374ae2a393
requiring the per-process spinlock to only requiring the process lock. - Reflect these changes in the proc.h documentation and consumers throughout the kernel. This is a substantial reduction in locking cost for these fields and was made possible by recent changes to threading support.
1333 lines
30 KiB
C
1333 lines
30 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_resource.c 8.5 (Berkeley) 1/21/94
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_compat.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/file.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/time.h>
|
|
#include <sys/umtx.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
|
|
|
|
static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
|
|
static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
|
|
#define UIHASH(uid) (&uihashtbl[(uid) & uihash])
|
|
static struct rwlock uihashtbl_lock;
|
|
static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
|
|
static u_long uihash; /* size of hash table - 1 */
|
|
|
|
static void calcru1(struct proc *p, struct rusage_ext *ruxp,
|
|
struct timeval *up, struct timeval *sp);
|
|
static int donice(struct thread *td, struct proc *chgp, int n);
|
|
static struct uidinfo *uilookup(uid_t uid);
|
|
|
|
/*
|
|
* Resource controls and accounting.
|
|
*/
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct getpriority_args {
|
|
int which;
|
|
int who;
|
|
};
|
|
#endif
|
|
int
|
|
getpriority(td, uap)
|
|
struct thread *td;
|
|
register struct getpriority_args *uap;
|
|
{
|
|
struct proc *p;
|
|
struct pgrp *pg;
|
|
int error, low;
|
|
|
|
error = 0;
|
|
low = PRIO_MAX + 1;
|
|
switch (uap->which) {
|
|
|
|
case PRIO_PROCESS:
|
|
if (uap->who == 0)
|
|
low = td->td_proc->p_nice;
|
|
else {
|
|
p = pfind(uap->who);
|
|
if (p == NULL)
|
|
break;
|
|
if (p_cansee(td, p) == 0)
|
|
low = p->p_nice;
|
|
PROC_UNLOCK(p);
|
|
}
|
|
break;
|
|
|
|
case PRIO_PGRP:
|
|
sx_slock(&proctree_lock);
|
|
if (uap->who == 0) {
|
|
pg = td->td_proc->p_pgrp;
|
|
PGRP_LOCK(pg);
|
|
} else {
|
|
pg = pgfind(uap->who);
|
|
if (pg == NULL) {
|
|
sx_sunlock(&proctree_lock);
|
|
break;
|
|
}
|
|
}
|
|
sx_sunlock(&proctree_lock);
|
|
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
|
|
PROC_LOCK(p);
|
|
if (p_cansee(td, p) == 0) {
|
|
if (p->p_nice < low)
|
|
low = p->p_nice;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
PGRP_UNLOCK(pg);
|
|
break;
|
|
|
|
case PRIO_USER:
|
|
if (uap->who == 0)
|
|
uap->who = td->td_ucred->cr_uid;
|
|
sx_slock(&allproc_lock);
|
|
FOREACH_PROC_IN_SYSTEM(p) {
|
|
/* Do not bother to check PRS_NEW processes */
|
|
if (p->p_state == PRS_NEW)
|
|
continue;
|
|
PROC_LOCK(p);
|
|
if (p_cansee(td, p) == 0 &&
|
|
p->p_ucred->cr_uid == uap->who) {
|
|
if (p->p_nice < low)
|
|
low = p->p_nice;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (low == PRIO_MAX + 1 && error == 0)
|
|
error = ESRCH;
|
|
td->td_retval[0] = low;
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct setpriority_args {
|
|
int which;
|
|
int who;
|
|
int prio;
|
|
};
|
|
#endif
|
|
int
|
|
setpriority(td, uap)
|
|
struct thread *td;
|
|
struct setpriority_args *uap;
|
|
{
|
|
struct proc *curp, *p;
|
|
struct pgrp *pg;
|
|
int found = 0, error = 0;
|
|
|
|
curp = td->td_proc;
|
|
switch (uap->which) {
|
|
case PRIO_PROCESS:
|
|
if (uap->who == 0) {
|
|
PROC_LOCK(curp);
|
|
error = donice(td, curp, uap->prio);
|
|
PROC_UNLOCK(curp);
|
|
} else {
|
|
p = pfind(uap->who);
|
|
if (p == NULL)
|
|
break;
|
|
error = p_cansee(td, p);
|
|
if (error == 0)
|
|
error = donice(td, p, uap->prio);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
found++;
|
|
break;
|
|
|
|
case PRIO_PGRP:
|
|
sx_slock(&proctree_lock);
|
|
if (uap->who == 0) {
|
|
pg = curp->p_pgrp;
|
|
PGRP_LOCK(pg);
|
|
} else {
|
|
pg = pgfind(uap->who);
|
|
if (pg == NULL) {
|
|
sx_sunlock(&proctree_lock);
|
|
break;
|
|
}
|
|
}
|
|
sx_sunlock(&proctree_lock);
|
|
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
|
|
PROC_LOCK(p);
|
|
if (p_cansee(td, p) == 0) {
|
|
error = donice(td, p, uap->prio);
|
|
found++;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
PGRP_UNLOCK(pg);
|
|
break;
|
|
|
|
case PRIO_USER:
|
|
if (uap->who == 0)
|
|
uap->who = td->td_ucred->cr_uid;
|
|
sx_slock(&allproc_lock);
|
|
FOREACH_PROC_IN_SYSTEM(p) {
|
|
PROC_LOCK(p);
|
|
if (p->p_ucred->cr_uid == uap->who &&
|
|
p_cansee(td, p) == 0) {
|
|
error = donice(td, p, uap->prio);
|
|
found++;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (found == 0 && error == 0)
|
|
error = ESRCH;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set "nice" for a (whole) process.
