F_RSVDSPACEINT, "CIM reserved space access" },
{0}
};
static const struct intr_info cim_host_upacc_intr_info = {
.name = "CIM_HOST_UPACC_INT_CAUSE",
.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
.fatal = 0x3fffeeff,
.flags = NONFATAL_IF_DISABLED,
.details = cim_host_upacc_intr_details,
.actions = NULL,
};
static const struct intr_info cim_pf_host_intr_info = {
.name = "CIM_PF_HOST_INT_CAUSE",
.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
.fatal = 0,
.flags = 0,
.details = NULL,
.actions = NULL,
};
u32 val, fw_err;
bool fatal;
fw_err = t4_read_reg(adap, A_PCIE_FW);
if (fw_err & F_PCIE_FW_ERR)
t4_report_fw_error(adap);
/*
* When the Firmware detects an internal error which normally wouldn't
* raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
* to make sure the Host sees the Firmware Crash. So if we have a
* Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
* interrupt.
*/
val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
}
fatal = false;
fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
return (fatal);
}
/*
* ULP RX interrupt handler.
*/
static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
{
static const struct intr_details ulprx_intr_details[] = {
/* T5+ */
{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
/* T4+ */
{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
{ 0x007fffff, "ULPRX parity error" },
{ 0 }
};
static const struct intr_info ulprx_intr_info = {
.name = "ULP_RX_INT_CAUSE",
.cause_reg = A_ULP_RX_INT_CAUSE,
.enable_reg = A_ULP_RX_INT_ENABLE,
.fatal = 0x07ffffff,
.flags = NONFATAL_IF_DISABLED,
.details = ulprx_intr_details,
.actions = NULL,
};
static const struct intr_info ulprx_intr2_info = {
.name = "ULP_RX_INT_CAUSE_2",
.cause_reg = A_ULP_RX_INT_CAUSE_2,
.enable_reg = A_ULP_RX_INT_ENABLE_2,
.fatal = 0,
.flags = 0,
.details = NULL,
.actions = NULL,
};
bool fatal = false;
fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
return (fatal);
}
/*
* ULP TX interrupt handler.
*/
static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
{
static const struct intr_details ulptx_intr_details[] = {
{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
{ 0x0fffffff, "ULPTX parity error" },
{ 0 }
};
static const struct intr_info ulptx_intr_info = {
.name = "ULP_TX_INT_CAUSE",
.cause_reg = A_ULP_TX_INT_CAUSE,
.enable_reg = A_ULP_TX_INT_ENABLE,
.fatal = 0x0fffffff,
.flags = NONFATAL_IF_DISABLED,
.details = ulptx_intr_details,
.actions = NULL,
};
static const struct intr_info ulptx_intr2_info = {
.name = "ULP_TX_INT_CAUSE_2",
.cause_reg = A_ULP_TX_INT_CAUSE_2,
.enable_reg = A_ULP_TX_INT_ENABLE_2,
.fatal = 0xf0,
.flags = NONFATAL_IF_DISABLED,
.details = NULL,
.actions = NULL,
};
bool fatal = false;
fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
return (fatal);
}
static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
{
int i;
u32 data[17];
t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
for (i = 0; i < ARRAY_SIZE(data); i++) {
CH_ALERT(adap, " - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
A_PM_TX_DBG_STAT0 + i, data[i]);
}
return (false);
}
/*
* PM TX interrupt handler.
*/
static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
{
static const struct intr_action pmtx_intr_actions[] = {
{ 0xffffffff, 0, pmtx_dump_dbg_stats },
{ 0 },
};
static const struct intr_details pmtx_intr_details[] = {
{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
{ 0 }
};
static const struct intr_info pmtx_intr_info = {
.name = "PM_TX_INT_CAUSE",
.cause_reg = A_PM_TX_INT_CAUSE,
.enable_reg = A_PM_TX_INT_ENABLE,
.fatal = 0xffffffff,
.flags = 0,
.details = pmtx_intr_details,
.actions = pmtx_intr_actions,
};
return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
}
/*
* PM RX interrupt handler.
*/
static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
{
static const struct intr_details pmrx_intr_details[] = {
/* T6+ */
{ 0x18000000, "PMRX ospi overflow" },
{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
{ F_SDC_ERR, "PMRX SDC error" },
/* T4+ */
{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
{ 0x0003c000, "PMRX iespi Rx framing error" },
{ 0x00003c00, "PMRX iespi Tx framing error" },
{ 0x00000300, "PMRX ocspi Rx framing error" },
{ 0x000000c0, "PMRX ocspi Tx framing error" },
{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
{ 0 }
};
static const struct intr_info pmrx_intr_info = {
.name = "PM_RX_INT_CAUSE",
.cause_reg = A_PM_RX_INT_CAUSE,
.enable_reg = A_PM_RX_INT_ENABLE,
.fatal = 0x1fffffff,
.flags = NONFATAL_IF_DISABLED,
.details = pmrx_intr_details,
.actions = NULL,
};
return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
}
/*
* CPL switch interrupt handler.
*/
static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
{
static const struct intr_details cplsw_intr_details[] = {
/* T5+ */
{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
/* T4+ */
{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
{ 0 }
};
static const struct intr_info cplsw_intr_info = {
.name = "CPL_INTR_CAUSE",
.cause_reg = A_CPL_INTR_CAUSE,
.enable_reg = A_CPL_INTR_ENABLE,
.fatal = 0xff,
.flags = NONFATAL_IF_DISABLED,
.details = cplsw_intr_details,
.actions = NULL,
};
return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
}
#define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
#define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
#define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
#define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
/*
* LE interrupt handler.
*/
static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
{
static const struct intr_details le_intr_details[] = {
{ F_REQQPARERR, "LE request queue parity error" },
{ F_UNKNOWNCMD, "LE unknown command" },
{ F_ACTRGNFULL, "LE active region full" },
{ F_PARITYERR, "LE parity error" },
{ F_LIPMISS, "LE LIP miss" },
{ F_LIP0, "LE 0 LIP error" },
{ 0 }
};
static const struct intr_details t6_le_intr_details[] = {
{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
{ F_TOTCNTERR, "LE total active < TCAM count" },
{ F_CMDPRSRINTERR, "LE internal error in parser" },
{ F_CMDTIDERR, "Incorrect tid in LE command" },
{ F_T6_ACTRGNFULL, "LE active region full" },
{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
{ F_TCAMACCFAIL, "LE TCAM access failure" },
{ F_T6_UNKNOWNCMD, "LE unknown command" },
{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
{ F_T6_LIPMISS, "LE CLIP lookup miss" },
{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
{ 0 }
};
struct intr_info le_intr_info = {
.name = "LE_DB_INT_CAUSE",
.cause_reg = A_LE_DB_INT_CAUSE,
.enable_reg = A_LE_DB_INT_ENABLE,
.fatal = 0,
.flags = NONFATAL_IF_DISABLED,
.details = NULL,
.actions = NULL,
};
if (chip_id(adap) <= CHELSIO_T5) {
le_intr_info.details = le_intr_details;
le_intr_info.fatal = T5_LE_FATAL_MASK;
} else {
le_intr_info.details = t6_le_intr_details;
le_intr_info.fatal = T6_LE_FATAL_MASK;
}
return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
}
/*
* MPS interrupt handler.
*/
static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
{
static const struct intr_details mps_rx_perr_intr_details[] = {
{ 0xffffffff, "MPS Rx parity error" },
{ 0 }
};
static const struct intr_info mps_rx_perr_intr_info = {
.name = "MPS_RX_PERR_INT_CAUSE",
.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
.fatal = 0xffffffff,
.flags = NONFATAL_IF_DISABLED,
.details = mps_rx_perr_intr_details,
.actions = NULL,
};
static const struct intr_details mps_tx_intr_details[] = {
{ F_PORTERR, "MPS Tx destination port is disabled" },
{ F_FRMERR, "MPS Tx framing error" },
{ F_SECNTERR, "MPS Tx SOP/EOP error" },
{ F_BUBBLE, "MPS Tx underflow" },
{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
{ 0 }
};
static const struct intr_info mps_tx_intr_info = {
.name = "MPS_TX_INT_CAUSE",
.cause_reg = A_MPS_TX_INT_CAUSE,
.enable_reg = A_MPS_TX_INT_ENABLE,
.fatal = 0x1ffff,
.flags = NONFATAL_IF_DISABLED,
.details = mps_tx_intr_details,
.actions = NULL,
};
static const struct intr_details mps_trc_intr_details[] = {
{ F_MISCPERR, "MPS TRC misc parity error" },
{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
{ 0 }
};
static const struct intr_info mps_trc_intr_info = {
.name = "MPS_TRC_INT_CAUSE",
.cause_reg = A_MPS_TRC_INT_CAUSE,
.enable_reg = A_MPS_TRC_INT_ENABLE,
.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
.flags = 0,
.details = mps_trc_intr_details,
.actions = NULL,
};
static const struct intr_details mps_stat_sram_intr_details[] = {
{ 0xffffffff, "MPS statistics SRAM parity error" },
{ 0 }
};
static const struct intr_info mps_stat_sram_intr_info = {
.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
.fatal = 0x1fffffff,
.flags = NONFATAL_IF_DISABLED,
.details = mps_stat_sram_intr_details,
.actions = NULL,
};
static const struct intr_details mps_stat_tx_intr_details[] = {
{ 0xffffff, "MPS statistics Tx FIFO parity error" },
{ 0 }
};
static const struct intr_info mps_stat_tx_intr_info = {
.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
.fatal = 0xffffff,
.flags = NONFATAL_IF_DISABLED,
.details = mps_stat_tx_intr_details,
.actions = NULL,
};
static const struct intr_details mps_stat_rx_intr_details[] = {
{ 0xffffff, "MPS statistics Rx FIFO parity error" },
{ 0 }
};
static const struct intr_info mps_stat_rx_intr_info = {
.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
.fatal = 0xffffff,
.flags = 0,
.details = mps_stat_rx_intr_details,
.actions = NULL,
};
static const struct intr_details mps_cls_intr_details[] = {
{ F_HASHSRAM, "MPS hash SRAM parity error" },
{ F_MATCHTCAM, "MPS match TCAM parity error" },
{ F_MATCHSRAM, "MPS match SRAM parity error" },
{ 0 }
};
static const struct intr_info mps_cls_intr_info = {
.name = "MPS_CLS_INT_CAUSE",
.cause_reg = A_MPS_CLS_INT_CAUSE,
.enable_reg = A_MPS_CLS_INT_ENABLE,
.fatal = F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
.flags = 0,
.details = mps_cls_intr_details,
.actions = NULL,
};
static const struct intr_details mps_stat_sram1_intr_details[] = {
{ 0xff, "MPS statistics SRAM1 parity error" },
{ 0 }
};
static const struct intr_info mps_stat_sram1_intr_info = {
.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
.fatal = 0xff,
.flags = 0,
.details = mps_stat_sram1_intr_details,
.actions = NULL,
};
bool fatal;
fatal = false;
fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
if (chip_id(adap) > CHELSIO_T4) {
fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
verbose);
}
t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
t4_read_reg(adap, A_MPS_INT_CAUSE); /* flush */
return (fatal);
}
/*
* EDC/MC interrupt handler.
*/
static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
{
static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
unsigned int count_reg, v;
static const struct intr_details mem_intr_details[] = {
{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
{ F_PERR_INT_CAUSE, "FIFO parity error" },
{ 0 }
};
struct intr_info ii = {
.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
.details = mem_intr_details,
.flags = 0,
.actions = NULL,
};
bool fatal;
switch (idx) {
case MEM_EDC0:
ii.name = "EDC0_INT_CAUSE";
ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
break;
case MEM_EDC1:
ii.name = "EDC1_INT_CAUSE";
ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
break;
case MEM_MC0:
ii.name = "MC0_INT_CAUSE";
if (is_t4(adap)) {
ii.cause_reg = A_MC_INT_CAUSE;
ii.enable_reg = A_MC_INT_ENABLE;
count_reg = A_MC_ECC_STATUS;
} else {
ii.cause_reg = A_MC_P_INT_CAUSE;
ii.enable_reg = A_MC_P_INT_ENABLE;
count_reg = A_MC_P_ECC_STATUS;
}
break;
case MEM_MC1:
ii.name = "MC1_INT_CAUSE";
ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
break;
}
fatal = t4_handle_intr(adap, &ii, 0, verbose);
v = t4_read_reg(adap, count_reg);
if (v != 0) {
if (G_ECC_UECNT(v) != 0) {
CH_ALERT(adap,
"%s: %u uncorrectable ECC data error(s)\n",
name[idx], G_ECC_UECNT(v));
}
if (G_ECC_CECNT(v) != 0) {
if (idx <= MEM_EDC1)
t4_edc_err_read(adap, idx);
CH_WARN_RATELIMIT(adap,
"%s: %u correctable ECC data error(s)\n",
name[idx], G_ECC_CECNT(v));
}
t4_write_reg(adap, count_reg, 0xffffffff);
}
return (fatal);
}
static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
{
u32 v;
v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
CH_ALERT(adap,
"MA address wrap-around error by client %u to address %#x\n",
G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
return (false);
}
/*
* MA interrupt handler.
*/
static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
{
static const struct intr_action ma_intr_actions[] = {
{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
{ 0 },
};
static const struct intr_info ma_intr_info = {
.name = "MA_INT_CAUSE",
.cause_reg = A_MA_INT_CAUSE,
.enable_reg = A_MA_INT_ENABLE,
.fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
.flags = NONFATAL_IF_DISABLED,
.details = NULL,
.actions = ma_intr_actions,
};
static const struct intr_info ma_perr_status1 = {
.name = "MA_PARITY_ERROR_STATUS1",
.cause_reg = A_MA_PARITY_ERROR_STATUS1,
.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
.fatal = 0xffffffff,
.flags = 0,
.details = NULL,
.actions = NULL,
};
static const struct intr_info ma_perr_status2 = {
.name = "MA_PARITY_ERROR_STATUS2",
.cause_reg = A_MA_PARITY_ERROR_STATUS2,
.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
.fatal = 0xffffffff,
.flags = 0,
.details = NULL,
.actions = NULL,
};
bool fatal;
fatal = false;
fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
if (chip_id(adap) > CHELSIO_T4)
fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
return (fatal);
}
/*
* SMB interrupt handler.
*/
static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
{
static const struct intr_details smb_intr_details[] = {
{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
{ 0 }
};
static const struct intr_info smb_intr_info = {
.name = "SMB_INT_CAUSE",
.cause_reg = A_SMB_INT_CAUSE,
.enable_reg = A_SMB_INT_ENABLE,
.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
.flags = 0,
.details = smb_intr_details,
.actions = NULL,
};
return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
}
/*
* NC-SI interrupt handler.
*/
static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
{
static const struct intr_details ncsi_intr_details[] = {
{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
{ 0 }
};
static const struct intr_info ncsi_intr_info = {
.name = "NCSI_INT_CAUSE",
.cause_reg = A_NCSI_INT_CAUSE,
.enable_reg = A_NCSI_INT_ENABLE,
.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
.flags = 0,
.details = ncsi_intr_details,
.actions = NULL,
};
return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
}
/*
* MAC interrupt handler.
*/
static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
{
static const struct intr_details mac_intr_details[] = {
{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
{ 0 }
};
char name[32];
struct intr_info ii;
bool fatal = false;
if (is_t4(adap)) {
snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
ii.name = &name[0];
ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
ii.flags = 0;
ii.details = mac_intr_details;
ii.actions = NULL;
} else {
snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
ii.name = &name[0];
ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
ii.flags = 0;
ii.details = mac_intr_details;
ii.actions = NULL;
}
fatal |= t4_handle_intr(adap, &ii, 0, verbose);
if (chip_id(adap) >= CHELSIO_T5) {
snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
ii.name = &name[0];
ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
ii.fatal = 0;
ii.flags = 0;
ii.details = NULL;
ii.actions = NULL;
fatal |= t4_handle_intr(adap, &ii, 0, verbose);
}
if (chip_id(adap) >= CHELSIO_T6) {
snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
ii.name = &name[0];
ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
ii.fatal = 0;
ii.flags = 0;
ii.details = NULL;
ii.actions = NULL;
fatal |= t4_handle_intr(adap, &ii, 0, verbose);
}
return (fatal);
}
static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
{
static const struct intr_details plpl_intr_details[] = {
{ F_FATALPERR, "Fatal parity error" },
{ F_PERRVFID, "VFID_MAP parity error" },
{ 0 }
};
static const struct intr_info plpl_intr_info = {
.name = "PL_PL_INT_CAUSE",
.cause_reg = A_PL_PL_INT_CAUSE,
.enable_reg = A_PL_PL_INT_ENABLE,
.fatal = F_FATALPERR | F_PERRVFID,
.flags = NONFATAL_IF_DISABLED,
.details = plpl_intr_details,
.actions = NULL,
};
return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
}
/**
* t4_slow_intr_handler - control path interrupt handler
* @adap: the adapter
* @verbose: increased verbosity, for debug
*
* T4 interrupt handler for non-data global interrupt events, e.g., errors.
* The designation 'slow' is because it involves register reads, while
* data interrupts typically don't involve any MMIOs.
