freebsd-nq/sys/vm/vm_kern.c
David Greenman 24a1cce34f NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct
proc or any VM system structure will have to be rebuilt!!!

Much needed overhaul of the VM system. Included in this first round of
changes:

1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages,
   haspage, and sync operations are supported. The haspage interface now
   provides information about clusterability. All pager routines now take
   struct vm_object's instead of "pagers".

2) Improved data structures. In the previous paradigm, there is constant
   confusion caused by pagers being both a data structure ("allocate a
   pager") and a collection of routines. The idea of a pager structure has
   escentially been eliminated. Objects now have types, and this type is
   used to index the appropriate pager. In most cases, items in the pager
   structure were duplicated in the object data structure and thus were
   unnecessary. In the few cases that remained, a un_pager structure union
   was created in the object to contain these items.

3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now
   be removed. For instance, vm_object_enter(), vm_object_lookup(),
   vm_object_remove(), and the associated object hash list were some of the
   things that were removed.

4) simple_lock's removed. Discussion with several people reveals that the
   SMP locking primitives used in the VM system aren't likely the mechanism
   that we'll be adopting. Even if it were, the locking that was in the code
   was very inadequate and would have to be mostly re-done anyway. The
   locking in a uni-processor kernel was a no-op but went a long way toward
   making the code difficult to read and debug.

5) Places that attempted to kludge-up the fact that we don't have kernel
   thread support have been fixed to reflect the reality that we are really
   dealing with processes, not threads. The VM system didn't have complete
   thread support, so the comments and mis-named routines were just wrong.
   We now use tsleep and wakeup directly in the lock routines, for instance.

6) Where appropriate, the pagers have been improved, especially in the
   pager_alloc routines. Most of the pager_allocs have been rewritten and
   are now faster and easier to maintain.

7) The pagedaemon pageout clustering algorithm has been rewritten and
   now tries harder to output an even number of pages before and after
   the requested page. This is sort of the reverse of the ideal pagein
   algorithm and should provide better overall performance.

8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup
   have been removed. Some other unnecessary casts have also been removed.

9) Some almost useless debugging code removed.

10) Terminology of shadow objects vs. backing objects straightened out.
    The fact that the vm_object data structure escentially had this
    backwards really confused things. The use of "shadow" and "backing
    object" throughout the code is now internally consistent and correct
    in the Mach terminology.

11) Several minor bug fixes, including one in the vm daemon that caused
    0 RSS objects to not get purged as intended.

12) A "default pager" has now been created which cleans up the transition
    of objects to the "swap" type. The previous checks throughout the code
    for swp->pg_data != NULL were really ugly. This change also provides
    the rudiments for future backing of "anonymous" memory by something
    other than the swap pager (via the vnode pager, for example), and it
    allows the decision about which of these pagers to use to be made
    dynamically (although will need some additional decision code to do
    this, of course).

13) (dyson) MAP_COPY has been deprecated and the corresponding "copy
    object" code has been removed. MAP_COPY was undocumented and non-
    standard. It was furthermore broken in several ways which caused its
    behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will
    continue to work correctly, but via the slightly different semantics
    of MAP_PRIVATE.

14) (dyson) Sharing maps have been removed. It's marginal usefulness in a
    threads design can be worked around in other ways. Both #12 and #13
    were done to simplify the code and improve readability and maintain-
    ability. (As were most all of these changes)

TODO:

1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing
   this will reduce the vnode pager to a mere fraction of its current size.

2) Rewrite vm_fault and the swap/vnode pagers to use the clustering
   information provided by the new haspage pager interface. This will
   substantially reduce the overhead by eliminating a large number of
   VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be
   improved to provide both a "behind" and "ahead" indication of
   contiguousness.

3) Implement the extended features of pager_haspage in swap_pager_haspage().
   It currently just says 0 pages ahead/behind.

4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps
   via a much more general mechanism that could also be used for disk
   striping of regular filesystems.

5) Do something to improve the architecture of vm_object_collapse(). The
   fact that it makes calls into the swap pager and knows too much about
   how the swap pager operates really bothers me. It also doesn't allow
   for collapsing of non-swap pager objects ("unnamed" objects backed by
   other pagers).
1995-07-13 08:48:48 +00:00

