Chuck Tuffli f97ed15123 bhyve: add NVMe Feature Interrupt Vector Config
This adds support for NVMe Get Features, Interrupt Vector Config
parameter error checking done by the UNH compliance tests.

Fixes UNH Tests 1.6.8 and 5.5.6

Tested by:	Jason Tubnor
MFC after:	2 weeks
Differential Revision: https://reviews.freebsd.org/D24898
2020-06-29 00:32:15 +00:00

2796 lines
72 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2017 Shunsuke Mie
* Copyright (c) 2018 Leon Dang
* Copyright (c) 2020 Chuck Tuffli
*
* Function crc16 Copyright (c) 2017, Fedor Uporov
* Obtained from function ext2_crc16() in sys/fs/ext2fs/ext2_csum.c
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* bhyve PCIe-NVMe device emulation.
*
* options:
* -s <n>,nvme,devpath,maxq=#,qsz=#,ioslots=#,sectsz=#,ser=A-Z,eui64=#,dsm=<opt>
*
* accepted devpath:
* /dev/blockdev
* /path/to/image
* ram=size_in_MiB
*
* maxq = max number of queues
* qsz = max elements in each queue
* ioslots = max number of concurrent io requests
* sectsz = sector size (defaults to blockif sector size)
* ser = serial number (20-chars max)
* eui64 = IEEE Extended Unique Identifier (8 byte value)
* dsm = DataSet Management support. Option is one of auto, enable,disable
*
*/
/* TODO:
- create async event for smart and log
- intr coalesce
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/errno.h>
#include <sys/types.h>
#include <net/ieee_oui.h>
#include <assert.h>
#include <pthread.h>
#include <semaphore.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <machine/atomic.h>
#include <machine/vmm.h>
#include <vmmapi.h>
#include <dev/nvme/nvme.h>
#include "bhyverun.h"
#include "block_if.h"
#include "debug.h"
#include "pci_emul.h"
static int nvme_debug = 0;
#define DPRINTF(fmt, args...) if (nvme_debug) PRINTLN(fmt, ##args)
#define WPRINTF(fmt, args...) PRINTLN(fmt, ##args)
/* defaults; can be overridden */
#define NVME_MSIX_BAR 4
#define NVME_IOSLOTS 8
/* The NVMe spec defines bits 13:4 in BAR0 as reserved */
#define NVME_MMIO_SPACE_MIN (1 << 14)
#define NVME_QUEUES 16
#define NVME_MAX_QENTRIES 2048
/* Memory Page size Minimum reported in CAP register */
#define NVME_MPSMIN 0
/* MPSMIN converted to bytes */
#define NVME_MPSMIN_BYTES (1 << (12 + NVME_MPSMIN))
#define NVME_PRP2_ITEMS (PAGE_SIZE/sizeof(uint64_t))
#define NVME_MDTS 9
/* Note the + 1 allows for the initial descriptor to not be page aligned */
#define NVME_MAX_IOVEC ((1 << NVME_MDTS) + 1)
#define NVME_MAX_DATA_SIZE ((1 << NVME_MDTS) * NVME_MPSMIN_BYTES)
/* This is a synthetic status code to indicate there is no status */
#define NVME_NO_STATUS 0xffff
#define NVME_COMPLETION_VALID(c) ((c).status != NVME_NO_STATUS)
/* helpers */
/* Convert a zero-based value into a one-based value */
#define ONE_BASED(zero) ((zero) + 1)
/* Convert a one-based value into a zero-based value */
#define ZERO_BASED(one) ((one) - 1)
/* Encode number of SQ's and CQ's for Set/Get Features */
#define NVME_FEATURE_NUM_QUEUES(sc) \
(ZERO_BASED((sc)->num_squeues) & 0xffff) | \
(ZERO_BASED((sc)->num_cqueues) & 0xffff) << 16;
#define NVME_DOORBELL_OFFSET offsetof(struct nvme_registers, doorbell)
enum nvme_controller_register_offsets {
NVME_CR_CAP_LOW = 0x00,
NVME_CR_CAP_HI = 0x04,
NVME_CR_VS = 0x08,
NVME_CR_INTMS = 0x0c,
NVME_CR_INTMC = 0x10,
NVME_CR_CC = 0x14,
NVME_CR_CSTS = 0x1c,
NVME_CR_NSSR = 0x20,
NVME_CR_AQA = 0x24,
NVME_CR_ASQ_LOW = 0x28,
NVME_CR_ASQ_HI = 0x2c,
NVME_CR_ACQ_LOW = 0x30,
NVME_CR_ACQ_HI = 0x34,
};
enum nvme_cmd_cdw11 {
NVME_CMD_CDW11_PC = 0x0001,
NVME_CMD_CDW11_IEN = 0x0002,
NVME_CMD_CDW11_IV = 0xFFFF0000,
};
enum nvme_copy_dir {
NVME_COPY_TO_PRP,
NVME_COPY_FROM_PRP,
};
#define NVME_CQ_INTEN 0x01
#define NVME_CQ_INTCOAL 0x02
struct nvme_completion_queue {
struct nvme_completion *qbase;
pthread_mutex_t mtx;
uint32_t size;
uint16_t tail; /* nvme progress */
uint16_t head; /* guest progress */
uint16_t intr_vec;
uint32_t intr_en;
};
struct nvme_submission_queue {
struct nvme_command *qbase;
pthread_mutex_t mtx;
uint32_t size;
uint16_t head; /* nvme progress */
uint16_t tail; /* guest progress */
uint16_t cqid; /* completion queue id */
int qpriority;
};
enum nvme_storage_type {
NVME_STOR_BLOCKIF = 0,
NVME_STOR_RAM = 1,
};
struct pci_nvme_blockstore {
enum nvme_storage_type type;
void *ctx;
uint64_t size;
uint32_t sectsz;
uint32_t sectsz_bits;
uint64_t eui64;
uint32_t deallocate:1;
};
/*
* Calculate the number of additional page descriptors for guest IO requests
* based on the advertised Max Data Transfer (MDTS) and given the number of
* default iovec's in a struct blockif_req.
*
* Note the + 1 allows for the initial descriptor to not be page aligned.
*/
#define MDTS_PAD_SIZE \
NVME_MAX_IOVEC > BLOCKIF_IOV_MAX ? \
NVME_MAX_IOVEC - BLOCKIF_IOV_MAX : \
0
struct pci_nvme_ioreq {
struct pci_nvme_softc *sc;
STAILQ_ENTRY(pci_nvme_ioreq) link;
struct nvme_submission_queue *nvme_sq;
uint16_t sqid;
/* command information */
uint16_t opc;
uint16_t cid;
uint32_t nsid;
uint64_t prev_gpaddr;
size_t prev_size;
size_t bytes;
struct blockif_req io_req;
struct iovec iovpadding[MDTS_PAD_SIZE];
};
enum nvme_dsm_type {
/* Dataset Management bit in ONCS reflects backing storage capability */
NVME_DATASET_MANAGEMENT_AUTO,
/* Unconditionally set Dataset Management bit in ONCS */
NVME_DATASET_MANAGEMENT_ENABLE,
/* Unconditionally clear Dataset Management bit in ONCS */
NVME_DATASET_MANAGEMENT_DISABLE,
};
struct pci_nvme_softc;
struct nvme_feature_obj;
typedef void (*nvme_feature_cb)(struct pci_nvme_softc *,
struct nvme_feature_obj *,
struct nvme_command *,
struct nvme_completion *);
struct nvme_feature_obj {
uint32_t cdw11;
nvme_feature_cb set;
nvme_feature_cb get;
bool namespace_specific;
};
#define NVME_FID_MAX (NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION + 1)
struct pci_nvme_aer {
STAILQ_ENTRY(pci_nvme_aer) link;
uint16_t cid; /* Command ID of the submitted AER */
};
struct pci_nvme_softc {
struct pci_devinst *nsc_pi;
pthread_mutex_t mtx;
struct nvme_registers regs;
struct nvme_namespace_data nsdata;
struct nvme_controller_data ctrldata;
struct nvme_error_information_entry err_log;
struct nvme_health_information_page health_log;
struct nvme_firmware_page fw_log;
struct pci_nvme_blockstore nvstore;
uint16_t max_qentries; /* max entries per queue */
uint32_t max_queues; /* max number of IO SQ's or CQ's */
uint32_t num_cqueues;
uint32_t num_squeues;
bool num_q_is_set; /* Has host set Number of Queues */
struct pci_nvme_ioreq *ioreqs;
STAILQ_HEAD(, pci_nvme_ioreq) ioreqs_free; /* free list of ioreqs */
uint32_t pending_ios;
uint32_t ioslots;
sem_t iosemlock;
/*
* Memory mapped Submission and Completion queues
* Each array includes both Admin and IO queues
*/
struct nvme_completion_queue *compl_queues;
struct nvme_submission_queue *submit_queues;
struct nvme_feature_obj feat[NVME_FID_MAX];
enum nvme_dsm_type dataset_management;
/* Accounting for SMART data */
__uint128_t read_data_units;
__uint128_t write_data_units;
__uint128_t read_commands;
__uint128_t write_commands;
uint32_t read_dunits_remainder;
uint32_t write_dunits_remainder;
STAILQ_HEAD(, pci_nvme_aer) aer_list;
uint32_t aer_count;
};
static struct pci_nvme_ioreq *pci_nvme_get_ioreq(struct pci_nvme_softc *);
static void pci_nvme_release_ioreq(struct pci_nvme_softc *, struct pci_nvme_ioreq *);
static void pci_nvme_io_done(struct blockif_req *, int);
/* Controller Configuration utils */
#define NVME_CC_GET_EN(cc) \
((cc) >> NVME_CC_REG_EN_SHIFT & NVME_CC_REG_EN_MASK)
#define NVME_CC_GET_CSS(cc) \
((cc) >> NVME_CC_REG_CSS_SHIFT & NVME_CC_REG_CSS_MASK)
#define NVME_CC_GET_SHN(cc) \
((cc) >> NVME_CC_REG_SHN_SHIFT & NVME_CC_REG_SHN_MASK)
#define NVME_CC_GET_IOSQES(cc) \
((cc) >> NVME_CC_REG_IOSQES_SHIFT & NVME_CC_REG_IOSQES_MASK)
#define NVME_CC_GET_IOCQES(cc) \
((cc) >> NVME_CC_REG_IOCQES_SHIFT & NVME_CC_REG_IOCQES_MASK)
#define NVME_CC_WRITE_MASK \
((NVME_CC_REG_EN_MASK << NVME_CC_REG_EN_SHIFT) | \
(NVME_CC_REG_IOSQES_MASK << NVME_CC_REG_IOSQES_SHIFT) | \
(NVME_CC_REG_IOCQES_MASK << NVME_CC_REG_IOCQES_SHIFT))
#define NVME_CC_NEN_WRITE_MASK \
((NVME_CC_REG_CSS_MASK << NVME_CC_REG_CSS_SHIFT) | \
(NVME_CC_REG_MPS_MASK << NVME_CC_REG_MPS_SHIFT) | \
(NVME_CC_REG_AMS_MASK << NVME_CC_REG_AMS_SHIFT))
/* Controller Status utils */
#define NVME_CSTS_GET_RDY(sts) \
((sts) >> NVME_CSTS_REG_RDY_SHIFT & NVME_CSTS_REG_RDY_MASK)
#define NVME_CSTS_RDY (1 << NVME_CSTS_REG_RDY_SHIFT)
/* Completion Queue status word utils */
#define NVME_STATUS_P (1 << NVME_STATUS_P_SHIFT)
#define NVME_STATUS_MASK \
((NVME_STATUS_SCT_MASK << NVME_STATUS_SCT_SHIFT) |\
(NVME_STATUS_SC_MASK << NVME_STATUS_SC_SHIFT))
#define NVME_ONCS_DSM (NVME_CTRLR_DATA_ONCS_DSM_MASK << \
NVME_CTRLR_DATA_ONCS_DSM_SHIFT)
static void nvme_feature_invalid_cb(struct pci_nvme_softc *,
struct nvme_feature_obj *,
struct nvme_command *,
struct nvme_completion *);
static void nvme_feature_num_queues(struct pci_nvme_softc *,
struct nvme_feature_obj *,
struct nvme_command *,
struct nvme_completion *);
static void nvme_feature_iv_config(struct pci_nvme_softc *,
struct nvme_feature_obj *,
struct nvme_command *,
struct nvme_completion *);
static __inline void
cpywithpad(char *dst, size_t dst_size, const char *src, char pad)
{
size_t len;
len = strnlen(src, dst_size);
memset(dst, pad, dst_size);
memcpy(dst, src, len);
}
static __inline void
pci_nvme_status_tc(uint16_t *status, uint16_t type, uint16_t code)
{
*status &= ~NVME_STATUS_MASK;
*status |= (type & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT |
(code & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
}
static __inline void
pci_nvme_status_genc(uint16_t *status, uint16_t code)
{
pci_nvme_status_tc(status, NVME_SCT_GENERIC, code);
}
/*
* Initialize the requested number or IO Submission and Completion Queues.