*/
int t4_slow_intr_handler(struct adapter *adap, bool verbose)
{
static const struct intr_details pl_intr_details[] = {
{ F_MC1, "MC1" },
{ F_UART, "UART" },
{ F_ULP_TX, "ULP TX" },
{ F_SGE, "SGE" },
{ F_HMA, "HMA" },
{ F_CPL_SWITCH, "CPL Switch" },
{ F_ULP_RX, "ULP RX" },
{ F_PM_RX, "PM RX" },
{ F_PM_TX, "PM TX" },
{ F_MA, "MA" },
{ F_TP, "TP" },
{ F_LE, "LE" },
{ F_EDC1, "EDC1" },
{ F_EDC0, "EDC0" },
{ F_MC, "MC0" },
{ F_PCIE, "PCIE" },
{ F_PMU, "PMU" },
{ F_MAC3, "MAC3" },
{ F_MAC2, "MAC2" },
{ F_MAC1, "MAC1" },
{ F_MAC0, "MAC0" },
{ F_SMB, "SMB" },
{ F_SF, "SF" },
{ F_PL, "PL" },
{ F_NCSI, "NC-SI" },
{ F_MPS, "MPS" },
{ F_MI, "MI" },
{ F_DBG, "DBG" },
{ F_I2CM, "I2CM" },
{ F_CIM, "CIM" },
{ 0 }
};
static const struct intr_info pl_perr_cause = {
.name = "PL_PERR_CAUSE",
.cause_reg = A_PL_PERR_CAUSE,
.enable_reg = A_PL_PERR_ENABLE,
.fatal = 0xffffffff,
.flags = 0,
.details = pl_intr_details,
.actions = NULL,
};
static const struct intr_action pl_intr_action[] = {
{ F_MC1, MEM_MC1, mem_intr_handler },
{ F_ULP_TX, -1, ulptx_intr_handler },
{ F_SGE, -1, sge_intr_handler },
{ F_CPL_SWITCH, -1, cplsw_intr_handler },
{ F_ULP_RX, -1, ulprx_intr_handler },
{ F_PM_RX, -1, pmrx_intr_handler},
{ F_PM_TX, -1, pmtx_intr_handler},
{ F_MA, -1, ma_intr_handler },
{ F_TP, -1, tp_intr_handler },
{ F_LE, -1, le_intr_handler },
{ F_EDC1, MEM_EDC1, mem_intr_handler },
{ F_EDC0, MEM_EDC0, mem_intr_handler },
{ F_MC0, MEM_MC0, mem_intr_handler },
{ F_PCIE, -1, pcie_intr_handler },
{ F_MAC3, 3, mac_intr_handler},
{ F_MAC2, 2, mac_intr_handler},
{ F_MAC1, 1, mac_intr_handler},
{ F_MAC0, 0, mac_intr_handler},
{ F_SMB, -1, smb_intr_handler},
{ F_PL, -1, plpl_intr_handler },
{ F_NCSI, -1, ncsi_intr_handler},
{ F_MPS, -1, mps_intr_handler },
{ F_CIM, -1, cim_intr_handler },
{ 0 }
};
static const struct intr_info pl_intr_info = {
.name = "PL_INT_CAUSE",
.cause_reg = A_PL_INT_CAUSE,
.enable_reg = A_PL_INT_ENABLE,
.fatal = 0,
.flags = 0,
.details = pl_intr_details,
.actions = pl_intr_action,
};
bool fatal;
u32 perr;
perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
if (verbose || perr != 0) {
t4_show_intr_info(adap, &pl_perr_cause, perr);
if (perr != 0)
t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
if (verbose)
perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
}
fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose);
if (fatal)
t4_fatal_err(adap, false);
return (0);
}
#define PF_INTR_MASK (F_PFSW | F_PFCIM)
/**
* t4_intr_enable - enable interrupts
* @adapter: the adapter whose interrupts should be enabled
*
* Enable PF-specific interrupts for the calling function and the top-level
* interrupt concentrator for global interrupts. Interrupts are already
* enabled at each module, here we just enable the roots of the interrupt
* hierarchies.
*
* Note: this function should be called only when the driver manages
* non PF-specific interrupts from the various HW modules. Only one PCI
* function at a time should be doing this.
*/
void t4_intr_enable(struct adapter *adap)
{
u32 val = 0;
if (chip_id(adap) <= CHELSIO_T5)
val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
else
val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
F_EGRESS_SIZE_ERR;
t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
}
/**
* t4_intr_disable - disable interrupts
* @adap: the adapter whose interrupts should be disabled
*
* Disable interrupts. We only disable the top-level interrupt
* concentrators. The caller must be a PCI function managing global
* interrupts.
*/
void t4_intr_disable(struct adapter *adap)
{
t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
}
/**
* t4_intr_clear - clear all interrupts
* @adap: the adapter whose interrupts should be cleared
*
* Clears all interrupts. The caller must be a PCI function managing
* global interrupts.
*/
void t4_intr_clear(struct adapter *adap)
{
static const u32 cause_reg[] = {
A_CIM_HOST_INT_CAUSE,
A_CIM_HOST_UPACC_INT_CAUSE,
MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
A_CPL_INTR_CAUSE,
EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
A_LE_DB_INT_CAUSE,
A_MA_INT_WRAP_STATUS,
A_MA_PARITY_ERROR_STATUS1,
A_MA_INT_CAUSE,
A_MPS_CLS_INT_CAUSE,
A_MPS_RX_PERR_INT_CAUSE,
A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
A_MPS_STAT_PERR_INT_CAUSE_SRAM,
A_MPS_TRC_INT_CAUSE,
A_MPS_TX_INT_CAUSE,
A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
A_NCSI_INT_CAUSE,
A_PCIE_INT_CAUSE,
A_PCIE_NONFAT_ERR,
A_PL_PL_INT_CAUSE,
A_PM_RX_INT_CAUSE,
A_PM_TX_INT_CAUSE,
A_SGE_INT_CAUSE1,
A_SGE_INT_CAUSE2,
A_SGE_INT_CAUSE3,
A_SGE_INT_CAUSE4,
A_SMB_INT_CAUSE,
A_TP_INT_CAUSE,
A_ULP_RX_INT_CAUSE,
A_ULP_RX_INT_CAUSE_2,
A_ULP_TX_INT_CAUSE,
A_ULP_TX_INT_CAUSE_2,
MYPF_REG(A_PL_PF_INT_CAUSE),
};
int i;
const int nchan = adap->chip_params->nchan;
for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
t4_write_reg(adap, cause_reg[i], 0xffffffff);
if (is_t4(adap)) {
t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
0xffffffff);
t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
0xffffffff);
t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
for (i = 0; i < nchan; i++) {
t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
0xffffffff);
}
}
if (chip_id(adap) >= CHELSIO_T5) {
t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
if (is_t5(adap)) {
t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
0xffffffff);
}
for (i = 0; i < nchan; i++) {
t4_write_reg(adap, T5_PORT_REG(i,
A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
if (chip_id(adap) > CHELSIO_T5) {
t4_write_reg(adap, T5_PORT_REG(i,
A_MAC_PORT_PERR_INT_CAUSE_100G),
0xffffffff);
}
t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
0xffffffff);
}
}
if (chip_id(adap) >= CHELSIO_T6) {
t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
}
t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
(void) t4_read_reg(adap, A_PL_INT_CAUSE); /* flush */
}
/**
* hash_mac_addr - return the hash value of a MAC address
* @addr: the 48-bit Ethernet MAC address
*
* Hashes a MAC address according to the hash function used by HW inexact
* (hash) address matching.
*/
static int hash_mac_addr(const u8 *addr)
{
u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
a ^= b;
a ^= (a >> 12);
a ^= (a >> 6);
return a & 0x3f;
}
/**
* t4_config_rss_range - configure a portion of the RSS mapping table
* @adapter: the adapter
* @mbox: mbox to use for the FW command
* @viid: virtual interface whose RSS subtable is to be written
* @start: start entry in the table to write
* @n: how many table entries to write
* @rspq: values for the "response queue" (Ingress Queue) lookup table
* @nrspq: number of values in @rspq
*
* Programs the selected part of the VI's RSS mapping table with the
* provided values. If @nrspq < @n the supplied values are used repeatedly
* until the full table range is populated.
*
* The caller must ensure the values in @rspq are in the range allowed for
* @viid.
*/
int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
int start, int n, const u16 *rspq, unsigned int nrspq)
{
int ret;
const u16 *rsp = rspq;
const u16 *rsp_end = rspq + nrspq;
struct fw_rss_ind_tbl_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
V_FW_RSS_IND_TBL_CMD_VIID(viid));
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
/*
* Each firmware RSS command can accommodate up to 32 RSS Ingress
* Queue Identifiers. These Ingress Queue IDs are packed three to
* a 32-bit word as 10-bit values with the upper remaining 2 bits
* reserved.
*/
while (n > 0) {
int nq = min(n, 32);
int nq_packed = 0;
__be32 *qp = &cmd.iq0_to_iq2;
/*
* Set up the firmware RSS command header to send the next
* "nq" Ingress Queue IDs to the firmware.
*/
cmd.niqid = cpu_to_be16(nq);
cmd.startidx = cpu_to_be16(start);
/*
* "nq" more done for the start of the next loop.
*/
start += nq;
n -= nq;
/*
* While there are still Ingress Queue IDs to stuff into the
* current firmware RSS command, retrieve them from the
* Ingress Queue ID array and insert them into the command.
*/
while (nq > 0) {
/*
* Grab up to the next 3 Ingress Queue IDs (wrapping
* around the Ingress Queue ID array if necessary) and
* insert them into the firmware RSS command at the
* current 3-tuple position within the commad.
*/
u16 qbuf[3];
u16 *qbp = qbuf;
int nqbuf = min(3, nq);
nq -= nqbuf;
qbuf[0] = qbuf[1] = qbuf[2] = 0;
while (nqbuf && nq_packed < 32) {
nqbuf--;
nq_packed++;
*qbp++ = *rsp++;
if (rsp >= rsp_end)
rsp = rspq;
}
*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
}
/*
* Send this portion of the RRS table update to the firmware;
* bail out on any errors.
*/
ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
if (ret)
return ret;
}
return 0;
}
/**
* t4_config_glbl_rss - configure the global RSS mode
* @adapter: the adapter
* @mbox: mbox to use for the FW command
* @mode: global RSS mode
* @flags: mode-specific flags
*
* Sets the global RSS mode.
*/
int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
unsigned int flags)
{
struct fw_rss_glb_config_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
c.retval_len16 = cpu_to_be32(FW_LEN16(c));
if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
c.u.manual.mode_pkd =
cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
c.u.basicvirtual.mode_keymode =
cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
} else
return -EINVAL;
return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
}
/**
* t4_config_vi_rss - configure per VI RSS settings
* @adapter: the adapter
* @mbox: mbox to use for the FW command
* @viid: the VI id
* @flags: RSS flags
* @defq: id of the default RSS queue for the VI.
* @skeyidx: RSS secret key table index for non-global mode
* @skey: RSS vf_scramble key for VI.
*
* Configures VI-specific RSS properties.
*/
int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
unsigned int flags, unsigned int defq, unsigned int skeyidx,
unsigned int skey)
{
struct fw_rss_vi_config_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
c.retval_len16 = cpu_to_be32(FW_LEN16(c));
c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
}
/* Read an RSS table row */
static int rd_rss_row(struct adapter *adap, int row, u32 *val)
{
t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5, 0, val);
}
/**
* t4_read_rss - read the contents of the RSS mapping table
* @adapter: the adapter
* @map: holds the contents of the RSS mapping table
*
* Reads the contents of the RSS hash->queue mapping table.
*/
int t4_read_rss(struct adapter *adapter, u16 *map)
{
u32 val;
int i, ret;
for (i = 0; i < RSS_NENTRIES / 2; ++i) {
ret = rd_rss_row(adapter, i, &val);
if (ret)
return ret;
*map++ = G_LKPTBLQUEUE0(val);
*map++ = G_LKPTBLQUEUE1(val);
}
return 0;
}
/**
* t4_tp_fw_ldst_rw - Access TP indirect register through LDST
* @adap: the adapter
* @cmd: TP fw ldst address space type
* @vals: where the indirect register values are stored/written
* @nregs: how many indirect registers to read/write
* @start_idx: index of first indirect register to read/write
* @rw: Read (1) or Write (0)
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Access TP indirect registers through LDST
**/
static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
unsigned int nregs, unsigned int start_index,
unsigned int rw, bool sleep_ok)
{
int ret = 0;
unsigned int i;
struct fw_ldst_cmd c;
for (i = 0; i < nregs; i++) {
memset(&c, 0, sizeof(c));
c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
F_FW_CMD_REQUEST |
(rw ? F_FW_CMD_READ :
F_FW_CMD_WRITE) |
V_FW_LDST_CMD_ADDRSPACE(cmd));
c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
c.u.addrval.addr = cpu_to_be32(start_index + i);
c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]);
ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
sleep_ok);
if (ret)
return ret;
if (rw)
vals[i] = be32_to_cpu(c.u.addrval.val);
}
return 0;
}
/**
* t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
* @adap: the adapter
* @reg_addr: Address Register
* @reg_data: Data register
* @buff: where the indirect register values are stored/written
* @nregs: how many indirect registers to read/write
* @start_index: index of first indirect register to read/write
* @rw: READ(1) or WRITE(0)
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Read/Write TP indirect registers through LDST if possible.
* Else, use backdoor access
**/
static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
u32 *buff, u32 nregs, u32 start_index, int rw,
bool sleep_ok)
{
int rc = -EINVAL;
int cmd;
switch (reg_addr) {
case A_TP_PIO_ADDR:
cmd = FW_LDST_ADDRSPC_TP_PIO;
break;
case A_TP_TM_PIO_ADDR:
cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
break;
case A_TP_MIB_INDEX:
cmd = FW_LDST_ADDRSPC_TP_MIB;
break;
default:
goto indirect_access;
}
if (t4_use_ldst(adap))
rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
sleep_ok);
indirect_access:
if (rc) {
if (rw)
t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
start_index);
else
t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
start_index);
}
}
/**
* t4_tp_pio_read - Read TP PIO registers
* @adap: the adapter
* @buff: where the indirect register values are written
* @nregs: how many indirect registers to read
* @start_index: index of first indirect register to read
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Read TP PIO Registers
**/
void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
u32 start_index, bool sleep_ok)
{
t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
start_index, 1, sleep_ok);
}
/**
* t4_tp_pio_write - Write TP PIO registers
* @adap: the adapter
* @buff: where the indirect register values are stored
* @nregs: how many indirect registers to write
* @start_index: index of first indirect register to write
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Write TP PIO Registers
**/
void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
u32 start_index, bool sleep_ok)
{
t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
__DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
}
/**
* t4_tp_tm_pio_read - Read TP TM PIO registers
* @adap: the adapter
* @buff: where the indirect register values are written
* @nregs: how many indirect registers to read
* @start_index: index of first indirect register to read
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Read TP TM PIO Registers
**/
void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
u32 start_index, bool sleep_ok)
{
t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
nregs, start_index, 1, sleep_ok);
}
/**
* t4_tp_mib_read - Read TP MIB registers
* @adap: the adapter
* @buff: where the indirect register values are written
* @nregs: how many indirect registers to read
* @start_index: index of first indirect register to read
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Read TP MIB Registers
**/
void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
bool sleep_ok)
{
t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
start_index, 1, sleep_ok);
}
/**
* t4_read_rss_key - read the global RSS key
* @adap: the adapter
* @key: 10-entry array holding the 320-bit RSS key
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Reads the global 320-bit RSS key.
*/
void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
{
t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
}
/**
* t4_write_rss_key - program one of the RSS keys
* @adap: the adapter
* @key: 10-entry array holding the 320-bit RSS key
* @idx: which RSS key to write
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Writes one of the RSS keys with the given 320-bit value. If @idx is
* 0..15 the corresponding entry in the RSS key table is written,
* otherwise the global RSS key is written.
*/
void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
bool sleep_ok)
{
u8 rss_key_addr_cnt = 16;
u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
/*
* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
* allows access to key addresses 16-63 by using KeyWrAddrX
* as index[5:4](upper 2) into key table
*/
if ((chip_id(adap) > CHELSIO_T5) &&
(vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
rss_key_addr_cnt = 32;
t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
if (idx >= 0 && idx < rss_key_addr_cnt) {
if (rss_key_addr_cnt > 16)
t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
vrt | V_KEYWRADDRX(idx >> 4) |
V_T6_VFWRADDR(idx) | F_KEYWREN);
else
t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
vrt| V_KEYWRADDR(idx) | F_KEYWREN);
}
}
/**
* t4_read_rss_pf_config - read PF RSS Configuration Table
* @adapter: the adapter
* @index: the entry in the PF RSS table to read
* @valp: where to store the returned value
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Reads the PF RSS Configuration Table at the specified index and returns
* the value found there.
*/
void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
u32 *valp, bool sleep_ok)
{
t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
}
/**
* t4_write_rss_pf_config - write PF RSS Configuration Table
* @adapter: the adapter
* @index: the entry in the VF RSS table to read
* @val: the value to store
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Writes the PF RSS Configuration Table at the specified index with the
* specified value.
*/
void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
u32 val, bool sleep_ok)
{
t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
sleep_ok);
}
/**
* t4_read_rss_vf_config - read VF RSS Configuration Table
* @adapter: the adapter
* @index: the entry in the VF RSS table to read
* @vfl: where to store the returned VFL
* @vfh: where to store the returned VFH
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Reads the VF RSS Configuration Table at the specified index and returns
* the (VFL, VFH) values found there.
*/
void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
u32 *vfl, u32 *vfh, bool sleep_ok)
{
u32 vrt, mask, data;
if (chip_id(adapter) <= CHELSIO_T5) {
mask = V_VFWRADDR(M_VFWRADDR);
data = V_VFWRADDR(index);
} else {
mask = V_T6_VFWRADDR(M_T6_VFWRADDR);
data = V_T6_VFWRADDR(index);
}
/*
* Request that the index'th VF Table values be read into VFL/VFH.
*/
vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
vrt |= data | F_VFRDEN;
t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
/*
* Grab the VFL/VFH values ...
*/
t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
}
/**
* t4_write_rss_vf_config - write VF RSS Configuration Table
*
* @adapter: the adapter
* @index: the entry in the VF RSS table to write
* @vfl: the VFL to store
* @vfh: the VFH to store
*
* Writes the VF RSS Configuration Table at the specified index with the
* specified (VFL, VFH) values.
*/
void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
u32 vfl, u32 vfh, bool sleep_ok)
{
u32 vrt, mask, data;
if (chip_id(adapter) <= CHELSIO_T5) {
mask = V_VFWRADDR(M_VFWRADDR);
data = V_VFWRADDR(index);
} else {
mask = V_T6_VFWRADDR(M_T6_VFWRADDR);
data = V_T6_VFWRADDR(index);
}
/*
* Load up VFL/VFH with the values to be written ...
*/
t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
/*
* Write the VFL/VFH into the VF Table at index'th location.
*/
vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
vrt |= data | F_VFRDEN;
t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
}
/**
* t4_read_rss_pf_map - read PF RSS Map
* @adapter: the adapter
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Reads the PF RSS Map register and returns its value.
*/
u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
{
u32 pfmap;
t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
return pfmap;
}
/**
* t4_write_rss_pf_map - write PF RSS Map
* @adapter: the adapter
* @pfmap: PF RSS Map value
*
* Writes the specified value to the PF RSS Map register.
*/
void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
{
t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
}
/**
* t4_read_rss_pf_mask - read PF RSS Mask
* @adapter: the adapter
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Reads the PF RSS Mask register and returns its value.
*/
u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
{
u32 pfmask;
t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
return pfmask;
}
/**
* t4_write_rss_pf_mask - write PF RSS Mask
* @adapter: the adapter
* @pfmask: PF RSS Mask value
*
* Writes the specified value to the PF RSS Mask register.
*/
void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
{
t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
}
/**
* t4_tp_get_tcp_stats - read TP's TCP MIB counters
* @adap: the adapter
* @v4: holds the TCP/IP counter values
* @v6: holds the TCP/IPv6 counter values
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
* Either @v4 or @v6 may be %NULL to skip the corresponding stats.