460 lines
13 KiB
C

/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*
* $Id: vm_kern.c,v 1.13 1995/05/30 08:16:04 rgrimes Exp $
*/
/*
* Kernel memory management.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/syslog.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_kern.h>
vm_map_t buffer_map;
vm_map_t kernel_map;
vm_map_t kmem_map;
vm_map_t mb_map;
vm_map_t io_map;
vm_map_t clean_map;
vm_map_t pager_map;
vm_map_t phys_map;
vm_map_t exec_map;
vm_map_t u_map;
extern int mb_map_full;
/*
* kmem_alloc_pageable:
*
* Allocate pageable memory to the kernel's address map.
* map must be "kernel_map" below.
*/
vm_offset_t
kmem_alloc_pageable(map, size)
vm_map_t map;
register vm_size_t size;
{
vm_offset_t addr;
register int result;
#if 0
if (map != kernel_map)
panic("kmem_alloc_pageable: not called with kernel_map");
#endif
size = round_page(size);
addr = vm_map_min(map);
result = vm_map_find(map, NULL, (vm_offset_t) 0,
&addr, size, TRUE);
if (result != KERN_SUCCESS) {
return (0);
}
return (addr);
}
/*
* Allocate wired-down memory in the kernel's address map
* or a submap.
*/
vm_offset_t
kmem_alloc(map, size)
register vm_map_t map;
register vm_size_t size;
{
vm_offset_t addr;
register vm_offset_t offset;
vm_offset_t i;
size = round_page(size);
/*
* Use the kernel object for wired-down kernel pages. Assume that no
* region of the kernel object is referenced more than once.
*/
/*
* Locate sufficient space in the map. This will give us the final
* virtual address for the new memory, and thus will tell us the
* offset within the kernel map.
*/
vm_map_lock(map);
if (vm_map_findspace(map, 0, size, &addr)) {
vm_map_unlock(map);
return (0);
}
offset = addr - VM_MIN_KERNEL_ADDRESS;
vm_object_reference(kernel_object);
vm_map_insert(map, kernel_object, offset, addr, addr + size);
vm_map_unlock(map);
/*
* Guarantee that there are pages already in this object before
* calling vm_map_pageable. This is to prevent the following
* scenario:
*
* 1) Threads have swapped out, so that there is a pager for the
* kernel_object. 2) The kmsg zone is empty, and so we are
* kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
* there is no page, but there is a pager, so we call
* pager_data_request. But the kmsg zone is empty, so we must
* kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
* we get the data back from the pager, it will be (very stale)
* non-zero data. kmem_alloc is defined to return zero-filled memory.
*
* We're intentionally not activating the pages we allocate to prevent a
* race with page-out. vm_map_pageable will wire the pages.
*/
for (i = 0; i < size; i += PAGE_SIZE) {
vm_page_t mem;
while ((mem = vm_page_alloc(kernel_object, offset + i, VM_ALLOC_NORMAL)) == NULL) {
VM_WAIT;
}
vm_page_zero_fill(mem);
mem->flags &= ~PG_BUSY;
mem->valid = VM_PAGE_BITS_ALL;
}
/*
* And finally, mark the data as non-pageable.
*/
(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
/*
* Try to coalesce the map
*/
vm_map_simplify(map, addr);
return (addr);
}
/*
* kmem_free:
*
* Release a region of kernel virtual memory allocated
* with kmem_alloc, and return the physical pages
* associated with that region.
*/
void
kmem_free(map, addr, size)
vm_map_t map;
register vm_offset_t addr;
vm_size_t size;
{
(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
}
/*
* kmem_suballoc:
*
* Allocates a map to manage a subrange
* of the kernel virtual address space.
*
* Arguments are as follows:
*
* parent Map to take range from
* size Size of range to find
* min, max Returned endpoints of map
* pageable Can the region be paged
*/
vm_map_t
kmem_suballoc(parent, min, max, size, pageable)
register vm_map_t parent;
vm_offset_t *min, *max;
register vm_size_t size;
boolean_t pageable;
{
register int ret;
vm_map_t result;
size = round_page(size);
*min = (vm_offset_t) vm_map_min(parent);
ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
min, size, TRUE);
if (ret != KERN_SUCCESS) {
printf("kmem_suballoc: bad status return of %d.\n", ret);
panic("kmem_suballoc");
}
*max = *min + size;
pmap_reference(vm_map_pmap(parent));
result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable);
if (result == NULL)
panic("kmem_suballoc: cannot create submap");
if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
panic("kmem_suballoc: unable to change range to submap");
return (result);
}
/*
* Allocate wired-down memory in the kernel's address map for the higher
* level kernel memory allocator (kern/kern_malloc.c). We cannot use
* kmem_alloc() because we may need to allocate memory at interrupt
* level where we cannot block (canwait == FALSE).
*
* This routine has its own private kernel submap (kmem_map) and object
