Luiz Otavio O Souza 50ad20b383 Add the routines to activate the GMAC clock and setup the GMAC mode.
Tested on Cubieboard 2 and Banana pi.
2015-07-03 18:39:25 +00:00

350 lines
8.8 KiB
C

/*-
* Copyright (c) 2013 Ganbold Tsagaankhuu <ganbold@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Simple clock driver for Allwinner A10 */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/rman.h>
#include <machine/bus.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus_subr.h>
#include "a10_clk.h"
struct a10_ccm_softc {
struct resource *res;
bus_space_tag_t bst;
bus_space_handle_t bsh;
int pll6_enabled;
};
static struct a10_ccm_softc *a10_ccm_sc = NULL;
#define ccm_read_4(sc, reg) \
bus_space_read_4((sc)->bst, (sc)->bsh, (reg))
#define ccm_write_4(sc, reg, val) \
bus_space_write_4((sc)->bst, (sc)->bsh, (reg), (val))
static int
a10_ccm_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_is_compatible(dev, "allwinner,sun4i-ccm")) {
device_set_desc(dev, "Allwinner Clock Control Module");
return(BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static int
a10_ccm_attach(device_t dev)
{
struct a10_ccm_softc *sc = device_get_softc(dev);
int rid = 0;
if (a10_ccm_sc)
return (ENXIO);
sc->res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE);
if (!sc->res) {
device_printf(dev, "could not allocate resource\n");
return (ENXIO);
}
sc->bst = rman_get_bustag(sc->res);
sc->bsh = rman_get_bushandle(sc->res);
a10_ccm_sc = sc;
return (0);
}
static device_method_t a10_ccm_methods[] = {
DEVMETHOD(device_probe, a10_ccm_probe),
DEVMETHOD(device_attach, a10_ccm_attach),
{ 0, 0 }
};
static driver_t a10_ccm_driver = {
"a10_ccm",
a10_ccm_methods,
sizeof(struct a10_ccm_softc),
};
static devclass_t a10_ccm_devclass;
DRIVER_MODULE(a10_ccm, simplebus, a10_ccm_driver, a10_ccm_devclass, 0, 0);
int
a10_clk_usb_activate(void)
{
struct a10_ccm_softc *sc = a10_ccm_sc;
uint32_t reg_value;
if (sc == NULL)
return (ENXIO);
/* Gating AHB clock for USB */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value |= CCM_AHB_GATING_USB0; /* AHB clock gate usb0 */
reg_value |= CCM_AHB_GATING_EHCI0; /* AHB clock gate ehci0 */
reg_value |= CCM_AHB_GATING_EHCI1; /* AHB clock gate ehci1 */
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
/* Enable clock for USB */
reg_value = ccm_read_4(sc, CCM_USB_CLK);
reg_value |= CCM_USB_PHY; /* USBPHY */
reg_value |= CCM_USB0_RESET; /* disable reset for USB0 */
reg_value |= CCM_USB1_RESET; /* disable reset for USB1 */
reg_value |= CCM_USB2_RESET; /* disable reset for USB2 */
ccm_write_4(sc, CCM_USB_CLK, reg_value);
return (0);
}
int
a10_clk_usb_deactivate(void)
{
struct a10_ccm_softc *sc = a10_ccm_sc;
uint32_t reg_value;
if (sc == NULL)
return (ENXIO);
/* Disable clock for USB */
reg_value = ccm_read_4(sc, CCM_USB_CLK);
reg_value &= ~CCM_USB_PHY; /* USBPHY */
reg_value &= ~CCM_USB0_RESET; /* reset for USB0 */
reg_value &= ~CCM_USB1_RESET; /* reset for USB1 */
reg_value &= ~CCM_USB2_RESET; /* reset for USB2 */
ccm_write_4(sc, CCM_USB_CLK, reg_value);
/* Disable gating AHB clock for USB */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value &= ~CCM_AHB_GATING_USB0; /* disable AHB clock gate usb0 */
reg_value &= ~CCM_AHB_GATING_EHCI0; /* disable AHB clock gate ehci0 */
reg_value &= ~CCM_AHB_GATING_EHCI1; /* disable AHB clock gate ehci1 */
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
return (0);
}
int
a10_clk_emac_activate(void)
{
struct a10_ccm_softc *sc = a10_ccm_sc;
uint32_t reg_value;
if (sc == NULL)
return (ENXIO);
/* Gating AHB clock for EMAC */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value |= CCM_AHB_GATING_EMAC;
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
return (0);
}
int
a10_clk_gmac_activate(phandle_t node)
{
char *phy_type;
struct a10_ccm_softc *sc;
uint32_t reg_value;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
/* Gating AHB clock for GMAC */
reg_value = ccm_read_4(sc, CCM_AHB_GATING1);
reg_value |= CCM_AHB_GATING_GMAC;
ccm_write_4(sc, CCM_AHB_GATING1, reg_value);
/* Set GMAC mode. */
reg_value = CCM_GMAC_CLK_MII;
if (OF_getprop_alloc(node, "phy-type", 1, (void **)&phy_type) > 0) {
if (strcasecmp(phy_type, "rgmii") == 0)
reg_value = CCM_GMAC_CLK_RGMII | CCM_GMAC_MODE_RGMII;
else if (strcasecmp(phy_type, "rgmii-bpi") == 0) {
reg_value = CCM_GMAC_CLK_RGMII | CCM_GMAC_MODE_RGMII;
reg_value |= (3 << CCM_GMAC_CLK_DELAY_SHIFT);
}
free(phy_type, M_OFWPROP);
}
ccm_write_4(sc, CCM_GMAC_CLK, reg_value);
return (0);
}
static void
a10_clk_pll6_enable(void)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
/*
* SATA needs PLL6 to be a 100MHz clock.