* Admin queues are allocated implicitly.
*/
static void
pci_nvme_init_queues(struct pci_nvme_softc *sc, uint32_t nsq, uint32_t ncq)
{
uint32_t i;
/*
* Allocate and initialize the Submission Queues
*/
if (nsq > NVME_QUEUES) {
WPRINTF("%s: clamping number of SQ from %u to %u",
__func__, nsq, NVME_QUEUES);
nsq = NVME_QUEUES;
}
sc->num_squeues = nsq;
sc->submit_queues = calloc(sc->num_squeues + 1,
sizeof(struct nvme_submission_queue));
if (sc->submit_queues == NULL) {
WPRINTF("%s: SQ allocation failed", __func__);
sc->num_squeues = 0;
} else {
struct nvme_submission_queue *sq = sc->submit_queues;
for (i = 0; i < sc->num_squeues; i++)
pthread_mutex_init(&sq[i].mtx, NULL);
}
/*
* Allocate and initialize the Completion Queues
*/
if (ncq > NVME_QUEUES) {
WPRINTF("%s: clamping number of CQ from %u to %u",
__func__, ncq, NVME_QUEUES);
ncq = NVME_QUEUES;
}
sc->num_cqueues = ncq;
sc->compl_queues = calloc(sc->num_cqueues + 1,
sizeof(struct nvme_completion_queue));
if (sc->compl_queues == NULL) {
WPRINTF("%s: CQ allocation failed", __func__);
sc->num_cqueues = 0;
} else {
struct nvme_completion_queue *cq = sc->compl_queues;
for (i = 0; i < sc->num_cqueues; i++)
pthread_mutex_init(&cq[i].mtx, NULL);
}
}
static void
pci_nvme_init_ctrldata(struct pci_nvme_softc *sc)
{
struct nvme_controller_data *cd = &sc->ctrldata;
cd->vid = 0xFB5D;
cd->ssvid = 0x0000;
cpywithpad((char *)cd->mn, sizeof(cd->mn), "bhyve-NVMe", ' ');
cpywithpad((char *)cd->fr, sizeof(cd->fr), "1.0", ' ');
/* Num of submission commands that we can handle at a time (2^rab) */
cd->rab = 4;
/* FreeBSD OUI */
cd->ieee[0] = 0x58;
cd->ieee[1] = 0x9c;
cd->ieee[2] = 0xfc;
cd->mic = 0;
cd->mdts = NVME_MDTS; /* max data transfer size (2^mdts * CAP.MPSMIN) */
cd->ver = 0x00010300;
cd->oacs = 1 << NVME_CTRLR_DATA_OACS_FORMAT_SHIFT;
cd->acl = 2;
cd->aerl = 4;
/* Advertise 1, Read-only firmware slot */
cd->frmw = NVME_CTRLR_DATA_FRMW_SLOT1_RO_MASK |
(1 << NVME_CTRLR_DATA_FRMW_NUM_SLOTS_SHIFT);
cd->lpa = 0; /* TODO: support some simple things like SMART */
cd->elpe = 0; /* max error log page entries */
cd->npss = 1; /* number of power states support */
/* Warning Composite Temperature Threshold */
cd->wctemp = 0x0157;
cd->sqes = (6 << NVME_CTRLR_DATA_SQES_MAX_SHIFT) |
(6 << NVME_CTRLR_DATA_SQES_MIN_SHIFT);
cd->cqes = (4 << NVME_CTRLR_DATA_CQES_MAX_SHIFT) |
(4 << NVME_CTRLR_DATA_CQES_MIN_SHIFT);
cd->nn = 1; /* number of namespaces */
cd->oncs = 0;
switch (sc->dataset_management) {
case NVME_DATASET_MANAGEMENT_AUTO:
if (sc->nvstore.deallocate)
cd->oncs |= NVME_ONCS_DSM;
break;
case NVME_DATASET_MANAGEMENT_ENABLE:
cd->oncs |= NVME_ONCS_DSM;
break;
default:
break;
}
cd->fna = 0x03;
cd->power_state[0].mp = 10;
}
/*
* Calculate the CRC-16 of the given buffer
* See copyright attribution at top of file
*/
static uint16_t
crc16(uint16_t crc, const void *buffer, unsigned int len)
{
const unsigned char *cp = buffer;
/* CRC table for the CRC-16. The poly is 0x8005 (x16 + x15 + x2 + 1). */
static uint16_t const crc16_table[256] = {
0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,
0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040
};
while (len--)
crc = (((crc >> 8) & 0xffU) ^
crc16_table[(crc ^ *cp++) & 0xffU]) & 0x0000ffffU;
return crc;
}
static void
pci_nvme_init_nsdata(struct pci_nvme_softc *sc,
struct nvme_namespace_data *nd, uint32_t nsid,
struct pci_nvme_blockstore *nvstore)
{
/* Get capacity and block size information from backing store */
nd->nsze = nvstore->size / nvstore->sectsz;
nd->ncap = nd->nsze;
nd->nuse = nd->nsze;
if (nvstore->type == NVME_STOR_BLOCKIF)
nvstore->deallocate = blockif_candelete(nvstore->ctx);
nd->nlbaf = 0; /* NLBAF is a 0's based value (i.e. 1 LBA Format) */
nd->flbas = 0;
/* Create an EUI-64 if user did not provide one */
if (nvstore->eui64 == 0) {
char *data = NULL;
uint64_t eui64 = nvstore->eui64;
asprintf(&data, "%s%u%u%u", vmname, sc->nsc_pi->pi_bus,
sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
if (data != NULL) {
eui64 = OUI_FREEBSD_NVME_LOW | crc16(0, data, strlen(data));
free(data);
}
nvstore->eui64 = (eui64 << 16) | (nsid & 0xffff);
}
be64enc(nd->eui64, nvstore->eui64);
/* LBA data-sz = 2^lbads */
nd->lbaf[0] = nvstore->sectsz_bits << NVME_NS_DATA_LBAF_LBADS_SHIFT;
}
static void
pci_nvme_init_logpages(struct pci_nvme_softc *sc)
{
memset(&sc->err_log, 0, sizeof(sc->err_log));
memset(&sc->health_log, 0, sizeof(sc->health_log));
memset(&sc->fw_log, 0, sizeof(sc->fw_log));
/* Set read/write remainder to round up according to spec */
sc->read_dunits_remainder = 999;
sc->write_dunits_remainder = 999;
}
static void
pci_nvme_init_features(struct pci_nvme_softc *sc)
{
sc->feat[0].set = nvme_feature_invalid_cb;
sc->feat[0].get = nvme_feature_invalid_cb;
sc->feat[NVME_FEAT_LBA_RANGE_TYPE].namespace_specific = true;
sc->feat[NVME_FEAT_ERROR_RECOVERY].namespace_specific = true;
sc->feat[NVME_FEAT_NUMBER_OF_QUEUES].set = nvme_feature_num_queues;
sc->feat[NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION].set =
nvme_feature_iv_config;
}
static void
pci_nvme_aer_init(struct pci_nvme_softc *sc)
{
STAILQ_INIT(&sc->aer_list);
sc->aer_count = 0;
}
static void
pci_nvme_aer_destroy(struct pci_nvme_softc *sc)
{
struct pci_nvme_aer *aer = NULL;
while (!STAILQ_EMPTY(&sc->aer_list)) {
aer = STAILQ_FIRST(&sc->aer_list);
STAILQ_REMOVE_HEAD(&sc->aer_list, link);
free(aer);
}
pci_nvme_aer_init(sc);
}
static bool
pci_nvme_aer_available(struct pci_nvme_softc *sc)
{
return (!STAILQ_EMPTY(&sc->aer_list));
}
static bool
pci_nvme_aer_limit_reached(struct pci_nvme_softc *sc)
{
struct nvme_controller_data *cd = &sc->ctrldata;
/* AERL is a zero based value while aer_count is one's based */
return (sc->aer_count == (cd->aerl + 1));
}
/*
* Add an Async Event Request
*
* Stores an AER to be returned later if the Controller needs to notify the
* host of an event.
* Note that while the NVMe spec doesn't require Controllers to return AER's
* in order, this implementation does preserve the order.
