Ian Lepore 0f822edead Fix the Zedboard/Zynq ethernet driver to handle media speed changes so
that it can connect to switches at speeds other than 1gb.

This requires changing the reference clock speed.  Since we still don't
have a general clock API that lets a SoC-independant driver manipulate its
own clocks, this change includes a weak reference to a routine named
cgem_set_ref_clk().  The default implementation is a no-op; SoC-specific
code can provide an implementation that actually changes the speed.

Submitted by:	Thomas Skibo <ThomasSkibo@sbcglobal.net>
2014-07-14 20:58:57 +00:00

1427 lines
36 KiB
C

/*-
* Copyright (c) 2012-2014 Thomas Skibo
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* A network interface driver for Cadence GEM Gigabit Ethernet
* interface such as the one used in Xilinx Zynq-7000 SoC.
*
* Reference: Zynq-7000 All Programmable SoC Technical Reference Manual.
* (v1.4) November 16, 2012. Xilinx doc UG585. GEM is covered in Ch. 16
* and register definitions are in appendix B.18.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_mib.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#include <net/bpf.h>
#include <net/bpfdesc.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/cadence/if_cgem_hw.h>
#include "miibus_if.h"
#define IF_CGEM_NAME "cgem"
#define CGEM_NUM_RX_DESCS 256 /* size of receive descriptor ring */
#define CGEM_NUM_TX_DESCS 256 /* size of transmit descriptor ring */
#define MAX_DESC_RING_SIZE (MAX(CGEM_NUM_RX_DESCS*sizeof(struct cgem_rx_desc),\
CGEM_NUM_TX_DESCS*sizeof(struct cgem_tx_desc)))
/* Default for sysctl rxbufs. Must be < CGEM_NUM_RX_DESCS of course. */
#define DEFAULT_NUM_RX_BUFS 64 /* number of receive bufs to queue. */
#define TX_MAX_DMA_SEGS 4 /* maximum segs in a tx mbuf dma */
#define CGEM_CKSUM_ASSIST (CSUM_IP | CSUM_TCP | CSUM_UDP | \
CSUM_TCP_IPV6 | CSUM_UDP_IPV6)
struct cgem_softc {
struct ifnet *ifp;
struct mtx sc_mtx;
device_t dev;
device_t miibus;
int if_old_flags;
struct resource *mem_res;
struct resource *irq_res;
void *intrhand;
struct callout tick_ch;
uint32_t net_ctl_shadow;
int ref_clk_num;
u_char eaddr[6];
bus_dma_tag_t desc_dma_tag;
bus_dma_tag_t mbuf_dma_tag;
/* receive descriptor ring */
struct cgem_rx_desc *rxring;
bus_addr_t rxring_physaddr;
struct mbuf *rxring_m[CGEM_NUM_RX_DESCS];
bus_dmamap_t rxring_m_dmamap[CGEM_NUM_RX_DESCS];
int rxring_hd_ptr; /* where to put rcv bufs */
int rxring_tl_ptr; /* where to get receives */
int rxring_queued; /* how many rcv bufs queued */
bus_dmamap_t rxring_dma_map;
int rxbufs; /* tunable number rcv bufs */
int rxoverruns; /* rx ring overruns */
/* transmit descriptor ring */
struct cgem_tx_desc *txring;
bus_addr_t txring_physaddr;
struct mbuf *txring_m[CGEM_NUM_TX_DESCS];
bus_dmamap_t txring_m_dmamap[CGEM_NUM_TX_DESCS];
int txring_hd_ptr; /* where to put next xmits */
int txring_tl_ptr; /* next xmit mbuf to free */
int txring_queued; /* num xmits segs queued */
bus_dmamap_t txring_dma_map;
};
#define RD4(sc, off) (bus_read_4((sc)->mem_res, (off)))
#define WR4(sc, off, val) (bus_write_4((sc)->mem_res, (off), (val)))
#define BARRIER(sc, off, len, flags) \
(bus_barrier((sc)->mem_res, (off), (len), (flags))
#define CGEM_LOCK(sc) mtx_lock(&(sc)->sc_mtx)
#define CGEM_UNLOCK(sc) mtx_unlock(&(sc)->sc_mtx)
#define CGEM_LOCK_INIT(sc) \
mtx_init(&(sc)->sc_mtx, device_get_nameunit((sc)->dev), \
MTX_NETWORK_LOCK, MTX_DEF)
#define CGEM_LOCK_DESTROY(sc) mtx_destroy(&(sc)->sc_mtx)
#define CGEM_ASSERT_LOCKED(sc) mtx_assert(&(sc)->sc_mtx, MA_OWNED)
/* Allow platforms to optionally provide a way to set the reference clock. */
int cgem_set_ref_clk(int unit, int frequency);
static devclass_t cgem_devclass;
static int cgem_probe(device_t dev);
static int cgem_attach(device_t dev);
static int cgem_detach(device_t dev);
static void cgem_tick(void *);
static void cgem_intr(void *);
static void
cgem_get_mac(struct cgem_softc *sc, u_char eaddr[])
{
int i;
uint32_t rnd;
/* See if boot loader gave us a MAC address already. */
for (i = 0; i < 4; i++) {
uint32_t low = RD4(sc, CGEM_SPEC_ADDR_LOW(i));
uint32_t high = RD4(sc, CGEM_SPEC_ADDR_HI(i)) & 0xffff;
if (low != 0 || high != 0) {
eaddr[0] = low & 0xff;
eaddr[1] = (low >> 8) & 0xff;
eaddr[2] = (low >> 16) & 0xff;
eaddr[3] = (low >> 24) & 0xff;
eaddr[4] = high & 0xff;
eaddr[5] = (high >> 8) & 0xff;
break;
}
}
/* No MAC from boot loader? Assign a random one. */
if (i == 4) {
rnd = arc4random();
eaddr[0] = 'b';
eaddr[1] = 's';
eaddr[2] = 'd';
eaddr[3] = (rnd >> 16) & 0xff;
eaddr[4] = (rnd >> 8) & 0xff;
eaddr[5] = rnd & 0xff;
device_printf(sc->dev, "no mac address found, assigning "
"random: %02x:%02x:%02x:%02x:%02x:%02x\n",
eaddr[0], eaddr[1], eaddr[2],
eaddr[3], eaddr[4], eaddr[5]);
WR4(sc, CGEM_SPEC_ADDR_LOW(0), (eaddr[3] << 24) |
(eaddr[2] << 16) | (eaddr[1] << 8) | eaddr[0]);
WR4(sc, CGEM_SPEC_ADDR_HI(0), (eaddr[5] << 8) | eaddr[4]);
}
}
/* cgem_mac_hash(): map 48-bit address to a 6-bit hash.