|
|
*/
|
|
static int
|
|
donice(struct thread *td, struct proc *p, int n)
|
|
{
|
|
int error;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
if ((error = p_cansched(td, p)))
|
|
return (error);
|
|
if (n > PRIO_MAX)
|
|
n = PRIO_MAX;
|
|
if (n < PRIO_MIN)
|
|
n = PRIO_MIN;
|
|
if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0)
|
|
return (EACCES);
|
|
sched_nice(p, n);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set realtime priority for LWP.
|
|
*/
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct rtprio_thread_args {
|
|
int function;
|
|
lwpid_t lwpid;
|
|
struct rtprio *rtp;
|
|
};
|
|
#endif
|
|
int
|
|
rtprio_thread(struct thread *td, struct rtprio_thread_args *uap)
|
|
{
|
|
struct proc *p;
|
|
struct rtprio rtp;
|
|
struct thread *td1;
|
|
int cierror, error;
|
|
|
|
/* Perform copyin before acquiring locks if needed. */
|
|
if (uap->function == RTP_SET)
|
|
cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
|
|
else
|
|
cierror = 0;
|
|
|
|
/*
|
|
* Though lwpid is unique, only current process is supported
|
|
* since there is no efficient way to look up a LWP yet.
|
|
*/
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
|
|
switch (uap->function) {
|
|
case RTP_LOOKUP:
|
|
if ((error = p_cansee(td, p)))
|
|
break;
|
|
if (uap->lwpid == 0 || uap->lwpid == td->td_tid)
|
|
td1 = td;
|
|
else
|
|
td1 = thread_find(p, uap->lwpid);
|
|
if (td1 != NULL)
|
|
pri_to_rtp(td1, &rtp);
|
|
else
|
|
error = ESRCH;
|
|
PROC_UNLOCK(p);
|
|
return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
|
|
case RTP_SET:
|
|
if ((error = p_cansched(td, p)) || (error = cierror))
|
|
break;
|
|
|
|
/* Disallow setting rtprio in most cases if not superuser. */
|
|
/*
|
|
* Realtime priority has to be restricted for reasons which should be
|
|
* obvious. However, for idle priority, there is a potential for
|
|
* system deadlock if an idleprio process gains a lock on a resource
|
|
* that other processes need (and the idleprio process can't run
|
|
* due to a CPU-bound normal process). Fix me! XXX
|
|
*/
|
|
#if 0
|
|
if (RTP_PRIO_IS_REALTIME(rtp.type)) {
|
|
#else
|
|
if (rtp.type != RTP_PRIO_NORMAL) {
|
|
#endif
|
|
error = priv_check(td, PRIV_SCHED_RTPRIO);
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
if (uap->lwpid == 0 || uap->lwpid == td->td_tid)
|
|
td1 = td;
|
|
else
|
|
td1 = thread_find(p, uap->lwpid);
|
|
if (td1 != NULL)
|
|
error = rtp_to_pri(&rtp, td1);
|
|
else
|
|
error = ESRCH;
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set realtime priority.
|
|
*/
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct rtprio_args {
|
|
int function;
|
|
pid_t pid;
|
|
struct rtprio *rtp;
|
|
};
|
|
#endif
|
|
int
|
|
rtprio(td, uap)
|
|
struct thread *td; /* curthread */
|
|
register struct rtprio_args *uap;
|
|
{
|
|
struct proc *p;
|
|
struct thread *tdp;
|
|
struct rtprio rtp;
|
|
int cierror, error;
|
|
|
|
/* Perform copyin before acquiring locks if needed. */
|
|
if (uap->function == RTP_SET)
|
|
cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
|
|
else
|
|
cierror = 0;
|
|
|
|
if (uap->pid == 0) {
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
} else {
|
|
p = pfind(uap->pid);
|
|
if (p == NULL)
|
|
return (ESRCH);
|
|
}
|
|
|
|
switch (uap->function) {
|
|
case RTP_LOOKUP:
|
|
if ((error = p_cansee(td, p)))
|
|
break;
|
|
/*
|
|
* Return OUR priority if no pid specified,
|
|
* or if one is, report the highest priority
|
|
* in the process. There isn't much more you can do as
|
|
* there is only room to return a single priority.
|
|
* Note: specifying our own pid is not the same
|
|
* as leaving it zero.