*/
static int
pci_nvme_aer_add(struct pci_nvme_softc *sc, uint16_t cid)
{
struct pci_nvme_aer *aer = NULL;
if (pci_nvme_aer_limit_reached(sc))
return (-1);
aer = calloc(1, sizeof(struct pci_nvme_aer));
if (aer == NULL)
return (-1);
sc->aer_count++;
/* Save the Command ID for use in the completion message */
aer->cid = cid;
STAILQ_INSERT_TAIL(&sc->aer_list, aer, link);
return (0);
}
/*
* Get an Async Event Request structure
*
* Returns a pointer to an AER previously submitted by the host or NULL if
* no AER's exist. Caller is responsible for freeing the returned struct.
*/
static struct pci_nvme_aer *
pci_nvme_aer_get(struct pci_nvme_softc *sc)
{
struct pci_nvme_aer *aer = NULL;
aer = STAILQ_FIRST(&sc->aer_list);
if (aer != NULL) {
STAILQ_REMOVE_HEAD(&sc->aer_list, link);
sc->aer_count--;
}
return (aer);
}
static void
pci_nvme_reset_locked(struct pci_nvme_softc *sc)
{
uint32_t i;
DPRINTF("%s", __func__);
sc->regs.cap_lo = (ZERO_BASED(sc->max_qentries) & NVME_CAP_LO_REG_MQES_MASK) |
(1 << NVME_CAP_LO_REG_CQR_SHIFT) |
(60 << NVME_CAP_LO_REG_TO_SHIFT);
sc->regs.cap_hi = 1 << NVME_CAP_HI_REG_CSS_NVM_SHIFT;
sc->regs.vs = 0x00010300; /* NVMe v1.3 */
sc->regs.cc = 0;
sc->regs.csts = 0;
assert(sc->submit_queues != NULL);
for (i = 0; i < sc->num_squeues + 1; i++) {
sc->submit_queues[i].qbase = NULL;
sc->submit_queues[i].size = 0;
sc->submit_queues[i].cqid = 0;
sc->submit_queues[i].tail = 0;
sc->submit_queues[i].head = 0;
}
assert(sc->compl_queues != NULL);
for (i = 0; i < sc->num_cqueues + 1; i++) {
sc->compl_queues[i].qbase = NULL;
sc->compl_queues[i].size = 0;
sc->compl_queues[i].tail = 0;
sc->compl_queues[i].head = 0;
}
sc->num_q_is_set = false;
pci_nvme_aer_destroy(sc);
}
static void
pci_nvme_reset(struct pci_nvme_softc *sc)
{
pthread_mutex_lock(&sc->mtx);
pci_nvme_reset_locked(sc);
pthread_mutex_unlock(&sc->mtx);
}
static void
pci_nvme_init_controller(struct vmctx *ctx, struct pci_nvme_softc *sc)
{
uint16_t acqs, asqs;
DPRINTF("%s", __func__);
asqs = (sc->regs.aqa & NVME_AQA_REG_ASQS_MASK) + 1;
sc->submit_queues[0].size = asqs;
sc->submit_queues[0].qbase = vm_map_gpa(ctx, sc->regs.asq,
sizeof(struct nvme_command) * asqs);
DPRINTF("%s mapping Admin-SQ guest 0x%lx, host: %p",
__func__, sc->regs.asq, sc->submit_queues[0].qbase);
acqs = ((sc->regs.aqa >> NVME_AQA_REG_ACQS_SHIFT) &
NVME_AQA_REG_ACQS_MASK) + 1;
sc->compl_queues[0].size = acqs;
sc->compl_queues[0].qbase = vm_map_gpa(ctx, sc->regs.acq,
sizeof(struct nvme_completion) * acqs);
sc->compl_queues[0].intr_en = NVME_CQ_INTEN;
DPRINTF("%s mapping Admin-CQ guest 0x%lx, host: %p",
__func__, sc->regs.acq, sc->compl_queues[0].qbase);
}
static int
nvme_prp_memcpy(struct vmctx *ctx, uint64_t prp1, uint64_t prp2, uint8_t *b,
size_t len, enum nvme_copy_dir dir)
{
uint8_t *p;
size_t bytes;
if (len > (8 * 1024)) {
return (-1);
}
/* Copy from the start of prp1 to the end of the physical page */
bytes = PAGE_SIZE - (prp1 & PAGE_MASK);
bytes = MIN(bytes, len);
p = vm_map_gpa(ctx, prp1, bytes);
if (p == NULL) {
return (-1);
}
if (dir == NVME_COPY_TO_PRP)
memcpy(p, b, bytes);
else
memcpy(b, p, bytes);
b += bytes;
len -= bytes;
if (len == 0) {
return (0);
}
len = MIN(len, PAGE_SIZE);
p = vm_map_gpa(ctx, prp2, len);
if (p == NULL) {
return (-1);
}
if (dir == NVME_COPY_TO_PRP)
memcpy(p, b, len);
else
memcpy(b, p, len);
return (0);
}
/*
* Write a Completion Queue Entry update
*
* Write the completion and update the doorbell value
*/
static void
pci_nvme_cq_update(struct pci_nvme_softc *sc,
struct nvme_completion_queue *cq,
uint32_t cdw0,
uint16_t cid,
uint16_t sqid,
uint16_t status)
{
struct nvme_submission_queue *sq = &sc->submit_queues[sqid];
struct nvme_completion *cqe;
assert(cq->qbase != NULL);
pthread_mutex_lock(&cq->mtx);
cqe = &cq->qbase[cq->tail];
/* Flip the phase bit */
status |= (cqe->status ^ NVME_STATUS_P) & NVME_STATUS_P_MASK;
cqe->cdw0 = cdw0;
cqe->sqhd = sq->head;
cqe->sqid = sqid;
cqe->cid = cid;
cqe->status = status;
cq->tail++;
if (cq->tail >= cq->size) {
cq->tail = 0;
}
pthread_mutex_unlock(&cq->mtx);
}
static int
nvme_opc_delete_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
uint16_t qid = command->cdw10 & 0xffff;
DPRINTF("%s DELETE_IO_SQ %u", __func__, qid);
if (qid == 0 || qid > sc->num_squeues ||
(sc->submit_queues[qid].qbase == NULL)) {
WPRINTF("%s NOT PERMITTED queue id %u / num_squeues %u",
__func__, qid, sc->num_squeues);
pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_QUEUE_IDENTIFIER);
return (1);
}
sc->submit_queues[qid].qbase = NULL;
sc->submit_queues[qid].cqid = 0;
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
return (1);
}
static int
nvme_opc_create_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
if (command->cdw11 & NVME_CMD_CDW11_PC) {
uint16_t qid = command->cdw10 & 0xffff;
struct nvme_submission_queue *nsq;
if ((qid == 0) || (qid > sc->num_squeues) ||
(sc->submit_queues[qid].qbase != NULL)) {
WPRINTF("%s queue index %u > num_squeues %u",
__func__, qid, sc->num_squeues);
pci_nvme_status_tc(&compl->status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_QUEUE_IDENTIFIER);
return (1);
}
nsq = &sc->submit_queues[qid];
nsq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff);
DPRINTF("%s size=%u (max=%u)", __func__, nsq->size, sc->max_qentries);
if ((nsq->size < 2) || (nsq->size > sc->max_qentries)) {
/*
* Queues must specify at least two entries
* NOTE: "MAXIMUM QUEUE SIZE EXCEEDED" was renamed to
* "INVALID QUEUE SIZE" in the NVM Express 1.3 Spec
*/
pci_nvme_status_tc(&compl->status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED);
return (1);
}
nsq->cqid = (command->cdw11 >> 16) & 0xffff;
if ((nsq->cqid == 0) || (nsq->cqid > sc->num_cqueues)) {
pci_nvme_status_tc(&compl->status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_QUEUE_IDENTIFIER);
return (1);
}
if (sc->compl_queues[nsq->cqid].qbase == NULL) {
pci_nvme_status_tc(&compl->status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_COMPLETION_QUEUE_INVALID);
return (1);
}
nsq->qpriority = (command->cdw11 >> 1) & 0x03;
nsq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
sizeof(struct nvme_command) * (size_t)nsq->size);
DPRINTF("%s sq %u size %u gaddr %p cqid %u", __func__,
qid, nsq->size, nsq->qbase, nsq->cqid);
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
DPRINTF("%s completed creating IOSQ qid %u",
__func__, qid);
} else {
/*
* Guest sent non-cont submission queue request.
* This setting is unsupported by this emulation.
*/
WPRINTF("%s unsupported non-contig (list-based) "
"create i/o submission queue", __func__);
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
}
return (1);
}
static int
nvme_opc_delete_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
uint16_t qid = command->cdw10 & 0xffff;
uint16_t sqid;
DPRINTF("%s DELETE_IO_CQ %u", __func__, qid);
if (qid == 0 || qid > sc->num_cqueues ||
(sc->compl_queues[qid].qbase == NULL)) {
WPRINTF("%s queue index %u / num_cqueues %u",
__func__, qid, sc->num_cqueues);
pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_QUEUE_IDENTIFIER);
return (1);
}
/* Deleting an Active CQ is an error */
for (sqid = 1; sqid < sc->num_squeues + 1; sqid++)
if (sc->submit_queues[sqid].cqid == qid) {
pci_nvme_status_tc(&compl->status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_QUEUE_DELETION);
return (1);
}
sc->compl_queues[qid].qbase = NULL;
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
return (1);
}
static int
nvme_opc_create_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
struct nvme_completion_queue *ncq;
uint16_t qid = command->cdw10 & 0xffff;
/* Only support Physically Contiguous queues */
if ((command->cdw11 & NVME_CMD_CDW11_PC) == 0) {
WPRINTF("%s unsupported non-contig (list-based) "
"create i/o completion queue",
__func__);
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
return (1);
}
if ((qid == 0) || (qid > sc->num_cqueues) ||
(sc->compl_queues[qid].qbase != NULL)) {
WPRINTF("%s queue index %u > num_cqueues %u",
__func__, qid, sc->num_cqueues);
pci_nvme_status_tc(&compl->status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_QUEUE_IDENTIFIER);
return (1);
}
ncq = &sc->compl_queues[qid];
ncq->intr_en = (command->cdw11 & NVME_CMD_CDW11_IEN) >> 1;
ncq->intr_vec = (command->cdw11 >> 16) & 0xffff;
if (ncq->intr_vec > (sc->max_queues + 1)) {
pci_nvme_status_tc(&compl->status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_INTERRUPT_VECTOR);
return (1);
}
ncq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff);
if ((ncq->size < 2) || (ncq->size > sc->max_qentries)) {
/*
* Queues must specify at least two entries
* NOTE: "MAXIMUM QUEUE SIZE EXCEEDED" was renamed to
* "INVALID QUEUE SIZE" in the NVM Express 1.3 Spec
*/
pci_nvme_status_tc(&compl->status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED);
return (1);
}
ncq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx,
command->prp1,
sizeof(struct nvme_command) * (size_t)ncq->size);
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
return (1);
}
static int
nvme_opc_get_log_page(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
uint32_t logsize;
uint8_t logpage = command->cdw10 & 0xFF;
DPRINTF("%s log page %u len %u", __func__, logpage, logsize);
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
/*
* Command specifies the number of dwords to return in fields NUMDU
* and NUMDL. This is a zero-based value.