* The 6-bit hash corresponds to a bit in a 64-bit hash
* register. Setting that bit in the hash register enables
* reception of all frames with a destination address that hashes
* to that 6-bit value.
*
* The hash function is described in sec. 16.2.3 in the Zynq-7000 Tech
* Reference Manual. Bits 0-5 in the hash are the exclusive-or of
* every sixth bit in the destination address.
*/
static int
cgem_mac_hash(u_char eaddr[])
{
int hash;
int i, j;
hash = 0;
for (i = 0; i < 6; i++)
for (j = i; j < 48; j += 6)
if ((eaddr[j >> 3] & (1 << (j & 7))) != 0)
hash ^= (1 << i);
return hash;
}
/* After any change in rx flags or multi-cast addresses, set up
* hash registers and net config register bits.
*/
static void
cgem_rx_filter(struct cgem_softc *sc)
{
struct ifnet *ifp = sc->ifp;
struct ifmultiaddr *ifma;
int index;
uint32_t hash_hi, hash_lo;
uint32_t net_cfg;
hash_hi = 0;
hash_lo = 0;
net_cfg = RD4(sc, CGEM_NET_CFG);
net_cfg &= ~(CGEM_NET_CFG_MULTI_HASH_EN |
CGEM_NET_CFG_NO_BCAST |
CGEM_NET_CFG_COPY_ALL);
if ((ifp->if_flags & IFF_PROMISC) != 0)
net_cfg |= CGEM_NET_CFG_COPY_ALL;
else {
if ((ifp->if_flags & IFF_BROADCAST) == 0)
net_cfg |= CGEM_NET_CFG_NO_BCAST;
if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
hash_hi = 0xffffffff;
hash_lo = 0xffffffff;
} else {
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
index = cgem_mac_hash(
LLADDR((struct sockaddr_dl *)
ifma->ifma_addr));
if (index > 31)
hash_hi |= (1<<(index-32));
else
hash_lo |= (1<<index);
}
if_maddr_runlock(ifp);
}
if (hash_hi != 0 || hash_lo != 0)
net_cfg |= CGEM_NET_CFG_MULTI_HASH_EN;
}
WR4(sc, CGEM_HASH_TOP, hash_hi);
WR4(sc, CGEM_HASH_BOT, hash_lo);
WR4(sc, CGEM_NET_CFG, net_cfg);
}
/* For bus_dmamap_load() callback. */
static void
cgem_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
if (nsegs != 1 || error != 0)
return;
*(bus_addr_t *)arg = segs[0].ds_addr;
}
/* Create DMA'able descriptor rings. */
static int
cgem_setup_descs(struct cgem_softc *sc)
{
int i, err;
sc->txring = NULL;
sc->rxring = NULL;
/* Allocate non-cached DMA space for RX and TX descriptors.