*/
void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
struct tp_tcp_stats *v6, bool sleep_ok)
{
u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
#define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
#define STAT(x) val[STAT_IDX(x)]
#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
if (v4) {
t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
A_TP_MIB_TCP_OUT_RST, sleep_ok);
v4->tcp_out_rsts = STAT(OUT_RST);
v4->tcp_in_segs = STAT64(IN_SEG);
v4->tcp_out_segs = STAT64(OUT_SEG);
v4->tcp_retrans_segs = STAT64(RXT_SEG);
}
if (v6) {
t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
v6->tcp_out_rsts = STAT(OUT_RST);
v6->tcp_in_segs = STAT64(IN_SEG);
v6->tcp_out_segs = STAT64(OUT_SEG);
v6->tcp_retrans_segs = STAT64(RXT_SEG);
}
#undef STAT64
#undef STAT
#undef STAT_IDX
}
/**
* t4_tp_get_err_stats - read TP's error MIB counters
* @adap: the adapter
* @st: holds the counter values
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Returns the values of TP's error counters.
*/
void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
bool sleep_ok)
{
int nchan = adap->chip_params->nchan;
t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
sleep_ok);
t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
sleep_ok);
t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
sleep_ok);
t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
sleep_ok);
t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
sleep_ok);
}
/**
* t4_tp_get_proxy_stats - read TP's proxy MIB counters
* @adap: the adapter
* @st: holds the counter values
*
* Returns the values of TP's proxy counters.
*/
void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
bool sleep_ok)
{
int nchan = adap->chip_params->nchan;
t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
}
/**
* t4_tp_get_cpl_stats - read TP's CPL MIB counters
* @adap: the adapter
* @st: holds the counter values
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Returns the values of TP's CPL counters.
*/
void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
bool sleep_ok)
{
int nchan = adap->chip_params->nchan;
t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
}
/**
* t4_tp_get_rdma_stats - read TP's RDMA MIB counters
* @adap: the adapter
* @st: holds the counter values
*
* Returns the values of TP's RDMA counters.
*/
void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
bool sleep_ok)
{
t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
sleep_ok);
}
/**
* t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
* @adap: the adapter
* @idx: the port index
* @st: holds the counter values
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Returns the values of TP's FCoE counters for the selected port.
*/
void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
struct tp_fcoe_stats *st, bool sleep_ok)
{
u32 val[2];
t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
sleep_ok);
t4_tp_mib_read(adap, &st->frames_drop, 1,
A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
sleep_ok);
st->octets_ddp = ((u64)val[0] << 32) | val[1];
}
/**
* t4_get_usm_stats - read TP's non-TCP DDP MIB counters
* @adap: the adapter
* @st: holds the counter values
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Returns the values of TP's counters for non-TCP directly-placed packets.
*/
void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
bool sleep_ok)
{
u32 val[4];
t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
st->frames = val[0];
st->drops = val[1];
st->octets = ((u64)val[2] << 32) | val[3];
}
/**
* t4_read_mtu_tbl - returns the values in the HW path MTU table
* @adap: the adapter
* @mtus: where to store the MTU values
* @mtu_log: where to store the MTU base-2 log (may be %NULL)
*
* Reads the HW path MTU table.
*/
void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
{
u32 v;
int i;
for (i = 0; i < NMTUS; ++i) {
t4_write_reg(adap, A_TP_MTU_TABLE,
V_MTUINDEX(0xff) | V_MTUVALUE(i));
v = t4_read_reg(adap, A_TP_MTU_TABLE);
mtus[i] = G_MTUVALUE(v);
if (mtu_log)
mtu_log[i] = G_MTUWIDTH(v);
}
}
/**
* t4_read_cong_tbl - reads the congestion control table
* @adap: the adapter
* @incr: where to store the alpha values
*
* Reads the additive increments programmed into the HW congestion
* control table.
*/
void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
{
unsigned int mtu, w;
for (mtu = 0; mtu < NMTUS; ++mtu)
for (w = 0; w < NCCTRL_WIN; ++w) {
t4_write_reg(adap, A_TP_CCTRL_TABLE,
V_ROWINDEX(0xffff) | (mtu << 5) | w);
incr[mtu][w] = (u16)t4_read_reg(adap,
A_TP_CCTRL_TABLE) & 0x1fff;
}
}
/**
* t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
* @adap: the adapter
* @addr: the indirect TP register address
* @mask: specifies the field within the register to modify
* @val: new value for the field
*
* Sets a field of an indirect TP register to the given value.
*/
void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
unsigned int mask, unsigned int val)
{
t4_write_reg(adap, A_TP_PIO_ADDR, addr);
val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
t4_write_reg(adap, A_TP_PIO_DATA, val);
}
/**
* init_cong_ctrl - initialize congestion control parameters
* @a: the alpha values for congestion control
* @b: the beta values for congestion control
*
* Initialize the congestion control parameters.
*/
static void init_cong_ctrl(unsigned short *a, unsigned short *b)
{
a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
a[9] = 2;
a[10] = 3;
a[11] = 4;
a[12] = 5;
a[13] = 6;
a[14] = 7;
a[15] = 8;
a[16] = 9;
a[17] = 10;
a[18] = 14;
a[19] = 17;
a[20] = 21;
a[21] = 25;
a[22] = 30;
a[23] = 35;
a[24] = 45;
a[25] = 60;
a[26] = 80;
a[27] = 100;
a[28] = 200;
a[29] = 300;
a[30] = 400;
a[31] = 500;
b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
b[9] = b[10] = 1;
b[11] = b[12] = 2;
b[13] = b[14] = b[15] = b[16] = 3;
b[17] = b[18] = b[19] = b[20] = b[21] = 4;
b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
b[28] = b[29] = 6;
b[30] = b[31] = 7;
}
/* The minimum additive increment value for the congestion control table */
#define CC_MIN_INCR 2U
/**
* t4_load_mtus - write the MTU and congestion control HW tables
* @adap: the adapter
* @mtus: the values for the MTU table
* @alpha: the values for the congestion control alpha parameter
* @beta: the values for the congestion control beta parameter
*
* Write the HW MTU table with the supplied MTUs and the high-speed
* congestion control table with the supplied alpha, beta, and MTUs.
* We write the two tables together because the additive increments
* depend on the MTUs.
*/
void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
const unsigned short *alpha, const unsigned short *beta)
{
static const unsigned int avg_pkts[NCCTRL_WIN] = {
2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
28672, 40960, 57344, 81920, 114688, 163840, 229376
};
unsigned int i, w;
for (i = 0; i < NMTUS; ++i) {
unsigned int mtu = mtus[i];
unsigned int log2 = fls(mtu);
if (!(mtu & ((1 << log2) >> 2))) /* round */
log2--;
t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
for (w = 0; w < NCCTRL_WIN; ++w) {
unsigned int inc;
inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
CC_MIN_INCR);
t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
(w << 16) | (beta[w] << 13) | inc);
}
}
}
/**
* t4_set_pace_tbl - set the pace table
* @adap: the adapter
* @pace_vals: the pace values in microseconds
* @start: index of the first entry in the HW pace table to set
* @n: how many entries to set
*
* Sets (a subset of the) HW pace table.
*/
int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
unsigned int start, unsigned int n)
{
unsigned int vals[NTX_SCHED], i;
unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
if (n > NTX_SCHED)
return -ERANGE;
/* convert values from us to dack ticks, rounding to closest value */
for (i = 0; i < n; i++, pace_vals++) {
vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
if (vals[i] > 0x7ff)
return -ERANGE;
if (*pace_vals && vals[i] == 0)
return -ERANGE;
}
for (i = 0; i < n; i++, start++)
t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
return 0;
}
/**
* t4_set_sched_bps - set the bit rate for a HW traffic scheduler
* @adap: the adapter
* @kbps: target rate in Kbps
* @sched: the scheduler index
*
* Configure a Tx HW scheduler for the target rate.
*/
int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
{
unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
unsigned int clk = adap->params.vpd.cclk * 1000;
unsigned int selected_cpt = 0, selected_bpt = 0;
if (kbps > 0) {
kbps *= 125; /* -> bytes */
for (cpt = 1; cpt <= 255; cpt++) {
tps = clk / cpt;
bpt = (kbps + tps / 2) / tps;
if (bpt > 0 && bpt <= 255) {
v = bpt * tps;
delta = v >= kbps ? v - kbps : kbps - v;
if (delta < mindelta) {
mindelta = delta;
selected_cpt = cpt;
selected_bpt = bpt;
}
} else if (selected_cpt)
break;
}
if (!selected_cpt)
return -EINVAL;
}
t4_write_reg(adap, A_TP_TM_PIO_ADDR,
A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
if (sched & 1)
v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
else
v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
return 0;
}
/**
* t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
* @adap: the adapter
* @sched: the scheduler index
* @ipg: the interpacket delay in tenths of nanoseconds
*
* Set the interpacket delay for a HW packet rate scheduler.
*/
int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
{
unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
/* convert ipg to nearest number of core clocks */
ipg *= core_ticks_per_usec(adap);
ipg = (ipg + 5000) / 10000;
if (ipg > M_TXTIMERSEPQ0)
return -EINVAL;
t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
if (sched & 1)
v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
else
v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
t4_read_reg(adap, A_TP_TM_PIO_DATA);
return 0;
}
/*
* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
* clocks. The formula is
*
* bytes/s = bytes256 * 256 * ClkFreq / 4096
*
* which is equivalent to
*
* bytes/s = 62.5 * bytes256 * ClkFreq_ms
*/
static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
{
u64 v = (u64)bytes256 * adap->params.vpd.cclk;
return v * 62 + v / 2;
}
/**
* t4_get_chan_txrate - get the current per channel Tx rates
* @adap: the adapter
* @nic_rate: rates for NIC traffic
* @ofld_rate: rates for offloaded traffic
*
* Return the current Tx rates in bytes/s for NIC and offloaded traffic
* for each channel.
*/
void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
{
u32 v;
v = t4_read_reg(adap, A_TP_TX_TRATE);
nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
if (adap->chip_params->nchan > 2) {
nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
}
v = t4_read_reg(adap, A_TP_TX_ORATE);
ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
if (adap->chip_params->nchan > 2) {
ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
}
}
/**
* t4_set_trace_filter - configure one of the tracing filters
* @adap: the adapter
* @tp: the desired trace filter parameters
* @idx: which filter to configure
* @enable: whether to enable or disable the filter
*
* Configures one of the tracing filters available in HW. If @tp is %NULL
* it indicates that the filter is already written in the register and it
* just needs to be enabled or disabled.
*/
int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
int idx, int enable)
{
int i, ofst = idx * 4;
u32 data_reg, mask_reg, cfg;
u32 multitrc = F_TRCMULTIFILTER;
u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
if (idx < 0 || idx >= NTRACE)
return -EINVAL;
if (tp == NULL || !enable) {
t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
enable ? en : 0);
return 0;
}
/*
* TODO - After T4 data book is updated, specify the exact
* section below.
*
* See T4 data book - MPS section for a complete description
* of the below if..else handling of A_MPS_TRC_CFG register
* value.
*/
cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
if (cfg & F_TRCMULTIFILTER) {
/*
* If multiple tracers are enabled, then maximum
* capture size is 2.5KB (FIFO size of a single channel)
* minus 2 flits for CPL_TRACE_PKT header.
*/
if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
return -EINVAL;
} else {
/*
* If multiple tracers are disabled, to avoid deadlocks
* maximum packet capture size of 9600 bytes is recommended.
* Also in this mode, only trace0 can be enabled and running.
*/
multitrc = 0;
if (tp->snap_len > 9600 || idx)
return -EINVAL;
}
if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
tp->min_len > M_TFMINPKTSIZE)
return -EINVAL;
/* stop the tracer we'll be changing */
t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
t4_write_reg(adap, data_reg, tp->data[i]);
t4_write_reg(adap, mask_reg, ~tp->mask[i]);
}
t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
V_TFCAPTUREMAX(tp->snap_len) |
V_TFMINPKTSIZE(tp->min_len));
t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
(is_t4(adap) ?
V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
return 0;
}
/**
* t4_get_trace_filter - query one of the tracing filters
* @adap: the adapter
* @tp: the current trace filter parameters
* @idx: which trace filter to query
* @enabled: non-zero if the filter is enabled
*
* Returns the current settings of one of the HW tracing filters.
*/
void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
int *enabled)
{
u32 ctla, ctlb;
int i, ofst = idx * 4;
u32 data_reg, mask_reg;
ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
if (is_t4(adap)) {
*enabled = !!(ctla & F_TFEN);
tp->port = G_TFPORT(ctla);
tp->invert = !!(ctla & F_TFINVERTMATCH);
} else {
*enabled = !!(ctla & F_T5_TFEN);
tp->port = G_T5_TFPORT(ctla);
tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
}
tp->snap_len = G_TFCAPTUREMAX(ctlb);
tp->min_len = G_TFMINPKTSIZE(ctlb);
tp->skip_ofst = G_TFOFFSET(ctla);
tp->skip_len = G_TFLENGTH(ctla);
ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
tp->mask[i] = ~t4_read_reg(adap, mask_reg);
tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
}
}
/**
* t4_pmtx_get_stats - returns the HW stats from PMTX
* @adap: the adapter
* @cnt: where to store the count statistics
* @cycles: where to store the cycle statistics
*
* Returns performance statistics from PMTX.
*/
void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
{
int i;
u32 data[2];
for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
if (is_t4(adap))
cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
else {
t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
A_PM_TX_DBG_DATA, data, 2,
A_PM_TX_DBG_STAT_MSB);
cycles[i] = (((u64)data[0] << 32) | data[1]);
}
}
}
/**
* t4_pmrx_get_stats - returns the HW stats from PMRX
* @adap: the adapter
* @cnt: where to store the count statistics
* @cycles: where to store the cycle statistics
*
* Returns performance statistics from PMRX.
*/
void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
{
int i;
u32 data[2];
for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
if (is_t4(adap)) {
cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
} else {
t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
A_PM_RX_DBG_DATA, data, 2,
A_PM_RX_DBG_STAT_MSB);
cycles[i] = (((u64)data[0] << 32) | data[1]);
}
}
}
/**
* t4_get_mps_bg_map - return the buffer groups associated with a port
* @adap: the adapter
* @idx: the port index
*
* Returns a bitmap indicating which MPS buffer groups are associated
* with the given port. Bit i is set if buffer group i is used by the
* port.
*/
static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
{
u32 n;
if (adap->params.mps_bg_map)
return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
if (n == 0)
return idx == 0 ? 0xf : 0;
if (n == 1 && chip_id(adap) <= CHELSIO_T5)
return idx < 2 ? (3 << (2 * idx)) : 0;
return 1 << idx;
}
/*
* TP RX e-channels associated with the port.
*/
static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
{
u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
if (n == 0)
return idx == 0 ? 0xf : 0;
if (n == 1 && chip_id(adap) <= CHELSIO_T5)
return idx < 2 ? (3 << (2 * idx)) : 0;
return 1 << idx;
}
/**
* t4_get_port_type_description - return Port Type string description
* @port_type: firmware Port Type enumeration
*/
const char *t4_get_port_type_description(enum fw_port_type port_type)
{
static const char *const port_type_description[] = {
"Fiber_XFI",
"Fiber_XAUI",
"BT_SGMII",
"BT_XFI",
"BT_XAUI",
"KX4",
"CX4",
"KX",
"KR",
"SFP",
"BP_AP",
"BP4_AP",
"QSFP_10G",
"QSA",
"QSFP",
"BP40_BA",
"KR4_100G",
"CR4_QSFP",
"CR_QSFP",
"CR2_QSFP",
"SFP28",
"KR_SFP28",
};
if (port_type < ARRAY_SIZE(port_type_description))
return port_type_description[port_type];
return "UNKNOWN";
}
/**
* t4_get_port_stats_offset - collect port stats relative to a previous
* snapshot
* @adap: The adapter
* @idx: The port
* @stats: Current stats to fill
* @offset: Previous stats snapshot
*/
void t4_get_port_stats_offset(struct adapter *adap, int idx,
struct port_stats *stats,
struct port_stats *offset)
{
u64 *s, *o;
int i;
t4_get_port_stats(adap, idx, stats);
for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
i < (sizeof(struct port_stats)/sizeof(u64)) ;
i++, s++, o++)
*s -= *o;
}
/**
* t4_get_port_stats - collect port statistics
* @adap: the adapter
* @idx: the port index
* @p: the stats structure to fill
*
* Collect statistics related to the given port from HW.
*/
void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
{
u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
#define GET_STAT(name) \
t4_read_reg64(adap, \
(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
p->tx_pause = GET_STAT(TX_PORT_PAUSE);
p->tx_octets = GET_STAT(TX_PORT_BYTES);
p->tx_frames = GET_STAT(TX_PORT_FRAMES);
p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
p->tx_frames_64 = GET_STAT(TX_PORT_64B);
p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
p->tx_drop = GET_STAT(TX_PORT_DROP);
p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
if (chip_id(adap) >= CHELSIO_T5) {
if (stat_ctl & F_COUNTPAUSESTATTX) {
p->tx_frames -= p->tx_pause;
p->tx_octets -= p->tx_pause * 64;
}
if (stat_ctl & F_COUNTPAUSEMCTX)
p->tx_mcast_frames -= p->tx_pause;
}
p->rx_pause = GET_STAT(RX_PORT_PAUSE);
p->rx_octets = GET_STAT(RX_PORT_BYTES);
p->rx_frames = GET_STAT(RX_PORT_FRAMES);
p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
p->rx_frames_64 = GET_STAT(RX_PORT_64B);
p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
if (chip_id(adap) >= CHELSIO_T5) {
if (stat_ctl & F_COUNTPAUSESTATRX) {
p->rx_frames -= p->rx_pause;
p->rx_octets -= p->rx_pause * 64;
}
if (stat_ctl & F_COUNTPAUSEMCRX)
p->rx_mcast_frames -= p->rx_pause;
}
p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
#undef GET_STAT
#undef GET_STAT_COM
}
/**
* t4_get_lb_stats - collect loopback port statistics
* @adap: the adapter
* @idx: the loopback port index
* @p: the stats structure to fill
*
* Return HW statistics for the given loopback port.
*/
void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
{
u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
#define GET_STAT(name) \
t4_read_reg64(adap, \
(is_t4(adap) ? \
PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
p->octets = GET_STAT(BYTES);
p->frames = GET_STAT(FRAMES);
p->bcast_frames = GET_STAT(BCAST);
p->mcast_frames = GET_STAT(MCAST);
p->ucast_frames = GET_STAT(UCAST);
p->error_frames = GET_STAT(ERROR);
p->frames_64 = GET_STAT(64B);
p->frames_65_127 = GET_STAT(65B_127B);
p->frames_128_255 = GET_STAT(128B_255B);
p->frames_256_511 = GET_STAT(256B_511B);
p->frames_512_1023 = GET_STAT(512B_1023B);
p->frames_1024_1518 = GET_STAT(1024B_1518B);
p->frames_1519_max = GET_STAT(1519B_MAX);
p->drop = GET_STAT(DROP_FRAMES);
p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
#undef GET_STAT
#undef GET_STAT_COM
}
/**
* t4_wol_magic_enable - enable/disable magic packet WoL
* @adap: the adapter
* @port: the physical port index
* @addr: MAC address expected in magic packets, %NULL to disable
*
* Enables/disables magic packet wake-on-LAN for the selected port.