*/
logsize = ((command->cdw11 << 16) | (command->cdw10 >> 16)) + 1;
logsize *= sizeof(uint32_t);
switch (logpage) {
case NVME_LOG_ERROR:
nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
command->prp2, (uint8_t *)&sc->err_log,
MIN(logsize, sizeof(sc->err_log)),
NVME_COPY_TO_PRP);
break;
case NVME_LOG_HEALTH_INFORMATION:
pthread_mutex_lock(&sc->mtx);
memcpy(&sc->health_log.data_units_read, &sc->read_data_units,
sizeof(sc->health_log.data_units_read));
memcpy(&sc->health_log.data_units_written, &sc->write_data_units,
sizeof(sc->health_log.data_units_written));
memcpy(&sc->health_log.host_read_commands, &sc->read_commands,
sizeof(sc->health_log.host_read_commands));
memcpy(&sc->health_log.host_write_commands, &sc->write_commands,
sizeof(sc->health_log.host_write_commands));
pthread_mutex_unlock(&sc->mtx);
nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
command->prp2, (uint8_t *)&sc->health_log,
MIN(logsize, sizeof(sc->health_log)),
NVME_COPY_TO_PRP);
break;
case NVME_LOG_FIRMWARE_SLOT:
nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
command->prp2, (uint8_t *)&sc->fw_log,
MIN(logsize, sizeof(sc->fw_log)),
NVME_COPY_TO_PRP);
break;
default:
DPRINTF("%s get log page %x command not supported",
__func__, logpage);
pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_LOG_PAGE);
}
return (1);
}
static int
nvme_opc_identify(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
void *dest;
uint16_t status;
DPRINTF("%s identify 0x%x nsid 0x%x", __func__,
command->cdw10 & 0xFF, command->nsid);
pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
switch (command->cdw10 & 0xFF) {
case 0x00: /* return Identify Namespace data structure */
nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
command->prp2, (uint8_t *)&sc->nsdata, sizeof(sc->nsdata),
NVME_COPY_TO_PRP);
break;
case 0x01: /* return Identify Controller data structure */
nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
command->prp2, (uint8_t *)&sc->ctrldata,
sizeof(sc->ctrldata),
NVME_COPY_TO_PRP);
break;
case 0x02: /* list of 1024 active NSIDs > CDW1.NSID */
dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
sizeof(uint32_t) * 1024);
((uint32_t *)dest)[0] = 1;
((uint32_t *)dest)[1] = 0;
break;
case 0x03: /* list of NSID structures in CDW1.NSID, 4096 bytes */
if (command->nsid != 1) {
pci_nvme_status_genc(&status,
NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
break;
}
dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
sizeof(uint32_t) * 1024);
/* All bytes after the descriptor shall be zero */
bzero(dest, sizeof(uint32_t) * 1024);
/* Return NIDT=1 (i.e. EUI64) descriptor */
((uint8_t *)dest)[0] = 1;
((uint8_t *)dest)[1] = sizeof(uint64_t);
bcopy(sc->nsdata.eui64, ((uint8_t *)dest) + 4, sizeof(uint64_t));
break;
default:
DPRINTF("%s unsupported identify command requested 0x%x",
__func__, command->cdw10 & 0xFF);
pci_nvme_status_genc(&status, NVME_SC_INVALID_FIELD);
break;
}
compl->status = status;
return (1);
}
static const char *
nvme_fid_to_name(uint8_t fid)
{
const char *name;
switch (fid) {
case NVME_FEAT_ARBITRATION:
name = "Arbitration";
break;
case NVME_FEAT_POWER_MANAGEMENT:
name = "Power Management";
break;
case NVME_FEAT_LBA_RANGE_TYPE:
name = "LBA Range Type";
break;
case NVME_FEAT_TEMPERATURE_THRESHOLD:
name = "Temperature Threshold";
break;
case NVME_FEAT_ERROR_RECOVERY:
name = "Error Recovery";
break;
case NVME_FEAT_VOLATILE_WRITE_CACHE:
name = "Volatile Write Cache";
break;
case NVME_FEAT_NUMBER_OF_QUEUES:
name = "Number of Queues";
break;
case NVME_FEAT_INTERRUPT_COALESCING:
name = "Interrupt Coalescing";
break;
case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION:
name = "Interrupt Vector Configuration";
break;
case NVME_FEAT_WRITE_ATOMICITY:
name = "Write Atomicity Normal";
break;
case NVME_FEAT_ASYNC_EVENT_CONFIGURATION:
name = "Asynchronous Event Configuration";
break;
case NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION:
name = "Autonomous Power State Transition";
break;
case NVME_FEAT_HOST_MEMORY_BUFFER:
name = "Host Memory Buffer";
break;
case NVME_FEAT_TIMESTAMP:
name = "Timestamp";
break;
case NVME_FEAT_KEEP_ALIVE_TIMER:
name = "Keep Alive Timer";
break;
case NVME_FEAT_HOST_CONTROLLED_THERMAL_MGMT:
name = "Host Controlled Thermal Management";
break;
case NVME_FEAT_NON_OP_POWER_STATE_CONFIG:
name = "Non-Operation Power State Config";
break;
case NVME_FEAT_READ_RECOVERY_LEVEL_CONFIG:
name = "Read Recovery Level Config";
break;
case NVME_FEAT_PREDICTABLE_LATENCY_MODE_CONFIG:
name = "Predictable Latency Mode Config";
break;
case NVME_FEAT_PREDICTABLE_LATENCY_MODE_WINDOW:
name = "Predictable Latency Mode Window";
break;
case NVME_FEAT_LBA_STATUS_INFORMATION_ATTRIBUTES:
name = "LBA Status Information Report Interval";
break;
case NVME_FEAT_HOST_BEHAVIOR_SUPPORT:
name = "Host Behavior Support";
break;
case NVME_FEAT_SANITIZE_CONFIG:
name = "Sanitize Config";
break;
case NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION:
name = "Endurance Group Event Configuration";
break;
case NVME_FEAT_SOFTWARE_PROGRESS_MARKER:
name = "Software Progress Marker";
break;
case NVME_FEAT_HOST_IDENTIFIER:
name = "Host Identifier";
break;
case NVME_FEAT_RESERVATION_NOTIFICATION_MASK:
name = "Reservation Notification Mask";
break;
case NVME_FEAT_RESERVATION_PERSISTENCE:
name = "Reservation Persistence";
break;
case NVME_FEAT_NAMESPACE_WRITE_PROTECTION_CONFIG:
name = "Namespace Write Protection Config";
break;
default:
name = "Unknown";
break;
}
return (name);
}
static void
nvme_feature_invalid_cb(struct pci_nvme_softc *sc,
struct nvme_feature_obj *feat,
struct nvme_command *command,
struct nvme_completion *compl)
{
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
}
static void
nvme_feature_iv_config(struct pci_nvme_softc *sc,
struct nvme_feature_obj *feat,
struct nvme_command *command,
struct nvme_completion *compl)
{
uint32_t i;
uint32_t cdw11 = command->cdw11;
uint16_t iv;
bool cd;
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
iv = cdw11 & 0xffff;
cd = cdw11 & (1 << 16);
if (iv > (sc->max_queues + 1)) {
return;
}
/* No Interrupt Coalescing (i.e. not Coalescing Disable) for Admin Q */
if ((iv == 0) && !cd)
return;
/* Requested Interrupt Vector must be used by a CQ */
for (i = 0; i < sc->num_cqueues + 1; i++) {
if (sc->compl_queues[i].intr_vec == iv) {
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
}
}
}
static void
nvme_feature_num_queues(struct pci_nvme_softc *sc,
struct nvme_feature_obj *feat,
struct nvme_command *command,
struct nvme_completion *compl)
{
uint16_t nqr; /* Number of Queues Requested */
if (sc->num_q_is_set) {
WPRINTF("%s: Number of Queues already set", __func__);
pci_nvme_status_genc(&compl->status,
NVME_SC_COMMAND_SEQUENCE_ERROR);
return;
}
nqr = command->cdw11 & 0xFFFF;
if (nqr == 0xffff) {
WPRINTF("%s: Illegal NSQR value %#x", __func__, nqr);
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
return;
}
sc->num_squeues = ONE_BASED(nqr);
if (sc->num_squeues > sc->max_queues) {
DPRINTF("NSQR=%u is greater than max %u", sc->num_squeues,
sc->max_queues);
sc->num_squeues = sc->max_queues;
}
nqr = (command->cdw11 >> 16) & 0xFFFF;
if (nqr == 0xffff) {
WPRINTF("%s: Illegal NCQR value %#x", __func__, nqr);
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
return;
}
sc->num_cqueues = ONE_BASED(nqr);
if (sc->num_cqueues > sc->max_queues) {
DPRINTF("NCQR=%u is greater than max %u", sc->num_cqueues,
sc->max_queues);
sc->num_cqueues = sc->max_queues;
}
/* Patch the command value which will be saved on callback's return */
command->cdw11 = NVME_FEATURE_NUM_QUEUES(sc);
compl->cdw0 = NVME_FEATURE_NUM_QUEUES(sc);
sc->num_q_is_set = true;
}
static int
nvme_opc_set_features(struct pci_nvme_softc *sc, struct nvme_command *command,
struct nvme_completion *compl)
{
struct nvme_feature_obj *feat;
uint32_t nsid = command->nsid;
uint8_t fid = command->cdw10 & 0xFF;
DPRINTF("%s: Feature ID 0x%x (%s)", __func__, fid, nvme_fid_to_name(fid));
if (fid >= NVME_FID_MAX) {
DPRINTF("%s invalid feature 0x%x", __func__, fid);
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
return (1);
}
feat = &sc->feat[fid];
if (!feat->namespace_specific &&
!((nsid == 0) || (nsid == NVME_GLOBAL_NAMESPACE_TAG))) {
pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_FEATURE_NOT_NS_SPECIFIC);
return (1);
}
compl->cdw0 = 0;
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
if (feat->set)
feat->set(sc, feat, command, compl);
if (compl->status == NVME_SC_SUCCESS)
feat->cdw11 = command->cdw11;
return (0);
}
static int
nvme_opc_get_features(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
struct nvme_feature_obj *feat;
uint8_t fid = command->cdw10 & 0xFF;
DPRINTF("%s: Feature ID 0x%x (%s)", __func__, fid, nvme_fid_to_name(fid));
if (fid >= NVME_FID_MAX) {
DPRINTF("%s invalid feature 0x%x", __func__, fid);
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
return (1);
}
compl->cdw0 = 0;
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
feat = &sc->feat[fid];
if (feat->get) {
feat->get(sc, feat, command, compl);
}
if (compl->status == NVME_SC_SUCCESS) {
compl->cdw0 = feat->cdw11;
}
return (0);
}
static int
nvme_opc_format_nvm(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
uint8_t ses, lbaf, pi;
/* Only supports Secure Erase Setting - User Data Erase */
ses = (command->cdw10 >> 9) & 0x7;
if (ses > 0x1) {
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
return (1);
}
/* Only supports a single LBA Format */
lbaf = command->cdw10 & 0xf;
if (lbaf != 0) {
pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_FORMAT);
return (1);
}
/* Doesn't support Protection Infomation */
pi = (command->cdw10 >> 5) & 0x7;
if (pi != 0) {
pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
return (1);
}
if (sc->nvstore.type == NVME_STOR_RAM) {
if (sc->nvstore.ctx)
free(sc->nvstore.ctx);
sc->nvstore.ctx = calloc(1, sc->nvstore.size);
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
} else {
struct pci_nvme_ioreq *req;
int err;
req = pci_nvme_get_ioreq(sc);
if (req == NULL) {
pci_nvme_status_genc(&compl->status,
NVME_SC_INTERNAL_DEVICE_ERROR);
WPRINTF("%s: unable to allocate IO req", __func__);
return (1);
}
req->nvme_sq = &sc->submit_queues[0];
req->sqid = 0;
req->opc = command->opc;
req->cid = command->cid;
req->nsid = command->nsid;
req->io_req.br_offset = 0;
req->io_req.br_resid = sc->nvstore.size;
req->io_req.br_callback = pci_nvme_io_done;
err = blockif_delete(sc->nvstore.ctx, &req->io_req);
if (err) {
pci_nvme_status_genc(&compl->status,
NVME_SC_INTERNAL_DEVICE_ERROR);
pci_nvme_release_ioreq(sc, req);
}
}
return (1);
}
static int
nvme_opc_abort(struct pci_nvme_softc* sc, struct nvme_command* command,
struct nvme_completion* compl)
{
DPRINTF("%s submission queue %u, command ID 0x%x", __func__,
command->cdw10 & 0xFFFF, (command->cdw10 >> 16) & 0xFFFF);
/* TODO: search for the command ID and abort it */
compl->cdw0 = 1;
pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
return (1);
}
static int
nvme_opc_async_event_req(struct pci_nvme_softc* sc,
struct nvme_command* command, struct nvme_completion* compl)
{
DPRINTF("%s async event request 0x%x", __func__, command->cdw11);
/* Don't exceed the Async Event Request Limit (AERL). */
if (pci_nvme_aer_limit_reached(sc)) {
pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED);
return (1);
}
if (pci_nvme_aer_add(sc, command->cid)) {
pci_nvme_status_tc(&compl->status, NVME_SCT_GENERIC,
NVME_SC_INTERNAL_DEVICE_ERROR);
return (1);
}
/*
* Raise events when they happen based on the Set Features cmd.