*/
err = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR,
NULL, NULL,
MAX_DESC_RING_SIZE,
1,
MAX_DESC_RING_SIZE,
0,
busdma_lock_mutex,
&sc->sc_mtx,
&sc->desc_dma_tag);
if (err)
return (err);
/* Set up a bus_dma_tag for mbufs. */
err = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR,
NULL, NULL,
MCLBYTES,
TX_MAX_DMA_SEGS,
MCLBYTES,
0,
busdma_lock_mutex,
&sc->sc_mtx,
&sc->mbuf_dma_tag);
if (err)
return (err);
/* Allocate DMA memory in non-cacheable space. */
err = bus_dmamem_alloc(sc->desc_dma_tag,
(void **)&sc->rxring,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
&sc->rxring_dma_map);
if (err)
return (err);
/* Load descriptor DMA memory. */
err = bus_dmamap_load(sc->desc_dma_tag, sc->rxring_dma_map,
(void *)sc->rxring,
CGEM_NUM_RX_DESCS*sizeof(struct cgem_rx_desc),
cgem_getaddr, &sc->rxring_physaddr,
BUS_DMA_NOWAIT);
if (err)
return (err);
/* Initialize RX descriptors. */
for (i = 0; i < CGEM_NUM_RX_DESCS; i++) {
sc->rxring[i].addr = CGEM_RXDESC_OWN;
sc->rxring[i].ctl = 0;
sc->rxring_m[i] = NULL;
err = bus_dmamap_create(sc->mbuf_dma_tag, 0,
&sc->rxring_m_dmamap[i]);
if (err)
return (err);
}
sc->rxring[CGEM_NUM_RX_DESCS - 1].addr |= CGEM_RXDESC_WRAP;
sc->rxring_hd_ptr = 0;
sc->rxring_tl_ptr = 0;
sc->rxring_queued = 0;
/* Allocate DMA memory for TX descriptors in non-cacheable space. */
err = bus_dmamem_alloc(sc->desc_dma_tag,
(void **)&sc->txring,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
&sc->txring_dma_map);
if (err)
return (err);
/* Load TX descriptor DMA memory. */
err = bus_dmamap_load(sc->desc_dma_tag, sc->txring_dma_map,
(void *)sc->txring,
CGEM_NUM_TX_DESCS*sizeof(struct cgem_tx_desc),
cgem_getaddr, &sc->txring_physaddr,
BUS_DMA_NOWAIT);
if (err)
return (err);
/* Initialize TX descriptor ring. */
for (i = 0; i < CGEM_NUM_TX_DESCS; i++) {
sc->txring[i].addr = 0;
sc->txring[i].ctl = CGEM_TXDESC_USED;
sc->txring_m[i] = NULL;
err = bus_dmamap_create(sc->mbuf_dma_tag, 0,
&sc->txring_m_dmamap[i]);
if (err)
return (err);
}
sc->txring[CGEM_NUM_TX_DESCS - 1].ctl |= CGEM_TXDESC_WRAP;
sc->txring_hd_ptr = 0;
sc->txring_tl_ptr = 0;
sc->txring_queued = 0;
return (0);
}
/* Fill receive descriptor ring with mbufs. */
static void
cgem_fill_rqueue(struct cgem_softc *sc)
{
struct mbuf *m = NULL;
bus_dma_segment_t segs[TX_MAX_DMA_SEGS];
int nsegs;
CGEM_ASSERT_LOCKED(sc);
while (sc->rxring_queued < sc->rxbufs) {
/* Get a cluster mbuf. */
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
break;
m->m_len = MCLBYTES;
m->m_pkthdr.len = MCLBYTES;
m->m_pkthdr.rcvif = sc->ifp;
/* Load map and plug in physical address. */
if (bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag,
sc->rxring_m_dmamap[sc->rxring_hd_ptr], m,
segs, &nsegs, BUS_DMA_NOWAIT)) {
/* XXX: warn? */
m_free(m);
break;
}
sc->rxring_m[sc->rxring_hd_ptr] = m;
/* Sync cache with receive buffer. */
bus_dmamap_sync(sc->mbuf_dma_tag,
sc->rxring_m_dmamap[sc->rxring_hd_ptr],
BUS_DMASYNC_PREREAD);
/* Write rx descriptor and increment head pointer. */
sc->rxring[sc->rxring_hd_ptr].ctl = 0;
if (sc->rxring_hd_ptr == CGEM_NUM_RX_DESCS - 1) {
sc->rxring[sc->rxring_hd_ptr].addr = segs[0].ds_addr |
CGEM_RXDESC_WRAP;
sc->rxring_hd_ptr = 0;
} else
sc->rxring[sc->rxring_hd_ptr++].addr = segs[0].ds_addr;
sc->rxring_queued++;
}
}
/* Pull received packets off of receive descriptor ring. */
static void
cgem_recv(struct cgem_softc *sc)
{
struct ifnet *ifp = sc->ifp;
struct mbuf *m;
uint32_t ctl;
CGEM_ASSERT_LOCKED(sc);
/* Pick up all packets in which the OWN bit is set. */
while (sc->rxring_queued > 0 &&
(sc->rxring[sc->rxring_tl_ptr].addr & CGEM_RXDESC_OWN) != 0) {
ctl = sc->rxring[sc->rxring_tl_ptr].ctl;
/* Grab filled mbuf. */
m = sc->rxring_m[sc->rxring_tl_ptr];
sc->rxring_m[sc->rxring_tl_ptr] = NULL;
/* Sync cache with receive buffer. */
bus_dmamap_sync(sc->mbuf_dma_tag,
sc->rxring_m_dmamap[sc->rxring_tl_ptr],
BUS_DMASYNC_POSTREAD);
/* Unload dmamap. */
bus_dmamap_unload(sc->mbuf_dma_tag,
sc->rxring_m_dmamap[sc->rxring_tl_ptr]);
/* Increment tail pointer. */
if (++sc->rxring_tl_ptr == CGEM_NUM_RX_DESCS)
sc->rxring_tl_ptr = 0;
sc->rxring_queued--;
/* Check FCS and make sure entire packet landed in one mbuf
* cluster (which is much bigger than the largest ethernet
* packet).
*/
if ((ctl & CGEM_RXDESC_BAD_FCS) != 0 ||
(ctl & (CGEM_RXDESC_SOF | CGEM_RXDESC_EOF)) !=
(CGEM_RXDESC_SOF | CGEM_RXDESC_EOF)) {
/* discard. */
m_free(m);
ifp->if_ierrors++;
continue;
}
/* Hand it off to upper layers. */
m->m_data += ETHER_ALIGN;
m->m_len = (ctl & CGEM_RXDESC_LENGTH_MASK);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len;
/* Are we using hardware checksumming? Check the
* status in the receive descriptor.