*/
void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
const u8 *addr)
{
u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
if (is_t4(adap)) {
mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
} else {
mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
}
if (addr) {
t4_write_reg(adap, mag_id_reg_l,
(addr[2] << 24) | (addr[3] << 16) |
(addr[4] << 8) | addr[5]);
t4_write_reg(adap, mag_id_reg_h,
(addr[0] << 8) | addr[1]);
}
t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
V_MAGICEN(addr != NULL));
}
/**
* t4_wol_pat_enable - enable/disable pattern-based WoL
* @adap: the adapter
* @port: the physical port index
* @map: bitmap of which HW pattern filters to set
* @mask0: byte mask for bytes 0-63 of a packet
* @mask1: byte mask for bytes 64-127 of a packet
* @crc: Ethernet CRC for selected bytes
* @enable: enable/disable switch
*
* Sets the pattern filters indicated in @map to mask out the bytes
* specified in @mask0/@mask1 in received packets and compare the CRC of
* the resulting packet against @crc. If @enable is %true pattern-based
* WoL is enabled, otherwise disabled.
*/
int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
u64 mask0, u64 mask1, unsigned int crc, bool enable)
{
int i;
u32 port_cfg_reg;
if (is_t4(adap))
port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
else
port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
if (!enable) {
t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
return 0;
}
if (map > 0xff)
return -EINVAL;
#define EPIO_REG(name) \
(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
t4_write_reg(adap, EPIO_REG(DATA2), mask1);
t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
if (!(map & 1))
continue;
/* write byte masks */
t4_write_reg(adap, EPIO_REG(DATA0), mask0);
t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
t4_read_reg(adap, EPIO_REG(OP)); /* flush */
if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
return -ETIMEDOUT;
/* write CRC */
t4_write_reg(adap, EPIO_REG(DATA0), crc);
t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
t4_read_reg(adap, EPIO_REG(OP)); /* flush */
if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
return -ETIMEDOUT;
}
#undef EPIO_REG
t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
return 0;
}
/* t4_mk_filtdelwr - create a delete filter WR
* @ftid: the filter ID
* @wr: the filter work request to populate
* @qid: ingress queue to receive the delete notification
*
* Creates a filter work request to delete the supplied filter. If @qid is
* negative the delete notification is suppressed.
*/
void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
{
memset(wr, 0, sizeof(*wr));
wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
V_FW_FILTER_WR_NOREPLY(qid < 0));
wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
if (qid >= 0)
wr->rx_chan_rx_rpl_iq =
cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
}
#define INIT_CMD(var, cmd, rd_wr) do { \
(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
F_FW_CMD_REQUEST | \
F_FW_CMD_##rd_wr); \
(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
} while (0)
int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
u32 addr, u32 val)
{
u32 ldst_addrspace;
struct fw_ldst_cmd c;
memset(&c, 0, sizeof(c));
ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_WRITE |
ldst_addrspace);
c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
c.u.addrval.addr = cpu_to_be32(addr);
c.u.addrval.val = cpu_to_be32(val);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_mdio_rd - read a PHY register through MDIO
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @phy_addr: the PHY address
* @mmd: the PHY MMD to access (0 for clause 22 PHYs)
* @reg: the register to read
* @valp: where to store the value
*
* Issues a FW command through the given mailbox to read a PHY register.
*/
int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
unsigned int mmd, unsigned int reg, unsigned int *valp)
{
int ret;
u32 ldst_addrspace;
struct fw_ldst_cmd c;
memset(&c, 0, sizeof(c));
ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ |
ldst_addrspace);
c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
V_FW_LDST_CMD_MMD(mmd));
c.u.mdio.raddr = cpu_to_be16(reg);
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret == 0)
*valp = be16_to_cpu(c.u.mdio.rval);
return ret;
}
/**
* t4_mdio_wr - write a PHY register through MDIO
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @phy_addr: the PHY address
* @mmd: the PHY MMD to access (0 for clause 22 PHYs)
* @reg: the register to write
* @valp: value to write
*
* Issues a FW command through the given mailbox to write a PHY register.
*/
int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
unsigned int mmd, unsigned int reg, unsigned int val)
{
u32 ldst_addrspace;
struct fw_ldst_cmd c;
memset(&c, 0, sizeof(c));
ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
ldst_addrspace);
c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
V_FW_LDST_CMD_MMD(mmd));
c.u.mdio.raddr = cpu_to_be16(reg);
c.u.mdio.rval = cpu_to_be16(val);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
*
* t4_sge_decode_idma_state - decode the idma state
* @adap: the adapter
* @state: the state idma is stuck in
*/
void t4_sge_decode_idma_state(struct adapter *adapter, int state)
{
static const char * const t4_decode[] = {
"IDMA_IDLE",
"IDMA_PUSH_MORE_CPL_FIFO",
"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
"Not used",
"IDMA_PHYSADDR_SEND_PCIEHDR",
"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
"IDMA_PHYSADDR_SEND_PAYLOAD",
"IDMA_SEND_FIFO_TO_IMSG",
"IDMA_FL_REQ_DATA_FL_PREP",
"IDMA_FL_REQ_DATA_FL",
"IDMA_FL_DROP",
"IDMA_FL_H_REQ_HEADER_FL",
"IDMA_FL_H_SEND_PCIEHDR",
"IDMA_FL_H_PUSH_CPL_FIFO",
"IDMA_FL_H_SEND_CPL",
"IDMA_FL_H_SEND_IP_HDR_FIRST",
"IDMA_FL_H_SEND_IP_HDR",
"IDMA_FL_H_REQ_NEXT_HEADER_FL",
"IDMA_FL_H_SEND_NEXT_PCIEHDR",
"IDMA_FL_H_SEND_IP_HDR_PADDING",
"IDMA_FL_D_SEND_PCIEHDR",
"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
"IDMA_FL_D_REQ_NEXT_DATA_FL",
"IDMA_FL_SEND_PCIEHDR",
"IDMA_FL_PUSH_CPL_FIFO",
"IDMA_FL_SEND_CPL",
"IDMA_FL_SEND_PAYLOAD_FIRST",
"IDMA_FL_SEND_PAYLOAD",
"IDMA_FL_REQ_NEXT_DATA_FL",
"IDMA_FL_SEND_NEXT_PCIEHDR",
"IDMA_FL_SEND_PADDING",
"IDMA_FL_SEND_COMPLETION_TO_IMSG",
"IDMA_FL_SEND_FIFO_TO_IMSG",
"IDMA_FL_REQ_DATAFL_DONE",
"IDMA_FL_REQ_HEADERFL_DONE",
};
static const char * const t5_decode[] = {
"IDMA_IDLE",
"IDMA_ALMOST_IDLE",
"IDMA_PUSH_MORE_CPL_FIFO",
"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
"IDMA_PHYSADDR_SEND_PCIEHDR",
"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
"IDMA_PHYSADDR_SEND_PAYLOAD",
"IDMA_SEND_FIFO_TO_IMSG",
"IDMA_FL_REQ_DATA_FL",
"IDMA_FL_DROP",
"IDMA_FL_DROP_SEND_INC",
"IDMA_FL_H_REQ_HEADER_FL",
"IDMA_FL_H_SEND_PCIEHDR",
"IDMA_FL_H_PUSH_CPL_FIFO",
"IDMA_FL_H_SEND_CPL",
"IDMA_FL_H_SEND_IP_HDR_FIRST",
"IDMA_FL_H_SEND_IP_HDR",
"IDMA_FL_H_REQ_NEXT_HEADER_FL",
"IDMA_FL_H_SEND_NEXT_PCIEHDR",
"IDMA_FL_H_SEND_IP_HDR_PADDING",
"IDMA_FL_D_SEND_PCIEHDR",
"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
"IDMA_FL_D_REQ_NEXT_DATA_FL",
"IDMA_FL_SEND_PCIEHDR",
"IDMA_FL_PUSH_CPL_FIFO",
"IDMA_FL_SEND_CPL",
"IDMA_FL_SEND_PAYLOAD_FIRST",
"IDMA_FL_SEND_PAYLOAD",
"IDMA_FL_REQ_NEXT_DATA_FL",
"IDMA_FL_SEND_NEXT_PCIEHDR",
"IDMA_FL_SEND_PADDING",
"IDMA_FL_SEND_COMPLETION_TO_IMSG",
};
static const char * const t6_decode[] = {
"IDMA_IDLE",
"IDMA_PUSH_MORE_CPL_FIFO",
"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
"IDMA_PHYSADDR_SEND_PCIEHDR",
"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
"IDMA_PHYSADDR_SEND_PAYLOAD",
"IDMA_FL_REQ_DATA_FL",
"IDMA_FL_DROP",
"IDMA_FL_DROP_SEND_INC",
"IDMA_FL_H_REQ_HEADER_FL",
"IDMA_FL_H_SEND_PCIEHDR",
"IDMA_FL_H_PUSH_CPL_FIFO",
"IDMA_FL_H_SEND_CPL",
"IDMA_FL_H_SEND_IP_HDR_FIRST",
"IDMA_FL_H_SEND_IP_HDR",
"IDMA_FL_H_REQ_NEXT_HEADER_FL",
"IDMA_FL_H_SEND_NEXT_PCIEHDR",
"IDMA_FL_H_SEND_IP_HDR_PADDING",
"IDMA_FL_D_SEND_PCIEHDR",
"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
"IDMA_FL_D_REQ_NEXT_DATA_FL",
"IDMA_FL_SEND_PCIEHDR",
"IDMA_FL_PUSH_CPL_FIFO",
"IDMA_FL_SEND_CPL",
"IDMA_FL_SEND_PAYLOAD_FIRST",
"IDMA_FL_SEND_PAYLOAD",
"IDMA_FL_REQ_NEXT_DATA_FL",
"IDMA_FL_SEND_NEXT_PCIEHDR",
"IDMA_FL_SEND_PADDING",
"IDMA_FL_SEND_COMPLETION_TO_IMSG",
};
static const u32 sge_regs[] = {
A_SGE_DEBUG_DATA_LOW_INDEX_2,
A_SGE_DEBUG_DATA_LOW_INDEX_3,
A_SGE_DEBUG_DATA_HIGH_INDEX_10,
};
const char * const *sge_idma_decode;
int sge_idma_decode_nstates;
int i;
unsigned int chip_version = chip_id(adapter);
/* Select the right set of decode strings to dump depending on the
* adapter chip type.
*/
switch (chip_version) {
case CHELSIO_T4:
sge_idma_decode = (const char * const *)t4_decode;
sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
break;
case CHELSIO_T5:
sge_idma_decode = (const char * const *)t5_decode;
sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
break;
case CHELSIO_T6:
sge_idma_decode = (const char * const *)t6_decode;
sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
break;
default:
CH_ERR(adapter, "Unsupported chip version %d\n", chip_version);
return;
}
if (state < sge_idma_decode_nstates)
CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
else
CH_WARN(adapter, "idma state %d unknown\n", state);
for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
CH_WARN(adapter, "SGE register %#x value %#x\n",
sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
}
/**
* t4_sge_ctxt_flush - flush the SGE context cache
* @adap: the adapter
* @mbox: mailbox to use for the FW command
*
* Issues a FW command through the given mailbox to flush the
* SGE context cache.
*/
int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
{
int ret;
u32 ldst_addrspace;
struct fw_ldst_cmd c;
memset(&c, 0, sizeof(c));
ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ |
ldst_addrspace);
c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
return ret;
}
/**
* t4_fw_hello - establish communication with FW
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @evt_mbox: mailbox to receive async FW events
* @master: specifies the caller's willingness to be the device master
* @state: returns the current device state (if non-NULL)
*
* Issues a command to establish communication with FW. Returns either
* an error (negative integer) or the mailbox of the Master PF.
*/
int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
enum dev_master master, enum dev_state *state)
{
int ret;
struct fw_hello_cmd c;
u32 v;
unsigned int master_mbox;
int retries = FW_CMD_HELLO_RETRIES;
retry:
memset(&c, 0, sizeof(c));
INIT_CMD(c, HELLO, WRITE);
c.err_to_clearinit = cpu_to_be32(
V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
mbox : M_FW_HELLO_CMD_MBMASTER) |
V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
F_FW_HELLO_CMD_CLEARINIT);
/*
* Issue the HELLO command to the firmware. If it's not successful
* but indicates that we got a "busy" or "timeout" condition, retry
* the HELLO until we exhaust our retry limit. If we do exceed our
* retry limit, check to see if the firmware left us any error
* information and report that if so ...
*/
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret != FW_SUCCESS) {
if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
goto retry;
if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
t4_report_fw_error(adap);
return ret;
}
v = be32_to_cpu(c.err_to_clearinit);
master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
if (state) {
if (v & F_FW_HELLO_CMD_ERR)
*state = DEV_STATE_ERR;
else if (v & F_FW_HELLO_CMD_INIT)
*state = DEV_STATE_INIT;
else
*state = DEV_STATE_UNINIT;
}
/*
* If we're not the Master PF then we need to wait around for the
* Master PF Driver to finish setting up the adapter.
*
* Note that we also do this wait if we're a non-Master-capable PF and
* there is no current Master PF; a Master PF may show up momentarily
* and we wouldn't want to fail pointlessly. (This can happen when an
* OS loads lots of different drivers rapidly at the same time). In
* this case, the Master PF returned by the firmware will be
* M_PCIE_FW_MASTER so the test below will work ...
*/
if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
master_mbox != mbox) {
int waiting = FW_CMD_HELLO_TIMEOUT;
/*
* Wait for the firmware to either indicate an error or
* initialized state. If we see either of these we bail out
* and report the issue to the caller. If we exhaust the
* "hello timeout" and we haven't exhausted our retries, try
* again. Otherwise bail with a timeout error.
*/
for (;;) {
u32 pcie_fw;
msleep(50);
waiting -= 50;
/*
* If neither Error nor Initialialized are indicated
* by the firmware keep waiting till we exhaust our
* timeout ... and then retry if we haven't exhausted
* our retries ...
*/
pcie_fw = t4_read_reg(adap, A_PCIE_FW);
if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
if (waiting <= 0) {
if (retries-- > 0)
goto retry;
return -ETIMEDOUT;
}
continue;
}
/*
* We either have an Error or Initialized condition
* report errors preferentially.
*/
if (state) {
if (pcie_fw & F_PCIE_FW_ERR)
*state = DEV_STATE_ERR;
else if (pcie_fw & F_PCIE_FW_INIT)
*state = DEV_STATE_INIT;
}
/*
* If we arrived before a Master PF was selected and
* there's not a valid Master PF, grab its identity
* for our caller.
*/
if (master_mbox == M_PCIE_FW_MASTER &&
(pcie_fw & F_PCIE_FW_MASTER_VLD))
master_mbox = G_PCIE_FW_MASTER(pcie_fw);
break;
}
}
return master_mbox;
}
/**
* t4_fw_bye - end communication with FW
* @adap: the adapter
* @mbox: mailbox to use for the FW command
*
* Issues a command to terminate communication with FW.
*/
int t4_fw_bye(struct adapter *adap, unsigned int mbox)
{
struct fw_bye_cmd c;
memset(&c, 0, sizeof(c));
INIT_CMD(c, BYE, WRITE);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_fw_reset - issue a reset to FW
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @reset: specifies the type of reset to perform
*
* Issues a reset command of the specified type to FW.
*/
int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
{
struct fw_reset_cmd c;
memset(&c, 0, sizeof(c));
INIT_CMD(c, RESET, WRITE);
c.val = cpu_to_be32(reset);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_fw_halt - issue a reset/halt to FW and put uP into RESET
* @adap: the adapter
* @mbox: mailbox to use for the FW RESET command (if desired)
* @force: force uP into RESET even if FW RESET command fails
*
* Issues a RESET command to firmware (if desired) with a HALT indication
* and then puts the microprocessor into RESET state. The RESET command
* will only be issued if a legitimate mailbox is provided (mbox <=
* M_PCIE_FW_MASTER).
*
* This is generally used in order for the host to safely manipulate the
* adapter without fear of conflicting with whatever the firmware might
* be doing. The only way out of this state is to RESTART the firmware
* ...
*/
int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
{
int ret = 0;
/*
* If a legitimate mailbox is provided, issue a RESET command
* with a HALT indication.
*/
if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
struct fw_reset_cmd c;
memset(&c, 0, sizeof(c));
INIT_CMD(c, RESET, WRITE);
c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/*
* Normally we won't complete the operation if the firmware RESET
* command fails but if our caller insists we'll go ahead and put the
* uP into RESET. This can be useful if the firmware is hung or even
* missing ... We'll have to take the risk of putting the uP into
* RESET without the cooperation of firmware in that case.
*
* We also force the firmware's HALT flag to be on in case we bypassed
* the firmware RESET command above or we're dealing with old firmware
* which doesn't have the HALT capability. This will serve as a flag
* for the incoming firmware to know that it's coming out of a HALT
* rather than a RESET ... if it's new enough to understand that ...
*/
if (ret == 0 || force) {
t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
F_PCIE_FW_HALT);
}
/*
* And we always return the result of the firmware RESET command
* even when we force the uP into RESET ...
*/
return ret;
}
/**
* t4_fw_restart - restart the firmware by taking the uP out of RESET
* @adap: the adapter
*
* Restart firmware previously halted by t4_fw_halt(). On successful
* return the previous PF Master remains as the new PF Master and there
* is no need to issue a new HELLO command, etc.
*/
int t4_fw_restart(struct adapter *adap, unsigned int mbox)
{
int ms;
t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
return FW_SUCCESS;
msleep(100);
ms += 100;
}
return -ETIMEDOUT;
}
/**
* t4_fw_upgrade - perform all of the steps necessary to upgrade FW
* @adap: the adapter
* @mbox: mailbox to use for the FW RESET command (if desired)
* @fw_data: the firmware image to write
* @size: image size
* @force: force upgrade even if firmware doesn't cooperate
*
* Perform all of the steps necessary for upgrading an adapter's
* firmware image. Normally this requires the cooperation of the
* existing firmware in order to halt all existing activities
* but if an invalid mailbox token is passed in we skip that step
* (though we'll still put the adapter microprocessor into RESET in
* that case).
*
* On successful return the new firmware will have been loaded and
* the adapter will have been fully RESET losing all previous setup
* state. On unsuccessful return the adapter may be completely hosed ...
* positive errno indicates that the adapter is ~probably~ intact, a
* negative errno indicates that things are looking bad ...
