freebsd-nq/sys/net/altq/altq_hfsc.c
Eric van Gyzen 9dae3b521e altq: manual cleanup after r341507
Remove a file that became practically empty.
Fix indentation.

Like r341507, I do not plan to MFC, but anyone else can.
2018-12-04 23:53:42 +00:00

1752 lines
39 KiB
C

/*-
* Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
*
* Permission to use, copy, modify, and distribute this software and
* its documentation is hereby granted (including for commercial or
* for-profit use), provided that both the copyright notice and this
* permission notice appear in all copies of the software, derivative
* works, or modified versions, and any portions thereof.
*
* THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
* WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
* SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* Carnegie Mellon encourages (but does not require) users of this
* software to return any improvements or extensions that they make,
* and to grant Carnegie Mellon the rights to redistribute these
* changes without encumbrance.
*
* $KAME: altq_hfsc.c,v 1.24 2003/12/05 05:40:46 kjc Exp $
* $FreeBSD$
*/
/*
* H-FSC is described in Proceedings of SIGCOMM'97,
* "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
* Real-Time and Priority Service"
* by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
*
* Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
* when a class has an upperlimit, the fit-time is computed from the
* upperlimit service curve. the link-sharing scheduler does not schedule
* a class whose fit-time exceeds the current time.
*/
#include "opt_altq.h"
#include "opt_inet.h"
#include "opt_inet6.h"
#ifdef ALTQ_HFSC /* hfsc is enabled by ALTQ_HFSC option in opt_altq.h */
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/queue.h>
#if 1 /* ALTQ3_COMPAT */
#include <sys/sockio.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#endif /* ALTQ3_COMPAT */
#include <net/if.h>
#include <net/if_var.h>
#include <netinet/in.h>
#include <netpfil/pf/pf.h>
#include <netpfil/pf/pf_altq.h>
#include <netpfil/pf/pf_mtag.h>
#include <net/altq/altq.h>
#include <net/altq/altq_hfsc.h>
/*
* function prototypes
*/
static int hfsc_clear_interface(struct hfsc_if *);
static int hfsc_request(struct ifaltq *, int, void *);
static void hfsc_purge(struct hfsc_if *);
static struct hfsc_class *hfsc_class_create(struct hfsc_if *,
struct service_curve *, struct service_curve *, struct service_curve *,
struct hfsc_class *, int, int, int);
static int hfsc_class_destroy(struct hfsc_class *);
static struct hfsc_class *hfsc_nextclass(struct hfsc_class *);
static int hfsc_enqueue(struct ifaltq *, struct mbuf *,
struct altq_pktattr *);
static struct mbuf *hfsc_dequeue(struct ifaltq *, int);
static int hfsc_addq(struct hfsc_class *, struct mbuf *);
static struct mbuf *hfsc_getq(struct hfsc_class *);
static struct mbuf *hfsc_pollq(struct hfsc_class *);
static void hfsc_purgeq(struct hfsc_class *);
static void update_cfmin(struct hfsc_class *);
static void set_active(struct hfsc_class *, int);
static void set_passive(struct hfsc_class *);
static void init_ed(struct hfsc_class *, int);
static void update_ed(struct hfsc_class *, int);
static void update_d(struct hfsc_class *, int);
static void init_vf(struct hfsc_class *, int);
static void update_vf(struct hfsc_class *, int, u_int64_t);
static void ellist_insert(struct hfsc_class *);
static void ellist_remove(struct hfsc_class *);
static void ellist_update(struct hfsc_class *);
struct hfsc_class *hfsc_get_mindl(struct hfsc_if *, u_int64_t);
static void actlist_insert(struct hfsc_class *);
static void actlist_remove(struct hfsc_class *);
static void actlist_update(struct hfsc_class *);
static struct hfsc_class *actlist_firstfit(struct hfsc_class *,
u_int64_t);
static __inline u_int64_t seg_x2y(u_int64_t, u_int64_t);
static __inline u_int64_t seg_y2x(u_int64_t, u_int64_t);
static __inline u_int64_t m2sm(u_int64_t);
static __inline u_int64_t m2ism(u_int64_t);
static __inline u_int64_t d2dx(u_int);
static u_int64_t sm2m(u_int64_t);
static u_int dx2d(u_int64_t);
static void sc2isc(struct service_curve *, struct internal_sc *);
static void rtsc_init(struct runtime_sc *, struct internal_sc *,
u_int64_t, u_int64_t);
static u_int64_t rtsc_y2x(struct runtime_sc *, u_int64_t);
static u_int64_t rtsc_x2y(struct runtime_sc *, u_int64_t);
static void rtsc_min(struct runtime_sc *, struct internal_sc *,
u_int64_t, u_int64_t);
static void get_class_stats_v0(struct hfsc_classstats_v0 *,
struct hfsc_class *);
static void get_class_stats_v1(struct hfsc_classstats_v1 *,
struct hfsc_class *);
static struct hfsc_class *clh_to_clp(struct hfsc_if *, u_int32_t);
/*
* macros
*/
#define is_a_parent_class(cl) ((cl)->cl_children != NULL)
#define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */
int