*/
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
/* TCP or UDP checks out, IP checks out too. */
if ((ctl & CGEM_RXDESC_CKSUM_STAT_MASK) ==
CGEM_RXDESC_CKSUM_STAT_TCP_GOOD ||
(ctl & CGEM_RXDESC_CKSUM_STAT_MASK) ==
CGEM_RXDESC_CKSUM_STAT_UDP_GOOD) {
m->m_pkthdr.csum_flags |=
CSUM_IP_CHECKED | CSUM_IP_VALID |
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
} else if ((ctl & CGEM_RXDESC_CKSUM_STAT_MASK) ==
CGEM_RXDESC_CKSUM_STAT_IP_GOOD) {
/* Only IP checks out. */
m->m_pkthdr.csum_flags |=
CSUM_IP_CHECKED | CSUM_IP_VALID;
m->m_pkthdr.csum_data = 0xffff;
}
}
ifp->if_ipackets++;
CGEM_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
CGEM_LOCK(sc);
}
}
/* Find completed transmits and free their mbufs. */
static void
cgem_clean_tx(struct cgem_softc *sc)
{
struct mbuf *m;
uint32_t ctl;
CGEM_ASSERT_LOCKED(sc);
/* free up finished transmits. */
while (sc->txring_queued > 0 &&
((ctl = sc->txring[sc->txring_tl_ptr].ctl) &
CGEM_TXDESC_USED) != 0) {
/* Sync cache. nop? */
bus_dmamap_sync(sc->mbuf_dma_tag,
sc->txring_m_dmamap[sc->txring_tl_ptr],
BUS_DMASYNC_POSTWRITE);
/* Unload DMA map. */
bus_dmamap_unload(sc->mbuf_dma_tag,
sc->txring_m_dmamap[sc->txring_tl_ptr]);
/* Free up the mbuf. */
m = sc->txring_m[sc->txring_tl_ptr];
sc->txring_m[sc->txring_tl_ptr] = NULL;
m_freem(m);
/* Check the status. */
if ((ctl & CGEM_TXDESC_AHB_ERR) != 0) {
/* Serious bus error. log to console. */
device_printf(sc->dev, "cgem_clean_tx: Whoa! "
"AHB error, addr=0x%x\n",
sc->txring[sc->txring_tl_ptr].addr);
} else if ((ctl & (CGEM_TXDESC_RETRY_ERR |
CGEM_TXDESC_LATE_COLL)) != 0) {
sc->ifp->if_oerrors++;
} else
sc->ifp->if_opackets++;
/* If the packet spanned more than one tx descriptor,
* skip descriptors until we find the end so that only
* start-of-frame descriptors are processed.
*/
while ((ctl & CGEM_TXDESC_LAST_BUF) == 0) {
if ((ctl & CGEM_TXDESC_WRAP) != 0)
sc->txring_tl_ptr = 0;
else
sc->txring_tl_ptr++;
sc->txring_queued--;
ctl = sc->txring[sc->txring_tl_ptr].ctl;
sc->txring[sc->txring_tl_ptr].ctl =
ctl | CGEM_TXDESC_USED;
}
/* Next descriptor. */
if ((ctl & CGEM_TXDESC_WRAP) != 0)
sc->txring_tl_ptr = 0;
else
sc->txring_tl_ptr++;
sc->txring_queued--;
}
}
/* Start transmits. */
static void
cgem_start_locked(struct ifnet *ifp)
{
struct cgem_softc *sc = (struct cgem_softc *) ifp->if_softc;
struct mbuf *m;
bus_dma_segment_t segs[TX_MAX_DMA_SEGS];
uint32_t ctl;
int i, nsegs, wrap, err;
CGEM_ASSERT_LOCKED(sc);
if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) != 0)
return;
for (;;) {
/* Check that there is room in the descriptor ring. */
if (sc->txring_queued >= CGEM_NUM_TX_DESCS -
TX_MAX_DMA_SEGS - 1) {
/* Try to make room. */
cgem_clean_tx(sc);
/* Still no room? */
if (sc->txring_queued >= CGEM_NUM_TX_DESCS -
TX_MAX_DMA_SEGS - 1) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
}
/* Grab next transmit packet. */
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
/* Load DMA map. */
err = bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag,
sc->txring_m_dmamap[sc->txring_hd_ptr],
m, segs, &nsegs, BUS_DMA_NOWAIT);
if (err == EFBIG) {
/* Too many segments! defrag and try again. */
struct mbuf *m2 = m_defrag(m, M_NOWAIT);
if (m2 == NULL) {
m_freem(m);
continue;
}
m = m2;
err = bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag,
sc->txring_m_dmamap[sc->txring_hd_ptr],
m, segs, &nsegs, BUS_DMA_NOWAIT);
}
if (err) {
/* Give up. */
m_freem(m);
continue;
}
sc->txring_m[sc->txring_hd_ptr] = m;
/* Sync tx buffer with cache. */
bus_dmamap_sync(sc->mbuf_dma_tag,
sc->txring_m_dmamap[sc->txring_hd_ptr],
BUS_DMASYNC_PREWRITE);
/* Set wrap flag if next packet might run off end of ring. */
wrap = sc->txring_hd_ptr + nsegs + TX_MAX_DMA_SEGS >=
CGEM_NUM_TX_DESCS;
/* Fill in the TX descriptors back to front so that USED
* bit in first descriptor is cleared last.