|
|
*/
|
|
if (uap->pid == 0) {
|
|
pri_to_rtp(td, &rtp);
|
|
} else {
|
|
struct rtprio rtp2;
|
|
|
|
rtp.type = RTP_PRIO_IDLE;
|
|
rtp.prio = RTP_PRIO_MAX;
|
|
FOREACH_THREAD_IN_PROC(p, tdp) {
|
|
pri_to_rtp(tdp, &rtp2);
|
|
if (rtp2.type < rtp.type ||
|
|
(rtp2.type == rtp.type &&
|
|
rtp2.prio < rtp.prio)) {
|
|
rtp.type = rtp2.type;
|
|
rtp.prio = rtp2.prio;
|
|
}
|
|
}
|
|
}
|
|
PROC_UNLOCK(p);
|
|
return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
|
|
case RTP_SET:
|
|
if ((error = p_cansched(td, p)) || (error = cierror))
|
|
break;
|
|
|
|
/* Disallow setting rtprio in most cases if not superuser. */
|
|
/*
|
|
* Realtime priority has to be restricted for reasons which should be
|
|
* obvious. However, for idle priority, there is a potential for
|
|
* system deadlock if an idleprio process gains a lock on a resource
|
|
* that other processes need (and the idleprio process can't run
|
|
* due to a CPU-bound normal process). Fix me! XXX
|
|
*/
|
|
#if 0
|
|
if (RTP_PRIO_IS_REALTIME(rtp.type)) {
|
|
#else
|
|
if (rtp.type != RTP_PRIO_NORMAL) {
|
|
#endif
|
|
error = priv_check(td, PRIV_SCHED_RTPRIO);
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we are setting our own priority, set just our
|
|
* thread but if we are doing another process,
|
|
* do all the threads on that process. If we
|
|
* specify our own pid we do the latter.
|
|
*/
|
|
if (uap->pid == 0) {
|
|
error = rtp_to_pri(&rtp, td);
|
|
} else {
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
if ((error = rtp_to_pri(&rtp, td)) != 0)
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
rtp_to_pri(struct rtprio *rtp, struct thread *td)
|
|
{
|
|
u_char newpri;
|
|
u_char oldpri;
|
|
|
|
if (rtp->prio > RTP_PRIO_MAX)
|
|
return (EINVAL);
|
|
thread_lock(td);
|
|
switch (RTP_PRIO_BASE(rtp->type)) {
|
|
case RTP_PRIO_REALTIME:
|
|
newpri = PRI_MIN_REALTIME + rtp->prio;
|
|
break;
|
|
case RTP_PRIO_NORMAL:
|
|
newpri = PRI_MIN_TIMESHARE + rtp->prio;
|
|
break;
|
|
case RTP_PRIO_IDLE:
|
|
newpri = PRI_MIN_IDLE + rtp->prio;
|
|
break;
|
|
default:
|
|
thread_unlock(td);
|
|
return (EINVAL);
|
|
}
|
|
sched_class(td, rtp->type); /* XXX fix */
|
|
oldpri = td->td_user_pri;
|
|
sched_user_prio(td, newpri);
|
|
if (curthread == td)
|
|
sched_prio(curthread, td->td_user_pri); /* XXX dubious */
|
|
if (TD_ON_UPILOCK(td) && oldpri != newpri) {
|
|
thread_unlock(td);
|
|
umtx_pi_adjust(td, oldpri);
|
|
} else
|
|
thread_unlock(td);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
pri_to_rtp(struct thread *td, struct rtprio *rtp)
|
|
{
|
|
|
|
thread_lock(td);
|
|
switch (PRI_BASE(td->td_pri_class)) {
|
|
case PRI_REALTIME:
|
|
rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME;
|
|
break;
|
|
case PRI_TIMESHARE:
|
|
rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE;
|
|
break;
|
|
case PRI_IDLE:
|
|
rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
rtp->type = td->td_pri_class;
|
|
thread_unlock(td);
|
|
}
|
|
|
|
#if defined(COMPAT_43)
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct osetrlimit_args {
|
|
u_int which;
|
|
struct orlimit *rlp;
|
|
};
|
|
#endif
|
|
int
|
|
osetrlimit(td, uap)
|
|
struct thread *td;
|
|
register struct osetrlimit_args *uap;
|
|
{
|
|
struct orlimit olim;
|
|
struct rlimit lim;
|
|
int error;
|
|
|
|
if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
|
|
return (error);
|
|
lim.rlim_cur = olim.rlim_cur;
|
|
lim.rlim_max = olim.rlim_max;
|
|
error = kern_setrlimit(td, uap->which, &lim);
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct ogetrlimit_args {
|
|
u_int which;
|
|
struct orlimit *rlp;
|
|
};
|
|
#endif
|
|
int
|
|
ogetrlimit(td, uap)
|
|
struct thread *td;
|
|
register struct ogetrlimit_args *uap;
|
|
{
|
|
struct orlimit olim;
|
|
struct rlimit rl;
|
|
struct proc *p;
|
|
int error;
|
|
|
|
if (uap->which >= RLIM_NLIMITS)
|
|
return (EINVAL);
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
lim_rlimit(p, uap->which, &rl);
|
|
PROC_UNLOCK(p);
|
|
|
|
/*
|
|
* XXX would be more correct to convert only RLIM_INFINITY to the
|
|
* old RLIM_INFINITY and fail with EOVERFLOW for other larger
|
|
* values. Most 64->32 and 32->16 conversions, including not
|
|
* unimportant ones of uids are even more broken than what we
|
|
* do here (they blindly truncate). We don't do this correctly
|
|
* here since we have little experience with EOVERFLOW yet.