*/
int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
const u8 *fw_data, unsigned int size, int force)
{
const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
unsigned int bootstrap =
be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
int ret;
if (!t4_fw_matches_chip(adap, fw_hdr))
return -EINVAL;
if (!bootstrap) {
ret = t4_fw_halt(adap, mbox, force);
if (ret < 0 && !force)
return ret;
}
ret = t4_load_fw(adap, fw_data, size);
if (ret < 0 || bootstrap)
return ret;
return t4_fw_restart(adap, mbox);
}
/**
* t4_fw_initialize - ask FW to initialize the device
* @adap: the adapter
* @mbox: mailbox to use for the FW command
*
* Issues a command to FW to partially initialize the device. This
* performs initialization that generally doesn't depend on user input.
*/
int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
{
struct fw_initialize_cmd c;
memset(&c, 0, sizeof(c));
INIT_CMD(c, INITIALIZE, WRITE);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_query_params_rw - query FW or device parameters
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF
* @vf: the VF
* @nparams: the number of parameters
* @params: the parameter names
* @val: the parameter values
* @rw: Write and read flag
*
* Reads the value of FW or device parameters. Up to 7 parameters can be
* queried at once.
*/
int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int nparams, const u32 *params,
u32 *val, int rw)
{
int i, ret;
struct fw_params_cmd c;
__be32 *p = &c.param[0].mnem;
if (nparams > 7)
return -EINVAL;
memset(&c, 0, sizeof(c));
c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ |
V_FW_PARAMS_CMD_PFN(pf) |
V_FW_PARAMS_CMD_VFN(vf));
c.retval_len16 = cpu_to_be32(FW_LEN16(c));
for (i = 0; i < nparams; i++) {
*p++ = cpu_to_be32(*params++);
if (rw)
*p = cpu_to_be32(*(val + i));
p++;
}
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret == 0)
for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
*val++ = be32_to_cpu(*p);
return ret;
}
int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int nparams, const u32 *params,
u32 *val)
{
return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
}
/**
* t4_set_params_timeout - sets FW or device parameters
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF
* @vf: the VF
* @nparams: the number of parameters
* @params: the parameter names
* @val: the parameter values
* @timeout: the timeout time
*
* Sets the value of FW or device parameters. Up to 7 parameters can be
* specified at once.
*/
int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
unsigned int pf, unsigned int vf,
unsigned int nparams, const u32 *params,
const u32 *val, int timeout)
{
struct fw_params_cmd c;
__be32 *p = &c.param[0].mnem;
if (nparams > 7)
return -EINVAL;
memset(&c, 0, sizeof(c));
c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
V_FW_PARAMS_CMD_PFN(pf) |
V_FW_PARAMS_CMD_VFN(vf));
c.retval_len16 = cpu_to_be32(FW_LEN16(c));
while (nparams--) {
*p++ = cpu_to_be32(*params++);
*p++ = cpu_to_be32(*val++);
}
return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
}
/**
* t4_set_params - sets FW or device parameters
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF
* @vf: the VF
* @nparams: the number of parameters
* @params: the parameter names
* @val: the parameter values
*
* Sets the value of FW or device parameters. Up to 7 parameters can be
* specified at once.
*/
int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int nparams, const u32 *params,
const u32 *val)
{
return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
FW_CMD_MAX_TIMEOUT);
}
/**
* t4_cfg_pfvf - configure PF/VF resource limits
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF being configured
* @vf: the VF being configured
* @txq: the max number of egress queues
* @txq_eth_ctrl: the max number of egress Ethernet or control queues
* @rxqi: the max number of interrupt-capable ingress queues
* @rxq: the max number of interruptless ingress queues
* @tc: the PCI traffic class
* @vi: the max number of virtual interfaces
* @cmask: the channel access rights mask for the PF/VF
* @pmask: the port access rights mask for the PF/VF
* @nexact: the maximum number of exact MPS filters
* @rcaps: read capabilities
* @wxcaps: write/execute capabilities
*
* Configures resource limits and capabilities for a physical or virtual
* function.
*/
int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
unsigned int rxqi, unsigned int rxq, unsigned int tc,
unsigned int vi, unsigned int cmask, unsigned int pmask,
unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
{
struct fw_pfvf_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
V_FW_PFVF_CMD_VFN(vf));
c.retval_len16 = cpu_to_be32(FW_LEN16(c));
c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
V_FW_PFVF_CMD_NIQ(rxq));
c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
V_FW_PFVF_CMD_PMASK(pmask) |
V_FW_PFVF_CMD_NEQ(txq));
c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
V_FW_PFVF_CMD_NVI(vi) |
V_FW_PFVF_CMD_NEXACTF(nexact));
c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_alloc_vi_func - allocate a virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @port: physical port associated with the VI
* @pf: the PF owning the VI
* @vf: the VF owning the VI
* @nmac: number of MAC addresses needed (1 to 5)
* @mac: the MAC addresses of the VI
* @rss_size: size of RSS table slice associated with this VI
* @portfunc: which Port Application Function MAC Address is desired
* @idstype: Intrusion Detection Type
*
* Allocates a virtual interface for the given physical port. If @mac is
* not %NULL it contains the MAC addresses of the VI as assigned by FW.
* If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
* @mac should be large enough to hold @nmac Ethernet addresses, they are
* stored consecutively so the space needed is @nmac * 6 bytes.
* Returns a negative error number or the non-negative VI id.
*/
int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
unsigned int port, unsigned int pf, unsigned int vf,
unsigned int nmac, u8 *mac, u16 *rss_size,
uint8_t *vfvld, uint16_t *vin,
unsigned int portfunc, unsigned int idstype)
{
int ret;
struct fw_vi_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC |
V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
V_FW_VI_CMD_FUNC(portfunc));
c.portid_pkd = V_FW_VI_CMD_PORTID(port);
c.nmac = nmac - 1;
if(!rss_size)
c.norss_rsssize = F_FW_VI_CMD_NORSS;
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret)
return ret;
ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
if (mac) {
memcpy(mac, c.mac, sizeof(c.mac));
switch (nmac) {
case 5:
memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
case 4:
memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
case 3:
memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
case 2:
memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
}
}
if (rss_size)
*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
if (vfvld) {
*vfvld = adap->params.viid_smt_extn_support ?
G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
G_FW_VIID_VIVLD(ret);
}
if (vin) {
*vin = adap->params.viid_smt_extn_support ?
G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
G_FW_VIID_VIN(ret);
}
return ret;
}
/**
* t4_alloc_vi - allocate an [Ethernet Function] virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @port: physical port associated with the VI
* @pf: the PF owning the VI
* @vf: the VF owning the VI
* @nmac: number of MAC addresses needed (1 to 5)
* @mac: the MAC addresses of the VI
* @rss_size: size of RSS table slice associated with this VI
*
* backwards compatible and convieniance routine to allocate a Virtual
* Interface with a Ethernet Port Application Function and Intrustion
* Detection System disabled.
*/
int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
{
return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
vfvld, vin, FW_VI_FUNC_ETH, 0);
}
/**
* t4_free_vi - free a virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the VI
* @vf: the VF owning the VI
* @viid: virtual interface identifiler
*
* Free a previously allocated virtual interface.
*/
int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int viid)
{
struct fw_vi_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_EXEC |
V_FW_VI_CMD_PFN(pf) |
V_FW_VI_CMD_VFN(vf));
c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
}
/**
* t4_set_rxmode - set Rx properties of a virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @mtu: the new MTU or -1
* @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
* @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
* @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
* @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Sets Rx properties of a virtual interface.
*/
int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
int mtu, int promisc, int all_multi, int bcast, int vlanex,
bool sleep_ok)
{
struct fw_vi_rxmode_cmd c;
/* convert to FW values */
if (mtu < 0)
mtu = M_FW_VI_RXMODE_CMD_MTU;
if (promisc < 0)
promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
if (all_multi < 0)
all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
if (bcast < 0)
bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
if (vlanex < 0)
vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
memset(&c, 0, sizeof(c));
c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
V_FW_VI_RXMODE_CMD_VIID(viid));
c.retval_len16 = cpu_to_be32(FW_LEN16(c));
c.mtu_to_vlanexen =
cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}
/**
* t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @free: if true any existing filters for this VI id are first removed
* @naddr: the number of MAC addresses to allocate filters for (up to 7)
* @addr: the MAC address(es)
* @idx: where to store the index of each allocated filter
* @hash: pointer to hash address filter bitmap
* @sleep_ok: call is allowed to sleep
*
* Allocates an exact-match filter for each of the supplied addresses and
* sets it to the corresponding address. If @idx is not %NULL it should
* have at least @naddr entries, each of which will be set to the index of
* the filter allocated for the corresponding MAC address. If a filter
* could not be allocated for an address its index is set to 0xffff.
* If @hash is not %NULL addresses that fail to allocate an exact filter
* are hashed and update the hash filter bitmap pointed at by @hash.
*
* Returns a negative error number or the number of filters allocated.
*/
int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
unsigned int viid, bool free, unsigned int naddr,
const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
{
int offset, ret = 0;
struct fw_vi_mac_cmd c;
unsigned int nfilters = 0;
unsigned int max_naddr = adap->chip_params->mps_tcam_size;
unsigned int rem = naddr;
if (naddr > max_naddr)
return -EINVAL;
for (offset = 0; offset < naddr ; /**/) {
unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
? rem
: ARRAY_SIZE(c.u.exact));
size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
u.exact[fw_naddr]), 16);
struct fw_vi_mac_exact *p;
int i;
memset(&c, 0, sizeof(c));
c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_WRITE |
V_FW_CMD_EXEC(free) |
V_FW_VI_MAC_CMD_VIID(viid));
c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
V_FW_CMD_LEN16(len16));
for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
p->valid_to_idx =
cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
}
/*
* It's okay if we run out of space in our MAC address arena.
* Some of the addresses we submit may get stored so we need
* to run through the reply to see what the results were ...
*/
ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
if (ret && ret != -FW_ENOMEM)
break;
for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
u16 index = G_FW_VI_MAC_CMD_IDX(
be16_to_cpu(p->valid_to_idx));
if (idx)
idx[offset+i] = (index >= max_naddr
? 0xffff
: index);
if (index < max_naddr)
nfilters++;
else if (hash)
*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
}
free = false;
offset += fw_naddr;
rem -= fw_naddr;
}
if (ret == 0 || ret == -FW_ENOMEM)
ret = nfilters;
return ret;
}
/**
* t4_change_mac - modifies the exact-match filter for a MAC address
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @idx: index of existing filter for old value of MAC address, or -1
* @addr: the new MAC address value
* @persist: whether a new MAC allocation should be persistent
* @smt_idx: add MAC to SMT and return its index, or NULL
*
* Modifies an exact-match filter and sets it to the new MAC address if
* @idx >= 0, or adds the MAC address to a new filter if @idx < 0. In the
* latter case the address is added persistently if @persist is %true.
*
* Note that in general it is not possible to modify the value of a given
* filter so the generic way to modify an address filter is to free the one
* being used by the old address value and allocate a new filter for the
* new address value.
*
* Returns a negative error number or the index of the filter with the new
* MAC value. Note that this index may differ from @idx.
*/
int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
{
int ret, mode;
struct fw_vi_mac_cmd c;
struct fw_vi_mac_exact *p = c.u.exact;
unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
if (idx < 0) /* new allocation */
idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
memset(&c, 0, sizeof(c));
c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
V_FW_VI_MAC_CMD_VIID(viid));
c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
V_FW_VI_MAC_CMD_IDX(idx));
memcpy(p->macaddr, addr, sizeof(p->macaddr));
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret == 0) {
ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
if (ret >= max_mac_addr)
ret = -ENOMEM;
if (smt_idx) {
if (adap->params.viid_smt_extn_support)
*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
else {
if (chip_id(adap) <= CHELSIO_T5)
*smt_idx = (viid & M_FW_VIID_VIN) << 1;
else
*smt_idx = viid & M_FW_VIID_VIN;
}
}
}
return ret;
}
/**
* t4_set_addr_hash - program the MAC inexact-match hash filter
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @ucast: whether the hash filter should also match unicast addresses
* @vec: the value to be written to the hash filter
* @sleep_ok: call is allowed to sleep
*
* Sets the 64-bit inexact-match hash filter for a virtual interface.
*/
int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
bool ucast, u64 vec, bool sleep_ok)
{
struct fw_vi_mac_cmd c;
u32 val;
memset(&c, 0, sizeof(c));
c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
V_FW_VI_ENABLE_CMD_VIID(viid));
val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
c.freemacs_to_len16 = cpu_to_be32(val);
c.u.hash.hashvec = cpu_to_be64(vec);
return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}
/**
* t4_enable_vi_params - enable/disable a virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @rx_en: 1=enable Rx, 0=disable Rx
* @tx_en: 1=enable Tx, 0=disable Tx
* @dcb_en: 1=enable delivery of Data Center Bridging messages.
*
* Enables/disables a virtual interface. Note that setting DCB Enable
* only makes sense when enabling a Virtual Interface ...
*/
int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
{
struct fw_vi_enable_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
V_FW_VI_ENABLE_CMD_VIID(viid));
c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
V_FW_VI_ENABLE_CMD_EEN(tx_en) |
V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
FW_LEN16(c));
return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_enable_vi - enable/disable a virtual interface
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @rx_en: 1=enable Rx, 0=disable Rx
* @tx_en: 1=enable Tx, 0=disable Tx
*
* Enables/disables a virtual interface. Note that setting DCB Enable
* only makes sense when enabling a Virtual Interface ...
*/
int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
bool rx_en, bool tx_en)
{
return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
}
/**
* t4_identify_port - identify a VI's port by blinking its LED
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @viid: the VI id
* @nblinks: how many times to blink LED at 2.5 Hz
*
* Identifies a VI's port by blinking its LED.
*/
int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
unsigned int nblinks)
{
struct fw_vi_enable_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
V_FW_VI_ENABLE_CMD_VIID(viid));
c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
c.blinkdur = cpu_to_be16(nblinks);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_iq_stop - stop an ingress queue and its FLs
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the queues
* @vf: the VF owning the queues
* @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
* @iqid: ingress queue id
* @fl0id: FL0 queue id or 0xffff if no attached FL0
* @fl1id: FL1 queue id or 0xffff if no attached FL1
*
* Stops an ingress queue and its associated FLs, if any. This causes
* any current or future data/messages destined for these queues to be
* tossed.
*/
int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int iqtype, unsigned int iqid,
unsigned int fl0id, unsigned int fl1id)
{
struct fw_iq_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
V_FW_IQ_CMD_VFN(vf));
c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
c.iqid = cpu_to_be16(iqid);
c.fl0id = cpu_to_be16(fl0id);
c.fl1id = cpu_to_be16(fl1id);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_iq_free - free an ingress queue and its FLs
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the queues
* @vf: the VF owning the queues
* @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
* @iqid: ingress queue id
* @fl0id: FL0 queue id or 0xffff if no attached FL0
* @fl1id: FL1 queue id or 0xffff if no attached FL1
*
* Frees an ingress queue and its associated FLs, if any.
*/
int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int iqtype, unsigned int iqid,
unsigned int fl0id, unsigned int fl1id)
{
struct fw_iq_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
V_FW_IQ_CMD_VFN(vf));
c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
c.iqid = cpu_to_be16(iqid);
c.fl0id = cpu_to_be16(fl0id);
c.fl1id = cpu_to_be16(fl1id);
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_eth_eq_free - free an Ethernet egress queue
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the queue
* @vf: the VF owning the queue
* @eqid: egress queue id
*
* Frees an Ethernet egress queue.
*/
int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int eqid)
{
struct fw_eq_eth_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
V_FW_EQ_ETH_CMD_PFN(pf) |
V_FW_EQ_ETH_CMD_VFN(vf));
c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_ctrl_eq_free - free a control egress queue
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the queue
* @vf: the VF owning the queue
* @eqid: egress queue id
*
* Frees a control egress queue.
*/
int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int eqid)
{
struct fw_eq_ctrl_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
V_FW_EQ_CTRL_CMD_PFN(pf) |
V_FW_EQ_CTRL_CMD_VFN(vf));
c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_ofld_eq_free - free an offload egress queue
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the queue
* @vf: the VF owning the queue
* @eqid: egress queue id
*
* Frees a control egress queue.
*/
int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
unsigned int vf, unsigned int eqid)
{
struct fw_eq_ofld_cmd c;
memset(&c, 0, sizeof(c));
c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
V_FW_EQ_OFLD_CMD_PFN(pf) |
V_FW_EQ_OFLD_CMD_VFN(vf));
c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}
/**
* t4_link_down_rc_str - return a string for a Link Down Reason Code
* @link_down_rc: Link Down Reason Code
*
* Returns a string representation of the Link Down Reason Code.
*/
const char *t4_link_down_rc_str(unsigned char link_down_rc)
{
static const char *reason[] = {
"Link Down",
"Remote Fault",
"Auto-negotiation Failure",
"Reserved3",
"Insufficient Airflow",
"Unable To Determine Reason",
"No RX Signal Detected",
"Reserved7",
};
if (link_down_rc >= ARRAY_SIZE(reason))
return "Bad Reason Code";
return reason[link_down_rc];
}
/*
* Return the highest speed set in the port capabilities, in Mb/s.
*/
unsigned int fwcap_to_speed(uint32_t caps)
{
#define TEST_SPEED_RETURN(__caps_speed, __speed) \
do { \
if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
return __speed; \
} while (0)
TEST_SPEED_RETURN(400G, 400000);
TEST_SPEED_RETURN(200G, 200000);
TEST_SPEED_RETURN(100G, 100000);
TEST_SPEED_RETURN(50G, 50000);
TEST_SPEED_RETURN(40G, 40000);
TEST_SPEED_RETURN(25G, 25000);
TEST_SPEED_RETURN(10G, 10000);
TEST_SPEED_RETURN(1G, 1000);
TEST_SPEED_RETURN(100M, 100);
#undef TEST_SPEED_RETURN
return 0;
}
/*
* Return the port capabilities bit for the given speed, which is in Mb/s.
*/
uint32_t speed_to_fwcap(unsigned int speed)
{
#define TEST_SPEED_RETURN(__caps_speed, __speed) \
do { \
if (speed == __speed) \
return FW_PORT_CAP32_SPEED_##__caps_speed; \
} while (0)
TEST_SPEED_RETURN(400G, 400000);
TEST_SPEED_RETURN(200G, 200000);
TEST_SPEED_RETURN(100G, 100000);
TEST_SPEED_RETURN(50G, 50000);
TEST_SPEED_RETURN(40G, 40000);
TEST_SPEED_RETURN(25G, 25000);
TEST_SPEED_RETURN(10G, 10000);
TEST_SPEED_RETURN(1G, 1000);
TEST_SPEED_RETURN(100M, 100);
#undef TEST_SPEED_RETURN
return 0;
}
/*
* Return the port capabilities bit for the highest speed in the capabilities.