*/
for (i = nsegs - 1; i >= 0; i--) {
/* Descriptor address. */
sc->txring[sc->txring_hd_ptr + i].addr =
segs[i].ds_addr;
/* Descriptor control word. */
ctl = segs[i].ds_len;
if (i == nsegs - 1) {
ctl |= CGEM_TXDESC_LAST_BUF;
if (wrap)
ctl |= CGEM_TXDESC_WRAP;
}
sc->txring[sc->txring_hd_ptr + i].ctl = ctl;
if (i != 0)
sc->txring_m[sc->txring_hd_ptr + i] = NULL;
}
if (wrap)
sc->txring_hd_ptr = 0;
else
sc->txring_hd_ptr += nsegs;
sc->txring_queued += nsegs;
/* Kick the transmitter. */
WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow |
CGEM_NET_CTRL_START_TX);
}
}
static void
cgem_start(struct ifnet *ifp)
{
struct cgem_softc *sc = (struct cgem_softc *) ifp->if_softc;
CGEM_LOCK(sc);
cgem_start_locked(ifp);
CGEM_UNLOCK(sc);
}
static void
cgem_tick(void *arg)
{
struct cgem_softc *sc = (struct cgem_softc *)arg;
struct mii_data *mii;
CGEM_ASSERT_LOCKED(sc);
/* Poll the phy. */
if (sc->miibus != NULL) {
mii = device_get_softc(sc->miibus);
mii_tick(mii);
}
/* Next callout in one second. */
callout_reset(&sc->tick_ch, hz, cgem_tick, sc);
}
/* Interrupt handler. */
static void
cgem_intr(void *arg)
{
struct cgem_softc *sc = (struct cgem_softc *)arg;
uint32_t istatus;
CGEM_LOCK(sc);
if ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
CGEM_UNLOCK(sc);
return;
}
istatus = RD4(sc, CGEM_INTR_STAT);
WR4(sc, CGEM_INTR_STAT, istatus &
(CGEM_INTR_RX_COMPLETE | CGEM_INTR_TX_USED_READ |
CGEM_INTR_RX_OVERRUN | CGEM_INTR_HRESP_NOT_OK));
/* Hresp not ok. Something very bad with DMA. Try to clear. */
if ((istatus & CGEM_INTR_HRESP_NOT_OK) != 0) {
printf("cgem_intr: hresp not okay! rx_status=0x%x\n",
RD4(sc, CGEM_RX_STAT));
WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_HRESP_NOT_OK);
}
/* Transmitter has idled. Free up any spent transmit buffers. */
if ((istatus & CGEM_INTR_TX_USED_READ) != 0)
cgem_clean_tx(sc);
/* Packets received or overflow. */
if ((istatus & (CGEM_INTR_RX_COMPLETE | CGEM_INTR_RX_OVERRUN)) != 0) {
cgem_recv(sc);
cgem_fill_rqueue(sc);
if ((istatus & CGEM_INTR_RX_OVERRUN) != 0) {
/* Clear rx status register. */
sc->rxoverruns++;
WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_ALL);
}
}
CGEM_UNLOCK(sc);
}
/* Reset hardware. */
static void
cgem_reset(struct cgem_softc *sc)
{
CGEM_ASSERT_LOCKED(sc);
WR4(sc, CGEM_NET_CTRL, 0);
WR4(sc, CGEM_NET_CFG, 0);
WR4(sc, CGEM_NET_CTRL, CGEM_NET_CTRL_CLR_STAT_REGS);
WR4(sc, CGEM_TX_STAT, CGEM_TX_STAT_ALL);
WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_ALL);
WR4(sc, CGEM_INTR_DIS, CGEM_INTR_ALL);
WR4(sc, CGEM_HASH_BOT, 0);
WR4(sc, CGEM_HASH_TOP, 0);
WR4(sc, CGEM_TX_QBAR, 0); /* manual says do this. */
WR4(sc, CGEM_RX_QBAR, 0);
/* Get management port running even if interface is down. */
WR4(sc, CGEM_NET_CFG,
CGEM_NET_CFG_DBUS_WIDTH_32 |
CGEM_NET_CFG_MDC_CLK_DIV_64);
sc->net_ctl_shadow = CGEM_NET_CTRL_MGMT_PORT_EN;
WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow);
}
/* Bring up the hardware. */
static void
cgem_config(struct cgem_softc *sc)
{
uint32_t net_cfg;
uint32_t dma_cfg;
CGEM_ASSERT_LOCKED(sc);
/* Program Net Config Register. */
net_cfg = CGEM_NET_CFG_DBUS_WIDTH_32 |
CGEM_NET_CFG_MDC_CLK_DIV_64 |
CGEM_NET_CFG_FCS_REMOVE |
CGEM_NET_CFG_RX_BUF_OFFSET(ETHER_ALIGN) |
CGEM_NET_CFG_GIGE_EN |
CGEM_NET_CFG_FULL_DUPLEX |
CGEM_NET_CFG_SPEED100;
/* Enable receive checksum offloading? */
if ((sc->ifp->if_capenable & IFCAP_RXCSUM) != 0)
net_cfg |= CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN;
WR4(sc, CGEM_NET_CFG, net_cfg);
/* Program DMA Config Register. */
dma_cfg = CGEM_DMA_CFG_RX_BUF_SIZE(MCLBYTES) |
CGEM_DMA_CFG_RX_PKTBUF_MEMSZ_SEL_8K |
CGEM_DMA_CFG_TX_PKTBUF_MEMSZ_SEL |
CGEM_DMA_CFG_AHB_FIXED_BURST_LEN_16;
/* Enable transmit checksum offloading? */
if ((sc->ifp->if_capenable & IFCAP_TXCSUM) != 0)
dma_cfg |= CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN;
WR4(sc, CGEM_DMA_CFG, dma_cfg);
/* Write the rx and tx descriptor ring addresses to the QBAR regs. */
WR4(sc, CGEM_RX_QBAR, (uint32_t) sc->rxring_physaddr);