|
|
* Elsewhere, getuid() can't fail...
|
|
*/
|
|
olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
|
|
olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
|
|
error = copyout(&olim, uap->rlp, sizeof(olim));
|
|
return (error);
|
|
}
|
|
#endif /* COMPAT_43 */
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct __setrlimit_args {
|
|
u_int which;
|
|
struct rlimit *rlp;
|
|
};
|
|
#endif
|
|
int
|
|
setrlimit(td, uap)
|
|
struct thread *td;
|
|
register struct __setrlimit_args *uap;
|
|
{
|
|
struct rlimit alim;
|
|
int error;
|
|
|
|
if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
|
|
return (error);
|
|
error = kern_setrlimit(td, uap->which, &alim);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
lim_cb(void *arg)
|
|
{
|
|
struct rlimit rlim;
|
|
struct thread *td;
|
|
struct proc *p;
|
|
|
|
p = arg;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
/*
|
|
* Check if the process exceeds its cpu resource allocation. If
|
|
* it reaches the max, arrange to kill the process in ast().
|
|
*/
|
|
if (p->p_cpulimit == RLIM_INFINITY)
|
|
return;
|
|
PROC_SLOCK(p);
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
thread_lock(td);
|
|
ruxagg(&p->p_rux, td);
|
|
thread_unlock(td);
|
|
}
|
|
PROC_SUNLOCK(p);
|
|
if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) {
|
|
lim_rlimit(p, RLIMIT_CPU, &rlim);
|
|
if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) {
|
|
killproc(p, "exceeded maximum CPU limit");
|
|
} else {
|
|
if (p->p_cpulimit < rlim.rlim_max)
|
|
p->p_cpulimit += 5;
|
|
psignal(p, SIGXCPU);
|
|
}
|
|
}
|
|
callout_reset(&p->p_limco, hz, lim_cb, p);
|
|
}
|
|
|
|
int
|
|
kern_setrlimit(td, which, limp)
|
|
struct thread *td;
|
|
u_int which;
|
|
struct rlimit *limp;
|
|
{
|
|
struct plimit *newlim, *oldlim;
|
|
struct proc *p;
|
|
register struct rlimit *alimp;
|
|
struct rlimit oldssiz;
|
|
int error;
|
|
|
|
if (which >= RLIM_NLIMITS)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Preserve historical bugs by treating negative limits as unsigned.
|
|
*/
|
|
if (limp->rlim_cur < 0)
|
|
limp->rlim_cur = RLIM_INFINITY;
|
|
if (limp->rlim_max < 0)
|
|
limp->rlim_max = RLIM_INFINITY;
|
|
|
|
oldssiz.rlim_cur = 0;
|
|
p = td->td_proc;
|
|
newlim = lim_alloc();
|
|
PROC_LOCK(p);
|
|
oldlim = p->p_limit;
|
|
alimp = &oldlim->pl_rlimit[which];
|
|
if (limp->rlim_cur > alimp->rlim_max ||
|
|
limp->rlim_max > alimp->rlim_max)
|
|
if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) {
|
|
PROC_UNLOCK(p);
|
|
lim_free(newlim);
|
|
return (error);
|
|
}
|
|
if (limp->rlim_cur > limp->rlim_max)
|
|
limp->rlim_cur = limp->rlim_max;
|
|
lim_copy(newlim, oldlim);
|
|
alimp = &newlim->pl_rlimit[which];
|
|
|
|
switch (which) {
|
|
|
|
case RLIMIT_CPU:
|
|
if (limp->rlim_cur != RLIM_INFINITY &&
|
|
p->p_cpulimit == RLIM_INFINITY)
|
|
callout_reset(&p->p_limco, hz, lim_cb, p);
|
|
p->p_cpulimit = limp->rlim_cur;
|
|
break;
|
|
case RLIMIT_DATA:
|
|
if (limp->rlim_cur > maxdsiz)
|
|
limp->rlim_cur = maxdsiz;
|
|
if (limp->rlim_max > maxdsiz)
|
|
limp->rlim_max = maxdsiz;
|
|
break;
|
|
|
|
case RLIMIT_STACK:
|
|
if (limp->rlim_cur > maxssiz)
|
|
limp->rlim_cur = maxssiz;
|
|
if (limp->rlim_max > maxssiz)
|
|
limp->rlim_max = maxssiz;
|
|
oldssiz = *alimp;
|
|
if (td->td_proc->p_sysent->sv_fixlimit != NULL)
|
|
td->td_proc->p_sysent->sv_fixlimit(&oldssiz,
|
|
RLIMIT_STACK);
|
|
break;
|
|
|
|
case RLIMIT_NOFILE:
|
|
if (limp->rlim_cur > maxfilesperproc)
|
|
limp->rlim_cur = maxfilesperproc;
|
|
if (limp->rlim_max > maxfilesperproc)
|
|
limp->rlim_max = maxfilesperproc;
|
|
break;
|
|
|
|
case RLIMIT_NPROC:
|
|
if (limp->rlim_cur > maxprocperuid)
|
|
limp->rlim_cur = maxprocperuid;
|
|
if (limp->rlim_max > maxprocperuid)
|
|
limp->rlim_max = maxprocperuid;
|
|
if (limp->rlim_cur < 1)
|
|
limp->rlim_cur = 1;
|
|
if (limp->rlim_max < 1)
|
|
limp->rlim_max = 1;
|
|
break;
|
|
}
|
|
if (td->td_proc->p_sysent->sv_fixlimit != NULL)
|
|
td->td_proc->p_sysent->sv_fixlimit(limp, which);
|
|
*alimp = *limp;
|
|
p->p_limit = newlim;
|
|
PROC_UNLOCK(p);
|
|
lim_free(oldlim);
|
|
|
|
if (which == RLIMIT_STACK) {
|
|
/*
|
|
* Stack is allocated to the max at exec time with only
|
|
* "rlim_cur" bytes accessible. If stack limit is going
|
|
* up make more accessible, if going down make inaccessible.