* The SATA output frequency is 24MHz * n * k / m / 6.
* To get to 100MHz, k & m must be equal and n must be 25.
* For other uses the output frequency is 24MHz * n * k / 2.
*/
sc = a10_ccm_sc;
if (sc->pll6_enabled)
return;
reg_value = ccm_read_4(sc, CCM_PLL6_CFG);
reg_value &= ~CCM_PLL_CFG_BYPASS;
reg_value &= ~(CCM_PLL_CFG_FACTOR_K | CCM_PLL_CFG_FACTOR_M |
CCM_PLL_CFG_FACTOR_N);
reg_value |= (25 << CCM_PLL_CFG_FACTOR_N_SHIFT);
reg_value |= CCM_PLL6_CFG_SATA_CLKEN;
reg_value |= CCM_PLL_CFG_ENABLE;
ccm_write_4(sc, CCM_PLL6_CFG, reg_value);
sc->pll6_enabled = 1;
}
static unsigned int
a10_clk_pll6_get_rate(void)
{
struct a10_ccm_softc *sc;
uint32_t k, n, reg_value;
sc = a10_ccm_sc;
reg_value = ccm_read_4(sc, CCM_PLL6_CFG);
n = ((reg_value & CCM_PLL_CFG_FACTOR_N) >> CCM_PLL_CFG_FACTOR_N_SHIFT);
k = ((reg_value & CCM_PLL_CFG_FACTOR_K) >> CCM_PLL_CFG_FACTOR_K_SHIFT) +
1;
return ((CCM_CLK_REF_FREQ * n * k) / 2);
}
int
a10_clk_ahci_activate(void)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
a10_clk_pll6_enable();
/* Gating AHB clock for SATA */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value |= CCM_AHB_GATING_SATA;
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
DELAY(1000);
ccm_write_4(sc, CCM_SATA_CLK, CCM_PLL_CFG_ENABLE);
return (0);
}
int
a10_clk_mmc_activate(int devid)
{
struct a10_ccm_softc *sc;
uint32_t reg_value;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
a10_clk_pll6_enable();
/* Gating AHB clock for SD/MMC */
reg_value = ccm_read_4(sc, CCM_AHB_GATING0);
reg_value |= CCM_AHB_GATING_SDMMC0 << devid;
ccm_write_4(sc, CCM_AHB_GATING0, reg_value);
return (0);
}
int
a10_clk_mmc_cfg(int devid, int freq)
{
struct a10_ccm_softc *sc;
uint32_t clksrc, m, n, ophase, phase, reg_value;
unsigned int pll_freq;
sc = a10_ccm_sc;
if (sc == NULL)
return (ENXIO);
freq /= 1000;
if (freq <= 400) {
pll_freq = CCM_CLK_REF_FREQ / 1000;
clksrc = CCM_SD_CLK_SRC_SEL_OSC24M;
ophase = 0;
phase = 0;
n = 2;
} else if (freq <= 25000) {
pll_freq = a10_clk_pll6_get_rate() / 1000;
clksrc = CCM_SD_CLK_SRC_SEL_PLL6;
ophase = 0;
phase = 5;
n = 2;
} else if (freq <= 50000) {
pll_freq = a10_clk_pll6_get_rate() / 1000;
clksrc = CCM_SD_CLK_SRC_SEL_PLL6;
ophase = 3;
phase = 5;
n = 0;
} else
return (EINVAL);
m = ((pll_freq / (1 << n)) / (freq)) - 1;
reg_value = ccm_read_4(sc, CCM_MMC0_SCLK_CFG + (devid * 4));
reg_value &= ~CCM_SD_CLK_SRC_SEL;
reg_value |= (clksrc << CCM_SD_CLK_SRC_SEL_SHIFT);
reg_value &= ~CCM_SD_CLK_PHASE_CTR;
reg_value |= (phase << CCM_SD_CLK_PHASE_CTR_SHIFT);
reg_value &= ~CCM_SD_CLK_DIV_RATIO_N;
reg_value |= (n << CCM_SD_CLK_DIV_RATIO_N_SHIFT);
reg_value &= ~CCM_SD_CLK_OPHASE_CTR;
reg_value |= (ophase << CCM_SD_CLK_OPHASE_CTR_SHIFT);
reg_value &= ~CCM_SD_CLK_DIV_RATIO_M;
reg_value |= m;
reg_value |= CCM_PLL_CFG_ENABLE;
ccm_write_4(sc, CCM_MMC0_SCLK_CFG + (devid * 4), reg_value);
return (0);
}