hfsc_pfattach(struct pf_altq *a)
{
struct ifnet *ifp;
int s, error;
if ((ifp = ifunit(a->ifname)) == NULL || a->altq_disc == NULL)
return (EINVAL);
s = splnet();
error = altq_attach(&ifp->if_snd, ALTQT_HFSC, a->altq_disc,
hfsc_enqueue, hfsc_dequeue, hfsc_request, NULL, NULL);
splx(s);
return (error);
}
int
hfsc_add_altq(struct pf_altq *a)
{
struct hfsc_if *hif;
struct ifnet *ifp;
if ((ifp = ifunit(a->ifname)) == NULL)
return (EINVAL);
if (!ALTQ_IS_READY(&ifp->if_snd))
return (ENODEV);
hif = malloc(sizeof(struct hfsc_if), M_DEVBUF, M_NOWAIT | M_ZERO);
if (hif == NULL)
return (ENOMEM);
TAILQ_INIT(&hif->hif_eligible);
hif->hif_ifq = &ifp->if_snd;
/* keep the state in pf_altq */
a->altq_disc = hif;
return (0);
}
int
hfsc_remove_altq(struct pf_altq *a)
{
struct hfsc_if *hif;
if ((hif = a->altq_disc) == NULL)
return (EINVAL);
a->altq_disc = NULL;
(void)hfsc_clear_interface(hif);
(void)hfsc_class_destroy(hif->hif_rootclass);
free(hif, M_DEVBUF);
return (0);
}
int
hfsc_add_queue(struct pf_altq *a)
{
struct hfsc_if *hif;
struct hfsc_class *cl, *parent;
struct hfsc_opts_v1 *opts;
struct service_curve rtsc, lssc, ulsc;
if ((hif = a->altq_disc) == NULL)
return (EINVAL);
opts = &a->pq_u.hfsc_opts;
if (a->parent_qid == HFSC_NULLCLASS_HANDLE &&
hif->hif_rootclass == NULL)
parent = NULL;
else if ((parent = clh_to_clp(hif, a->parent_qid)) == NULL)
return (EINVAL);
if (a->qid == 0)
return (EINVAL);
if (clh_to_clp(hif, a->qid) != NULL)
return (EBUSY);
rtsc.m1 = opts->rtsc_m1;
rtsc.d = opts->rtsc_d;
rtsc.m2 = opts->rtsc_m2;
lssc.m1 = opts->lssc_m1;
lssc.d = opts->lssc_d;
lssc.m2 = opts->lssc_m2;
ulsc.m1 = opts->ulsc_m1;
ulsc.d = opts->ulsc_d;
ulsc.m2 = opts->ulsc_m2;
cl = hfsc_class_create(hif, &rtsc, &lssc, &ulsc,
parent, a->qlimit, opts->flags, a->qid);
if (cl == NULL)
return (ENOMEM);
return (0);
}
int
hfsc_remove_queue(struct pf_altq *a)
{
struct hfsc_if *hif;
struct hfsc_class *cl;
if ((hif = a->altq_disc) == NULL)
return (EINVAL);
if ((cl = clh_to_clp(hif, a->qid)) == NULL)
return (EINVAL);
return (hfsc_class_destroy(cl));
}
int
hfsc_getqstats(struct pf_altq *a, void *ubuf, int *nbytes, int version)
{
struct hfsc_if *hif;
struct hfsc_class *cl;
union {
struct hfsc_classstats_v0 v0;
struct hfsc_classstats_v1 v1;
} stats;
size_t stats_size;
int error = 0;
if ((hif = altq_lookup(a->ifname, ALTQT_HFSC)) == NULL)
return (EBADF);
if ((cl = clh_to_clp(hif, a->qid)) == NULL)
return (EINVAL);
if (version > HFSC_STATS_VERSION)
return (EINVAL);
memset(&stats, 0, sizeof(stats));
switch (version) {
case 0:
get_class_stats_v0(&stats.v0, cl);
stats_size = sizeof(struct hfsc_classstats_v0);
break;
case 1:
get_class_stats_v1(&stats.v1, cl);
stats_size = sizeof(struct hfsc_classstats_v1);
break;
}
if (*nbytes < stats_size)
return (EINVAL);
if ((error = copyout((caddr_t)&stats, ubuf, stats_size)) != 0)
return (error);
*nbytes = stats_size;
return (0);
}
/*
* bring the interface back to the initial state by discarding
* all the filters and classes except the root class.
*/
static int
hfsc_clear_interface(struct hfsc_if *hif)
{
struct hfsc_class *cl;
/* clear out the classes */
while (hif->hif_rootclass != NULL &&
(cl = hif->hif_rootclass->cl_children) != NULL) {
/*
* remove the first leaf class found in the hierarchy
* then start over
*/
for (; cl != NULL; cl = hfsc_nextclass(cl)) {
if (!is_a_parent_class(cl)) {
(void)hfsc_class_destroy(cl);
break;
}
}
}
return (0);
}
static int
hfsc_request(struct ifaltq *ifq, int req, void *arg)
{
struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
IFQ_LOCK_ASSERT(ifq);
switch (req) {
case ALTRQ_PURGE:
hfsc_purge(hif);
break;
}
return (0);
}
/* discard all the queued packets on the interface */
static void
hfsc_purge(struct hfsc_if *hif)
{
struct hfsc_class *cl;
for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
if (!qempty(cl->cl_q))
hfsc_purgeq(cl);
if (ALTQ_IS_ENABLED(hif->hif_ifq))
hif->hif_ifq->ifq_len = 0;
}
struct hfsc_class *
hfsc_class_create(struct hfsc_if *hif, struct service_curve *rsc,
struct service_curve *fsc, struct service_curve *usc,
struct hfsc_class *parent, int qlimit, int flags, int qid)
{
struct hfsc_class *cl, *p;
int i, s;
if (hif->hif_classes >= HFSC_MAX_CLASSES)
return (NULL);
#ifndef ALTQ_RED
if (flags & HFCF_RED) {
#ifdef ALTQ_DEBUG
printf("hfsc_class_create: RED not configured for HFSC!\n");
#endif
return (NULL);
}
#endif
#ifndef ALTQ_CODEL
if (flags & HFCF_CODEL) {
#ifdef ALTQ_DEBUG
printf("hfsc_class_create: CODEL not configured for HFSC!\n");
#endif
return (NULL);
}
#endif
cl = malloc(sizeof(struct hfsc_class), M_DEVBUF, M_NOWAIT | M_ZERO);
if (cl == NULL)
return (NULL);
cl->cl_q = malloc(sizeof(class_queue_t), M_DEVBUF, M_NOWAIT | M_ZERO);
if (cl->cl_q == NULL)
goto err_ret;
TAILQ_INIT(&cl->cl_actc);
if (qlimit == 0)
qlimit = 50; /* use default */
qlimit(cl->cl_q) = qlimit;
qtype(cl->cl_q) = Q_DROPTAIL;