WR4(sc, CGEM_TX_QBAR, (uint32_t) sc->txring_physaddr);
/* Enable rx and tx. */
sc->net_ctl_shadow |= (CGEM_NET_CTRL_TX_EN | CGEM_NET_CTRL_RX_EN);
WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow);
/* Set up interrupts. */
WR4(sc, CGEM_INTR_EN,
CGEM_INTR_RX_COMPLETE | CGEM_INTR_TX_USED_READ |
CGEM_INTR_RX_OVERRUN | CGEM_INTR_HRESP_NOT_OK);
}
/* Turn on interface and load up receive ring with buffers. */
static void
cgem_init_locked(struct cgem_softc *sc)
{
struct mii_data *mii;
CGEM_ASSERT_LOCKED(sc);
if ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
cgem_config(sc);
cgem_fill_rqueue(sc);
sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
mii = device_get_softc(sc->miibus);
mii_pollstat(mii);
cgem_start_locked(sc->ifp);
callout_reset(&sc->tick_ch, hz, cgem_tick, sc);
}
static void
cgem_init(void *arg)
{
struct cgem_softc *sc = (struct cgem_softc *)arg;
CGEM_LOCK(sc);
cgem_init_locked(sc);
CGEM_UNLOCK(sc);
}
/* Turn off interface. Free up any buffers in transmit or receive queues. */
static void
cgem_stop(struct cgem_softc *sc)
{
int i;
CGEM_ASSERT_LOCKED(sc);
callout_stop(&sc->tick_ch);
/* Shut down hardware. */
cgem_reset(sc);
/* Clear out transmit queue. */
for (i = 0; i < CGEM_NUM_TX_DESCS; i++) {
sc->txring[i].ctl = CGEM_TXDESC_USED;
sc->txring[i].addr = 0;
if (sc->txring_m[i]) {
bus_dmamap_unload(sc->mbuf_dma_tag,
sc->txring_m_dmamap[i]);
m_freem(sc->txring_m[i]);
sc->txring_m[i] = NULL;
}
}
sc->txring[CGEM_NUM_TX_DESCS - 1].ctl |= CGEM_TXDESC_WRAP;
sc->txring_hd_ptr = 0;
sc->txring_tl_ptr = 0;
sc->txring_queued = 0;
/* Clear out receive queue. */
for (i = 0; i < CGEM_NUM_RX_DESCS; i++) {
sc->rxring[i].addr = CGEM_RXDESC_OWN;
sc->rxring[i].ctl = 0;
if (sc->rxring_m[i]) {
/* Unload dmamap. */
bus_dmamap_unload(sc->mbuf_dma_tag,
sc->rxring_m_dmamap[sc->rxring_tl_ptr]);
m_freem(sc->rxring_m[i]);
sc->rxring_m[i] = NULL;
}
}
sc->rxring[CGEM_NUM_RX_DESCS - 1].addr |= CGEM_RXDESC_WRAP;
sc->rxring_hd_ptr = 0;
sc->rxring_tl_ptr = 0;
sc->rxring_queued = 0;
}
static int
cgem_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct cgem_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
struct mii_data *mii;
int error = 0, mask;
switch (cmd) {
case SIOCSIFFLAGS:
CGEM_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (((ifp->if_flags ^ sc->if_old_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) != 0) {
cgem_rx_filter(sc);
}
} else {
cgem_init_locked(sc);
}
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
cgem_stop(sc);
}
sc->if_old_flags = ifp->if_flags;
CGEM_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* Set up multi-cast filters. */
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
CGEM_LOCK(sc);
cgem_rx_filter(sc);
CGEM_UNLOCK(sc);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
CGEM_LOCK(sc);
mask = ifp->if_capenable ^ ifr->ifr_reqcap;
if ((mask & IFCAP_TXCSUM) != 0) {
if ((ifr->ifr_reqcap & IFCAP_TXCSUM) != 0) {
/* Turn on TX checksumming. */
ifp->if_capenable |= (IFCAP_TXCSUM |
IFCAP_TXCSUM_IPV6);
ifp->if_hwassist |= CGEM_CKSUM_ASSIST;
WR4(sc, CGEM_DMA_CFG,
RD4(sc, CGEM_DMA_CFG) |
CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN);
} else {
/* Turn off TX checksumming. */
ifp->if_capenable &= ~(IFCAP_TXCSUM |
IFCAP_TXCSUM_IPV6);
ifp->if_hwassist &= ~CGEM_CKSUM_ASSIST;
WR4(sc, CGEM_DMA_CFG,
RD4(sc, CGEM_DMA_CFG) &
~CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN);
}
}
if ((mask & IFCAP_RXCSUM) != 0) {
if ((ifr->ifr_reqcap & IFCAP_RXCSUM) != 0) {
/* Turn on RX checksumming. */
ifp->if_capenable |= (IFCAP_RXCSUM |
IFCAP_RXCSUM_IPV6);
WR4(sc, CGEM_NET_CFG,
RD4(sc, CGEM_NET_CFG) |
CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN);
} else {
/* Turn off RX checksumming. */
ifp->if_capenable &= ~(IFCAP_RXCSUM |
IFCAP_RXCSUM_IPV6);
WR4(sc, CGEM_NET_CFG,
RD4(sc, CGEM_NET_CFG) &
~CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN);
}
}
CGEM_UNLOCK(sc);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
/* MII bus support routines.
