Conrad Meyer a3c41f8bfb Add "Fenestras X" alternative /dev/random implementation
Fortuna remains the default; no functional change to GENERIC.

Big picture:
- Scalable entropy generation with per-CPU, buffered local generators.
- "Push" system for reseeding child generators when root PRNG is
  reseeded.  (Design can be extended to arc4random(9) and userspace
  generators.)
- Similar entropy pooling system to Fortuna, but starts with a single
  pool to quickly bootstrap as much entropy as possible early on.
- Reseeding from pooled entropy based on time schedule.  The time
  interval starts small and grows exponentially until reaching a cap.
  Again, the goal is to have the RNG state depend on as much entropy as
  possible quickly, but still periodically incorporate new entropy for
  the same reasons as Fortuna.

Notable design choices in this implementation that differ from those
specified in the whitepaper:
- Blake2B instead of SHA-2 512 for entropy pooling
- Chacha20 instead of AES-CTR DRBG
- Initial seeding.  We support more platforms and not all of them use
  loader(8).  So we have to grab the initial entropy sources in kernel
  mode instead, as much as possible.  Fortuna didn't have any mechanism
  for this aside from the special case of loader-provided previous-boot
  entropy, so most of these sources remain TODO after this commit.

Reviewed by:	markm
Approved by:	csprng (markm)
Differential Revision:	https://reviews.freebsd.org/D22837
2020-10-10 21:45:59 +00:00