* These events happen async, so only set completion successful if
* there is an event reflective of the request to get event.
*/
compl->status = NVME_NO_STATUS;
return (0);
}
static void
pci_nvme_handle_admin_cmd(struct pci_nvme_softc* sc, uint64_t value)
{
struct nvme_completion compl;
struct nvme_command *cmd;
struct nvme_submission_queue *sq;
struct nvme_completion_queue *cq;
uint16_t sqhead;
DPRINTF("%s index %u", __func__, (uint32_t)value);
sq = &sc->submit_queues[0];
cq = &sc->compl_queues[0];
pthread_mutex_lock(&sq->mtx);
sqhead = sq->head;
DPRINTF("sqhead %u, tail %u", sqhead, sq->tail);
while (sqhead != atomic_load_acq_short(&sq->tail)) {
cmd = &(sq->qbase)[sqhead];
compl.cdw0 = 0;
compl.status = 0;
switch (cmd->opc) {
case NVME_OPC_DELETE_IO_SQ:
DPRINTF("%s command DELETE_IO_SQ", __func__);
nvme_opc_delete_io_sq(sc, cmd, &compl);
break;
case NVME_OPC_CREATE_IO_SQ:
DPRINTF("%s command CREATE_IO_SQ", __func__);
nvme_opc_create_io_sq(sc, cmd, &compl);
break;
case NVME_OPC_DELETE_IO_CQ:
DPRINTF("%s command DELETE_IO_CQ", __func__);
nvme_opc_delete_io_cq(sc, cmd, &compl);
break;
case NVME_OPC_CREATE_IO_CQ:
DPRINTF("%s command CREATE_IO_CQ", __func__);
nvme_opc_create_io_cq(sc, cmd, &compl);
break;
case NVME_OPC_GET_LOG_PAGE:
DPRINTF("%s command GET_LOG_PAGE", __func__);
nvme_opc_get_log_page(sc, cmd, &compl);
break;
case NVME_OPC_IDENTIFY:
DPRINTF("%s command IDENTIFY", __func__);
nvme_opc_identify(sc, cmd, &compl);
break;
case NVME_OPC_ABORT:
DPRINTF("%s command ABORT", __func__);
nvme_opc_abort(sc, cmd, &compl);
break;
case NVME_OPC_SET_FEATURES:
DPRINTF("%s command SET_FEATURES", __func__);
nvme_opc_set_features(sc, cmd, &compl);
break;
case NVME_OPC_GET_FEATURES:
DPRINTF("%s command GET_FEATURES", __func__);
nvme_opc_get_features(sc, cmd, &compl);
break;
case NVME_OPC_FIRMWARE_ACTIVATE:
DPRINTF("%s command FIRMWARE_ACTIVATE", __func__);
pci_nvme_status_tc(&compl.status,
NVME_SCT_COMMAND_SPECIFIC,
NVME_SC_INVALID_FIRMWARE_SLOT);
break;
case NVME_OPC_ASYNC_EVENT_REQUEST:
DPRINTF("%s command ASYNC_EVENT_REQ", __func__);
nvme_opc_async_event_req(sc, cmd, &compl);
break;
case NVME_OPC_FORMAT_NVM:
DPRINTF("%s command FORMAT_NVM", __func__);
if ((sc->ctrldata.oacs &
(1 << NVME_CTRLR_DATA_OACS_FORMAT_SHIFT)) == 0) {
pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE);
}
compl.status = NVME_NO_STATUS;
nvme_opc_format_nvm(sc, cmd, &compl);
break;
default:
DPRINTF("0x%x command is not implemented",
cmd->opc);
pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE);
}
sqhead = (sqhead + 1) % sq->size;
if (NVME_COMPLETION_VALID(compl)) {
pci_nvme_cq_update(sc, &sc->compl_queues[0],
compl.cdw0,
cmd->cid,
0, /* SQID */
compl.status);
}
}
DPRINTF("setting sqhead %u", sqhead);
sq->head = sqhead;
if (cq->head != cq->tail)
pci_generate_msix(sc->nsc_pi, 0);
pthread_mutex_unlock(&sq->mtx);
}
/*
* Update the Write and Read statistics reported in SMART data
*
* NVMe defines "data unit" as thousand's of 512 byte blocks and is rounded up.
* E.g. 1 data unit is 1 - 1,000 512 byte blocks. 3 data units are 2,001 - 3,000
* 512 byte blocks. Rounding up is acheived by initializing the remainder to 999.
*/
static void
pci_nvme_stats_write_read_update(struct pci_nvme_softc *sc, uint8_t opc,
size_t bytes, uint16_t status)
{
pthread_mutex_lock(&sc->mtx);
switch (opc) {
case NVME_OPC_WRITE:
sc->write_commands++;
if (status != NVME_SC_SUCCESS)
break;
sc->write_dunits_remainder += (bytes / 512);
while (sc->write_dunits_remainder >= 1000) {
sc->write_data_units++;
sc->write_dunits_remainder -= 1000;
}
break;
case NVME_OPC_READ:
sc->read_commands++;
if (status != NVME_SC_SUCCESS)
break;
sc->read_dunits_remainder += (bytes / 512);
while (sc->read_dunits_remainder >= 1000) {
sc->read_data_units++;
sc->read_dunits_remainder -= 1000;
}
break;
default:
DPRINTF("%s: Invalid OPC 0x%02x for stats", __func__, opc);
break;
}
pthread_mutex_unlock(&sc->mtx);
}
/*
* Check if the combination of Starting LBA (slba) and Number of Logical
* Blocks (nlb) exceeds the range of the underlying storage.
*
* Because NVMe specifies the SLBA in blocks as a uint64_t and blockif stores
* the capacity in bytes as a uint64_t, care must be taken to avoid integer
* overflow.