qlen(cl->cl_q) = 0;
qsize(cl->cl_q) = 0;
cl->cl_flags = flags;
#ifdef ALTQ_RED
if (flags & (HFCF_RED|HFCF_RIO)) {
int red_flags, red_pkttime;
u_int m2;
m2 = 0;
if (rsc != NULL && rsc->m2 > m2)
m2 = rsc->m2;
if (fsc != NULL && fsc->m2 > m2)
m2 = fsc->m2;
if (usc != NULL && usc->m2 > m2)
m2 = usc->m2;
red_flags = 0;
if (flags & HFCF_ECN)
red_flags |= REDF_ECN;
#ifdef ALTQ_RIO
if (flags & HFCF_CLEARDSCP)
red_flags |= RIOF_CLEARDSCP;
#endif
if (m2 < 8)
red_pkttime = 1000 * 1000 * 1000; /* 1 sec */
else
red_pkttime = (int64_t)hif->hif_ifq->altq_ifp->if_mtu
* 1000 * 1000 * 1000 / (m2 / 8);
if (flags & HFCF_RED) {
cl->cl_red = red_alloc(0, 0,
qlimit(cl->cl_q) * 10/100,
qlimit(cl->cl_q) * 30/100,
red_flags, red_pkttime);
if (cl->cl_red != NULL)
qtype(cl->cl_q) = Q_RED;
}
#ifdef ALTQ_RIO
else {
cl->cl_red = (red_t *)rio_alloc(0, NULL,
red_flags, red_pkttime);
if (cl->cl_red != NULL)
qtype(cl->cl_q) = Q_RIO;
}
#endif
}
#endif /* ALTQ_RED */
#ifdef ALTQ_CODEL
if (flags & HFCF_CODEL) {
cl->cl_codel = codel_alloc(5, 100, 0);
if (cl->cl_codel != NULL)
qtype(cl->cl_q) = Q_CODEL;
}
#endif
if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0)) {
cl->cl_rsc = malloc(sizeof(struct internal_sc),
M_DEVBUF, M_NOWAIT);
if (cl->cl_rsc == NULL)
goto err_ret;
sc2isc(rsc, cl->cl_rsc);
rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
}
if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0)) {
cl->cl_fsc = malloc(sizeof(struct internal_sc),
M_DEVBUF, M_NOWAIT);
if (cl->cl_fsc == NULL)
goto err_ret;
sc2isc(fsc, cl->cl_fsc);
rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
}
if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0)) {
cl->cl_usc = malloc(sizeof(struct internal_sc),
M_DEVBUF, M_NOWAIT);
if (cl->cl_usc == NULL)
goto err_ret;
sc2isc(usc, cl->cl_usc);
rtsc_init(&cl->cl_ulimit, cl->cl_usc, 0, 0);
}
cl->cl_id = hif->hif_classid++;
cl->cl_handle = qid;
cl->cl_hif = hif;
cl->cl_parent = parent;
s = splnet();
IFQ_LOCK(hif->hif_ifq);
hif->hif_classes++;
/*
* find a free slot in the class table. if the slot matching
* the lower bits of qid is free, use this slot. otherwise,
* use the first free slot.
*/
i = qid % HFSC_MAX_CLASSES;
if (hif->hif_class_tbl[i] == NULL)
hif->hif_class_tbl[i] = cl;
else {
for (i = 0; i < HFSC_MAX_CLASSES; i++)
if (hif->hif_class_tbl[i] == NULL) {
hif->hif_class_tbl[i] = cl;
break;
}
if (i == HFSC_MAX_CLASSES) {
IFQ_UNLOCK(hif->hif_ifq);
splx(s);
goto err_ret;
}
}
if (flags & HFCF_DEFAULTCLASS)
hif->hif_defaultclass = cl;
if (parent == NULL) {
/* this is root class */
hif->hif_rootclass = cl;
} else {
/* add this class to the children list of the parent */
if ((p = parent->cl_children) == NULL)
parent->cl_children = cl;
else {
while (p->cl_siblings != NULL)
p = p->cl_siblings;
p->cl_siblings = cl;
}
}
IFQ_UNLOCK(hif->hif_ifq);
splx(s);
return (cl);
err_ret:
if (cl->cl_red != NULL) {
#ifdef ALTQ_RIO
if (q_is_rio(cl->cl_q))
rio_destroy((rio_t *)cl->cl_red);
#endif
#ifdef ALTQ_RED
if (q_is_red(cl->cl_q))
red_destroy(cl->cl_red);
#endif
#ifdef ALTQ_CODEL
if (q_is_codel(cl->cl_q))
codel_destroy(cl->cl_codel);
#endif
}
if (cl->cl_fsc != NULL)
free(cl->cl_fsc, M_DEVBUF);
if (cl->cl_rsc != NULL)
free(cl->cl_rsc, M_DEVBUF);
if (cl->cl_usc != NULL)
free(cl->cl_usc, M_DEVBUF);
if (cl->cl_q != NULL)
free(cl->cl_q, M_DEVBUF);
free(cl, M_DEVBUF);
return (NULL);
}
static int
hfsc_class_destroy(struct hfsc_class *cl)
{
int i, s;
if (cl == NULL)
return (0);
if (is_a_parent_class(cl))
return (EBUSY);
s = splnet();
IFQ_LOCK(cl->cl_hif->hif_ifq);
if (!qempty(cl->cl_q))
hfsc_purgeq(cl);
if (cl->cl_parent == NULL) {
/* this is root class */
} else {
struct hfsc_class *p = cl->cl_parent->cl_children;
if (p == cl)
cl->cl_parent->cl_children = cl->cl_siblings;
else do {
if (p->cl_siblings == cl) {
p->cl_siblings = cl->cl_siblings;
break;
}
} while ((p = p->cl_siblings) != NULL);
ASSERT(p != NULL);
}
for (i = 0; i < HFSC_MAX_CLASSES; i++)
if (cl->cl_hif->hif_class_tbl[i] == cl) {
cl->cl_hif->hif_class_tbl[i] = NULL;
break;
}
cl->cl_hif->hif_classes--;
IFQ_UNLOCK(cl->cl_hif->hif_ifq);
splx(s);
if (cl->cl_red != NULL) {
#ifdef ALTQ_RIO
if (q_is_rio(cl->cl_q))
rio_destroy((rio_t *)cl->cl_red);
#endif
#ifdef ALTQ_RED
if (q_is_red(cl->cl_q))
red_destroy(cl->cl_red);
#endif
#ifdef ALTQ_CODEL
if (q_is_codel(cl->cl_q))
codel_destroy(cl->cl_codel);
#endif
}
IFQ_LOCK(cl->cl_hif->hif_ifq);
if (cl == cl->cl_hif->hif_rootclass)
cl->cl_hif->hif_rootclass = NULL;
if (cl == cl->cl_hif->hif_defaultclass)
cl->cl_hif->hif_defaultclass = NULL;
IFQ_UNLOCK(cl->cl_hif->hif_ifq);
if (cl->cl_usc != NULL)
free(cl->cl_usc, M_DEVBUF);
if (cl->cl_fsc != NULL)
free(cl->cl_fsc, M_DEVBUF);
if (cl->cl_rsc != NULL)
free(cl->cl_rsc, M_DEVBUF);
free(cl->cl_q, M_DEVBUF);
free(cl, M_DEVBUF);
return (0);
}
/*
* hfsc_nextclass returns the next class in the tree.