*/
static void
cgem_child_detached(device_t dev, device_t child)
{
struct cgem_softc *sc = device_get_softc(dev);
if (child == sc->miibus)
sc->miibus = NULL;
}
static int
cgem_ifmedia_upd(struct ifnet *ifp)
{
struct cgem_softc *sc = (struct cgem_softc *) ifp->if_softc;
struct mii_data *mii;
int error;
mii = device_get_softc(sc->miibus);
CGEM_LOCK(sc);
error = mii_mediachg(mii);
CGEM_UNLOCK(sc);
return (error);
}
static void
cgem_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct cgem_softc *sc = (struct cgem_softc *) ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc->miibus);
CGEM_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
CGEM_UNLOCK(sc);
}
static int
cgem_miibus_readreg(device_t dev, int phy, int reg)
{
struct cgem_softc *sc = device_get_softc(dev);
int tries, val;
WR4(sc, CGEM_PHY_MAINT,
CGEM_PHY_MAINT_CLAUSE_22 | CGEM_PHY_MAINT_MUST_10 |
CGEM_PHY_MAINT_OP_READ |
(phy << CGEM_PHY_MAINT_PHY_ADDR_SHIFT) |
(reg << CGEM_PHY_MAINT_REG_ADDR_SHIFT));
/* Wait for completion. */
tries=0;
while ((RD4(sc, CGEM_NET_STAT) & CGEM_NET_STAT_PHY_MGMT_IDLE) == 0) {
DELAY(5);
if (++tries > 200) {
device_printf(dev, "phy read timeout: %d\n", reg);
return (-1);
}
}
val = RD4(sc, CGEM_PHY_MAINT) & CGEM_PHY_MAINT_DATA_MASK;
return (val);
}
static int
cgem_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct cgem_softc *sc = device_get_softc(dev);
int tries;
WR4(sc, CGEM_PHY_MAINT,
CGEM_PHY_MAINT_CLAUSE_22 | CGEM_PHY_MAINT_MUST_10 |
CGEM_PHY_MAINT_OP_WRITE |
(phy << CGEM_PHY_MAINT_PHY_ADDR_SHIFT) |
(reg << CGEM_PHY_MAINT_REG_ADDR_SHIFT) |
(data & CGEM_PHY_MAINT_DATA_MASK));
/* Wait for completion. */
tries = 0;
while ((RD4(sc, CGEM_NET_STAT) & CGEM_NET_STAT_PHY_MGMT_IDLE) == 0) {
DELAY(5);
if (++tries > 200) {
device_printf(dev, "phy write timeout: %d\n", reg);
return (-1);
}
}
return (0);
}
/*
* Overridable weak symbol cgem_set_ref_clk(). This allows platforms to
* provide a function to set the cgem's reference clock.
*/
static int __used
cgem_default_set_ref_clk(int unit, int frequency)
{
return 0;
}
__weak_reference(cgem_default_set_ref_clk, cgem_set_ref_clk);
static void
cgem_miibus_statchg(device_t dev)
{
struct cgem_softc *sc;
struct mii_data *mii;
uint32_t net_cfg;
int ref_clk_freq;
sc = device_get_softc(dev);
mii = device_get_softc(sc->miibus);
if ((mii->mii_media_status & IFM_AVALID) != 0) {
/* Update hardware to reflect phy status. */
net_cfg = RD4(sc, CGEM_NET_CFG);
net_cfg &= ~(CGEM_NET_CFG_SPEED100 | CGEM_NET_CFG_GIGE_EN |
CGEM_NET_CFG_FULL_DUPLEX);
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_T:
net_cfg |= (CGEM_NET_CFG_SPEED100 |
CGEM_NET_CFG_GIGE_EN);
ref_clk_freq = 125000000;
break;
case IFM_100_TX:
net_cfg |= CGEM_NET_CFG_SPEED100;
ref_clk_freq = 25000000;
break;
default:
ref_clk_freq = 2500000;
}
if ((mii->mii_media_active & IFM_FDX) != 0)
net_cfg |= CGEM_NET_CFG_FULL_DUPLEX;
WR4(sc, CGEM_NET_CFG, net_cfg);
/* Set the reference clock if necessary. */
if (cgem_set_ref_clk(sc->ref_clk_num, ref_clk_freq))
device_printf(dev, "could not set ref clk%d to %d.\n",
sc->ref_clk_num, ref_clk_freq);
}
}
static int
cgem_probe(device_t dev)
{
if (!ofw_bus_is_compatible(dev, "cadence,gem"))
return (ENXIO);
device_set_desc(dev, "Cadence CGEM Gigabit Ethernet Interface");
return (0);
}
static int
cgem_attach(device_t dev)
{
struct cgem_softc *sc = device_get_softc(dev);
struct ifnet *ifp = NULL;
phandle_t node;
pcell_t cell;
int rid, err;
u_char eaddr[ETHER_ADDR_LEN];
sc->dev = dev;
CGEM_LOCK_INIT(sc);
/* Get reference clock number and base divider from fdt. */
node = ofw_bus_get_node(dev);
sc->ref_clk_num = 0;
if (OF_getprop(node, "ref-clock-num", &cell, sizeof(cell)) > 0)
sc->ref_clk_num = fdt32_to_cpu(cell);
/* Get memory resource. */
rid = 0;
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->mem_res == NULL) {
device_printf(dev, "could not allocate memory resources.\n");
return (ENOMEM);
}
/* Get IRQ resource. */
rid = 0;
sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (sc->irq_res == NULL) {
device_printf(dev, "could not allocate interrupt resource.\n");
cgem_detach(dev);
return (ENOMEM);
}
ifp = sc->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "could not allocate ifnet structure\n");
cgem_detach(dev);
return (ENOMEM);
}
