1226f694e6
gets signals operating based on a TailQ, and is good enough to run X11, GNOME, and do job control. There are some intricate parts which could be more refined to match the sigset_t versions, but those require further evaluation of directions in which our signal system can expand and contract to fit our needs. After this has been in the tree for a while, I will make in kernel API changes, most notably to trapsignal(9) and sendsig(9), to use ksiginfo more robustly, such that we can actually pass information with our (queued) signals to the userland. That will also result in using a struct ksiginfo pointer, rather than a signal number, in a lot of kern_sig.c, to refer to an individual pending signal queue member, but right now there is no defined behaviour for such. CODAFS is unfinished in this regard because the logic is unclear in some places. Sponsored by: New Gold Technology Reviewed by: bde, tjr, jake [an older version, logic similar]
188 lines
4.8 KiB
C
188 lines
4.8 KiB
C
/*
|
|
* Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/unistd.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/ksiginfo.h>
|
|
|
|
#include <machine/stdarg.h>
|
|
|
|
/*
|
|
* Start a kernel process. This is called after a fork() call in
|
|
* mi_startup() in the file kern/init_main.c.
|
|
*
|
|
* This function is used to start "internal" daemons and intended
|
|
* to be called from SYSINIT().
|
|
*/
|
|
void
|
|
kproc_start(udata)
|
|
const void *udata;
|
|
{
|
|
const struct kproc_desc *kp = udata;
|
|
int error;
|
|
|
|
error = kthread_create((void (*)(void *))kp->func, NULL,
|
|
kp->global_procpp, 0, "%s", kp->arg0);
|
|
if (error)
|
|
panic("kproc_start: %s: error %d", kp->arg0, error);
|
|
}
|
|
|
|
/*
|
|
* Create a kernel process/thread/whatever. It shares its address space
|
|
* with proc0 - ie: kernel only.
|
|
*
|
|
* func is the function to start.
|
|
* arg is the parameter to pass to function on first startup.
|
|
* newpp is the return value pointing to the thread's struct proc.
|
|
* flags are flags to fork1 (in unistd.h)
|
|
* fmt and following will be *printf'd into (*newpp)->p_comm (for ps, etc.).
|
|
*/
|
|
int
|
|
kthread_create(void (*func)(void *), void *arg,
|
|
struct proc **newpp, int flags, const char *fmt, ...)
|
|
{
|
|
int error;
|
|
va_list ap;
|
|
struct thread *td;
|
|
struct proc *p2;
|
|
|
|
if (!proc0.p_stats /* || proc0.p_stats->p_start.tv_sec == 0 */)
|
|
panic("kthread_create called too soon");
|
|
|
|
error = fork1(&thread0, RFMEM | RFFDG | RFPROC | RFSTOPPED | flags,
|
|
&p2);
|
|
if (error)
|
|
return error;
|
|
|
|
/* save a global descriptor, if desired */
|
|
if (newpp != NULL)
|
|
*newpp = p2;
|
|
|
|
/* this is a non-swapped system process */
|
|
PROC_LOCK(p2);
|
|
p2->p_flag |= P_SYSTEM | P_KTHREAD;
|
|
p2->p_procsig->ps_flag |= PS_NOCLDWAIT;
|
|
_PHOLD(p2);
|
|
PROC_UNLOCK(p2);
|
|
|
|
/* set up arg0 for 'ps', et al */
|
|
va_start(ap, fmt);
|
|
vsnprintf(p2->p_comm, sizeof(p2->p_comm), fmt, ap);
|
|
va_end(ap);
|
|
|
|
/* call the processes' main()... */
|
|
td = FIRST_THREAD_IN_PROC(p2);
|
|
cpu_set_fork_handler(td, func, arg);
|
|
TD_SET_CAN_RUN(td);
|
|
|
|
/* Delay putting it on the run queue until now. */
|
|
mtx_lock_spin(&sched_lock);
|
|
p2->p_sflag |= PS_INMEM;
|
|
if (!(flags & RFSTOPPED)) {
|
|
setrunqueue(td);
|
|
}
|
|
mtx_unlock_spin(&sched_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
kthread_exit(int ecode)
|
|
{
|
|
struct thread *td;
|
|
struct proc *p;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
sx_xlock(&proctree_lock);
|
|
PROC_LOCK(p);
|
|
proc_reparent(p, initproc);
|
|
PROC_UNLOCK(p);
|
|
sx_xunlock(&proctree_lock);
|
|
exit1(td, W_EXITCODE(ecode, 0));
|
|
}
|
|
|
|
/*
|
|
* Advise a kernel process to suspend (or resume) in its main loop.
|
|
* Participation is voluntary.
|
|
*/
|
|
int
|
|
kthread_suspend(struct proc *p, int timo)
|
|
{
|
|
/*
|
|
* Make sure this is indeed a system process and we can safely
|
|
* use the signal queue.
|
|
*/
|
|
PROC_LOCK(p);
|
|
if ((p->p_flag & P_KTHREAD) == 0) {
|
|
PROC_UNLOCK(p);
|
|
return (EINVAL);
|
|
}
|
|
signal_add(p, NULL, SIGSTOP);
|
|
wakeup(p);
|
|
return msleep(&p->p_sigq, &p->p_mtx, PPAUSE | PDROP, "suspkt", timo);
|
|
}
|
|
|
|
int
|
|
kthread_resume(struct proc *p)
|
|
{
|
|
/*
|
|
* Make sure this is indeed a system process and we can safely
|
|
* use the p_siglist field.
|
|
*/
|
|
PROC_LOCK(p);
|
|
if ((p->p_flag & P_KTHREAD) == 0) {
|
|
PROC_UNLOCK(p);
|
|
return (EINVAL);
|
|
}
|
|
signal_delete(p, NULL, SIGSTOP);
|
|
PROC_UNLOCK(p);
|
|
wakeup(&p->p_sigq);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
kthread_suspend_check(struct proc *p)
|
|
{
|
|
PROC_LOCK(p);
|
|
while (signal_queued(p, SIGSTOP)) {
|
|
wakeup(&p->p_sigq);
|
|
msleep(&p->p_sigq, &p->p_mtx, PPAUSE, "ktsusp", 0);
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|