2b15cb3d09
Thanks to roberto for providing pointers to wedge this into HEAD. Approved by: roberto
394 lines
7.8 KiB
C
394 lines
7.8 KiB
C
/*
|
|
* timespecops.h -- calculations on 'struct timespec' values
|
|
*
|
|
* Written by Juergen Perlinger (perlinger@ntp.org) for the NTP project.
|
|
* The contents of 'html/copyright.html' apply.
|
|
*
|
|
* Rationale
|
|
* ---------
|
|
*
|
|
* Doing basic arithmetic on a 'struct timespec' is not exceedingly
|
|
* hard, but it requires tedious and repetitive code to keep the result
|
|
* normalised. We consider a timespec normalised when the nanosecond
|
|
* fraction is in the interval [0 .. 10^9[ ; there are multiple value
|
|
* pairs of seconds and nanoseconds that denote the same time interval,
|
|
* but the normalised representation is unique. No two different
|
|
* intervals can have the same normalised representation.
|
|
*
|
|
* Another topic is the representation of negative time intervals.
|
|
* There's more than one way to this, since both the seconds and the
|
|
* nanoseconds of a timespec are signed values. IMHO, the easiest way is
|
|
* to use a complement representation where the nanoseconds are still
|
|
* normalised, no matter what the sign of the seconds value. This makes
|
|
* normalisation easier, since the sign of the integer part is
|
|
* irrelevant, and it removes several sign decision cases during the
|
|
* calculations.
|
|
*
|
|
* As long as no signed integer overflow can occur with the nanosecond
|
|
* part of the operands, all operations work as expected and produce a
|
|
* normalised result.
|
|
*
|
|
* The exception to this are functions fix a '_fast' suffix, which do no
|
|
* normalisation on input data and therefore expect the input data to be
|
|
* normalised.
|
|
*
|
|
* Input and output operands may overlap; all input is consumed before
|
|
* the output is written to.
|
|
*/
|
|
#ifndef TIMESPECOPS_H
|
|
#define TIMESPECOPS_H
|
|
|
|
#include <sys/types.h>
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
|
|
#include "ntp.h"
|
|
#include "timetoa.h"
|
|
|
|
|
|
/* nanoseconds per second */
|
|
#define NANOSECONDS 1000000000
|
|
|
|
/* predicate: returns TRUE if the nanoseconds are in nominal range */
|
|
#define timespec_isnormal(x) \
|
|
((x)->tv_nsec >= 0 && (x)->tv_nsec < NANOSECONDS)
|
|
|
|
/* predicate: returns TRUE if the nanoseconds are out-of-bounds */
|
|
#define timespec_isdenormal(x) (!timespec_isnormal(x))
|
|
|
|
/* conversion between l_fp fractions and nanoseconds */
|
|
#ifdef HAVE_U_INT64
|
|
# define FTOTVN(tsf) \
|
|
((int32) \
|
|
(((u_int64)(tsf) * NANOSECONDS + 0x80000000) >> 32))
|
|
# define TVNTOF(tvu) \
|
|
((u_int32) \
|
|
((((u_int64)(tvu) << 32) + NANOSECONDS / 2) / \
|
|
NANOSECONDS))
|
|
#else
|
|
# define NSECFRAC (FRAC / NANOSECONDS)
|
|
# define FTOTVN(tsf) \
|
|
((int32)((tsf) / NSECFRAC + 0.5))
|
|
# define TVNTOF(tvu) \
|
|
((u_int32)((tvu) * NSECFRAC + 0.5))
|
|
#endif
|
|
|
|
|
|
|
|
/* make sure nanoseconds are in nominal range */
|
|
static inline struct timespec
|
|
normalize_tspec(
|
|
struct timespec x
|
|
)
|
|
{
|
|
#if SIZEOF_LONG > 4
|
|
long z;
|
|
|
|
/*
|
|
* tv_nsec is of type 'long', and on a 64-bit machine using only
|
|
* loops becomes prohibitive once the upper 32 bits get
|
|
* involved. On the other hand, division by constant should be
|
|
* fast enough; so we do a division of the nanoseconds in that
|
|
* case. The floor adjustment step follows with the standard
|
|
* normalisation loops. And labs() is intentionally not used
|
|
* here: it has implementation-defined behaviour when applied
|
|
* to LONG_MIN.