*/
static bool
pci_nvme_out_of_range(struct pci_nvme_blockstore *nvstore, uint64_t slba,
uint32_t nlb)
{
size_t offset, bytes;
/* Overflow check of multiplying Starting LBA by the sector size */
if (slba >> (64 - nvstore->sectsz_bits))
return (true);
offset = slba << nvstore->sectsz_bits;
bytes = nlb << nvstore->sectsz_bits;
/* Overflow check of Number of Logical Blocks */
if ((nvstore->size - offset) < bytes)
return (true);
return (false);
}
static int
pci_nvme_append_iov_req(struct pci_nvme_softc *sc, struct pci_nvme_ioreq *req,
uint64_t gpaddr, size_t size, int do_write, uint64_t lba)
{
int iovidx;
if (req == NULL)
return (-1);
if (req->io_req.br_iovcnt == NVME_MAX_IOVEC) {
return (-1);
}
/* concatenate contig block-iovs to minimize number of iovs */
if ((req->prev_gpaddr + req->prev_size) == gpaddr) {
iovidx = req->io_req.br_iovcnt - 1;
req->io_req.br_iov[iovidx].iov_base =
paddr_guest2host(req->sc->nsc_pi->pi_vmctx,
req->prev_gpaddr, size);
req->prev_size += size;
req->io_req.br_resid += size;
req->io_req.br_iov[iovidx].iov_len = req->prev_size;
} else {
iovidx = req->io_req.br_iovcnt;
if (iovidx == 0) {
req->io_req.br_offset = lba;
req->io_req.br_resid = 0;
req->io_req.br_param = req;
}
req->io_req.br_iov[iovidx].iov_base =
paddr_guest2host(req->sc->nsc_pi->pi_vmctx,
gpaddr, size);
req->io_req.br_iov[iovidx].iov_len = size;
req->prev_gpaddr = gpaddr;
req->prev_size = size;
req->io_req.br_resid += size;
req->io_req.br_iovcnt++;
}
return (0);
}
static void
pci_nvme_set_completion(struct pci_nvme_softc *sc,
struct nvme_submission_queue *sq, int sqid, uint16_t cid,
uint32_t cdw0, uint16_t status)
{
struct nvme_completion_queue *cq = &sc->compl_queues[sq->cqid];
DPRINTF("%s sqid %d cqid %u cid %u status: 0x%x 0x%x",
__func__, sqid, sq->cqid, cid, NVME_STATUS_GET_SCT(status),
NVME_STATUS_GET_SC(status));
pci_nvme_cq_update(sc, cq,
0, /* CDW0 */
cid,
sqid,
status);
if (cq->head != cq->tail) {
if (cq->intr_en & NVME_CQ_INTEN) {
pci_generate_msix(sc->nsc_pi, cq->intr_vec);
} else {
DPRINTF("%s: CQ%u interrupt disabled",
__func__, sq->cqid);
}
}
}
static void
pci_nvme_release_ioreq(struct pci_nvme_softc *sc, struct pci_nvme_ioreq *req)
{
req->sc = NULL;
req->nvme_sq = NULL;
req->sqid = 0;
pthread_mutex_lock(&sc->mtx);
STAILQ_INSERT_TAIL(&sc->ioreqs_free, req, link);
sc->pending_ios--;
/* when no more IO pending, can set to ready if device reset/enabled */
if (sc->pending_ios == 0 &&
NVME_CC_GET_EN(sc->regs.cc) && !(NVME_CSTS_GET_RDY(sc->regs.csts)))
sc->regs.csts |= NVME_CSTS_RDY;
pthread_mutex_unlock(&sc->mtx);
sem_post(&sc->iosemlock);
}
static struct pci_nvme_ioreq *
pci_nvme_get_ioreq(struct pci_nvme_softc *sc)
{
struct pci_nvme_ioreq *req = NULL;;
sem_wait(&sc->iosemlock);
pthread_mutex_lock(&sc->mtx);
req = STAILQ_FIRST(&sc->ioreqs_free);
assert(req != NULL);
STAILQ_REMOVE_HEAD(&sc->ioreqs_free, link);
req->sc = sc;
sc->pending_ios++;
pthread_mutex_unlock(&sc->mtx);
req->io_req.br_iovcnt = 0;
req->io_req.br_offset = 0;
req->io_req.br_resid = 0;
req->io_req.br_param = req;
req->prev_gpaddr = 0;
req->prev_size = 0;
return req;
}
static void
pci_nvme_io_done(struct blockif_req *br, int err)
{
struct pci_nvme_ioreq *req = br->br_param;
struct nvme_submission_queue *sq = req->nvme_sq;
uint16_t code, status;
DPRINTF("%s error %d %s", __func__, err, strerror(err));
/* TODO return correct error */
code = err ? NVME_SC_DATA_TRANSFER_ERROR : NVME_SC_SUCCESS;
pci_nvme_status_genc(&status, code);
pci_nvme_set_completion(req->sc, sq, req->sqid, req->cid, 0, status);
pci_nvme_stats_write_read_update(req->sc, req->opc,
req->bytes, status);
pci_nvme_release_ioreq(req->sc, req);
}
/*
* Implements the Flush command. The specification states:
* If a volatile write cache is not present, Flush commands complete
* successfully and have no effect
* in the description of the Volatile Write Cache (VWC) field of the Identify
* Controller data. Therefore, set status to Success if the command is
* not supported (i.e. RAM or as indicated by the blockif).
*/
static bool
nvme_opc_flush(struct pci_nvme_softc *sc,
struct nvme_command *cmd,
struct pci_nvme_blockstore *nvstore,
struct pci_nvme_ioreq *req,
uint16_t *status)
{
bool pending = false;
if (nvstore->type == NVME_STOR_RAM) {
pci_nvme_status_genc(status, NVME_SC_SUCCESS);
} else {
int err;
req->io_req.br_callback = pci_nvme_io_done;
err = blockif_flush(nvstore->ctx, &req->io_req);
switch (err) {
case 0:
pending = true;
break;
case EOPNOTSUPP:
pci_nvme_status_genc(status, NVME_SC_SUCCESS);
break;
default:
pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
}
}
return (pending);
}
static uint16_t
nvme_write_read_ram(struct pci_nvme_softc *sc,
struct pci_nvme_blockstore *nvstore,
uint64_t prp1, uint64_t prp2,
size_t offset, uint64_t bytes,
bool is_write)
{
uint8_t *buf = nvstore->ctx;
enum nvme_copy_dir dir;
uint16_t status;
if (is_write)
dir = NVME_COPY_TO_PRP;
else
dir = NVME_COPY_FROM_PRP;
if (nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, prp1, prp2,
buf + offset, bytes, dir))
pci_nvme_status_genc(&status,
NVME_SC_DATA_TRANSFER_ERROR);
else
pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
return (status);
}
static uint16_t
nvme_write_read_blockif(struct pci_nvme_softc *sc,
struct pci_nvme_blockstore *nvstore,
struct pci_nvme_ioreq *req,
uint64_t prp1, uint64_t prp2,
size_t offset, uint64_t bytes,
bool is_write)
{
uint64_t size;
int err;
uint16_t status = NVME_NO_STATUS;
size = MIN(PAGE_SIZE - (prp1 % PAGE_SIZE), bytes);
if (pci_nvme_append_iov_req(sc, req, prp1,
size, is_write, offset)) {
pci_nvme_status_genc(&status,
NVME_SC_DATA_TRANSFER_ERROR);
goto out;
}
offset += size;
bytes -= size;
if (bytes == 0) {
;
} else if (bytes <= PAGE_SIZE) {
size = bytes;
if (pci_nvme_append_iov_req(sc, req, prp2,
size, is_write, offset)) {
pci_nvme_status_genc(&status,
NVME_SC_DATA_TRANSFER_ERROR);
goto out;
}
} else {
void *vmctx = sc->nsc_pi->pi_vmctx;
uint64_t *prp_list = &prp2;
uint64_t *last = prp_list;
/* PRP2 is pointer to a physical region page list */
while (bytes) {
/* Last entry in list points to the next list */
if (prp_list == last) {
uint64_t prp = *prp_list;
prp_list = paddr_guest2host(vmctx, prp,
PAGE_SIZE - (prp % PAGE_SIZE));
last = prp_list + (NVME_PRP2_ITEMS - 1);
}
size = MIN(bytes, PAGE_SIZE);
if (pci_nvme_append_iov_req(sc, req, *prp_list,
size, is_write, offset)) {
pci_nvme_status_genc(&status,
NVME_SC_DATA_TRANSFER_ERROR);
goto out;
}
offset += size;
bytes -= size;
prp_list++;
}
}
req->io_req.br_callback = pci_nvme_io_done;
if (is_write)
err = blockif_write(nvstore->ctx, &req->io_req);
else
err = blockif_read(nvstore->ctx, &req->io_req);
if (err)
pci_nvme_status_genc(&status, NVME_SC_DATA_TRANSFER_ERROR);
out:
return (status);
}
static bool
nvme_opc_write_read(struct pci_nvme_softc *sc,
struct nvme_command *cmd,
struct pci_nvme_blockstore *nvstore,
struct pci_nvme_ioreq *req,
uint16_t *status)
{
uint64_t lba, nblocks, bytes;
size_t offset;
bool is_write = cmd->opc == NVME_OPC_WRITE;
bool pending = false;
lba = ((uint64_t)cmd->cdw11 << 32) | cmd->cdw10;
nblocks = (cmd->cdw12 & 0xFFFF) + 1;
if (pci_nvme_out_of_range(nvstore, lba, nblocks)) {
WPRINTF("%s command would exceed LBA range", __func__);
pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE);
goto out;
}
bytes = nblocks << nvstore->sectsz_bits;
if (bytes > NVME_MAX_DATA_SIZE) {
WPRINTF("%s command would exceed MDTS", __func__);
pci_nvme_status_genc(status, NVME_SC_INVALID_FIELD);
goto out;
}
offset = lba << nvstore->sectsz_bits;
req->bytes = bytes;
req->io_req.br_offset = lba;
/* PRP bits 1:0 must be zero */
cmd->prp1 &= ~0x3UL;
cmd->prp2 &= ~0x3UL;
if (nvstore->type == NVME_STOR_RAM) {
*status = nvme_write_read_ram(sc, nvstore, cmd->prp1,
cmd->prp2, offset, bytes, is_write);
} else {
*status = nvme_write_read_blockif(sc, nvstore, req,
cmd->prp1, cmd->prp2, offset, bytes, is_write);
if (*status == NVME_NO_STATUS)
pending = true;
}
out:
if (!pending)
pci_nvme_stats_write_read_update(sc, cmd->opc, bytes, *status);
return (pending);
}
static void
pci_nvme_dealloc_sm(struct blockif_req *br, int err)
{
struct pci_nvme_ioreq *req = br->br_param;
struct pci_nvme_softc *sc = req->sc;
bool done = true;
uint16_t status;
if (err) {
pci_nvme_status_genc(&status, NVME_SC_INTERNAL_DEVICE_ERROR);
} else if ((req->prev_gpaddr + 1) == (req->prev_size)) {
pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
} else {
struct iovec *iov = req->io_req.br_iov;
req->prev_gpaddr++;
iov += req->prev_gpaddr;
/* The iov_* values already include the sector size */
req->io_req.br_offset = (off_t)iov->iov_base;
req->io_req.br_resid = iov->iov_len;
if (blockif_delete(sc->nvstore.ctx, &req->io_req)) {
pci_nvme_status_genc(&status,
NVME_SC_INTERNAL_DEVICE_ERROR);
} else
done = false;
}
if (done) {
pci_nvme_set_completion(sc, req->nvme_sq, req->sqid,
req->cid, 0, status);
pci_nvme_release_ioreq(sc, req);
}
}
static bool
nvme_opc_dataset_mgmt(struct pci_nvme_softc *sc,
struct nvme_command *cmd,
struct pci_nvme_blockstore *nvstore,
struct pci_nvme_ioreq *req,
uint16_t *status)
{
int err;
bool pending = false;
if ((sc->ctrldata.oncs & NVME_ONCS_DSM) == 0) {
pci_nvme_status_genc(status, NVME_SC_INVALID_OPCODE);
goto out;
}
if (cmd->cdw11 & NVME_DSM_ATTR_DEALLOCATE) {
struct nvme_dsm_range *range;
size_t offset, bytes;
uint32_t nr, r;
int sectsz_bits = sc->nvstore.sectsz_bits;
/*
* DSM calls are advisory only, and compliant controllers
* may choose to take no actions (i.e. return Success).