|
|
*/
|
|
if (limp->rlim_cur != oldssiz.rlim_cur) {
|
|
vm_offset_t addr;
|
|
vm_size_t size;
|
|
vm_prot_t prot;
|
|
|
|
if (limp->rlim_cur > oldssiz.rlim_cur) {
|
|
prot = p->p_sysent->sv_stackprot;
|
|
size = limp->rlim_cur - oldssiz.rlim_cur;
|
|
addr = p->p_sysent->sv_usrstack -
|
|
limp->rlim_cur;
|
|
} else {
|
|
prot = VM_PROT_NONE;
|
|
size = oldssiz.rlim_cur - limp->rlim_cur;
|
|
addr = p->p_sysent->sv_usrstack -
|
|
oldssiz.rlim_cur;
|
|
}
|
|
addr = trunc_page(addr);
|
|
size = round_page(size);
|
|
(void)vm_map_protect(&p->p_vmspace->vm_map,
|
|
addr, addr + size, prot, FALSE);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct __getrlimit_args {
|
|
u_int which;
|
|
struct rlimit *rlp;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
getrlimit(td, uap)
|
|
struct thread *td;
|
|
register struct __getrlimit_args *uap;
|
|
{
|
|
struct rlimit rlim;
|
|
struct proc *p;
|
|
int error;
|
|
|
|
if (uap->which >= RLIM_NLIMITS)
|
|
return (EINVAL);
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
lim_rlimit(p, uap->which, &rlim);
|
|
PROC_UNLOCK(p);
|
|
error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Transform the running time and tick information for children of proc p
|
|
* into user and system time usage.
|
|
*/
|
|
void
|
|
calccru(p, up, sp)
|
|
struct proc *p;
|
|
struct timeval *up;
|
|
struct timeval *sp;
|
|
{
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
calcru1(p, &p->p_crux, up, sp);
|
|
}
|
|
|
|
/*
|
|
* Transform the running time and tick information in proc p into user
|
|
* and system time usage. If appropriate, include the current time slice
|
|
* on this CPU.
|
|
*/
|
|
void
|
|
calcru(struct proc *p, struct timeval *up, struct timeval *sp)
|
|
{
|
|
struct thread *td;
|
|
uint64_t u;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
PROC_SLOCK_ASSERT(p, MA_OWNED);
|
|
/*
|
|
* If we are getting stats for the current process, then add in the
|
|
* stats that this thread has accumulated in its current time slice.
|
|
* We reset the thread and CPU state as if we had performed a context
|
|
* switch right here.
|
|
*/
|
|
td = curthread;
|
|
if (td->td_proc == p) {
|
|
u = cpu_ticks();
|
|
p->p_rux.rux_runtime += u - PCPU_GET(switchtime);
|
|
PCPU_SET(switchtime, u);
|
|
}
|
|
/* Make sure the per-thread stats are current. */
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
if (td->td_incruntime == 0)
|
|
continue;
|
|
thread_lock(td);
|
|
ruxagg(&p->p_rux, td);
|
|
thread_unlock(td);
|
|
}
|
|
calcru1(p, &p->p_rux, up, sp);
|
|
}
|
|
|
|
static void
|
|
calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
|
|
struct timeval *sp)
|
|
{
|
|
/* {user, system, interrupt, total} {ticks, usec}: */
|
|
u_int64_t ut, uu, st, su, it, tt, tu;
|
|
|
|
ut = ruxp->rux_uticks;
|
|
st = ruxp->rux_sticks;
|
|
it = ruxp->rux_iticks;
|
|
tt = ut + st + it;
|
|
if (tt == 0) {
|
|
/* Avoid divide by zero */
|
|
st = 1;
|
|
tt = 1;
|
|
}
|
|
tu = cputick2usec(ruxp->rux_runtime);
|
|
if ((int64_t)tu < 0) {
|
|
/* XXX: this should be an assert /phk */
|
|
printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
|
|
(intmax_t)tu, p->p_pid, p->p_comm);
|
|
tu = ruxp->rux_tu;
|
|
}
|
|
|
|
if (tu >= ruxp->rux_tu) {
|
|
/*
|
|
* The normal case, time increased.