* usage:
* for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
* do_something;
*/
static struct hfsc_class *
hfsc_nextclass(struct hfsc_class *cl)
{
if (cl->cl_children != NULL)
cl = cl->cl_children;
else if (cl->cl_siblings != NULL)
cl = cl->cl_siblings;
else {
while ((cl = cl->cl_parent) != NULL)
if (cl->cl_siblings) {
cl = cl->cl_siblings;
break;
}
}
return (cl);
}
/*
* hfsc_enqueue is an enqueue function to be registered to
* (*altq_enqueue) in struct ifaltq.
*/
static int
hfsc_enqueue(struct ifaltq *ifq, struct mbuf *m, struct altq_pktattr *pktattr)
{
struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
struct hfsc_class *cl;
struct pf_mtag *t;
int len;
IFQ_LOCK_ASSERT(ifq);
/* grab class set by classifier */
if ((m->m_flags & M_PKTHDR) == 0) {
/* should not happen */
printf("altq: packet for %s does not have pkthdr\n",
ifq->altq_ifp->if_xname);
m_freem(m);
return (ENOBUFS);
}
cl = NULL;
if ((t = pf_find_mtag(m)) != NULL)
cl = clh_to_clp(hif, t->qid);
if (cl == NULL || is_a_parent_class(cl)) {
cl = hif->hif_defaultclass;
if (cl == NULL) {
m_freem(m);
return (ENOBUFS);
}
}
cl->cl_pktattr = NULL;
len = m_pktlen(m);
if (hfsc_addq(cl, m) != 0) {
/* drop occurred. mbuf was freed in hfsc_addq. */
PKTCNTR_ADD(&cl->cl_stats.drop_cnt, len);
return (ENOBUFS);
}
IFQ_INC_LEN(ifq);
cl->cl_hif->hif_packets++;
/* successfully queued. */
if (qlen(cl->cl_q) == 1)
set_active(cl, m_pktlen(m));
return (0);
}
/*
* hfsc_dequeue is a dequeue function to be registered to
* (*altq_dequeue) in struct ifaltq.
*
* note: ALTDQ_POLL returns the next packet without removing the packet
* from the queue. ALTDQ_REMOVE is a normal dequeue operation.
* ALTDQ_REMOVE must return the same packet if called immediately
* after ALTDQ_POLL.
*/
static struct mbuf *
hfsc_dequeue(struct ifaltq *ifq, int op)
{
struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
struct hfsc_class *cl;
struct mbuf *m;
int len, next_len;
int realtime = 0;
u_int64_t cur_time;
IFQ_LOCK_ASSERT(ifq);
if (hif->hif_packets == 0)
/* no packet in the tree */
return (NULL);
cur_time = read_machclk();
if (op == ALTDQ_REMOVE && hif->hif_pollcache != NULL) {
cl = hif->hif_pollcache;
hif->hif_pollcache = NULL;
/* check if the class was scheduled by real-time criteria */
if (cl->cl_rsc != NULL)
realtime = (cl->cl_e <= cur_time);
} else {
/*
* if there are eligible classes, use real-time criteria.
* find the class with the minimum deadline among
* the eligible classes.
*/
if ((cl = hfsc_get_mindl(hif, cur_time))
!= NULL) {
realtime = 1;
} else {
#ifdef ALTQ_DEBUG
int fits = 0;
#endif
/*
* use link-sharing criteria
* get the class with the minimum vt in the hierarchy
*/
cl = hif->hif_rootclass;
while (is_a_parent_class(cl)) {
cl = actlist_firstfit(cl, cur_time);
if (cl == NULL) {
#ifdef ALTQ_DEBUG
if (fits > 0)
printf("%d fit but none found\n",fits);
#endif
return (NULL);
}
/*
* update parent's cl_cvtmin.
* don't update if the new vt is smaller.
*/
if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
cl->cl_parent->cl_cvtmin = cl->cl_vt;
#ifdef ALTQ_DEBUG
fits++;
#endif
}
}
if (op == ALTDQ_POLL) {
hif->hif_pollcache = cl;
m = hfsc_pollq(cl);
return (m);
}
}
m = hfsc_getq(cl);
if (m == NULL)
panic("hfsc_dequeue:");
len = m_pktlen(m);
cl->cl_hif->hif_packets--;
IFQ_DEC_LEN(ifq);
PKTCNTR_ADD(&cl->cl_stats.xmit_cnt, len);
update_vf(cl, len, cur_time);
if (realtime)
cl->cl_cumul += len;
if (!qempty(cl->cl_q)) {
if (cl->cl_rsc != NULL) {
/* update ed */
next_len = m_pktlen(qhead(cl->cl_q));
if (realtime)
update_ed(cl, next_len);
else
update_d(cl, next_len);
}
} else {
/* the class becomes passive */
set_passive(cl);
}
return (m);
}
static int
hfsc_addq(struct hfsc_class *cl, struct mbuf *m)
{
#ifdef ALTQ_RIO
if (q_is_rio(cl->cl_q))
return rio_addq((rio_t *)cl->cl_red, cl->cl_q,
m, cl->cl_pktattr);
#endif
#ifdef ALTQ_RED
if (q_is_red(cl->cl_q))
return red_addq(cl->cl_red, cl->cl_q, m, cl->cl_pktattr);
#endif
#ifdef ALTQ_CODEL
if (q_is_codel(cl->cl_q))
return codel_addq(cl->cl_codel, cl->cl_q, m);
#endif
if (qlen(cl->cl_q) >= qlimit(cl->cl_q)) {
m_freem(m);
return (-1);
}
if (cl->cl_flags & HFCF_CLEARDSCP)
write_dsfield(m, cl->cl_pktattr, 0);
_addq(cl->cl_q, m);
return (0);
}
static struct mbuf *
hfsc_getq(struct hfsc_class *cl)
{
#ifdef ALTQ_RIO
if (q_is_rio(cl->cl_q))
return rio_getq((rio_t *)cl->cl_red, cl->cl_q);
#endif
#ifdef ALTQ_RED
if (q_is_red(cl->cl_q))
return red_getq(cl->cl_red, cl->cl_q);
#endif
#ifdef ALTQ_CODEL
if (q_is_codel(cl->cl_q))
return codel_getq(cl->cl_codel, cl->cl_q);
#endif
return _getq(cl->cl_q);
}
static struct mbuf *
hfsc_pollq(struct hfsc_class *cl)
{
return qhead(cl->cl_q);
}
static void
hfsc_purgeq(struct hfsc_class *cl)
{
struct mbuf *m;
if (qempty(cl->cl_q))
return;
while ((m = _getq(cl->cl_q)) != NULL) {
PKTCNTR_ADD(&cl->cl_stats.drop_cnt, m_pktlen(m));
m_freem(m);
cl->cl_hif->hif_packets--;
IFQ_DEC_LEN(cl->cl_hif->hif_ifq);
}
ASSERT(qlen(cl->cl_q) == 0);
update_vf(cl, 0, 0); /* remove cl from the actlist */
set_passive(cl);
}
static void
set_active(struct hfsc_class *cl, int len)
{
if (cl->cl_rsc != NULL)
init_ed(cl, len);
if (cl->cl_fsc != NULL)
init_vf(cl, len);
cl->cl_stats.period++;
}
static void
set_passive(struct hfsc_class *cl)
{
if (cl->cl_rsc != NULL)
ellist_remove(cl);
/*
* actlist is now handled in update_vf() so that update_vf(cl, 0, 0)
* needs to be called explicitly to remove a class from actlist
*/
}
static void
init_ed(struct hfsc_class *cl, int next_len)
{
u_int64_t cur_time;
cur_time = read_machclk();
/* update the deadline curve */
rtsc_min(&cl->cl_deadline, cl->cl_rsc, cur_time, cl->cl_cumul);
/*
* update the eligible curve.