*/
if (!nvstore->deallocate) {
pci_nvme_status_genc(status, NVME_SC_SUCCESS);
goto out;
}
if (req == NULL) {
pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
goto out;
}
/* copy locally because a range entry could straddle PRPs */
range = calloc(1, NVME_MAX_DSM_TRIM);
if (range == NULL) {
pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
goto out;
}
nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, cmd->prp1, cmd->prp2,
(uint8_t *)range, NVME_MAX_DSM_TRIM, NVME_COPY_FROM_PRP);
if (pci_nvme_out_of_range(nvstore, range[0].starting_lba,
range[0].length)) {
pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE);
goto out;
}
offset = range[0].starting_lba << sectsz_bits;
bytes = range[0].length << sectsz_bits;
/*
* If the request is for more than a single range, store
* the ranges in the br_iov. Optimize for the common case
* of a single range.
*
* Note that NVMe Number of Ranges is a zero based value
*/
nr = cmd->cdw10 & 0xff;
req->io_req.br_iovcnt = 0;
req->io_req.br_offset = offset;
req->io_req.br_resid = bytes;
if (nr == 0) {
req->io_req.br_callback = pci_nvme_io_done;
} else {
struct iovec *iov = req->io_req.br_iov;
for (r = 0; r <= nr; r++) {
if (pci_nvme_out_of_range(nvstore, range[r].starting_lba,
range[r].length)) {
pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE);
goto out;
}
offset = range[r].starting_lba << sectsz_bits;
bytes = range[r].length << sectsz_bits;
if ((nvstore->size - offset) < bytes) {
pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE);
goto out;
}
iov[r].iov_base = (void *)offset;
iov[r].iov_len = bytes;
}
req->io_req.br_callback = pci_nvme_dealloc_sm;
/*
* Use prev_gpaddr to track the current entry and
* prev_size to track the number of entries
*/
req->prev_gpaddr = 0;
req->prev_size = r;
}
err = blockif_delete(nvstore->ctx, &req->io_req);
if (err)
pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
else
pending = true;
free(range);
}
out:
return (pending);
}
static void
pci_nvme_handle_io_cmd(struct pci_nvme_softc* sc, uint16_t idx)
{
struct nvme_submission_queue *sq;
uint16_t status;
uint16_t sqhead;
/* handle all submissions up to sq->tail index */
sq = &sc->submit_queues[idx];
pthread_mutex_lock(&sq->mtx);
sqhead = sq->head;
DPRINTF("nvme_handle_io qid %u head %u tail %u cmdlist %p",
idx, sqhead, sq->tail, sq->qbase);
while (sqhead != atomic_load_acq_short(&sq->tail)) {
struct nvme_command *cmd;
struct pci_nvme_ioreq *req;
uint32_t nsid;
bool pending;
pending = false;
req = NULL;
status = 0;
cmd = &sq->qbase[sqhead];
sqhead = (sqhead + 1) % sq->size;
nsid = le32toh(cmd->nsid);
if ((nsid == 0) || (nsid > sc->ctrldata.nn)) {
pci_nvme_status_genc(&status,
NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
status |=
NVME_STATUS_DNR_MASK << NVME_STATUS_DNR_SHIFT;
goto complete;
}
req = pci_nvme_get_ioreq(sc);
if (req == NULL) {
pci_nvme_status_genc(&status,
NVME_SC_INTERNAL_DEVICE_ERROR);
WPRINTF("%s: unable to allocate IO req", __func__);
goto complete;
}
req->nvme_sq = sq;
req->sqid = idx;
req->opc = cmd->opc;
req->cid = cmd->cid;
req->nsid = cmd->nsid;
switch (cmd->opc) {
case NVME_OPC_FLUSH:
pending = nvme_opc_flush(sc, cmd, &sc->nvstore,
req, &status);
break;
case NVME_OPC_WRITE:
case NVME_OPC_READ:
pending = nvme_opc_write_read(sc, cmd, &sc->nvstore,
req, &status);
break;
case NVME_OPC_WRITE_ZEROES:
/* TODO: write zeroes
WPRINTF("%s write zeroes lba 0x%lx blocks %u",
__func__, lba, cmd->cdw12 & 0xFFFF); */
pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
break;
case NVME_OPC_DATASET_MANAGEMENT:
pending = nvme_opc_dataset_mgmt(sc, cmd, &sc->nvstore,
req, &status);
break;
default:
WPRINTF("%s unhandled io command 0x%x",
__func__, cmd->opc);
pci_nvme_status_genc(&status, NVME_SC_INVALID_OPCODE);
}
complete:
if (!pending) {
pci_nvme_set_completion(sc, sq, idx, cmd->cid, 0,
status);
if (req != NULL)
pci_nvme_release_ioreq(sc, req);
}
}
sq->head = sqhead;
pthread_mutex_unlock(&sq->mtx);
}
static void
pci_nvme_handle_doorbell(struct vmctx *ctx, struct pci_nvme_softc* sc,
uint64_t idx, int is_sq, uint64_t value)
{
DPRINTF("nvme doorbell %lu, %s, val 0x%lx",
idx, is_sq ? "SQ" : "CQ", value & 0xFFFF);
if (is_sq) {
if (idx > sc->num_squeues) {
WPRINTF("%s queue index %lu overflow from "
"guest (max %u)",
__func__, idx, sc->num_squeues);
return;
}
atomic_store_short(&sc->submit_queues[idx].tail,
(uint16_t)value);
if (idx == 0) {
pci_nvme_handle_admin_cmd(sc, value);
} else {
/* submission queue; handle new entries in SQ */
if (idx > sc->num_squeues) {
WPRINTF("%s SQ index %lu overflow from "
"guest (max %u)",
__func__, idx, sc->num_squeues);
return;
}
pci_nvme_handle_io_cmd(sc, (uint16_t)idx);
}
} else {
if (idx > sc->num_cqueues) {
WPRINTF("%s queue index %lu overflow from "
"guest (max %u)",
__func__, idx, sc->num_cqueues);
return;
}
atomic_store_short(&sc->compl_queues[idx].head,
(uint16_t)value);
}
}
static void
pci_nvme_bar0_reg_dumps(const char *func, uint64_t offset, int iswrite)
{
const char *s = iswrite ? "WRITE" : "READ";
switch (offset) {
case NVME_CR_CAP_LOW:
DPRINTF("%s %s NVME_CR_CAP_LOW", func, s);
break;
case NVME_CR_CAP_HI:
DPRINTF("%s %s NVME_CR_CAP_HI", func, s);
break;
case NVME_CR_VS:
DPRINTF("%s %s NVME_CR_VS", func, s);
break;
case NVME_CR_INTMS:
DPRINTF("%s %s NVME_CR_INTMS", func, s);
break;
case NVME_CR_INTMC:
DPRINTF("%s %s NVME_CR_INTMC", func, s);
break;
case NVME_CR_CC:
DPRINTF("%s %s NVME_CR_CC", func, s);
break;
case NVME_CR_CSTS:
DPRINTF("%s %s NVME_CR_CSTS", func, s);
break;
case NVME_CR_NSSR:
DPRINTF("%s %s NVME_CR_NSSR", func, s);
break;
case NVME_CR_AQA:
DPRINTF("%s %s NVME_CR_AQA", func, s);
break;
case NVME_CR_ASQ_LOW:
DPRINTF("%s %s NVME_CR_ASQ_LOW", func, s);
break;
case NVME_CR_ASQ_HI:
DPRINTF("%s %s NVME_CR_ASQ_HI", func, s);
break;
case NVME_CR_ACQ_LOW:
DPRINTF("%s %s NVME_CR_ACQ_LOW", func, s);
break;
case NVME_CR_ACQ_HI:
DPRINTF("%s %s NVME_CR_ACQ_HI", func, s);
break;
default:
DPRINTF("unknown nvme bar-0 offset 0x%lx", offset);
}
}
static void
pci_nvme_write_bar_0(struct vmctx *ctx, struct pci_nvme_softc* sc,
uint64_t offset, int size, uint64_t value)
{
uint32_t ccreg;
if (offset >= NVME_DOORBELL_OFFSET) {
uint64_t belloffset = offset - NVME_DOORBELL_OFFSET;
uint64_t idx = belloffset / 8; /* door bell size = 2*int */
int is_sq = (belloffset % 8) < 4;
if (belloffset > ((sc->max_queues+1) * 8 - 4)) {
WPRINTF("guest attempted an overflow write offset "
"0x%lx, val 0x%lx in %s",
offset, value, __func__);
return;
}
pci_nvme_handle_doorbell(ctx, sc, idx, is_sq, value);
return;
}
DPRINTF("nvme-write offset 0x%lx, size %d, value 0x%lx",
offset, size, value);
if (size != 4) {
WPRINTF("guest wrote invalid size %d (offset 0x%lx, "
"val 0x%lx) to bar0 in %s",
size, offset, value, __func__);
/* TODO: shutdown device */
return;
}
pci_nvme_bar0_reg_dumps(__func__, offset, 1);
pthread_mutex_lock(&sc->mtx);
switch (offset) {
case NVME_CR_CAP_LOW:
case NVME_CR_CAP_HI:
/* readonly */
break;
case NVME_CR_VS:
/* readonly */
break;
case NVME_CR_INTMS:
/* MSI-X, so ignore */
break;
case NVME_CR_INTMC:
/* MSI-X, so ignore */
break;
case NVME_CR_CC:
ccreg = (uint32_t)value;
DPRINTF("%s NVME_CR_CC en %x css %x shn %x iosqes %u "
"iocqes %u",
__func__,
NVME_CC_GET_EN(ccreg), NVME_CC_GET_CSS(ccreg),
NVME_CC_GET_SHN(ccreg), NVME_CC_GET_IOSQES(ccreg),
NVME_CC_GET_IOCQES(ccreg));
if (NVME_CC_GET_SHN(ccreg)) {
/* perform shutdown - flush out data to backend */
sc->regs.csts &= ~(NVME_CSTS_REG_SHST_MASK <<
NVME_CSTS_REG_SHST_SHIFT);
sc->regs.csts |= NVME_SHST_COMPLETE <<
NVME_CSTS_REG_SHST_SHIFT;
}
if (NVME_CC_GET_EN(ccreg) != NVME_CC_GET_EN(sc->regs.cc)) {
if (NVME_CC_GET_EN(ccreg) == 0)
/* transition 1-> causes controller reset */
pci_nvme_reset_locked(sc);
else
pci_nvme_init_controller(ctx, sc);
}
/* Insert the iocqes, iosqes and en bits from the write */
sc->regs.cc &= ~NVME_CC_WRITE_MASK;
sc->regs.cc |= ccreg & NVME_CC_WRITE_MASK;
if (NVME_CC_GET_EN(ccreg) == 0) {
/* Insert the ams, mps and css bit fields */