250 lines
7.1 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2019 Conrad Meyer <cem@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/fail.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/random.h>
#include <sys/sdt.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <machine/cpu.h>
#include <machine/stdarg.h>
#define CHACHA_EMBED
#define KEYSTREAM_ONLY
#define CHACHA_NONCE0_CTR128
#include <crypto/chacha20/chacha.h>
#include <crypto/rijndael/rijndael-api-fst.h>
#include <crypto/sha2/sha256.h>
#include <dev/random/hash.h>
#include <dev/random/randomdev.h>
#include <dev/random/random_harvestq.h>
#include <dev/random/uint128.h>
#include <dev/random/fenestrasX/fx_hash.h>
#include <dev/random/fenestrasX/fx_priv.h>
#include <dev/random/fenestrasX/fx_rng.h>
_Static_assert(FX_CHACHA20_KEYSIZE == RANDOM_KEYSIZE, "");
#include <crypto/chacha20/chacha.c>
static void
fxrng_rng_keystream_internal(struct chacha_ctx *prf, void *buf, size_t nbytes)
{
size_t chunklen;
while (nbytes > 0) {
chunklen = MIN(nbytes,
rounddown((size_t)UINT32_MAX, CHACHA_BLOCKLEN));
chacha_encrypt_bytes(prf, NULL, buf, chunklen);
buf = (uint8_t *)buf + chunklen;
nbytes -= chunklen;
}
}
/*
* This subroutine pulls the counter out of Chacha, which for whatever reason
* always encodes and decodes counters in a little endian format, and adds
* 'addend' to it, saving the result in Chacha.
*/
static void
fxrng_chacha_nonce_add64(struct chacha_ctx *ctx, uint64_t addend)
{
uint128_t ctr; /* Native-endian. */
#if BYTE_ORDER == BIG_ENDIAN
uint128_t lectr;
chacha_ctrsave(ctx, (void *)&lectr);
ctr = le128dec(&lectr);
#else
chacha_ctrsave(ctx, (void *)&ctr);
#endif
uint128_add64(&ctr, addend);
/* chacha_ivsetup() does not modify the key, and we rely on that. */
#if BYTE_ORDER == BIG_ENDIAN
le128enc(&lectr, ctr);
chacha_ivsetup(ctx, NULL, (const void *)&lectr);
explicit_bzero(&lectr, sizeof(lectr));
#else
chacha_ivsetup(ctx, NULL, (const void *)&ctr);
#endif
explicit_bzero(&ctr, sizeof(ctr));
}
/*
* Generate from the unbuffered source PRNG.
*
* Handles fast key erasure (rekeys the PRF with a generated key under lock).
*
* RNG lock is required on entry. If return_unlocked is true, RNG lock will
* be dropped on return.
*/
void
fxrng_rng_genrandom_internal(struct fxrng_basic_rng *rng, void *buf,
size_t nbytes, bool return_unlocked)
{
struct chacha_ctx ctx_copy, *p_ctx;
uint8_t newkey[FX_CHACHA20_KEYSIZE];
size_t blockcount;
FXRNG_RNG_ASSERT(rng);
/* Save off the initial output of the generator for rekeying. */
fxrng_rng_keystream_internal(&rng->rng_prf, newkey, sizeof(newkey));
if (return_unlocked) {
memcpy(&ctx_copy, &rng->rng_prf, sizeof(ctx_copy));
p_ctx = &ctx_copy;
/*
* Forward the Chacha counter state over the blocks we promise
* to generate for the caller without the lock.
*/
blockcount = howmany(nbytes, CHACHA_BLOCKLEN);
fxrng_chacha_nonce_add64(&rng->rng_prf, blockcount);
/* Re-key before dropping the lock. */
chacha_keysetup(&rng->rng_prf, newkey, sizeof(newkey) * 8);
explicit_bzero(newkey, sizeof(newkey));
FXRNG_RNG_UNLOCK(rng);
} else {
p_ctx = &rng->rng_prf;
}
fxrng_rng_keystream_internal(p_ctx, buf, nbytes);
if (return_unlocked) {
explicit_bzero(&ctx_copy, sizeof(ctx_copy));
FXRNG_RNG_ASSERT_NOT(rng);
} else {
/* Re-key before exit. */
chacha_keysetup(&rng->rng_prf, newkey, sizeof(newkey) * 8);
explicit_bzero(newkey, sizeof(newkey));
FXRNG_RNG_ASSERT(rng);
}
}
/*
* Helper to reseed the root RNG, incorporating the existing RNG state.
*
* The root RNG is locked on entry and locked on return.
*/
static void
fxrng_rng_reseed_internal(struct fxrng_basic_rng *rng, bool seeded,
const void *src, size_t sz, ...)
{
union {
uint8_t root_state[FX_CHACHA20_KEYSIZE];
uint8_t hash_out[FXRNG_HASH_SZ];
} u;
struct fxrng_hash mix;
va_list ap;
_Static_assert(FX_CHACHA20_KEYSIZE <= FXRNG_HASH_SZ, "");
FXRNG_RNG_ASSERT(rng);
fxrng_hash_init(&mix);
if (seeded) {
fxrng_rng_keystream_internal(&rng->rng_prf, u.root_state,
sizeof(u.root_state));
fxrng_hash_update(&mix, u.root_state, sizeof(u.root_state));
}
fxrng_hash_update(&mix, src, sz);
va_start(ap, sz);
while (true) {
src = va_arg(ap, const void *);
if (src == NULL)
break;
sz = va_arg(ap, size_t);
fxrng_hash_update(&mix, src, sz);
}
va_end(ap);
fxrng_hash_finish(&mix, u.hash_out, sizeof(u.hash_out));
/*
* Take the first keysize (32) bytes of our digest (64 bytes). It is
* also possible to just have Blake2 emit fewer bytes, but our wrapper
* API doesn't provide that functionality and there isn't anything
* obviously wrong with emitting more hash bytes.
*
* keysetup does not reset the embedded counter, and we rely on that
* property.
*/
chacha_keysetup(&rng->rng_prf, u.hash_out, FX_CHACHA20_KEYSIZE * 8);
/* 'mix' zeroed by fxrng_hash_finish(). */
explicit_bzero(u.hash_out, sizeof(u.hash_out));
FXRNG_RNG_ASSERT(rng);
}
/*
* Directly reseed the root RNG from a first-time entropy source,
* incorporating the existing RNG state, called by fxrng_brng_src_reseed.
*
* The root RNG is locked on entry and locked on return.
*/
void
fxrng_rng_src_reseed(struct fxrng_basic_rng *rng,
const struct harvest_event *event)
{
fxrng_rng_reseed_internal(rng, true, &event->he_somecounter,
sizeof(event->he_somecounter), (const void *)event->he_entropy,
(size_t)event->he_size, NULL);
}
/*
* Reseed the root RNG from pooled entropy, incorporating the existing RNG
* state, called by fxrng_brng_reseed.
*
* The root RNG is locked on entry and locked on return.
*/
void
fxrng_rng_reseed(struct fxrng_basic_rng *rng, bool seeded, const void *entr,
size_t sz)
{
fxrng_rng_reseed_internal(rng, seeded, entr, sz, NULL);
}