* for concave, it is equal to the deadline curve.
* for convex, it is a linear curve with slope m2.
*/
cl->cl_eligible = cl->cl_deadline;
if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
cl->cl_eligible.dx = 0;
cl->cl_eligible.dy = 0;
}
/* compute e and d */
cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
ellist_insert(cl);
}
static void
update_ed(struct hfsc_class *cl, int next_len)
{
cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
ellist_update(cl);
}
static void
update_d(struct hfsc_class *cl, int next_len)
{
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
}
static void
init_vf(struct hfsc_class *cl, int len)
{
struct hfsc_class *max_cl, *p;
u_int64_t vt, f, cur_time;
int go_active;
cur_time = 0;
go_active = 1;
for ( ; cl->cl_parent != NULL; cl = cl->cl_parent) {
if (go_active && cl->cl_nactive++ == 0)
go_active = 1;
else
go_active = 0;
if (go_active) {
max_cl = TAILQ_LAST(&cl->cl_parent->cl_actc, acthead);
if (max_cl != NULL) {
/*
* set vt to the average of the min and max
* classes. if the parent's period didn't
* change, don't decrease vt of the class.
*/
vt = max_cl->cl_vt;
if (cl->cl_parent->cl_cvtmin != 0)
vt = (cl->cl_parent->cl_cvtmin + vt)/2;
if (cl->cl_parent->cl_vtperiod !=
cl->cl_parentperiod || vt > cl->cl_vt)
cl->cl_vt = vt;
} else {
/*
* first child for a new parent backlog period.
* add parent's cvtmax to vtoff of children
* to make a new vt (vtoff + vt) larger than
* the vt in the last period for all children.
*/
vt = cl->cl_parent->cl_cvtmax;
for (p = cl->cl_parent->cl_children; p != NULL;
p = p->cl_siblings)
p->cl_vtoff += vt;
cl->cl_vt = 0;
cl->cl_parent->cl_cvtmax = 0;
cl->cl_parent->cl_cvtmin = 0;
}
cl->cl_initvt = cl->cl_vt;
/* update the virtual curve */
vt = cl->cl_vt + cl->cl_vtoff;
rtsc_min(&cl->cl_virtual, cl->cl_fsc, vt, cl->cl_total);
if (cl->cl_virtual.x == vt) {
cl->cl_virtual.x -= cl->cl_vtoff;
cl->cl_vtoff = 0;
}
cl->cl_vtadj = 0;
cl->cl_vtperiod++; /* increment vt period */
cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
if (cl->cl_parent->cl_nactive == 0)
cl->cl_parentperiod++;
cl->cl_f = 0;
actlist_insert(cl);
if (cl->cl_usc != NULL) {
/* class has upper limit curve */
if (cur_time == 0)
cur_time = read_machclk();
/* update the ulimit curve */
rtsc_min(&cl->cl_ulimit, cl->cl_usc, cur_time,
cl->cl_total);
/* compute myf */
cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
cl->cl_total);
cl->cl_myfadj = 0;
}
}
if (cl->cl_myf > cl->cl_cfmin)
f = cl->cl_myf;
else
f = cl->cl_cfmin;
if (f != cl->cl_f) {
cl->cl_f = f;
update_cfmin(cl->cl_parent);
}
}
}
static void
update_vf(struct hfsc_class *cl, int len, u_int64_t cur_time)
{
u_int64_t f, myf_bound, delta;
int go_passive;
go_passive = qempty(cl->cl_q);
for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
cl->cl_total += len;
if (cl->cl_fsc == NULL || cl->cl_nactive == 0)
continue;
if (go_passive && --cl->cl_nactive == 0)
go_passive = 1;
else
go_passive = 0;
if (go_passive) {
/* no more active child, going passive */
/* update cvtmax of the parent class */
if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
cl->cl_parent->cl_cvtmax = cl->cl_vt;
/* remove this class from the vt list */
actlist_remove(cl);
update_cfmin(cl->cl_parent);
continue;
}
/*
* update vt and f
*/
cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
- cl->cl_vtoff + cl->cl_vtadj;
/*
* if vt of the class is smaller than cvtmin,
* the class was skipped in the past due to non-fit.
* if so, we need to adjust vtadj.
*/
if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
cl->cl_vt = cl->cl_parent->cl_cvtmin;
}
/* update the vt list */
actlist_update(cl);
if (cl->cl_usc != NULL) {
cl->cl_myf = cl->cl_myfadj
+ rtsc_y2x(&cl->cl_ulimit, cl->cl_total);
/*
* if myf lags behind by more than one clock tick
* from the current time, adjust myfadj to prevent
* a rate-limited class from going greedy.