*/
uint32_t fwcap_top_speed(uint32_t caps)
{
#define TEST_SPEED_RETURN(__caps_speed) \
do { \
if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
return FW_PORT_CAP32_SPEED_##__caps_speed; \
} while (0)
TEST_SPEED_RETURN(400G);
TEST_SPEED_RETURN(200G);
TEST_SPEED_RETURN(100G);
TEST_SPEED_RETURN(50G);
TEST_SPEED_RETURN(40G);
TEST_SPEED_RETURN(25G);
TEST_SPEED_RETURN(10G);
TEST_SPEED_RETURN(1G);
TEST_SPEED_RETURN(100M);
#undef TEST_SPEED_RETURN
return 0;
}
/**
* lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
* @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
*
* Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
* 32-bit Port Capabilities value.
*/
static uint32_t lstatus_to_fwcap(u32 lstatus)
{
uint32_t linkattr = 0;
/*
* Unfortunately the format of the Link Status in the old
* 16-bit Port Information message isn't the same as the
* 16-bit Port Capabilities bitfield used everywhere else ...
*/
if (lstatus & F_FW_PORT_CMD_RXPAUSE)
linkattr |= FW_PORT_CAP32_FC_RX;
if (lstatus & F_FW_PORT_CMD_TXPAUSE)
linkattr |= FW_PORT_CAP32_FC_TX;
if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
linkattr |= FW_PORT_CAP32_SPEED_100M;
if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
linkattr |= FW_PORT_CAP32_SPEED_1G;
if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
linkattr |= FW_PORT_CAP32_SPEED_10G;
if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
linkattr |= FW_PORT_CAP32_SPEED_25G;
if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
linkattr |= FW_PORT_CAP32_SPEED_40G;
if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
linkattr |= FW_PORT_CAP32_SPEED_100G;
return linkattr;
}
/*
* Updates all fields owned by the common code in port_info and link_config
* based on information provided by the firmware. Does not touch any
* requested_* field.
*/
static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
enum fw_port_action action, bool *mod_changed, bool *link_changed)
{
struct link_config old_lc, *lc = &pi->link_cfg;
unsigned char fc, fec;
u32 stat, linkattr;
int old_ptype, old_mtype;
old_ptype = pi->port_type;
old_mtype = pi->mod_type;
old_lc = *lc;
if (action == FW_PORT_ACTION_GET_PORT_INFO) {
stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
G_FW_PORT_CMD_MDIOADDR(stat) : -1;
lc->supported = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
lc->advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
lc->lp_advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
linkattr = lstatus_to_fwcap(stat);
} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
lc->supported = be32_to_cpu(p->u.info32.pcaps32);
lc->advertising = be32_to_cpu(p->u.info32.acaps32);
lc->lp_advertising = be16_to_cpu(p->u.info32.lpacaps32);
lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
linkattr = be32_to_cpu(p->u.info32.linkattr32);
} else {
CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
return;
}
lc->speed = fwcap_to_speed(linkattr);
fc = 0;
if (linkattr & FW_PORT_CAP32_FC_RX)
fc |= PAUSE_RX;
if (linkattr & FW_PORT_CAP32_FC_TX)
fc |= PAUSE_TX;
lc->fc = fc;
fec = FEC_NONE;
if (linkattr & FW_PORT_CAP32_FEC_RS)
fec |= FEC_RS;
if (linkattr & FW_PORT_CAP32_FEC_BASER_RS)
fec |= FEC_BASER_RS;
lc->fec = fec;
if (mod_changed != NULL)
*mod_changed = false;
if (link_changed != NULL)
*link_changed = false;
if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
old_lc.supported != lc->supported) {
if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
lc->fec_hint = lc->advertising &
V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC);
}
if (mod_changed != NULL)
*mod_changed = true;
}
if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
if (link_changed != NULL)
*link_changed = true;
}
}
/**
* t4_update_port_info - retrieve and update port information if changed
* @pi: the port_info
*
* We issue a Get Port Information Command to the Firmware and, if
* successful, we check to see if anything is different from what we
* last recorded and update things accordingly.
*/
int t4_update_port_info(struct port_info *pi)
{
struct adapter *sc = pi->adapter;
struct fw_port_cmd cmd;
enum fw_port_action action;
int ret;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ |
V_FW_PORT_CMD_PORTID(pi->tx_chan));
action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
FW_PORT_ACTION_GET_PORT_INFO;
cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
FW_LEN16(cmd));
ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
if (ret)
return ret;
handle_port_info(pi, &cmd, action, NULL, NULL);
return 0;
}
/**
* t4_handle_fw_rpl - process a FW reply message
* @adap: the adapter
* @rpl: start of the FW message
*
* Processes a FW message, such as link state change messages.
*/
int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
{
u8 opcode = *(const u8 *)rpl;
const struct fw_port_cmd *p = (const void *)rpl;
enum fw_port_action action =
G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
bool mod_changed, link_changed;
if (opcode == FW_PORT_CMD &&
(action == FW_PORT_ACTION_GET_PORT_INFO ||
action == FW_PORT_ACTION_GET_PORT_INFO32)) {
/* link/module state change message */
int i;
int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
struct port_info *pi = NULL;
struct link_config *lc;
for_each_port(adap, i) {
pi = adap2pinfo(adap, i);
if (pi->tx_chan == chan)
break;
}
lc = &pi->link_cfg;
PORT_LOCK(pi);
handle_port_info(pi, p, action, &mod_changed, &link_changed);
PORT_UNLOCK(pi);
if (mod_changed)
t4_os_portmod_changed(pi);
if (link_changed) {
PORT_LOCK(pi);
t4_os_link_changed(pi);
PORT_UNLOCK(pi);
}
} else {
CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
return -EINVAL;
}
return 0;
}
/**
* get_pci_mode - determine a card's PCI mode
* @adapter: the adapter
* @p: where to store the PCI settings
*
* Determines a card's PCI mode and associated parameters, such as speed
* and width.
*/
static void get_pci_mode(struct adapter *adapter,
struct pci_params *p)
{
u16 val;
u32 pcie_cap;
pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
if (pcie_cap) {
t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
p->speed = val & PCI_EXP_LNKSTA_CLS;
p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
}
}
struct flash_desc {
u32 vendor_and_model_id;
u32 size_mb;
};
int t4_get_flash_params(struct adapter *adapter)
{
/*
* Table for non-standard supported Flash parts. Note, all Flash
* parts must have 64KB sectors.
*/
static struct flash_desc supported_flash[] = {
{ 0x00150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
};
int ret;
u32 flashid = 0;
unsigned int part, manufacturer;
unsigned int density, size = 0;
/*
* Issue a Read ID Command to the Flash part. We decode supported
* Flash parts and their sizes from this. There's a newer Query
* Command which can retrieve detailed geometry information but many
* Flash parts don't support it.
*/
ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
if (!ret)
ret = sf1_read(adapter, 3, 0, 1, &flashid);
t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */
if (ret < 0)
return ret;
/*
* Check to see if it's one of our non-standard supported Flash parts.
*/
for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
if (supported_flash[part].vendor_and_model_id == flashid) {
adapter->params.sf_size =
supported_flash[part].size_mb;
adapter->params.sf_nsec =
adapter->params.sf_size / SF_SEC_SIZE;
goto found;
}
/*
* Decode Flash part size. The code below looks repetative with
* common encodings, but that's not guaranteed in the JEDEC
* specification for the Read JADEC ID command. The only thing that
* we're guaranteed by the JADEC specification is where the
* Manufacturer ID is in the returned result. After that each
* Manufacturer ~could~ encode things completely differently.
* Note, all Flash parts must have 64KB sectors.
*/
manufacturer = flashid & 0xff;
switch (manufacturer) {
case 0x20: /* Micron/Numonix */
/*
* This Density -> Size decoding table is taken from Micron
* Data Sheets.
*/
density = (flashid >> 16) & 0xff;
switch (density) {
case 0x14: size = 1 << 20; break; /* 1MB */
case 0x15: size = 1 << 21; break; /* 2MB */
case 0x16: size = 1 << 22; break; /* 4MB */
case 0x17: size = 1 << 23; break; /* 8MB */
case 0x18: size = 1 << 24; break; /* 16MB */
case 0x19: size = 1 << 25; break; /* 32MB */
case 0x20: size = 1 << 26; break; /* 64MB */
case 0x21: size = 1 << 27; break; /* 128MB */
case 0x22: size = 1 << 28; break; /* 256MB */
}
break;
case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
/*
* This Density -> Size decoding table is taken from ISSI
* Data Sheets.
*/
density = (flashid >> 16) & 0xff;
switch (density) {
case 0x16: size = 1 << 25; break; /* 32MB */
case 0x17: size = 1 << 26; break; /* 64MB */
}
break;
case 0xc2: /* Macronix */
/*
* This Density -> Size decoding table is taken from Macronix
* Data Sheets.
*/
density = (flashid >> 16) & 0xff;
switch (density) {
case 0x17: size = 1 << 23; break; /* 8MB */
case 0x18: size = 1 << 24; break; /* 16MB */
}
break;
case 0xef: /* Winbond */
/*
* This Density -> Size decoding table is taken from Winbond
* Data Sheets.
*/
density = (flashid >> 16) & 0xff;
switch (density) {
case 0x17: size = 1 << 23; break; /* 8MB */
case 0x18: size = 1 << 24; break; /* 16MB */
}
break;
}
/* If we didn't recognize the FLASH part, that's no real issue: the
* Hardware/Software contract says that Hardware will _*ALWAYS*_
* use a FLASH part which is at least 4MB in size and has 64KB
* sectors. The unrecognized FLASH part is likely to be much larger
* than 4MB, but that's all we really need.
*/
if (size == 0) {
CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
size = 1 << 22;
}
/*
* Store decoded Flash size and fall through into vetting code.
*/
adapter->params.sf_size = size;
adapter->params.sf_nsec = size / SF_SEC_SIZE;
found:
/*
* We should ~probably~ reject adapters with FLASHes which are too
* small but we have some legacy FPGAs with small FLASHes that we'd
* still like to use. So instead we emit a scary message ...
*/
if (adapter->params.sf_size < FLASH_MIN_SIZE)
CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
return 0;
}
static void set_pcie_completion_timeout(struct adapter *adapter,
u8 range)
{
u16 val;
u32 pcie_cap;
pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
if (pcie_cap) {
t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
val &= 0xfff0;
val |= range ;
t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
}
}
const struct chip_params *t4_get_chip_params(int chipid)
{
static const struct chip_params chip_params[] = {
{
/* T4 */
.nchan = NCHAN,
.pm_stats_cnt = PM_NSTATS,
.cng_ch_bits_log = 2,
.nsched_cls = 15,
.cim_num_obq = CIM_NUM_OBQ,
.mps_rplc_size = 128,
.vfcount = 128,
.sge_fl_db = F_DBPRIO,
.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
},
{
/* T5 */
.nchan = NCHAN,
.pm_stats_cnt = PM_NSTATS,
.cng_ch_bits_log = 2,
.nsched_cls = 16,
.cim_num_obq = CIM_NUM_OBQ_T5,
.mps_rplc_size = 128,
.vfcount = 128,
.sge_fl_db = F_DBPRIO | F_DBTYPE,
.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
},
{
/* T6 */
.nchan = T6_NCHAN,
.pm_stats_cnt = T6_PM_NSTATS,
.cng_ch_bits_log = 3,
.nsched_cls = 16,
.cim_num_obq = CIM_NUM_OBQ_T5,
.mps_rplc_size = 256,
.vfcount = 256,
.sge_fl_db = 0,
.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
},
};
chipid -= CHELSIO_T4;
if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
return NULL;
return &chip_params[chipid];
}
/**
* t4_prep_adapter - prepare SW and HW for operation
* @adapter: the adapter
* @buf: temporary space of at least VPD_LEN size provided by the caller.
*
* Initialize adapter SW state for the various HW modules, set initial
* values for some adapter tunables, take PHYs out of reset, and
* initialize the MDIO interface.
*/
int t4_prep_adapter(struct adapter *adapter, u32 *buf)
{
int ret;
uint16_t device_id;
uint32_t pl_rev;
get_pci_mode(adapter, &adapter->params.pci);
pl_rev = t4_read_reg(adapter, A_PL_REV);
adapter->params.chipid = G_CHIPID(pl_rev);
adapter->params.rev = G_REV(pl_rev);
if (adapter->params.chipid == 0) {
/* T4 did not have chipid in PL_REV (T5 onwards do) */
adapter->params.chipid = CHELSIO_T4;
/* T4A1 chip is not supported */
if (adapter->params.rev == 1) {
CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
return -EINVAL;
}
}
adapter->chip_params = t4_get_chip_params(chip_id(adapter));
if (adapter->chip_params == NULL)
return -EINVAL;
adapter->params.pci.vpd_cap_addr =
t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
ret = t4_get_flash_params(adapter);
if (ret < 0)
return ret;
/* Cards with real ASICs have the chipid in the PCIe device id */
t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
if (device_id >> 12 == chip_id(adapter))
adapter->params.cim_la_size = CIMLA_SIZE;
else {
/* FPGA */
adapter->params.fpga = 1;
adapter->params.cim_la_size = 2 * CIMLA_SIZE;
}
ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
if (ret < 0)
return ret;
init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
/*
* Default port and clock for debugging in case we can't reach FW.
*/
adapter->params.nports = 1;
adapter->params.portvec = 1;
adapter->params.vpd.cclk = 50000;
/* Set pci completion timeout value to 4 seconds. */
set_pcie_completion_timeout(adapter, 0xd);
return 0;
}
/**
* t4_shutdown_adapter - shut down adapter, host & wire
* @adapter: the adapter
*
* Perform an emergency shutdown of the adapter and stop it from
* continuing any further communication on the ports or DMA to the
* host. This is typically used when the adapter and/or firmware
* have crashed and we want to prevent any further accidental
* communication with the rest of the world. This will also force
* the port Link Status to go down -- if register writes work --
* which should help our peers figure out that we're down.
*/
int t4_shutdown_adapter(struct adapter *adapter)
{
int port;
t4_intr_disable(adapter);
t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
for_each_port(adapter, port) {
u32 a_port_cfg = is_t4(adapter) ?
PORT_REG(port, A_XGMAC_PORT_CFG) :
T5_PORT_REG(port, A_MAC_PORT_CFG);
t4_write_reg(adapter, a_port_cfg,
t4_read_reg(adapter, a_port_cfg)
& ~V_SIGNAL_DET(1));
}
t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
return 0;
}
/**
* t4_bar2_sge_qregs - return BAR2 SGE Queue register information
* @adapter: the adapter
* @qid: the Queue ID
* @qtype: the Ingress or Egress type for @qid
* @user: true if this request is for a user mode queue
* @pbar2_qoffset: BAR2 Queue Offset
* @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
*
* Returns the BAR2 SGE Queue Registers information associated with the
* indicated Absolute Queue ID. These are passed back in return value
* pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
* and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
*
* This may return an error which indicates that BAR2 SGE Queue
* registers aren't available. If an error is not returned, then the
* following values are returned:
*
* *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
* *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
*
* If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
* require the "Inferred Queue ID" ability may be used. E.g. the
* Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
* then these "Inferred Queue ID" register may not be used.
*/
int t4_bar2_sge_qregs(struct adapter *adapter,
unsigned int qid,
enum t4_bar2_qtype qtype,
int user,
u64 *pbar2_qoffset,
unsigned int *pbar2_qid)
{
unsigned int page_shift, page_size, qpp_shift, qpp_mask;
u64 bar2_page_offset, bar2_qoffset;
unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
/* T4 doesn't support BAR2 SGE Queue registers for kernel
* mode queues.
*/
if (!user && is_t4(adapter))
return -EINVAL;
/* Get our SGE Page Size parameters.
*/
page_shift = adapter->params.sge.page_shift;
page_size = 1 << page_shift;
/* Get the right Queues per Page parameters for our Queue.
*/
qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
? adapter->params.sge.eq_s_qpp
: adapter->params.sge.iq_s_qpp);
qpp_mask = (1 << qpp_shift) - 1;
/* Calculate the basics of the BAR2 SGE Queue register area:
* o The BAR2 page the Queue registers will be in.
* o The BAR2 Queue ID.
* o The BAR2 Queue ID Offset into the BAR2 page.
*/
bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
bar2_qid = qid & qpp_mask;
bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
/* If the BAR2 Queue ID Offset is less than the Page Size, then the
* hardware will infer the Absolute Queue ID simply from the writes to
* the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
* BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
* write to the first BAR2 SGE Queue Area within the BAR2 Page with
* the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
* from the BAR2 Page and BAR2 Queue ID.
*
* One important censequence of this is that some BAR2 SGE registers
* have a "Queue ID" field and we can write the BAR2 SGE Queue ID
* there. But other registers synthesize the SGE Queue ID purely
* from the writes to the registers -- the Write Combined Doorbell
* Buffer is a good example. These BAR2 SGE Registers are only
* available for those BAR2 SGE Register areas where the SGE Absolute
* Queue ID can be inferred from simple writes.
*/
bar2_qoffset = bar2_page_offset;
bar2_qinferred = (bar2_qid_offset < page_size);
if (bar2_qinferred) {
bar2_qoffset += bar2_qid_offset;
bar2_qid = 0;
}
*pbar2_qoffset = bar2_qoffset;
*pbar2_qid = bar2_qid;
return 0;
}
/**
* t4_init_devlog_params - initialize adapter->params.devlog
* @adap: the adapter
* @fw_attach: whether we can talk to the firmware
*
* Initialize various fields of the adapter's Firmware Device Log
* Parameters structure.
*/
int t4_init_devlog_params(struct adapter *adap, int fw_attach)
{
struct devlog_params *dparams = &adap->params.devlog;
u32 pf_dparams;
unsigned int devlog_meminfo;
struct fw_devlog_cmd devlog_cmd;
int ret;
/* If we're dealing with newer firmware, the Device Log Paramerters
* are stored in a designated register which allows us to access the
* Device Log even if we can't talk to the firmware.
*/
pf_dparams =
t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
if (pf_dparams) {
unsigned int nentries, nentries128;
dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
nentries = (nentries128 + 1) * 128;
dparams->size = nentries * sizeof(struct fw_devlog_e);
return 0;
}
/*
* For any failing returns ...
*/
memset(dparams, 0, sizeof *dparams);
/*
* If we can't talk to the firmware, there's really nothing we can do
* at this point.
*/
if (!fw_attach)
return -ENXIO;
/* Otherwise, ask the firmware for it's Device Log Parameters.
*/
memset(&devlog_cmd, 0, sizeof devlog_cmd);
devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ);
devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
&devlog_cmd);
if (ret)
return ret;
devlog_meminfo =
be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
return 0;
}
/**
* t4_init_sge_params - initialize adap->params.sge
* @adapter: the adapter
*
* Initialize various fields of the adapter's SGE Parameters structure.