|
|
* Enforce monotonicity of bucketed numbers.
|
|
*/
|
|
uu = (tu * ut) / tt;
|
|
if (uu < ruxp->rux_uu)
|
|
uu = ruxp->rux_uu;
|
|
su = (tu * st) / tt;
|
|
if (su < ruxp->rux_su)
|
|
su = ruxp->rux_su;
|
|
} else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
|
|
/*
|
|
* When we calibrate the cputicker, it is not uncommon to
|
|
* see the presumably fixed frequency increase slightly over
|
|
* time as a result of thermal stabilization and NTP
|
|
* discipline (of the reference clock). We therefore ignore
|
|
* a bit of backwards slop because we expect to catch up
|
|
* shortly. We use a 3 microsecond limit to catch low
|
|
* counts and a 1% limit for high counts.
|
|
*/
|
|
uu = ruxp->rux_uu;
|
|
su = ruxp->rux_su;
|
|
tu = ruxp->rux_tu;
|
|
} else { /* tu < ruxp->rux_tu */
|
|
/*
|
|
* What happene here was likely that a laptop, which ran at
|
|
* a reduced clock frequency at boot, kicked into high gear.
|
|
* The wisdom of spamming this message in that case is
|
|
* dubious, but it might also be indicative of something
|
|
* serious, so lets keep it and hope laptops can be made
|
|
* more truthful about their CPU speed via ACPI.
|
|
*/
|
|
printf("calcru: runtime went backwards from %ju usec "
|
|
"to %ju usec for pid %d (%s)\n",
|
|
(uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
|
|
p->p_pid, p->p_comm);
|
|
uu = (tu * ut) / tt;
|
|
su = (tu * st) / tt;
|
|
}
|
|
|
|
ruxp->rux_uu = uu;
|
|
ruxp->rux_su = su;
|
|
ruxp->rux_tu = tu;
|
|
|
|
up->tv_sec = uu / 1000000;
|
|
up->tv_usec = uu % 1000000;
|
|
sp->tv_sec = su / 1000000;
|
|
sp->tv_usec = su % 1000000;
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct getrusage_args {
|
|
int who;
|
|
struct rusage *rusage;
|
|
};
|
|
#endif
|
|
int
|
|
getrusage(td, uap)
|
|
register struct thread *td;
|
|
register struct getrusage_args *uap;
|
|
{
|
|
struct rusage ru;
|
|
int error;
|
|
|
|
error = kern_getrusage(td, uap->who, &ru);
|
|
if (error == 0)
|
|
error = copyout(&ru, uap->rusage, sizeof(struct rusage));
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
kern_getrusage(td, who, rup)
|
|
struct thread *td;
|
|
int who;
|
|
struct rusage *rup;
|
|
{
|
|
struct proc *p;
|
|
int error;
|
|
|
|
error = 0;
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
switch (who) {
|
|
case RUSAGE_SELF:
|
|
rufetchcalc(p, rup, &rup->ru_utime,
|
|
&rup->ru_stime);
|
|
break;
|
|
|
|
case RUSAGE_CHILDREN:
|
|
*rup = p->p_stats->p_cru;
|
|
calccru(p, &rup->ru_utime, &rup->ru_stime);
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
rucollect(struct rusage *ru, struct rusage *ru2)
|
|
{
|
|
long *ip, *ip2;
|
|
int i;
|
|
|
|
if (ru->ru_maxrss < ru2->ru_maxrss)
|
|
ru->ru_maxrss = ru2->ru_maxrss;
|
|
ip = &ru->ru_first;
|
|
ip2 = &ru2->ru_first;
|
|
for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
|
|
*ip++ += *ip2++;
|
|
}
|
|
|
|
void
|
|
ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2,
|
|
struct rusage_ext *rux2)
|
|
{
|
|
|
|
rux->rux_runtime += rux2->rux_runtime;
|
|
rux->rux_uticks += rux2->rux_uticks;
|
|
rux->rux_sticks += rux2->rux_sticks;
|
|
rux->rux_iticks += rux2->rux_iticks;
|
|
rux->rux_uu += rux2->rux_uu;
|
|
rux->rux_su += rux2->rux_su;
|
|
rux->rux_tu += rux2->rux_tu;
|
|
rucollect(ru, ru2);
|
|
}
|
|
|
|
/*
|
|
* Aggregate tick counts into the proc's rusage_ext.
|
|
*/
|
|
void
|
|
ruxagg(struct rusage_ext *rux, struct thread *td)
|
|
{
|
|
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
PROC_SLOCK_ASSERT(td->td_proc, MA_OWNED);
|
|
rux->rux_runtime += td->td_incruntime;
|
|
rux->rux_uticks += td->td_uticks;
|
|
rux->rux_sticks += td->td_sticks;
|
|
rux->rux_iticks += td->td_iticks;
|
|
td->td_incruntime = 0;
|
|
td->td_uticks = 0;
|
|
td->td_iticks = 0;
|
|
td->td_sticks = 0;
|
|
}
|
|
|
|
/*
|
|
* Update the rusage_ext structure and fetch a valid aggregate rusage
|
|
* for proc p if storage for one is supplied.