* (kmem_object). This, combined with the fact that only malloc uses
* this routine, ensures that we will never block in map or object waits.
*
* Note that this still only works in a uni-processor environment and
* when called at splhigh().
*
* We don't worry about expanding the map (adding entries) since entries
* for wired maps are statically allocated.
*/
vm_offset_t
kmem_malloc(map, size, waitflag)
register vm_map_t map;
register vm_size_t size;
boolean_t waitflag;
{
register vm_offset_t offset, i;
vm_map_entry_t entry;
vm_offset_t addr;
vm_page_t m;
if (map != kmem_map && map != mb_map)
panic("kmem_malloc: map != {kmem,mb}_map");
size = round_page(size);
addr = vm_map_min(map);
/*
* Locate sufficient space in the map. This will give us the final
* virtual address for the new memory, and thus will tell us the
* offset within the kernel map.
*/
vm_map_lock(map);
if (vm_map_findspace(map, 0, size, &addr)) {
vm_map_unlock(map);
if (map == mb_map) {
mb_map_full = TRUE;
log(LOG_ERR, "mb_map full\n");
return (0);
}
if (waitflag == M_WAITOK)
panic("kmem_malloc: kmem_map too small");
return (0);
}
offset = addr - vm_map_min(kmem_map);
vm_object_reference(kmem_object);
vm_map_insert(map, kmem_object, offset, addr, addr + size);
/*
* If we can wait, just mark the range as wired (will fault pages as
* necessary).
*/
if (waitflag == M_WAITOK) {
vm_map_unlock(map);
(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size,
FALSE);
vm_map_simplify(map, addr);
return (addr);
}
/*
* If we cannot wait then we must allocate all memory up front,
* pulling it off the active queue to prevent pageout.
*/
for (i = 0; i < size; i += PAGE_SIZE) {
m = vm_page_alloc(kmem_object, offset + i,
(waitflag == M_NOWAIT) ? VM_ALLOC_INTERRUPT : VM_ALLOC_SYSTEM);
/*
* Ran out of space, free everything up and return. Don't need
* to lock page queues here as we know that the pages we got
* aren't on any queues.
*/
if (m == NULL) {
while (i != 0) {
i -= PAGE_SIZE;
m = vm_page_lookup(kmem_object, offset + i);
vm_page_free(m);
}
vm_map_delete(map, addr, addr + size);
vm_map_unlock(map);
return (0);
}
#if 0
vm_page_zero_fill(m);
#endif
m->flags &= ~PG_BUSY;
m->valid = VM_PAGE_BITS_ALL;
}
/*
* Mark map entry as non-pageable. Assert: vm_map_insert() will never
* be able to extend the previous entry so there will be a new entry
* exactly corresponding to this address range and it will have
* wired_count == 0.
*/
if (!vm_map_lookup_entry(map, addr, &entry) ||
entry->start != addr || entry->end != addr + size ||
entry->wired_count)
panic("kmem_malloc: entry not found or misaligned");
entry->wired_count++;
/*
* Loop thru pages, entering them in the pmap. (We cannot add them to
* the wired count without wrapping the vm_page_queue_lock in
* splimp...)
*/
for (i = 0; i < size; i += PAGE_SIZE) {
m = vm_page_lookup(kmem_object, offset + i);
pmap_kenter(addr + i, VM_PAGE_TO_PHYS(m));
}
vm_map_unlock(map);
vm_map_simplify(map, addr);
return (addr);
}
/*
* kmem_alloc_wait
*
* Allocates pageable memory from a sub-map of the kernel. If the submap
* has no room, the caller sleeps waiting for more memory in the submap.
*
*/
vm_offset_t
kmem_alloc_wait(map, size)
vm_map_t map;
vm_size_t size;
{
vm_offset_t addr;
size = round_page(size);
for (;;) {
/*
* To make this work for more than one map, use the map's lock
* to lock out sleepers/wakers.
*/
vm_map_lock(map);
if (vm_map_findspace(map, 0, size, &addr) == 0)
break;
/* no space now; see if we can ever get space */
if (vm_map_max(map) - vm_map_min(map) < size) {
vm_map_unlock(map);
return (0);
}
vm_map_unlock(map);
tsleep(map, PVM, "kmaw", 0);
}
vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size);
vm_map_unlock(map);
return (addr);
}
/*
* kmem_free_wakeup
*
* Returns memory to a submap of the kernel, and wakes up any processes
* waiting for memory in that map.
*/
void
kmem_free_wakeup(map, addr, size)
vm_map_t map;
vm_offset_t addr;
vm_size_t size;
{
vm_map_lock(map);
(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
wakeup(map);
vm_map_unlock(map);
}
/*
* Create the kernel map; insert a mapping covering kernel text, data, bss,
* and all space allocated thus far (`boostrap' data). The new map will thus
* map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
* the range between `start' and `end' as free.
*/
void
kmem_init(start, end)
vm_offset_t start, end;
{
register vm_map_t m;
m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end, FALSE);
vm_map_lock(m);
/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
kernel_map = m;
(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
VM_MIN_KERNEL_ADDRESS, start);
/* ... and ending with the completion of the above `insert' */
vm_map_unlock(m);
}