CGEM_LOCK(sc);
/* Reset hardware. */
cgem_reset(sc);
/* Attach phy to mii bus. */
err = mii_attach(dev, &sc->miibus, ifp,
cgem_ifmedia_upd, cgem_ifmedia_sts,
BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (err) {
CGEM_UNLOCK(sc);
device_printf(dev, "attaching PHYs failed\n");
cgem_detach(dev);
return (err);
}
/* Set up TX and RX descriptor area. */
err = cgem_setup_descs(sc);
if (err) {
CGEM_UNLOCK(sc);
device_printf(dev, "could not set up dma mem for descs.\n");
cgem_detach(dev);
return (ENOMEM);
}
/* Get a MAC address. */
cgem_get_mac(sc, eaddr);
/* Start ticks. */
callout_init_mtx(&sc->tick_ch, &sc->sc_mtx, 0);
/* Set up ifnet structure. */
ifp->if_softc = sc;
if_initname(ifp, IF_CGEM_NAME, device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = cgem_start;
ifp->if_ioctl = cgem_ioctl;
ifp->if_init = cgem_init;
ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6;
/* XXX: disable hw checksumming for now. */
ifp->if_hwassist = 0;
ifp->if_capenable = ifp->if_capabilities &
~(IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
sc->if_old_flags = ifp->if_flags;
sc->rxbufs = DEFAULT_NUM_RX_BUFS;
ether_ifattach(ifp, eaddr);
err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE |
INTR_EXCL, NULL, cgem_intr, sc, &sc->intrhand);
if (err) {
CGEM_UNLOCK(sc);
device_printf(dev, "could not set interrupt handler.\n");
ether_ifdetach(ifp);
cgem_detach(dev);
return (err);
}
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "rxbufs", CTLFLAG_RW,
&sc->rxbufs, 0,
"Number receive buffers to provide");
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "_rxoverruns", CTLFLAG_RD,
&sc->rxoverruns, 0,
"Receive ring overrun events");
CGEM_UNLOCK(sc);
return (0);
}
static int
cgem_detach(device_t dev)
{
struct cgem_softc *sc = device_get_softc(dev);
int i;
if (sc == NULL)
return (ENODEV);
if (device_is_attached(dev)) {
CGEM_LOCK(sc);
cgem_stop(sc);
CGEM_UNLOCK(sc);
callout_drain(&sc->tick_ch);
sc->ifp->if_flags &= ~IFF_UP;
ether_ifdetach(sc->ifp);
}
if (sc->miibus != NULL) {
device_delete_child(dev, sc->miibus);
sc->miibus = NULL;
}
/* Release resrouces. */
if (sc->mem_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY,
rman_get_rid(sc->mem_res), sc->mem_res);
sc->mem_res = NULL;
}
if (sc->irq_res != NULL) {
if (sc->intrhand)
bus_teardown_intr(dev, sc->irq_res, sc->intrhand);
bus_release_resource(dev, SYS_RES_IRQ,
rman_get_rid(sc->irq_res), sc->irq_res);
sc->irq_res = NULL;
}
/* Release DMA resources. */
if (sc->rxring != NULL) {
if (sc->rxring_physaddr != 0) {
bus_dmamap_unload(sc->desc_dma_tag, sc->rxring_dma_map);
sc->rxring_physaddr = 0;
}
bus_dmamem_free(sc->desc_dma_tag, sc->rxring,
sc->rxring_dma_map);
sc->rxring = NULL;
for (i = 0; i < CGEM_NUM_RX_DESCS; i++)
if (sc->rxring_m_dmamap[i] != NULL) {
bus_dmamap_destroy(sc->mbuf_dma_tag,
sc->rxring_m_dmamap[i]);
sc->rxring_m_dmamap[i] = NULL;
}
}
if (sc->txring != NULL) {
if (sc->txring_physaddr != 0) {
bus_dmamap_unload(sc->desc_dma_tag, sc->txring_dma_map);
sc->txring_physaddr = 0;
}
bus_dmamem_free(sc->desc_dma_tag, sc->txring,
sc->txring_dma_map);
sc->txring = NULL;
for (i = 0; i < CGEM_NUM_TX_DESCS; i++)
if (sc->txring_m_dmamap[i] != NULL) {
bus_dmamap_destroy(sc->mbuf_dma_tag,
sc->txring_m_dmamap[i]);
sc->txring_m_dmamap[i] = NULL;
}
}
if (sc->desc_dma_tag != NULL) {
bus_dma_tag_destroy(sc->desc_dma_tag);
sc->desc_dma_tag = NULL;
}
if (sc->mbuf_dma_tag != NULL) {
bus_dma_tag_destroy(sc->mbuf_dma_tag);
sc->mbuf_dma_tag = NULL;
}
bus_generic_detach(dev);
CGEM_LOCK_DESTROY(sc);
return (0);
}
static device_method_t cgem_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, cgem_probe),
DEVMETHOD(device_attach, cgem_attach),
DEVMETHOD(device_detach, cgem_detach),
/* Bus interface */
DEVMETHOD(bus_child_detached, cgem_child_detached),
/* MII interface */
DEVMETHOD(miibus_readreg, cgem_miibus_readreg),
DEVMETHOD(miibus_writereg, cgem_miibus_writereg),
DEVMETHOD(miibus_statchg, cgem_miibus_statchg),
DEVMETHOD_END
};
static driver_t cgem_driver = {
"cgem",
cgem_methods,
sizeof(struct cgem_softc),
};
DRIVER_MODULE(cgem, simplebus, cgem_driver, cgem_devclass, NULL, NULL);
DRIVER_MODULE(miibus, cgem, miibus_driver, miibus_devclass, NULL, NULL);
MODULE_DEPEND(cgem, miibus, 1, 1, 1);
MODULE_DEPEND(cgem, ether, 1, 1, 1);