71504277ae
The linux module can be built either as an external module, or compiled into the kernel, using copy-builtin. The source and build directories are slightly different between the two cases, and currently, compiling into the kernel still refers to some files from the configured ZFS source tree, instead of the copies inside the kernel source tree. There is also duplication between copy-builtin, which creates a Kbuild file to build ZFS inside the kernel tree, and the top-level module/Makefile.in. Fix this by moving the list of modules and the CFLAGS settings into a new module/Kbuild.in, which will be used by the kernel kbuild infrastructure, and using KBUILD_EXTMOD to distinguish the two cases within the Makefiles, in order to choose appropriate include directories etc. Module CFLAGS setting is simplified by using subdir-ccflags-y (available since 2.6.30) to set them in the top-level Kbuild instead of each individual module. The disabling of -Wunused-but-set-variable is removed from the lua and zfs modules. The variable that the Makefile uses is actually not defined, so this has no effect; and the warning has long been disabled by the kernel Makefile itself. The target_cpu definition in module/{zfs,zcommon} is removed as it was replaced by use of CONFIG_SPARC64 in commit 70835c5b755e ("Unify target_cpu handling") os/linux/{spl,zfs} are removed from obj-m, as they are not modules in themselves, but are included by the Makefile in the spl and zfs module directories. The vestigial Makefiles in os and os/linux are removed. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Closes #10379 Closes #10421
# # CDDL HEADER START # # This file and its contents are supplied under the terms of the # Common Development and Distribution License ("CDDL"), version 1.0. # You may only use this file in accordance with the terms of version # 1.0 of the CDDL. # # A full copy of the text of the CDDL should have accompanied this # source. A copy of the CDDL is also available via the Internet at # http://www.illumos.org/license/CDDL. # # CDDL HEADER END # # # Copyright (c) 2017 by Delphix. All rights reserved. # Introduction ------------ This README describes the Lua interpreter source code that lives in the ZFS source tree to enable execution of ZFS channel programs, including its maintenance policy, the modifications that have been made to it, and how it should (and should not) be used. For a description of the Lua language and features exposed by ZFS channel programs, please refer to the zfs-program(1m) man page instead. Maintenance policy ------------------ The Lua runtime is considered stable software. Channel programs don't need much complicated logic, so updates to the Lua runtime from upstream are viewed as nice-to-have, but not required for channel programs to be well-supported. As such, the Lua runtime in ZFS should be updated on an as-needed basis for security vulnerabilities, but not much else. Modifications to Lua -------------------- The version of the Lua runtime we're using in ZFS has been modified in a variety of ways to make it more useful for the specific purpose of running channel programs. These changes include: 1. "Normal" Lua uses floating point for all numbers it stores, but those aren't useful inside ZFS / the kernel. We have changed the runtime to use int64_t throughout for all numbers. 2. Some of the Lua standard libraries do file I/O or spawn processes, but neither of these make sense from inside channel programs. We have removed those libraries rather than reimplementing them using kernel APIs. 3. The "normal" Lua runtime handles errors by failing fatally, but since this version of Lua runs inside the kernel we must handle these failures and return meaningful error codes to userland. We have customized the Lua failure paths so that they aren't fatal. 4. Running poorly-vetted code inside the kernel is always a risk; even if the ability to do so is restricted to the root user, it's still possible to write an incorrect program that results in an infinite loop or massive memory use. We've added new protections into the Lua interpreter to limit the runtime (measured in number of Lua instructions run) and memory overhead of running a channel program. 5. The Lua bytecode is not designed to be secure / safe, so it would be easy to pass invalid bytecode which can panic the kernel. By comparison, the parser is hardened and fails gracefully on invalid input. Therefore, we only accept Lua source code at the ioctl level and then interpret it inside the kernel. Each of these modifications have been tested in the zfs-test suite. If / when new modifications are made, new tests should be added to the suite located in zfs-tests/tests/functional/channel_program/lua_core. How to use this Lua interpreter ------------------------------- From the above, it should be clear that this is not a general-purpose Lua interpreter. Additional work would be required to extricate this custom version of Lua from ZFS and make it usable by other areas of the kernel.