* in a steady state under rate-limiting, myf
* fluctuates within one clock tick.
*/
myf_bound = cur_time - machclk_per_tick;
if (cl->cl_myf < myf_bound) {
delta = cur_time - cl->cl_myf;
cl->cl_myfadj += delta;
cl->cl_myf += delta;
}
}
/* cl_f is max(cl_myf, cl_cfmin) */
if (cl->cl_myf > cl->cl_cfmin)
f = cl->cl_myf;
else
f = cl->cl_cfmin;
if (f != cl->cl_f) {
cl->cl_f = f;
update_cfmin(cl->cl_parent);
}
}
}
static void
update_cfmin(struct hfsc_class *cl)
{
struct hfsc_class *p;
u_int64_t cfmin;
if (TAILQ_EMPTY(&cl->cl_actc)) {
cl->cl_cfmin = 0;
return;
}
cfmin = HT_INFINITY;
TAILQ_FOREACH(p, &cl->cl_actc, cl_actlist) {
if (p->cl_f == 0) {
cl->cl_cfmin = 0;
return;
}
if (p->cl_f < cfmin)
cfmin = p->cl_f;
}
cl->cl_cfmin = cfmin;
}
/*
* TAILQ based ellist and actlist implementation
* (ion wanted to make a calendar queue based implementation)
*/
/*
* eligible list holds backlogged classes being sorted by their eligible times.
* there is one eligible list per interface.
*/
static void
ellist_insert(struct hfsc_class *cl)
{
struct hfsc_if *hif = cl->cl_hif;
struct hfsc_class *p;
/* check the last entry first */
if ((p = TAILQ_LAST(&hif->hif_eligible, elighead)) == NULL ||
p->cl_e <= cl->cl_e) {
TAILQ_INSERT_TAIL(&hif->hif_eligible, cl, cl_ellist);
return;
}
TAILQ_FOREACH(p, &hif->hif_eligible, cl_ellist) {
if (cl->cl_e < p->cl_e) {
TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
return;
}
}
ASSERT(0); /* should not reach here */
}
static void
ellist_remove(struct hfsc_class *cl)
{
struct hfsc_if *hif = cl->cl_hif;
TAILQ_REMOVE(&hif->hif_eligible, cl, cl_ellist);
}
static void
ellist_update(struct hfsc_class *cl)
{
struct hfsc_if *hif = cl->cl_hif;
struct hfsc_class *p, *last;
/*
* the eligible time of a class increases monotonically.
* if the next entry has a larger eligible time, nothing to do.
*/
p = TAILQ_NEXT(cl, cl_ellist);
if (p == NULL || cl->cl_e <= p->cl_e)
return;
/* check the last entry */
last = TAILQ_LAST(&hif->hif_eligible, elighead);
ASSERT(last != NULL);
if (last->cl_e <= cl->cl_e) {
TAILQ_REMOVE(&hif->hif_eligible, cl, cl_ellist);
TAILQ_INSERT_TAIL(&hif->hif_eligible, cl, cl_ellist);
return;
}
/*
* the new position must be between the next entry
* and the last entry
*/
while ((p = TAILQ_NEXT(p, cl_ellist)) != NULL) {
if (cl->cl_e < p->cl_e) {
TAILQ_REMOVE(&hif->hif_eligible, cl, cl_ellist);
TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
return;
}
}
ASSERT(0); /* should not reach here */
}
/* find the class with the minimum deadline among the eligible classes */
struct hfsc_class *
hfsc_get_mindl(struct hfsc_if *hif, u_int64_t cur_time)
{
struct hfsc_class *p, *cl = NULL;
TAILQ_FOREACH(p, &hif->hif_eligible, cl_ellist) {
if (p->cl_e > cur_time)
break;
if (cl == NULL || p->cl_d < cl->cl_d)
cl = p;
}
return (cl);
}
/*
* active children list holds backlogged child classes being sorted
* by their virtual time.
* each intermediate class has one active children list.
*/
static void
actlist_insert(struct hfsc_class *cl)
{
struct hfsc_class *p;
/* check the last entry first */
if ((p = TAILQ_LAST(&cl->cl_parent->cl_actc, acthead)) == NULL
|| p->cl_vt <= cl->cl_vt) {
TAILQ_INSERT_TAIL(&cl->cl_parent->cl_actc, cl, cl_actlist);
return;
}
TAILQ_FOREACH(p, &cl->cl_parent->cl_actc, cl_actlist) {
if (cl->cl_vt < p->cl_vt) {
TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
return;
}
}
ASSERT(0); /* should not reach here */
}
static void
actlist_remove(struct hfsc_class *cl)
{
TAILQ_REMOVE(&cl->cl_parent->cl_actc, cl, cl_actlist);
}
static void
actlist_update(struct hfsc_class *cl)
{
struct hfsc_class *p, *last;
/*
* the virtual time of a class increases monotonically during its
* backlogged period.
* if the next entry has a larger virtual time, nothing to do.
*/
p = TAILQ_NEXT(cl, cl_actlist);
if (p == NULL || cl->cl_vt < p->cl_vt)
return;
/* check the last entry */
last = TAILQ_LAST(&cl->cl_parent->cl_actc, acthead);
ASSERT(last != NULL);
if (last->cl_vt <= cl->cl_vt) {
TAILQ_REMOVE(&cl->cl_parent->cl_actc, cl, cl_actlist);
TAILQ_INSERT_TAIL(&cl->cl_parent->cl_actc, cl, cl_actlist);
return;
}
/*
* the new position must be between the next entry
* and the last entry
*/
while ((p = TAILQ_NEXT(p, cl_actlist)) != NULL) {
if (cl->cl_vt < p->cl_vt) {
TAILQ_REMOVE(&cl->cl_parent->cl_actc, cl, cl_actlist);
TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
return;
}
}
ASSERT(0); /* should not reach here */
}
static struct hfsc_class *
actlist_firstfit(struct hfsc_class *cl, u_int64_t cur_time)
{
struct hfsc_class *p;
TAILQ_FOREACH(p, &cl->cl_actc, cl_actlist) {
if (p->cl_f <= cur_time)
return (p);
}
return (NULL);
}
/*
* service curve support functions
*
* external service curve parameters
* m: bits/sec
* d: msec
* internal service curve parameters
* sm: (bytes/machclk tick) << SM_SHIFT
* ism: (machclk ticks/byte) << ISM_SHIFT
* dx: machclk ticks
*
* SM_SHIFT and ISM_SHIFT are scaled in order to keep effective digits. we
* should be able to handle 100K-100Gbps linkspeed with 256 MHz machclk
* frequency and at least 3 effective digits in decimal.