|
|
*/
|
|
void
|
|
rufetch(struct proc *p, struct rusage *ru)
|
|
{
|
|
struct thread *td;
|
|
|
|
PROC_SLOCK_ASSERT(p, MA_OWNED);
|
|
|
|
*ru = p->p_ru;
|
|
if (p->p_numthreads > 0) {
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
thread_lock(td);
|
|
ruxagg(&p->p_rux, td);
|
|
thread_unlock(td);
|
|
rucollect(ru, &td->td_ru);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Atomically perform a rufetch and a calcru together.
|
|
* Consumers, can safely assume the calcru is executed only once
|
|
* rufetch is completed.
|
|
*/
|
|
void
|
|
rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up,
|
|
struct timeval *sp)
|
|
{
|
|
|
|
PROC_SLOCK(p);
|
|
rufetch(p, ru);
|
|
calcru(p, up, sp);
|
|
PROC_SUNLOCK(p);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new resource limits structure and initialize its
|
|
* reference count and mutex pointer.
|
|
*/
|
|
struct plimit *
|
|
lim_alloc()
|
|
{
|
|
struct plimit *limp;
|
|
|
|
limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
|
|
refcount_init(&limp->pl_refcnt, 1);
|
|
return (limp);
|
|
}
|
|
|
|
struct plimit *
|
|
lim_hold(limp)
|
|
struct plimit *limp;
|
|
{
|
|
|
|
refcount_acquire(&limp->pl_refcnt);
|
|
return (limp);
|
|
}
|
|
|
|
void
|
|
lim_fork(struct proc *p1, struct proc *p2)
|
|
{
|
|
p2->p_limit = lim_hold(p1->p_limit);
|
|
callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0);
|
|
if (p1->p_cpulimit != RLIM_INFINITY)
|
|
callout_reset(&p2->p_limco, hz, lim_cb, p2);
|
|
}
|
|
|
|
void
|
|
lim_free(limp)
|
|
struct plimit *limp;
|
|
{
|
|
|
|
KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
|
|
if (refcount_release(&limp->pl_refcnt))
|
|
free((void *)limp, M_PLIMIT);
|
|
}
|
|
|
|
/*
|
|
* Make a copy of the plimit structure.
|
|
* We share these structures copy-on-write after fork.
|
|
*/
|
|
void
|
|
lim_copy(dst, src)
|
|
struct plimit *dst, *src;
|
|
{
|
|
|
|
KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
|
|
bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
|
|
}
|
|
|
|
/*
|
|
* Return the hard limit for a particular system resource. The
|
|
* which parameter specifies the index into the rlimit array.
|
|
*/
|
|
rlim_t
|
|
lim_max(struct proc *p, int which)
|
|
{
|
|
struct rlimit rl;
|
|
|
|
lim_rlimit(p, which, &rl);
|
|
return (rl.rlim_max);
|
|
}
|
|
|
|
/*
|
|
* Return the current (soft) limit for a particular system resource.
|
|
* The which parameter which specifies the index into the rlimit array
|
|
*/
|
|
rlim_t
|
|
lim_cur(struct proc *p, int which)
|
|
{
|
|
struct rlimit rl;
|
|
|
|
lim_rlimit(p, which, &rl);
|
|
return (rl.rlim_cur);
|
|
}
|
|
|
|
/*
|
|
* Return a copy of the entire rlimit structure for the system limit
|
|
* specified by 'which' in the rlimit structure pointed to by 'rlp'.
|
|
*/
|
|
void
|
|
lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
|
|
{
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
KASSERT(which >= 0 && which < RLIM_NLIMITS,
|
|
("request for invalid resource limit"));
|
|
*rlp = p->p_limit->pl_rlimit[which];
|
|
if (p->p_sysent->sv_fixlimit != NULL)
|
|
p->p_sysent->sv_fixlimit(rlp, which);
|
|
}
|
|
|
|
/*
|
|
* Find the uidinfo structure for a uid. This structure is used to
|
|
* track the total resource consumption (process count, socket buffer
|
|
* size, etc.) for the uid and impose limits.
|
|
*/
|
|
void
|
|
uihashinit()
|
|
{
|
|
|
|
uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
|
|
rw_init(&uihashtbl_lock, "uidinfo hash");
|
|
}
|
|
|
|
/*
|
|
* Look up a uidinfo struct for the parameter uid.
|
|
* uihashtbl_lock must be locked.
|
|
*/
|
|
static struct uidinfo *
|
|
uilookup(uid)
|
|
uid_t uid;
|
|
{
|
|
struct uihashhead *uipp;
|
|
struct uidinfo *uip;
|
|
|
|
rw_assert(&uihashtbl_lock, RA_LOCKED);
|
|
uipp = UIHASH(uid);
|
|
LIST_FOREACH(uip, uipp, ui_hash)
|
|
if (uip->ui_uid == uid)
|
|
break;
|
|
|
|
return (uip);
|
|
}
|
|
|
|
/*
|
|
* Find or allocate a struct uidinfo for a particular uid.
|
|
* Increase refcount on uidinfo struct returned.
|
|
* uifree() should be called on a struct uidinfo when released.