sc->regs.cc &= ~NVME_CC_NEN_WRITE_MASK;
sc->regs.cc |= ccreg & NVME_CC_NEN_WRITE_MASK;
sc->regs.csts &= ~NVME_CSTS_RDY;
} else if (sc->pending_ios == 0) {
sc->regs.csts |= NVME_CSTS_RDY;
}
break;
case NVME_CR_CSTS:
break;
case NVME_CR_NSSR:
/* ignore writes; don't support subsystem reset */
break;
case NVME_CR_AQA:
sc->regs.aqa = (uint32_t)value;
break;
case NVME_CR_ASQ_LOW:
sc->regs.asq = (sc->regs.asq & (0xFFFFFFFF00000000)) |
(0xFFFFF000 & value);
break;
case NVME_CR_ASQ_HI:
sc->regs.asq = (sc->regs.asq & (0x00000000FFFFFFFF)) |
(value << 32);
break;
case NVME_CR_ACQ_LOW:
sc->regs.acq = (sc->regs.acq & (0xFFFFFFFF00000000)) |
(0xFFFFF000 & value);
break;
case NVME_CR_ACQ_HI:
sc->regs.acq = (sc->regs.acq & (0x00000000FFFFFFFF)) |
(value << 32);
break;
default:
DPRINTF("%s unknown offset 0x%lx, value 0x%lx size %d",
__func__, offset, value, size);
}
pthread_mutex_unlock(&sc->mtx);
}
static void
pci_nvme_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi,
int baridx, uint64_t offset, int size, uint64_t value)
{
struct pci_nvme_softc* sc = pi->pi_arg;
if (baridx == pci_msix_table_bar(pi) ||
baridx == pci_msix_pba_bar(pi)) {
DPRINTF("nvme-write baridx %d, msix: off 0x%lx, size %d, "
" value 0x%lx", baridx, offset, size, value);
pci_emul_msix_twrite(pi, offset, size, value);
return;
}
switch (baridx) {
case 0:
pci_nvme_write_bar_0(ctx, sc, offset, size, value);
break;
default:
DPRINTF("%s unknown baridx %d, val 0x%lx",
__func__, baridx, value);
}
}
static uint64_t pci_nvme_read_bar_0(struct pci_nvme_softc* sc,
uint64_t offset, int size)
{
uint64_t value;
pci_nvme_bar0_reg_dumps(__func__, offset, 0);
if (offset < NVME_DOORBELL_OFFSET) {
void *p = &(sc->regs);
pthread_mutex_lock(&sc->mtx);
memcpy(&value, (void *)((uintptr_t)p + offset), size);
pthread_mutex_unlock(&sc->mtx);
} else {
value = 0;
WPRINTF("pci_nvme: read invalid offset %ld", offset);
}
switch (size) {
case 1:
value &= 0xFF;
break;
case 2:
value &= 0xFFFF;
break;
case 4:
value &= 0xFFFFFFFF;
break;
}
DPRINTF(" nvme-read offset 0x%lx, size %d -> value 0x%x",
offset, size, (uint32_t)value);
return (value);
}
static uint64_t
pci_nvme_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
uint64_t offset, int size)
{
struct pci_nvme_softc* sc = pi->pi_arg;
if (baridx == pci_msix_table_bar(pi) ||
baridx == pci_msix_pba_bar(pi)) {
DPRINTF("nvme-read bar: %d, msix: regoff 0x%lx, size %d",
baridx, offset, size);
return pci_emul_msix_tread(pi, offset, size);
}
switch (baridx) {
case 0:
return pci_nvme_read_bar_0(sc, offset, size);
default:
DPRINTF("unknown bar %d, 0x%lx", baridx, offset);
}
return (0);
}
static int
pci_nvme_parse_opts(struct pci_nvme_softc *sc, char *opts)
{
char bident[sizeof("XX:X:X")];
char *uopt, *xopts, *config;
uint32_t sectsz;
int optidx;
sc->max_queues = NVME_QUEUES;
sc->max_qentries = NVME_MAX_QENTRIES;
sc->ioslots = NVME_IOSLOTS;
sc->num_squeues = sc->max_queues;
sc->num_cqueues = sc->max_queues;
sc->dataset_management = NVME_DATASET_MANAGEMENT_AUTO;
sectsz = 0;
uopt = strdup(opts);
optidx = 0;
snprintf(sc->ctrldata.sn, sizeof(sc->ctrldata.sn),
"NVME-%d-%d", sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
for (xopts = strtok(uopt, ",");
xopts != NULL;
xopts = strtok(NULL, ",")) {
if ((config = strchr(xopts, '=')) != NULL)
*config++ = '\0';
if (!strcmp("maxq", xopts)) {
sc->max_queues = atoi(config);
} else if (!strcmp("qsz", xopts)) {
sc->max_qentries = atoi(config);
} else if (!strcmp("ioslots", xopts)) {
sc->ioslots = atoi(config);
} else if (!strcmp("sectsz", xopts)) {
sectsz = atoi(config);
} else if (!strcmp("ser", xopts)) {
/*
* This field indicates the Product Serial Number in
* 7-bit ASCII, unused bytes should be space characters.
* Ref: NVMe v1.3c.
*/
cpywithpad((char *)sc->ctrldata.sn,
sizeof(sc->ctrldata.sn), config, ' ');
} else if (!strcmp("ram", xopts)) {
uint64_t sz = strtoull(&xopts[4], NULL, 10);
sc->nvstore.type = NVME_STOR_RAM;
sc->nvstore.size = sz * 1024 * 1024;
sc->nvstore.ctx = calloc(1, sc->nvstore.size);
sc->nvstore.sectsz = 4096;
sc->nvstore.sectsz_bits = 12;
if (sc->nvstore.ctx == NULL) {
perror("Unable to allocate RAM");
free(uopt);
return (-1);
}
} else if (!strcmp("eui64", xopts)) {
sc->nvstore.eui64 = htobe64(strtoull(config, NULL, 0));
} else if (!strcmp("dsm", xopts)) {
if (!strcmp("auto", config))
sc->dataset_management = NVME_DATASET_MANAGEMENT_AUTO;
else if (!strcmp("enable", config))
sc->dataset_management = NVME_DATASET_MANAGEMENT_ENABLE;
else if (!strcmp("disable", config))
sc->dataset_management = NVME_DATASET_MANAGEMENT_DISABLE;
} else if (optidx == 0) {
snprintf(bident, sizeof(bident), "%d:%d",
sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
sc->nvstore.ctx = blockif_open(xopts, bident);
if (sc->nvstore.ctx == NULL) {
perror("Could not open backing file");
free(uopt);
return (-1);
}
sc->nvstore.type = NVME_STOR_BLOCKIF;
sc->nvstore.size = blockif_size(sc->nvstore.ctx);
} else {
EPRINTLN("Invalid option %s", xopts);
free(uopt);
return (-1);
}
optidx++;
}
free(uopt);
if (sc->nvstore.ctx == NULL || sc->nvstore.size == 0) {
EPRINTLN("backing store not specified");
return (-1);
}
if (sectsz == 512 || sectsz == 4096 || sectsz == 8192)
sc->nvstore.sectsz = sectsz;
else if (sc->nvstore.type != NVME_STOR_RAM)
sc->nvstore.sectsz = blockif_sectsz(sc->nvstore.ctx);
for (sc->nvstore.sectsz_bits = 9;
(1 << sc->nvstore.sectsz_bits) < sc->nvstore.sectsz;
sc->nvstore.sectsz_bits++);
if (sc->max_queues <= 0 || sc->max_queues > NVME_QUEUES)
sc->max_queues = NVME_QUEUES;
if (sc->max_qentries <= 0) {
EPRINTLN("Invalid qsz option");
return (-1);
}
if (sc->ioslots <= 0) {
EPRINTLN("Invalid ioslots option");
return (-1);
}
return (0);
}
static int
pci_nvme_init(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
{
struct pci_nvme_softc *sc;
uint32_t pci_membar_sz;
int error;
error = 0;
sc = calloc(1, sizeof(struct pci_nvme_softc));
pi->pi_arg = sc;
sc->nsc_pi = pi;
error = pci_nvme_parse_opts(sc, opts);
if (error < 0)
goto done;
else
error = 0;
STAILQ_INIT(&sc->ioreqs_free);
sc->ioreqs = calloc(sc->ioslots, sizeof(struct pci_nvme_ioreq));
for (int i = 0; i < sc->ioslots; i++) {
STAILQ_INSERT_TAIL(&sc->ioreqs_free, &sc->ioreqs[i], link);
}
pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0A0A);
pci_set_cfgdata16(pi, PCIR_VENDOR, 0xFB5D);
pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_STORAGE);
pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_STORAGE_NVM);
pci_set_cfgdata8(pi, PCIR_PROGIF,
PCIP_STORAGE_NVM_ENTERPRISE_NVMHCI_1_0);
/*
* Allocate size of NVMe registers + doorbell space for all queues.
*
* The specification requires a minimum memory I/O window size of 16K.
* The Windows driver will refuse to start a device with a smaller
* window.
*/
pci_membar_sz = sizeof(struct nvme_registers) +
2 * sizeof(uint32_t) * (sc->max_queues + 1);
pci_membar_sz = MAX(pci_membar_sz, NVME_MMIO_SPACE_MIN);
DPRINTF("nvme membar size: %u", pci_membar_sz);
error = pci_emul_alloc_bar(pi, 0, PCIBAR_MEM64, pci_membar_sz);
if (error) {
WPRINTF("%s pci alloc mem bar failed", __func__);
goto done;
}
error = pci_emul_add_msixcap(pi, sc->max_queues + 1, NVME_MSIX_BAR);
if (error) {
WPRINTF("%s pci add msixcap failed", __func__);
goto done;
}
error = pci_emul_add_pciecap(pi, PCIEM_TYPE_ROOT_INT_EP);
if (error) {
WPRINTF("%s pci add Express capability failed", __func__);
goto done;
}
pthread_mutex_init(&sc->mtx, NULL);
sem_init(&sc->iosemlock, 0, sc->ioslots);
pci_nvme_init_queues(sc, sc->max_queues, sc->max_queues);
/*
* Controller data depends on Namespace data so initialize Namespace
* data first.
*/
pci_nvme_init_nsdata(sc, &sc->nsdata, 1, &sc->nvstore);
pci_nvme_init_ctrldata(sc);
pci_nvme_init_logpages(sc);
pci_nvme_init_features(sc);
pci_nvme_aer_init(sc);
pci_nvme_reset(sc);
pci_lintr_request(pi);
done:
return (error);
}
struct pci_devemu pci_de_nvme = {
.pe_emu = "nvme",
.pe_init = pci_nvme_init,
.pe_barwrite = pci_nvme_write,
.pe_barread = pci_nvme_read
};
PCI_EMUL_SET(pci_de_nvme);