*/
int t4_init_sge_params(struct adapter *adapter)
{
u32 r;
struct sge_params *sp = &adapter->params.sge;
unsigned i, tscale = 1;
r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
sp->counter_val[0] = G_THRESHOLD_0(r);
sp->counter_val[1] = G_THRESHOLD_1(r);
sp->counter_val[2] = G_THRESHOLD_2(r);
sp->counter_val[3] = G_THRESHOLD_3(r);
if (chip_id(adapter) >= CHELSIO_T6) {
r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
tscale = G_TSCALE(r);
if (tscale == 0)
tscale = 1;
else
tscale += 2;
}
r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
if (is_t4(adapter))
sp->fl_starve_threshold2 = sp->fl_starve_threshold;
else if (is_t5(adapter))
sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
else
sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
/* egress queues: log2 of # of doorbells per BAR2 page */
r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
r >>= S_QUEUESPERPAGEPF0 +
(S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
/* ingress queues: log2 of # of doorbells per BAR2 page */
r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
r >>= S_QUEUESPERPAGEPF0 +
(S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
r >>= S_HOSTPAGESIZEPF0 +
(S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
r = t4_read_reg(adapter, A_SGE_CONTROL);
sp->sge_control = r;
sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
sp->fl_pktshift = G_PKTSHIFT(r);
if (chip_id(adapter) <= CHELSIO_T5) {
sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
X_INGPADBOUNDARY_SHIFT);
} else {
sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
X_T6_INGPADBOUNDARY_SHIFT);
}
if (is_t4(adapter))
sp->pack_boundary = sp->pad_boundary;
else {
r = t4_read_reg(adapter, A_SGE_CONTROL2);
if (G_INGPACKBOUNDARY(r) == 0)
sp->pack_boundary = 16;
else
sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
}
for (i = 0; i < SGE_FLBUF_SIZES; i++)
sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
A_SGE_FL_BUFFER_SIZE0 + (4 * i));
return 0;
}
/*
* Read and cache the adapter's compressed filter mode and ingress config.
*/
static void read_filter_mode_and_ingress_config(struct adapter *adap,
bool sleep_ok)
{
uint32_t v;
struct tp_params *tpp = &adap->params.tp;
t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
sleep_ok);
t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
sleep_ok);
/*
* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
* shift positions of several elements of the Compressed Filter Tuple
* for this adapter which we need frequently ...
*/
tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
if (chip_id(adap) > CHELSIO_T4) {
v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
adap->params.tp.hash_filter_mask = v;
v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
adap->params.tp.hash_filter_mask |= (u64)v << 32;
}
}
/**
* t4_init_tp_params - initialize adap->params.tp
* @adap: the adapter
*
* Initialize various fields of the adapter's TP Parameters structure.
*/
int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
{
int chan;
u32 v;
struct tp_params *tpp = &adap->params.tp;
v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
tpp->tre = G_TIMERRESOLUTION(v);
tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
for (chan = 0; chan < MAX_NCHAN; chan++)
tpp->tx_modq[chan] = chan;
read_filter_mode_and_ingress_config(adap, sleep_ok);
/*
* Cache a mask of the bits that represent the error vector portion of
* rx_pkt.err_vec. T6+ can use a compressed error vector to make room
* for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
*/
tpp->err_vec_mask = htobe16(0xffff);
if (chip_id(adap) > CHELSIO_T5) {
v = t4_read_reg(adap, A_TP_OUT_CONFIG);
if (v & F_CRXPKTENC) {
tpp->err_vec_mask =
htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
}
}
return 0;
}
/**
* t4_filter_field_shift - calculate filter field shift
* @adap: the adapter
* @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
*
* Return the shift position of a filter field within the Compressed
* Filter Tuple. The filter field is specified via its selection bit
* within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
*/
int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
{
unsigned int filter_mode = adap->params.tp.vlan_pri_map;
unsigned int sel;
int field_shift;
if ((filter_mode & filter_sel) == 0)
return -1;
for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
switch (filter_mode & sel) {
case F_FCOE:
field_shift += W_FT_FCOE;
break;
case F_PORT:
field_shift += W_FT_PORT;
break;
case F_VNIC_ID:
field_shift += W_FT_VNIC_ID;
break;
case F_VLAN:
field_shift += W_FT_VLAN;
break;
case F_TOS:
field_shift += W_FT_TOS;
break;
case F_PROTOCOL:
field_shift += W_FT_PROTOCOL;
break;
case F_ETHERTYPE:
field_shift += W_FT_ETHERTYPE;
break;
case F_MACMATCH:
field_shift += W_FT_MACMATCH;
break;
case F_MPSHITTYPE:
field_shift += W_FT_MPSHITTYPE;
break;
case F_FRAGMENTATION:
field_shift += W_FT_FRAGMENTATION;
break;
}
}
return field_shift;
}
int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
{
u8 addr[6];
int ret, i, j;
struct port_info *p = adap2pinfo(adap, port_id);
u32 param, val;
struct vi_info *vi = &p->vi[0];
for (i = 0, j = -1; i <= p->port_id; i++) {
do {
j++;
} while ((adap->params.portvec & (1 << j)) == 0);
}
p->tx_chan = j;
p->mps_bg_map = t4_get_mps_bg_map(adap, j);
p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
p->lport = j;
if (!(adap->flags & IS_VF) ||
adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
t4_update_port_info(p);
}
ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
&vi->vfvld, &vi->vin);
if (ret < 0)
return ret;
vi->viid = ret;
t4_os_set_hw_addr(p, addr);
param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
V_FW_PARAMS_PARAM_YZ(vi->viid);
ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
if (ret)
vi->rss_base = 0xffff;
else {
/* MPASS((val >> 16) == rss_size); */
vi->rss_base = val & 0xffff;
}
return 0;
}
/**
* t4_read_cimq_cfg - read CIM queue configuration
* @adap: the adapter
* @base: holds the queue base addresses in bytes
* @size: holds the queue sizes in bytes
* @thres: holds the queue full thresholds in bytes
*
* Returns the current configuration of the CIM queues, starting with
* the IBQs, then the OBQs.
*/
void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
{
unsigned int i, v;
int cim_num_obq = adap->chip_params->cim_num_obq;
for (i = 0; i < CIM_NUM_IBQ; i++) {
t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
V_QUENUMSELECT(i));
v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
/* value is in 256-byte units */
*base++ = G_CIMQBASE(v) * 256;
*size++ = G_CIMQSIZE(v) * 256;
*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
}
for (i = 0; i < cim_num_obq; i++) {
t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
V_QUENUMSELECT(i));
v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
/* value is in 256-byte units */
*base++ = G_CIMQBASE(v) * 256;
*size++ = G_CIMQSIZE(v) * 256;
}
}
/**
* t4_read_cim_ibq - read the contents of a CIM inbound queue
* @adap: the adapter
* @qid: the queue index
* @data: where to store the queue contents
* @n: capacity of @data in 32-bit words
*
* Reads the contents of the selected CIM queue starting at address 0 up
* to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
* error and the number of 32-bit words actually read on success.
*/
int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
{
int i, err, attempts;
unsigned int addr;
const unsigned int nwords = CIM_IBQ_SIZE * 4;
if (qid > 5 || (n & 3))
return -EINVAL;
addr = qid * nwords;
if (n > nwords)
n = nwords;
/* It might take 3-10ms before the IBQ debug read access is allowed.
* Wait for 1 Sec with a delay of 1 usec.
*/
attempts = 1000000;
for (i = 0; i < n; i++, addr++) {
t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
F_IBQDBGEN);
err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
attempts, 1);
if (err)
return err;
*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
}
t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
return i;
}
/**
* t4_read_cim_obq - read the contents of a CIM outbound queue
* @adap: the adapter
* @qid: the queue index
* @data: where to store the queue contents
* @n: capacity of @data in 32-bit words
*
* Reads the contents of the selected CIM queue starting at address 0 up
* to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
* error and the number of 32-bit words actually read on success.
*/
int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
{
int i, err;
unsigned int addr, v, nwords;
int cim_num_obq = adap->chip_params->cim_num_obq;
if ((qid > (cim_num_obq - 1)) || (n & 3))
return -EINVAL;
t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
V_QUENUMSELECT(qid));
v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
addr = G_CIMQBASE(v) * 64; /* muliple of 256 -> muliple of 4 */
nwords = G_CIMQSIZE(v) * 64; /* same */
if (n > nwords)
n = nwords;
for (i = 0; i < n; i++, addr++) {
t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
F_OBQDBGEN);
err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
2, 1);
if (err)
return err;
*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
}
t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
return i;
}
enum {
CIM_QCTL_BASE = 0,
CIM_CTL_BASE = 0x2000,
CIM_PBT_ADDR_BASE = 0x2800,
CIM_PBT_LRF_BASE = 0x3000,
CIM_PBT_DATA_BASE = 0x3800
};
/**
* t4_cim_read - read a block from CIM internal address space
* @adap: the adapter
* @addr: the start address within the CIM address space
* @n: number of words to read
* @valp: where to store the result
*
* Reads a block of 4-byte words from the CIM intenal address space.
*/
int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
unsigned int *valp)
{
int ret = 0;
if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
return -EBUSY;
for ( ; !ret && n--; addr += 4) {
t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
0, 5, 2);
if (!ret)
*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
}
return ret;
}
/**
* t4_cim_write - write a block into CIM internal address space
* @adap: the adapter
* @addr: the start address within the CIM address space
* @n: number of words to write
* @valp: set of values to write
*
* Writes a block of 4-byte words into the CIM intenal address space.
*/
int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
const unsigned int *valp)
{
int ret = 0;
if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
return -EBUSY;
for ( ; !ret && n--; addr += 4) {
t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
0, 5, 2);
}
return ret;
}
static int t4_cim_write1(struct adapter *adap, unsigned int addr,
unsigned int val)
{
return t4_cim_write(adap, addr, 1, &val);
}
/**
* t4_cim_ctl_read - read a block from CIM control region
* @adap: the adapter
* @addr: the start address within the CIM control region
* @n: number of words to read
* @valp: where to store the result
*
* Reads a block of 4-byte words from the CIM control region.
*/
int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
unsigned int *valp)
{
return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
}
/**
* t4_cim_read_la - read CIM LA capture buffer
* @adap: the adapter
* @la_buf: where to store the LA data
* @wrptr: the HW write pointer within the capture buffer
*
* Reads the contents of the CIM LA buffer with the most recent entry at
* the end of the returned data and with the entry at @wrptr first.
* We try to leave the LA in the running state we find it in.
*/
int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
{
int i, ret;
unsigned int cfg, val, idx;
ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
if (ret)
return ret;
if (cfg & F_UPDBGLAEN) { /* LA is running, freeze it */
ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
if (ret)
return ret;
}
ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
if (ret)
goto restart;
idx = G_UPDBGLAWRPTR(val);
if (wrptr)
*wrptr = idx;
for (i = 0; i < adap->params.cim_la_size; i++) {
ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
if (ret)
break;
ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
if (ret)
break;
if (val & F_UPDBGLARDEN) {
ret = -ETIMEDOUT;
break;
}
ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
if (ret)
break;
/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
idx = (idx + 1) & M_UPDBGLARDPTR;
/*
* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
* identify the 32-bit portion of the full 312-bit data
*/
if (is_t6(adap))
while ((idx & 0xf) > 9)
idx = (idx + 1) % M_UPDBGLARDPTR;
}
restart:
if (cfg & F_UPDBGLAEN) {
int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
cfg & ~F_UPDBGLARDEN);
if (!ret)
ret = r;
}
return ret;
}
/**
* t4_tp_read_la - read TP LA capture buffer
* @adap: the adapter
* @la_buf: where to store the LA data
* @wrptr: the HW write pointer within the capture buffer
*
* Reads the contents of the TP LA buffer with the most recent entry at
* the end of the returned data and with the entry at @wrptr first.
* We leave the LA in the running state we find it in.
*/
void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
{
bool last_incomplete;
unsigned int i, cfg, val, idx;
cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
if (cfg & F_DBGLAENABLE) /* freeze LA */
t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
idx = G_DBGLAWPTR(val);
last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
if (last_incomplete)
idx = (idx + 1) & M_DBGLARPTR;
if (wrptr)
*wrptr = idx;
val &= 0xffff;
val &= ~V_DBGLARPTR(M_DBGLARPTR);
val |= adap->params.tp.la_mask;
for (i = 0; i < TPLA_SIZE; i++) {
t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
idx = (idx + 1) & M_DBGLARPTR;
}
/* Wipe out last entry if it isn't valid */
if (last_incomplete)
la_buf[TPLA_SIZE - 1] = ~0ULL;
if (cfg & F_DBGLAENABLE) /* restore running state */
t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
cfg | adap->params.tp.la_mask);
}
/*
* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
* seconds). If we find one of the SGE Ingress DMA State Machines in the same
* state for more than the Warning Threshold then we'll issue a warning about
* a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel
* appears to be hung every Warning Repeat second till the situation clears.
* If the situation clears, we'll note that as well.
*/
#define SGE_IDMA_WARN_THRESH 1
#define SGE_IDMA_WARN_REPEAT 300
/**
* t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
* @adapter: the adapter
* @idma: the adapter IDMA Monitor state
*
* Initialize the state of an SGE Ingress DMA Monitor.
*/
void t4_idma_monitor_init(struct adapter *adapter,
struct sge_idma_monitor_state *idma)
{
/* Initialize the state variables for detecting an SGE Ingress DMA
* hang. The SGE has internal counters which count up on each clock
* tick whenever the SGE finds its Ingress DMA State Engines in the
* same state they were on the previous clock tick. The clock used is
* the Core Clock so we have a limit on the maximum "time" they can
* record; typically a very small number of seconds. For instance,
* with a 600MHz Core Clock, we can only count up to a bit more than
* 7s. So we'll synthesize a larger counter in order to not run the
* risk of having the "timers" overflow and give us the flexibility to
* maintain a Hung SGE State Machine of our own which operates across
* a longer time frame.
*/
idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
}
/**
* t4_idma_monitor - monitor SGE Ingress DMA state
* @adapter: the adapter
* @idma: the adapter IDMA Monitor state
* @hz: number of ticks/second
* @ticks: number of ticks since the last IDMA Monitor call
*/
void t4_idma_monitor(struct adapter *adapter,
struct sge_idma_monitor_state *idma,
int hz, int ticks)
{
int i, idma_same_state_cnt[2];
/* Read the SGE Debug Ingress DMA Same State Count registers. These
* are counters inside the SGE which count up on each clock when the
* SGE finds its Ingress DMA State Engines in the same states they
* were in the previous clock. The counters will peg out at
* 0xffffffff without wrapping around so once they pass the 1s
* threshold they'll stay above that till the IDMA state changes.
*/
t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
for (i = 0; i < 2; i++) {
u32 debug0, debug11;
/* If the Ingress DMA Same State Counter ("timer") is less
* than 1s, then we can reset our synthesized Stall Timer and
* continue. If we have previously emitted warnings about a
* potential stalled Ingress Queue, issue a note indicating
* that the Ingress Queue has resumed forward progress.
*/
if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
CH_WARN(adapter, "SGE idma%d, queue %u, "
"resumed after %d seconds\n",
i, idma->idma_qid[i],
idma->idma_stalled[i]/hz);
idma->idma_stalled[i] = 0;
continue;
}
/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
* domain. The first time we get here it'll be because we
* passed the 1s Threshold; each additional time it'll be
* because the RX Timer Callback is being fired on its regular
* schedule.
*
* If the stall is below our Potential Hung Ingress Queue
* Warning Threshold, continue.
*/
if (idma->idma_stalled[i] == 0) {
idma->idma_stalled[i] = hz;
idma->idma_warn[i] = 0;
} else {
idma->idma_stalled[i] += ticks;
idma->idma_warn[i] -= ticks;
}
if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
continue;
/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
*/
if (idma->idma_warn[i] > 0)
continue;
idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
/* Read and save the SGE IDMA State and Queue ID information.
* We do this every time in case it changes across time ...
* can't be too careful ...
*/
t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
i, idma->idma_qid[i], idma->idma_state[i],
idma->idma_stalled[i]/hz,
debug0, debug11);
t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
}
}
/**
* t4_read_pace_tbl - read the pace table
* @adap: the adapter
* @pace_vals: holds the returned values
*
* Returns the values of TP's pace table in microseconds.
*/
void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
{
unsigned int i, v;
for (i = 0; i < NTX_SCHED; i++) {
t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
v = t4_read_reg(adap, A_TP_PACE_TABLE);
pace_vals[i] = dack_ticks_to_usec(adap, v);
}
}
/**
* t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
* @adap: the adapter
* @sched: the scheduler index
* @kbps: the byte rate in Kbps
* @ipg: the interpacket delay in tenths of nanoseconds
*
* Return the current configuration of a HW Tx scheduler.
*/
void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
unsigned int *ipg, bool sleep_ok)
{
unsigned int v, addr, bpt, cpt;
if (kbps) {
addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
if (sched & 1)
v >>= 16;
bpt = (v >> 8) & 0xff;
cpt = v & 0xff;
if (!cpt)
*kbps = 0; /* scheduler disabled */
else {
v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
*kbps = (v * bpt) / 125;
}
}
if (ipg) {
addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
if (sched & 1)
v >>= 16;
v &= 0xffff;
*ipg = (10000 * v) / core_ticks_per_usec(adap);
}
}
/**
* t4_load_cfg - download config file
* @adap: the adapter
* @cfg_data: the cfg text file to write
* @size: text file size
*
* Write the supplied config text file to the card's serial flash.
*/
int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
{
int ret, i, n, cfg_addr;
unsigned int addr;
unsigned int flash_cfg_start_sec;
unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
cfg_addr = t4_flash_cfg_addr(adap);
if (cfg_addr < 0)
return cfg_addr;
addr = cfg_addr;
flash_cfg_start_sec = addr / SF_SEC_SIZE;
if (size > FLASH_CFG_MAX_SIZE) {
CH_ERR(adap, "cfg file too large, max is %u bytes\n",
FLASH_CFG_MAX_SIZE);
return -EFBIG;
}
i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */
sf_sec_size);
ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
flash_cfg_start_sec + i - 1);
/*
* If size == 0 then we're simply erasing the FLASH sectors associated
* with the on-adapter Firmware Configuration File.
*/
if (ret || size == 0)
goto out;
/* this will write to the flash up to SF_PAGE_SIZE at a time */
for (i = 0; i< size; i+= SF_PAGE_SIZE) {
if ( (size - i) < SF_PAGE_SIZE)
n = size - i;
else
n = SF_PAGE_SIZE;
ret = t4_write_flash(adap, addr, n, cfg_data, 1);
if (ret)
goto out;
addr += SF_PAGE_SIZE;
cfg_data += SF_PAGE_SIZE;
}
out:
if (ret)
CH_ERR(adap, "config file %s failed %d\n",
(size == 0 ? "clear" : "download"), ret);
return ret;
}
/**
* t5_fw_init_extern_mem - initialize the external memory
* @adap: the adapter
*
* Initializes the external memory on T5.