|
|
*/
|
|
struct uidinfo *
|
|
uifind(uid)
|
|
uid_t uid;
|
|
{
|
|
struct uidinfo *old_uip, *uip;
|
|
|
|
rw_rlock(&uihashtbl_lock);
|
|
uip = uilookup(uid);
|
|
if (uip == NULL) {
|
|
rw_runlock(&uihashtbl_lock);
|
|
uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
|
|
rw_wlock(&uihashtbl_lock);
|
|
/*
|
|
* There's a chance someone created our uidinfo while we
|
|
* were in malloc and not holding the lock, so we have to
|
|
* make sure we don't insert a duplicate uidinfo.
|
|
*/
|
|
if ((old_uip = uilookup(uid)) != NULL) {
|
|
/* Someone else beat us to it. */
|
|
free(uip, M_UIDINFO);
|
|
uip = old_uip;
|
|
} else {
|
|
refcount_init(&uip->ui_ref, 0);
|
|
uip->ui_uid = uid;
|
|
LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
|
|
}
|
|
uihold(uip);
|
|
}
|
|
uihold(uip);
|
|
rw_unlock(&uihashtbl_lock);
|
|
return (uip);
|
|
}
|
|
|
|
/*
|
|
* Place another refcount on a uidinfo struct.
|
|
*/
|
|
void
|
|
uihold(uip)
|
|
struct uidinfo *uip;
|
|
{
|
|
|
|
refcount_acquire(&uip->ui_ref);
|
|
}
|
|
|
|
/*-
|
|
* Since uidinfo structs have a long lifetime, we use an
|
|
* opportunistic refcounting scheme to avoid locking the lookup hash
|
|
* for each release.
|
|
*
|
|
* If the refcount hits 0, we need to free the structure,
|
|
* which means we need to lock the hash.
|
|
* Optimal case:
|
|
* After locking the struct and lowering the refcount, if we find
|
|
* that we don't need to free, simply unlock and return.
|
|
* Suboptimal case:
|
|
* If refcount lowering results in need to free, bump the count
|
|
* back up, lose the lock and acquire the locks in the proper
|
|
* order to try again.
|
|
*/
|
|
void
|
|
uifree(uip)
|
|
struct uidinfo *uip;
|
|
{
|
|
int old;
|
|
|
|
/* Prepare for optimal case. */
|
|
old = uip->ui_ref;
|
|
if (old > 1 && atomic_cmpset_int(&uip->ui_ref, old, old - 1))
|
|
return;
|
|
|
|
/* Prepare for suboptimal case. */
|
|
rw_wlock(&uihashtbl_lock);
|
|
if (refcount_release(&uip->ui_ref)) {
|
|
LIST_REMOVE(uip, ui_hash);
|
|
rw_wunlock(&uihashtbl_lock);
|
|
if (uip->ui_sbsize != 0)
|
|
printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
|
|
uip->ui_uid, uip->ui_sbsize);
|
|
if (uip->ui_proccnt != 0)
|
|
printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
|
|
uip->ui_uid, uip->ui_proccnt);
|
|
FREE(uip, M_UIDINFO);
|
|
return;
|
|
}
|
|
/*
|
|
* Someone added a reference between atomic_cmpset_int() and
|
|
* rw_wlock(&uihashtbl_lock).
|
|
*/
|
|
rw_wunlock(&uihashtbl_lock);
|
|
}
|
|
|
|
/*
|
|
* Change the count associated with number of processes
|
|
* a given user is using. When 'max' is 0, don't enforce a limit
|
|
*/
|
|
int
|
|
chgproccnt(uip, diff, max)
|
|
struct uidinfo *uip;
|
|
int diff;
|
|
rlim_t max;
|
|
{
|
|
|
|
/* Don't allow them to exceed max, but allow subtraction. */
|
|
if (diff > 0 && max != 0) {
|
|
if (atomic_fetchadd_long(&uip->ui_proccnt, (long)diff) + diff > max) {
|
|
atomic_subtract_long(&uip->ui_proccnt, (long)diff);
|
|
return (0);
|
|
}
|
|
} else {
|
|
atomic_add_long(&uip->ui_proccnt, (long)diff);
|
|
if (uip->ui_proccnt < 0)
|
|
printf("negative proccnt for uid = %d\n", uip->ui_uid);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Change the total socket buffer size a user has used.
|
|
*/
|
|
int
|
|
chgsbsize(uip, hiwat, to, max)
|
|
struct uidinfo *uip;
|
|
u_int *hiwat;
|
|
u_int to;
|
|
rlim_t max;
|
|
{
|
|
int diff;
|
|
|
|
diff = to - *hiwat;
|
|
if (diff > 0) {
|
|
if (atomic_fetchadd_long(&uip->ui_sbsize, (long)diff) + diff > max) {
|
|
atomic_subtract_long(&uip->ui_sbsize, (long)diff);
|
|
return (0);
|
|
}
|
|
} else {
|
|
atomic_add_long(&uip->ui_sbsize, (long)diff);
|
|
if (uip->ui_sbsize < 0)
|
|
printf("negative sbsize for uid = %d\n", uip->ui_uid);
|
|
}
|
|
*hiwat = to;
|
|
return (1);
|
|
}
|