|
|
*/
|
|
if (x.tv_nsec < -3l * NANOSECONDS ||
|
|
x.tv_nsec > 3l * NANOSECONDS) {
|
|
z = x.tv_nsec / NANOSECONDS;
|
|
x.tv_nsec -= z * NANOSECONDS;
|
|
x.tv_sec += z;
|
|
}
|
|
#endif
|
|
/* since 10**9 is close to 2**32, we don't divide but do a
|
|
* normalisation in a loop; this takes 3 steps max, and should
|
|
* outperform a division even if the mul-by-inverse trick is
|
|
* employed. */
|
|
if (x.tv_nsec < 0)
|
|
do {
|
|
x.tv_nsec += NANOSECONDS;
|
|
x.tv_sec--;
|
|
} while (x.tv_nsec < 0);
|
|
else if (x.tv_nsec >= NANOSECONDS)
|
|
do {
|
|
x.tv_nsec -= NANOSECONDS;
|
|
x.tv_sec++;
|
|
} while (x.tv_nsec >= NANOSECONDS);
|
|
|
|
return x;
|
|
}
|
|
|
|
/* x = a + b */
|
|
static inline struct timespec
|
|
add_tspec(
|
|
struct timespec a,
|
|
struct timespec b
|
|
)
|
|
{
|
|
struct timespec x;
|
|
|
|
x = a;
|
|
x.tv_sec += b.tv_sec;
|
|
x.tv_nsec += b.tv_nsec;
|
|
|
|
return normalize_tspec(x);
|
|
}
|
|
|
|
/* x = a + b, b is fraction only */
|
|
static inline struct timespec
|
|
add_tspec_ns(
|
|
struct timespec a,
|
|
long b
|
|
)
|
|
{
|
|
struct timespec x;
|
|
|
|
x = a;
|
|
x.tv_nsec += b;
|
|
|
|
return normalize_tspec(x);
|
|
}
|
|
|
|
/* x = a - b */
|
|
static inline struct timespec
|
|
sub_tspec(
|
|
struct timespec a,
|
|
struct timespec b
|
|
)
|
|
{
|
|
struct timespec x;
|
|
|
|
x = a;
|
|
x.tv_sec -= b.tv_sec;
|
|
x.tv_nsec -= b.tv_nsec;
|
|
|
|
return normalize_tspec(x);
|
|
}
|
|
|
|
/* x = a - b, b is fraction only */
|
|
static inline struct timespec
|
|
sub_tspec_ns(
|
|
struct timespec a,
|
|
long b
|
|
)
|
|
{
|
|
struct timespec x;
|
|
|
|
x = a;
|
|
x.tv_nsec -= b;
|
|
|
|
return normalize_tspec(x);
|
|
}
|
|
|
|
/* x = -a */
|
|
static inline struct timespec
|
|
neg_tspec(
|
|
struct timespec a
|
|
)
|
|
{
|
|
struct timespec x;
|
|
|
|
x.tv_sec = -a.tv_sec;
|
|
x.tv_nsec = -a.tv_nsec;
|
|
|
|
return normalize_tspec(x);
|
|
}
|
|
|
|
/* x = abs(a) */
|
|
static inline struct timespec
|
|
abs_tspec(
|
|
struct timespec a
|
|
)
|
|
{
|
|
struct timespec c;
|
|
|
|
c = normalize_tspec(a);
|
|
if (c.tv_sec < 0) {
|
|
if (c.tv_nsec != 0) {
|
|
c.tv_sec = -c.tv_sec - 1;
|
|
c.tv_nsec = NANOSECONDS - c.tv_nsec;
|
|
} else {
|
|
c.tv_sec = -c.tv_sec;
|
|
}
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
* compare previously-normalised a and b
|
|
* return 1 / 0 / -1 if a < / == / > b
|
|
*/
|
|
static inline int
|
|
cmp_tspec(
|
|
struct timespec a,
|
|
struct timespec b
|
|
)
|
|
{
|
|
int r;
|
|
|
|
r = (a.tv_sec > b.tv_sec) - (a.tv_sec < b.tv_sec);
|
|
if (0 == r)
|
|
r = (a.tv_nsec > b.tv_nsec) -
|
|
(a.tv_nsec < b.tv_nsec);
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* compare possibly-denormal a and b
|
|
* return 1 / 0 / -1 if a < / == / > b
|
|
*/
|
|
static inline int
|
|
cmp_tspec_denorm(
|
|
struct timespec a,
|
|
struct timespec b
|
|
)
|
|
{
|
|