*/
int t5_fw_init_extern_mem(struct adapter *adap)
{
u32 params[1], val[1];
int ret;
if (!is_t5(adap))
return 0;
val[0] = 0xff; /* Initialize all MCs */
params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
FW_CMD_MAX_TIMEOUT);
return ret;
}
/* BIOS boot headers */
typedef struct pci_expansion_rom_header {
u8 signature[2]; /* ROM Signature. Should be 0xaa55 */
u8 reserved[22]; /* Reserved per processor Architecture data */
u8 pcir_offset[2]; /* Offset to PCI Data Structure */
} pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
/* Legacy PCI Expansion ROM Header */
typedef struct legacy_pci_expansion_rom_header {
u8 signature[2]; /* ROM Signature. Should be 0xaa55 */
u8 size512; /* Current Image Size in units of 512 bytes */
u8 initentry_point[4];
u8 cksum; /* Checksum computed on the entire Image */
u8 reserved[16]; /* Reserved */
u8 pcir_offset[2]; /* Offset to PCI Data Struture */
} legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
/* EFI PCI Expansion ROM Header */
typedef struct efi_pci_expansion_rom_header {
u8 signature[2]; // ROM signature. The value 0xaa55
u8 initialization_size[2]; /* Units 512. Includes this header */
u8 efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
u8 efi_subsystem[2]; /* Subsystem value for EFI image header */
u8 efi_machine_type[2]; /* Machine type from EFI image header */
u8 compression_type[2]; /* Compression type. */
/*
* Compression type definition
* 0x0: uncompressed
* 0x1: Compressed
* 0x2-0xFFFF: Reserved
*/
u8 reserved[8]; /* Reserved */
u8 efi_image_header_offset[2]; /* Offset to EFI Image */
u8 pcir_offset[2]; /* Offset to PCI Data Structure */
} efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
/* PCI Data Structure Format */
typedef struct pcir_data_structure { /* PCI Data Structure */
u8 signature[4]; /* Signature. The string "PCIR" */
u8 vendor_id[2]; /* Vendor Identification */
u8 device_id[2]; /* Device Identification */
u8 vital_product[2]; /* Pointer to Vital Product Data */
u8 length[2]; /* PCIR Data Structure Length */
u8 revision; /* PCIR Data Structure Revision */
u8 class_code[3]; /* Class Code */
u8 image_length[2]; /* Image Length. Multiple of 512B */
u8 code_revision[2]; /* Revision Level of Code/Data */
u8 code_type; /* Code Type. */
/*
* PCI Expansion ROM Code Types
* 0x00: Intel IA-32, PC-AT compatible. Legacy
* 0x01: Open Firmware standard for PCI. FCODE
* 0x02: Hewlett-Packard PA RISC. HP reserved
* 0x03: EFI Image. EFI
* 0x04-0xFF: Reserved.
*/
u8 indicator; /* Indicator. Identifies the last image in the ROM */
u8 reserved[2]; /* Reserved */
} pcir_data_t; /* PCI__DATA_STRUCTURE */
/* BOOT constants */
enum {
BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
BOOT_SIGNATURE = 0xaa55, /* signature of BIOS boot ROM */
BOOT_SIZE_INC = 512, /* image size measured in 512B chunks */
BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment */
VENDOR_ID = 0x1425, /* Vendor ID */
PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
};
/*
* modify_device_id - Modifies the device ID of the Boot BIOS image
* @adatper: the device ID to write.
* @boot_data: the boot image to modify.
*
* Write the supplied device ID to the boot BIOS image.
*/
static void modify_device_id(int device_id, u8 *boot_data)
{
legacy_pci_exp_rom_header_t *header;
pcir_data_t *pcir_header;
u32 cur_header = 0;
/*
* Loop through all chained images and change the device ID's
*/
while (1) {
header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
pcir_header = (pcir_data_t *) &boot_data[cur_header +
le16_to_cpu(*(u16*)header->pcir_offset)];
/*
* Only modify the Device ID if code type is Legacy or HP.
* 0x00: Okay to modify
* 0x01: FCODE. Do not be modify
* 0x03: Okay to modify
* 0x04-0xFF: Do not modify
*/
if (pcir_header->code_type == 0x00) {
u8 csum = 0;
int i;
/*
* Modify Device ID to match current adatper
*/
*(u16*) pcir_header->device_id = device_id;
/*
* Set checksum temporarily to 0.
* We will recalculate it later.
*/
header->cksum = 0x0;
/*
* Calculate and update checksum
*/
for (i = 0; i < (header->size512 * 512); i++)
csum += (u8)boot_data[cur_header + i];
/*
* Invert summed value to create the checksum
* Writing new checksum value directly to the boot data
*/
boot_data[cur_header + 7] = -csum;
} else if (pcir_header->code_type == 0x03) {
/*
* Modify Device ID to match current adatper
*/
*(u16*) pcir_header->device_id = device_id;
}
/*
* Check indicator element to identify if this is the last
* image in the ROM.
*/
if (pcir_header->indicator & 0x80)
break;
/*
* Move header pointer up to the next image in the ROM.
*/
cur_header += header->size512 * 512;
}
}
/*
* t4_load_boot - download boot flash
* @adapter: the adapter
* @boot_data: the boot image to write
* @boot_addr: offset in flash to write boot_data
* @size: image size
*
* Write the supplied boot image to the card's serial flash.
* The boot image has the following sections: a 28-byte header and the
* boot image.
*/
int t4_load_boot(struct adapter *adap, u8 *boot_data,
unsigned int boot_addr, unsigned int size)
{
pci_exp_rom_header_t *header;
int pcir_offset ;
pcir_data_t *pcir_header;
int ret, addr;
uint16_t device_id;
unsigned int i;
unsigned int boot_sector = (boot_addr * 1024 );
unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
/*
* Make sure the boot image does not encroach on the firmware region
*/
if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
CH_ERR(adap, "boot image encroaching on firmware region\n");
return -EFBIG;
}
/*
* The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
* and Boot configuration data sections. These 3 boot sections span
* sectors 0 to 7 in flash and live right before the FW image location.
*/
i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
sf_sec_size);
ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
(boot_sector >> 16) + i - 1);
/*
* If size == 0 then we're simply erasing the FLASH sectors associated
* with the on-adapter option ROM file
*/
if (ret || (size == 0))
goto out;
/* Get boot header */
header = (pci_exp_rom_header_t *)boot_data;
pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
/* PCIR Data Structure */
pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
/*
* Perform some primitive sanity testing to avoid accidentally
* writing garbage over the boot sectors. We ought to check for
* more but it's not worth it for now ...
*/
if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
CH_ERR(adap, "boot image too small/large\n");
return -EFBIG;
}
#ifndef CHELSIO_T4_DIAGS
/*
* Check BOOT ROM header signature
*/
if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
CH_ERR(adap, "Boot image missing signature\n");
return -EINVAL;
}
/*
* Check PCI header signature
*/
if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
CH_ERR(adap, "PCI header missing signature\n");
return -EINVAL;
}
/*
* Check Vendor ID matches Chelsio ID
*/
if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
CH_ERR(adap, "Vendor ID missing signature\n");
return -EINVAL;
}
#endif
/*
* Retrieve adapter's device ID
*/
t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
/* Want to deal with PF 0 so I strip off PF 4 indicator */
device_id = device_id & 0xf0ff;
/*
* Check PCIE Device ID
*/
if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
/*
* Change the device ID in the Boot BIOS image to match
* the Device ID of the current adapter.
*/
modify_device_id(device_id, boot_data);
}
/*
* Skip over the first SF_PAGE_SIZE worth of data and write it after
* we finish copying the rest of the boot image. This will ensure
* that the BIOS boot header will only be written if the boot image
* was written in full.
*/
addr = boot_sector;
for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
addr += SF_PAGE_SIZE;
boot_data += SF_PAGE_SIZE;
ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
if (ret)
goto out;
}
ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
(const u8 *)header, 0);
out:
if (ret)
CH_ERR(adap, "boot image download failed, error %d\n", ret);
return ret;
}
/*
* t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
* @adapter: the adapter
*
* Return the address within the flash where the OptionROM Configuration
* is stored, or an error if the device FLASH is too small to contain
* a OptionROM Configuration.
*/
static int t4_flash_bootcfg_addr(struct adapter *adapter)
{
/*
* If the device FLASH isn't large enough to hold a Firmware
* Configuration File, return an error.
*/
if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
return -ENOSPC;
return FLASH_BOOTCFG_START;
}
int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
{
int ret, i, n, cfg_addr;
unsigned int addr;
unsigned int flash_cfg_start_sec;
unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
cfg_addr = t4_flash_bootcfg_addr(adap);
if (cfg_addr < 0)
return cfg_addr;
addr = cfg_addr;
flash_cfg_start_sec = addr / SF_SEC_SIZE;
if (size > FLASH_BOOTCFG_MAX_SIZE) {
CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
FLASH_BOOTCFG_MAX_SIZE);
return -EFBIG;
}
i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
sf_sec_size);
ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
flash_cfg_start_sec + i - 1);
/*
* If size == 0 then we're simply erasing the FLASH sectors associated
* with the on-adapter OptionROM Configuration File.
*/
if (ret || size == 0)
goto out;
/* this will write to the flash up to SF_PAGE_SIZE at a time */
for (i = 0; i< size; i+= SF_PAGE_SIZE) {
if ( (size - i) < SF_PAGE_SIZE)
n = size - i;
else
n = SF_PAGE_SIZE;
ret = t4_write_flash(adap, addr, n, cfg_data, 0);
if (ret)
goto out;
addr += SF_PAGE_SIZE;
cfg_data += SF_PAGE_SIZE;
}
out:
if (ret)
CH_ERR(adap, "boot config data %s failed %d\n",
(size == 0 ? "clear" : "download"), ret);
return ret;
}
/**
* t4_set_filter_mode - configure the optional components of filter tuples
* @adap: the adapter
* @mode_map: a bitmap selcting which optional filter components to enable
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Sets the filter mode by selecting the optional components to enable
* in filter tuples. Returns 0 on success and a negative error if the
* requested mode needs more bits than are available for optional
* components.
*/
int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
bool sleep_ok)
{
static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
int i, nbits = 0;
for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
if (mode_map & (1 << i))
nbits += width[i];
if (nbits > FILTER_OPT_LEN)
return -EINVAL;
t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
read_filter_mode_and_ingress_config(adap, sleep_ok);
return 0;
}
/**
* t4_clr_port_stats - clear port statistics
* @adap: the adapter
* @idx: the port index
*
* Clear HW statistics for the given port.
*/
void t4_clr_port_stats(struct adapter *adap, int idx)
{
unsigned int i;
u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
u32 port_base_addr;
if (is_t4(adap))
port_base_addr = PORT_BASE(idx);
else
port_base_addr = T5_PORT_BASE(idx);
for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
t4_write_reg(adap, port_base_addr + i, 0);
for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
t4_write_reg(adap, port_base_addr + i, 0);
for (i = 0; i < 4; i++)
if (bgmap & (1 << i)) {
t4_write_reg(adap,
A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
t4_write_reg(adap,
A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
}
}
/**
* t4_i2c_rd - read I2C data from adapter
* @adap: the adapter
* @port: Port number if per-port device; <0 if not
* @devid: per-port device ID or absolute device ID
* @offset: byte offset into device I2C space
* @len: byte length of I2C space data
* @buf: buffer in which to return I2C data
*
* Reads the I2C data from the indicated device and location.
*/
int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
int port, unsigned int devid,
unsigned int offset, unsigned int len,
u8 *buf)
{
u32 ldst_addrspace;
struct fw_ldst_cmd ldst;
int ret;
if (port >= 4 ||
devid >= 256 ||
offset >= 256 ||
len > sizeof ldst.u.i2c.data)
return -EINVAL;
memset(&ldst, 0, sizeof ldst);
ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
ldst.op_to_addrspace =
cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_READ |
ldst_addrspace);
ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
ldst.u.i2c.pid = (port < 0 ? 0xff : port);
ldst.u.i2c.did = devid;
ldst.u.i2c.boffset = offset;
ldst.u.i2c.blen = len;
ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
if (!ret)
memcpy(buf, ldst.u.i2c.data, len);
return ret;
}
/**
* t4_i2c_wr - write I2C data to adapter
* @adap: the adapter
* @port: Port number if per-port device; <0 if not
* @devid: per-port device ID or absolute device ID
* @offset: byte offset into device I2C space
* @len: byte length of I2C space data
* @buf: buffer containing new I2C data
*
* Write the I2C data to the indicated device and location.
*/
int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
int port, unsigned int devid,
unsigned int offset, unsigned int len,
u8 *buf)
{
u32 ldst_addrspace;
struct fw_ldst_cmd ldst;
if (port >= 4 ||
devid >= 256 ||
offset >= 256 ||
len > sizeof ldst.u.i2c.data)
return -EINVAL;
memset(&ldst, 0, sizeof ldst);
ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
ldst.op_to_addrspace =
cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_WRITE |
ldst_addrspace);
ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
ldst.u.i2c.pid = (port < 0 ? 0xff : port);
ldst.u.i2c.did = devid;
ldst.u.i2c.boffset = offset;
ldst.u.i2c.blen = len;
memcpy(ldst.u.i2c.data, buf, len);
return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
}
/**
* t4_sge_ctxt_rd - read an SGE context through FW
* @adap: the adapter
* @mbox: mailbox to use for the FW command
* @cid: the context id
* @ctype: the context type
* @data: where to store the context data
*
* Issues a FW command through the given mailbox to read an SGE context.
*/
int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
enum ctxt_type ctype, u32 *data)
{
int ret;
struct fw_ldst_cmd c;
if (ctype == CTXT_EGRESS)
ret = FW_LDST_ADDRSPC_SGE_EGRC;
else if (ctype == CTXT_INGRESS)
ret = FW_LDST_ADDRSPC_SGE_INGC;
else if (ctype == CTXT_FLM)
ret = FW_LDST_ADDRSPC_SGE_FLMC;
else
ret = FW_LDST_ADDRSPC_SGE_CONMC;
memset(&c, 0, sizeof(c));
c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ |
V_FW_LDST_CMD_ADDRSPACE(ret));
c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
c.u.idctxt.physid = cpu_to_be32(cid);
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
if (ret == 0) {
data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
}
return ret;
}
/**
* t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
* @adap: the adapter
* @cid: the context id
* @ctype: the context type
* @data: where to store the context data
*
* Reads an SGE context directly, bypassing FW. This is only for
* debugging when FW is unavailable.
*/
int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
u32 *data)
{
int i, ret;
t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
if (!ret)
for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
*data++ = t4_read_reg(adap, i);
return ret;
}
int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
int sleep_ok)
{
struct fw_sched_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_WRITE);
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
cmd.u.config.sc = FW_SCHED_SC_CONFIG;
cmd.u.config.type = type;
cmd.u.config.minmaxen = minmaxen;
return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
NULL, sleep_ok);
}
int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
int rateunit, int ratemode, int channel, int cl,
int minrate, int maxrate, int weight, int pktsize,
int burstsize, int sleep_ok)
{
struct fw_sched_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_WRITE);
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
cmd.u.params.sc = FW_SCHED_SC_PARAMS;
cmd.u.params.type = type;
cmd.u.params.level = level;
cmd.u.params.mode = mode;
cmd.u.params.ch = channel;
cmd.u.params.cl = cl;
cmd.u.params.unit = rateunit;
cmd.u.params.rate = ratemode;
cmd.u.params.min = cpu_to_be32(minrate);
cmd.u.params.max = cpu_to_be32(maxrate);
cmd.u.params.weight = cpu_to_be16(weight);
cmd.u.params.pktsize = cpu_to_be16(pktsize);
cmd.u.params.burstsize = cpu_to_be16(burstsize);
return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
NULL, sleep_ok);
}
int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
unsigned int maxrate, int sleep_ok)
{
struct fw_sched_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_WRITE);
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
cmd.u.params.sc = FW_SCHED_SC_PARAMS;
cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
cmd.u.params.ch = channel;
cmd.u.params.rate = ratemode; /* REL or ABS */
cmd.u.params.max = cpu_to_be32(maxrate);/* % or kbps */
return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
NULL, sleep_ok);
}
int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
int weight, int sleep_ok)
{
struct fw_sched_cmd cmd;
if (weight < 0 || weight > 100)
return -EINVAL;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_WRITE);
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
cmd.u.params.sc = FW_SCHED_SC_PARAMS;
cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
cmd.u.params.ch = channel;
cmd.u.params.cl = cl;
cmd.u.params.weight = cpu_to_be16(weight);
return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
NULL, sleep_ok);
}
int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
int mode, unsigned int maxrate, int pktsize, int sleep_ok)
{
struct fw_sched_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_WRITE);
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
cmd.u.params.sc = FW_SCHED_SC_PARAMS;
cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
cmd.u.params.mode = mode;
cmd.u.params.ch = channel;
cmd.u.params.cl = cl;
cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
cmd.u.params.max = cpu_to_be32(maxrate);
cmd.u.params.pktsize = cpu_to_be16(pktsize);
return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
NULL, sleep_ok);
}
/*
* t4_config_watchdog - configure (enable/disable) a watchdog timer
* @adapter: the adapter
* @mbox: mailbox to use for the FW command
* @pf: the PF owning the queue
* @vf: the VF owning the queue
* @timeout: watchdog timeout in ms
* @action: watchdog timer / action
*
* There are separate watchdog timers for each possible watchdog
* action. Configure one of the watchdog timers by setting a non-zero
* timeout. Disable a watchdog timer by using a timeout of zero.
*/
int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
unsigned int pf, unsigned int vf,
unsigned int timeout, unsigned int action)
{
struct fw_watchdog_cmd wdog;
unsigned int ticks;
/*
* The watchdog command expects a timeout in units of 10ms so we need
* to convert it here (via rounding) and force a minimum of one 10ms
* "tick" if the timeout is non-zero but the conversion results in 0
* ticks.
*/
ticks = (timeout + 5)/10;
if (timeout && !ticks)
ticks = 1;
memset(&wdog, 0, sizeof wdog);
wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_WRITE |
V_FW_PARAMS_CMD_PFN(pf) |
V_FW_PARAMS_CMD_VFN(vf));
wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
wdog.timeout = cpu_to_be32(ticks);
wdog.action = cpu_to_be32(action);
return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
}
int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
{
struct fw_devlog_cmd devlog_cmd;
int ret;
memset(&devlog_cmd, 0, sizeof(devlog_cmd));
devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ);
devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
sizeof(devlog_cmd), &devlog_cmd);
if (ret)
return ret;
*level = devlog_cmd.level;
return 0;
}
int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
{
struct fw_devlog_cmd devlog_cmd;
memset(&devlog_cmd, 0, sizeof(devlog_cmd));
devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_WRITE);
devlog_cmd.level = level;
devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
sizeof(devlog_cmd), &devlog_cmd);
}