*
*/
#define SM_SHIFT 24
#define ISM_SHIFT 14
#define SM_MASK ((1LL << SM_SHIFT) - 1)
#define ISM_MASK ((1LL << ISM_SHIFT) - 1)
static __inline u_int64_t
seg_x2y(u_int64_t x, u_int64_t sm)
{
u_int64_t y;
/*
* compute
* y = x * sm >> SM_SHIFT
* but divide it for the upper and lower bits to avoid overflow
*/
y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
return (y);
}
static __inline u_int64_t
seg_y2x(u_int64_t y, u_int64_t ism)
{
u_int64_t x;
if (y == 0)
x = 0;
else if (ism == HT_INFINITY)
x = HT_INFINITY;
else {
x = (y >> ISM_SHIFT) * ism
+ (((y & ISM_MASK) * ism) >> ISM_SHIFT);
}
return (x);
}
static __inline u_int64_t
m2sm(u_int64_t m)
{
u_int64_t sm;
sm = (m << SM_SHIFT) / 8 / machclk_freq;
return (sm);
}
static __inline u_int64_t
m2ism(u_int64_t m)
{
u_int64_t ism;
if (m == 0)
ism = HT_INFINITY;
else
ism = ((u_int64_t)machclk_freq << ISM_SHIFT) * 8 / m;
return (ism);
}
static __inline u_int64_t
d2dx(u_int d)
{
u_int64_t dx;
dx = ((u_int64_t)d * machclk_freq) / 1000;
return (dx);
}
static u_int64_t
sm2m(u_int64_t sm)
{
u_int64_t m;
m = (sm * 8 * machclk_freq) >> SM_SHIFT;
return (m);
}
static u_int
dx2d(u_int64_t dx)
{
u_int64_t d;
d = dx * 1000 / machclk_freq;
return ((u_int)d);
}
static void
sc2isc(struct service_curve *sc, struct internal_sc *isc)
{
isc->sm1 = m2sm(sc->m1);
isc->ism1 = m2ism(sc->m1);
isc->dx = d2dx(sc->d);
isc->dy = seg_x2y(isc->dx, isc->sm1);
isc->sm2 = m2sm(sc->m2);
isc->ism2 = m2ism(sc->m2);
}
/*
* initialize the runtime service curve with the given internal
* service curve starting at (x, y).
*/
static void
rtsc_init(struct runtime_sc *rtsc, struct internal_sc * isc, u_int64_t x,
u_int64_t y)
{
rtsc->x = x;
rtsc->y = y;
rtsc->sm1 = isc->sm1;
rtsc->ism1 = isc->ism1;
rtsc->dx = isc->dx;
rtsc->dy = isc->dy;
rtsc->sm2 = isc->sm2;
rtsc->ism2 = isc->ism2;
}
/*
* calculate the y-projection of the runtime service curve by the
* given x-projection value
*/
static u_int64_t
rtsc_y2x(struct runtime_sc *rtsc, u_int64_t y)
{
u_int64_t x;
if (y < rtsc->y)
x = rtsc->x;
else if (y <= rtsc->y + rtsc->dy) {
/* x belongs to the 1st segment */
if (rtsc->dy == 0)
x = rtsc->x + rtsc->dx;
else
x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
} else {
/* x belongs to the 2nd segment */
x = rtsc->x + rtsc->dx
+ seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
}
return (x);
}
static u_int64_t
rtsc_x2y(struct runtime_sc *rtsc, u_int64_t x)
{
u_int64_t y;
if (x <= rtsc->x)
y = rtsc->y;
else if (x <= rtsc->x + rtsc->dx)
/* y belongs to the 1st segment */
y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
else
/* y belongs to the 2nd segment */
y = rtsc->y + rtsc->dy
+ seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
return (y);
}
/*
* update the runtime service curve by taking the minimum of the current
* runtime service curve and the service curve starting at (x, y).
*/
static void
rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u_int64_t x,
u_int64_t y)
{
u_int64_t y1, y2, dx, dy;
if (isc->sm1 <= isc->sm2) {
/* service curve is convex */
y1 = rtsc_x2y(rtsc, x);
if (y1 < y)
/* the current rtsc is smaller */
return;
rtsc->x = x;
rtsc->y = y;
return;
}
/*
* service curve is concave
* compute the two y values of the current rtsc
* y1: at x
* y2: at (x + dx)
*/
y1 = rtsc_x2y(rtsc, x);
if (y1 <= y) {
/* rtsc is below isc, no change to rtsc */
return;
}
y2 = rtsc_x2y(rtsc, x + isc->dx);
if (y2 >= y + isc->dy) {
/* rtsc is above isc, replace rtsc by isc */
rtsc->x = x;
rtsc->y = y;
rtsc->dx = isc->dx;
rtsc->dy = isc->dy;
return;
}
/*
* the two curves intersect
* compute the offsets (dx, dy) using the reverse
* function of seg_x2y()
* seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
*/
dx = ((y1 - y) << SM_SHIFT) / (isc->sm1 - isc->sm2);
/*
* check if (x, y1) belongs to the 1st segment of rtsc.
* if so, add the offset.