return cmp_tspec(normalize_tspec(a), normalize_tspec(b));
|
|
}
|
|
|
|
/*
|
|
* test previously-normalised a
|
|
* return 1 / 0 / -1 if a < / == / > 0
|
|
*/
|
|
static inline int
|
|
test_tspec(
|
|
struct timespec a
|
|
)
|
|
{
|
|
int r;
|
|
|
|
r = (a.tv_sec > 0) - (a.tv_sec < 0);
|
|
if (r == 0)
|
|
r = (a.tv_nsec > 0);
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* test possibly-denormal a
|
|
* return 1 / 0 / -1 if a < / == / > 0
|
|
*/
|
|
static inline int
|
|
test_tspec_denorm(
|
|
struct timespec a
|
|
)
|
|
{
|
|
return test_tspec(normalize_tspec(a));
|
|
}
|
|
|
|
/* return LIB buffer ptr to string rep */
|
|
static inline const char *
|
|
tspectoa(
|
|
struct timespec x
|
|
)
|
|
{
|
|
return format_time_fraction(x.tv_sec, x.tv_nsec, 9);
|
|
}
|
|
|
|
/*
|
|
* convert to l_fp type, relative and absolute
|
|
*/
|
|
|
|
/* convert from timespec duration to l_fp duration */
|
|
static inline l_fp
|
|
tspec_intv_to_lfp(
|
|
struct timespec x
|
|
)
|
|
{
|
|
struct timespec v;
|
|
l_fp y;
|
|
|
|
v = normalize_tspec(x);
|
|
y.l_uf = TVNTOF(v.tv_nsec);
|
|
y.l_i = (int32)v.tv_sec;
|
|
|
|
return y;
|
|
}
|
|
|
|
/* x must be UN*X epoch, output will be in NTP epoch */
|
|
static inline l_fp
|
|
tspec_stamp_to_lfp(
|
|
struct timespec x
|
|
)
|
|
{
|
|
l_fp y;
|
|
|
|
y = tspec_intv_to_lfp(x);
|
|
y.l_ui += JAN_1970;
|
|
|
|
return y;
|
|
}
|
|
|
|
/* convert from l_fp type, relative signed/unsigned and absolute */
|
|
static inline struct timespec
|
|
lfp_intv_to_tspec(
|
|
l_fp x
|
|
)
|
|
{
|
|
struct timespec out;
|
|
l_fp absx;
|
|
int neg;
|
|
|
|
neg = L_ISNEG(&x);
|
|
absx = x;
|
|
if (neg) {
|
|
L_NEG(&absx);
|
|
}
|
|
out.tv_nsec = FTOTVN(absx.l_uf);
|
|
out.tv_sec = absx.l_i;
|
|
if (neg) {
|
|
out.tv_sec = -out.tv_sec;
|
|
out.tv_nsec = -out.tv_nsec;
|
|
out = normalize_tspec(out);
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
static inline struct timespec
|
|
lfp_uintv_to_tspec(
|
|
l_fp x
|
|
)
|
|
{
|
|
struct timespec out;
|
|
|
|
out.tv_nsec = FTOTVN(x.l_uf);
|
|
out.tv_sec = x.l_ui;
|
|
|
|
return out;
|
|
}
|
|
|
|
/*
|
|
* absolute (timestamp) conversion. Input is time in NTP epoch, output
|
|
* is in UN*X epoch. The NTP time stamp will be expanded around the
|
|
* pivot time *p or the current time, if p is NULL.
|
|
*/
|
|
static inline struct timespec
|
|
lfp_stamp_to_tspec(
|
|
l_fp x,
|
|
const time_t * p
|
|
)
|
|
{
|
|
struct timespec out;
|
|
vint64 sec;
|
|
|
|
sec = ntpcal_ntp_to_time(x.l_ui, p);
|
|
out.tv_nsec = FTOTVN(x.l_uf);
|
|
|
|
/* copying a vint64 to a time_t needs some care... */
|
|
#if SIZEOF_TIME_T <= 4
|
|
out.tv_sec = (time_t)sec.d_s.lo;
|
|
#elif defined(HAVE_INT64)
|
|
out.tv_sec = (time_t)sec.q_s;
|
|
#else
|
|
out.tv_sec = ((time_t)sec.d_s.hi << 32) | sec.d_s.lo;
|
|
#endif
|
|
|
|
return out;
|
|
}
|
|
|
|
#endif /* TIMESPECOPS_H */
|