*/
if (rtsc->x + rtsc->dx > x)
dx += rtsc->x + rtsc->dx - x;
dy = seg_x2y(dx, isc->sm1);
rtsc->x = x;
rtsc->y = y;
rtsc->dx = dx;
rtsc->dy = dy;
return;
}
static void
get_class_stats_v0(struct hfsc_classstats_v0 *sp, struct hfsc_class *cl)
{
sp->class_id = cl->cl_id;
sp->class_handle = cl->cl_handle;
#define SATU32(x) (u_int32_t)uqmin((x), UINT_MAX)
if (cl->cl_rsc != NULL) {
sp->rsc.m1 = SATU32(sm2m(cl->cl_rsc->sm1));
sp->rsc.d = dx2d(cl->cl_rsc->dx);
sp->rsc.m2 = SATU32(sm2m(cl->cl_rsc->sm2));
} else {
sp->rsc.m1 = 0;
sp->rsc.d = 0;
sp->rsc.m2 = 0;
}
if (cl->cl_fsc != NULL) {
sp->fsc.m1 = SATU32(sm2m(cl->cl_fsc->sm1));
sp->fsc.d = dx2d(cl->cl_fsc->dx);
sp->fsc.m2 = SATU32(sm2m(cl->cl_fsc->sm2));
} else {
sp->fsc.m1 = 0;
sp->fsc.d = 0;
sp->fsc.m2 = 0;
}
if (cl->cl_usc != NULL) {
sp->usc.m1 = SATU32(sm2m(cl->cl_usc->sm1));
sp->usc.d = dx2d(cl->cl_usc->dx);
sp->usc.m2 = SATU32(sm2m(cl->cl_usc->sm2));
} else {
sp->usc.m1 = 0;
sp->usc.d = 0;
sp->usc.m2 = 0;
}
#undef SATU32
sp->total = cl->cl_total;
sp->cumul = cl->cl_cumul;
sp->d = cl->cl_d;
sp->e = cl->cl_e;
sp->vt = cl->cl_vt;
sp->f = cl->cl_f;
sp->initvt = cl->cl_initvt;
sp->vtperiod = cl->cl_vtperiod;
sp->parentperiod = cl->cl_parentperiod;
sp->nactive = cl->cl_nactive;
sp->vtoff = cl->cl_vtoff;
sp->cvtmax = cl->cl_cvtmax;
sp->myf = cl->cl_myf;
sp->cfmin = cl->cl_cfmin;
sp->cvtmin = cl->cl_cvtmin;
sp->myfadj = cl->cl_myfadj;
sp->vtadj = cl->cl_vtadj;
sp->cur_time = read_machclk();
sp->machclk_freq = machclk_freq;
sp->qlength = qlen(cl->cl_q);
sp->qlimit = qlimit(cl->cl_q);
sp->xmit_cnt = cl->cl_stats.xmit_cnt;
sp->drop_cnt = cl->cl_stats.drop_cnt;
sp->period = cl->cl_stats.period;
sp->qtype = qtype(cl->cl_q);
#ifdef ALTQ_RED
if (q_is_red(cl->cl_q))
red_getstats(cl->cl_red, &sp->red[0]);
#endif
#ifdef ALTQ_RIO
if (q_is_rio(cl->cl_q))
rio_getstats((rio_t *)cl->cl_red, &sp->red[0]);
#endif
#ifdef ALTQ_CODEL
if (q_is_codel(cl->cl_q))
codel_getstats(cl->cl_codel, &sp->codel);
#endif
}
static void
get_class_stats_v1(struct hfsc_classstats_v1 *sp, struct hfsc_class *cl)
{
sp->class_id = cl->cl_id;
sp->class_handle = cl->cl_handle;
if (cl->cl_rsc != NULL) {
sp->rsc.m1 = sm2m(cl->cl_rsc->sm1);
sp->rsc.d = dx2d(cl->cl_rsc->dx);
sp->rsc.m2 = sm2m(cl->cl_rsc->sm2);
} else {
sp->rsc.m1 = 0;
sp->rsc.d = 0;
sp->rsc.m2 = 0;
}
if (cl->cl_fsc != NULL) {
sp->fsc.m1 = sm2m(cl->cl_fsc->sm1);
sp->fsc.d = dx2d(cl->cl_fsc->dx);
sp->fsc.m2 = sm2m(cl->cl_fsc->sm2);
} else {
sp->fsc.m1 = 0;
sp->fsc.d = 0;
sp->fsc.m2 = 0;
}
if (cl->cl_usc != NULL) {
sp->usc.m1 = sm2m(cl->cl_usc->sm1);
sp->usc.d = dx2d(cl->cl_usc->dx);
sp->usc.m2 = sm2m(cl->cl_usc->sm2);
} else {
sp->usc.m1 = 0;
sp->usc.d = 0;
sp->usc.m2 = 0;
}
sp->total = cl->cl_total;
sp->cumul = cl->cl_cumul;
sp->d = cl->cl_d;
sp->e = cl->cl_e;
sp->vt = cl->cl_vt;
sp->f = cl->cl_f;
sp->initvt = cl->cl_initvt;
sp->vtperiod = cl->cl_vtperiod;
sp->parentperiod = cl->cl_parentperiod;
sp->nactive = cl->cl_nactive;
sp->vtoff = cl->cl_vtoff;
sp->cvtmax = cl->cl_cvtmax;
sp->myf = cl->cl_myf;
sp->cfmin = cl->cl_cfmin;
sp->cvtmin = cl->cl_cvtmin;
sp->myfadj = cl->cl_myfadj;
sp->vtadj = cl->cl_vtadj;
sp->cur_time = read_machclk();
sp->machclk_freq = machclk_freq;
sp->qlength = qlen(cl->cl_q);
sp->qlimit = qlimit(cl->cl_q);
sp->xmit_cnt = cl->cl_stats.xmit_cnt;
sp->drop_cnt = cl->cl_stats.drop_cnt;
sp->period = cl->cl_stats.period;
sp->qtype = qtype(cl->cl_q);
#ifdef ALTQ_RED
if (q_is_red(cl->cl_q))
red_getstats(cl->cl_red, &sp->red[0]);
#endif
#ifdef ALTQ_RIO
if (q_is_rio(cl->cl_q))
rio_getstats((rio_t *)cl->cl_red, &sp->red[0]);
#endif
#ifdef ALTQ_CODEL
if (q_is_codel(cl->cl_q))
codel_getstats(cl->cl_codel, &sp->codel);
#endif
}
/* convert a class handle to the corresponding class pointer */
static struct hfsc_class *
clh_to_clp(struct hfsc_if *hif, u_int32_t chandle)
{
int i;
struct hfsc_class *cl;
if (chandle == 0)
return (NULL);
/*
* first, try optimistically the slot matching the lower bits of
* the handle. if it fails, do the linear table search.
*/
i = chandle % HFSC_MAX_CLASSES;
if ((cl = hif->hif_class_tbl[i]) != NULL && cl->cl_handle == chandle)
return (cl);
for (i = 0; i < HFSC_MAX_CLASSES; i++)
if ((cl = hif->hif_class_tbl[i]) != NULL &&
cl->cl_handle == chandle)
return (cl);
return (NULL);
}
#endif /* ALTQ_HFSC */