freebsd-nq/usr.sbin/bhyve/pci_emul.c
Peter Grehan fbfc1c763c Remove mptable generation code from libvmmapi and move it to bhyve.
Firmware tables require too much knowledge of system configuration,
and it's difficult to pass that information in general terms to a library.
The upcoming ACPI work exposed this - it will also livein bhyve.

Also, remove code specific to NetApp from the mptable name, and remove
the -n option from bhyve.

Reviewed by:	neel
Obtained from:	NetApp
2012-10-26 13:40:12 +00:00

1114 lines
25 KiB
C

/*-
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/linker_set.h>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <assert.h>
#include <machine/vmm.h>
#include <vmmapi.h>
#include "fbsdrun.h"
#include "inout.h"
#include "mem.h"
#include "mptbl.h"
#include "pci_emul.h"
#include "ioapic.h"
#define CONF1_ADDR_PORT 0x0cf8
#define CONF1_DATA_PORT 0x0cfc
#define CFGWRITE(pi,off,val,b) \
do { \
if ((b) == 1) { \
pci_set_cfgdata8((pi),(off),(val)); \
} else if ((b) == 2) { \
pci_set_cfgdata16((pi),(off),(val)); \
} else { \
pci_set_cfgdata32((pi),(off),(val)); \
} \
} while (0)
#define MAXSLOTS (PCI_SLOTMAX + 1)
#define MAXFUNCS (PCI_FUNCMAX + 1)
static struct slotinfo {
char *si_name;
char *si_param;
struct pci_devinst *si_devi;
int si_legacy;
} pci_slotinfo[MAXSLOTS][MAXFUNCS];
/*
* Used to keep track of legacy interrupt owners/requestors
*/
#define NLIRQ 16
static struct lirqinfo {
int li_generic;
int li_acount;
struct pci_devinst *li_owner; /* XXX should be a list */
} lirq[NLIRQ];
SET_DECLARE(pci_devemu_set, struct pci_devemu);
static uint64_t pci_emul_iobase;
static uint64_t pci_emul_membase32;
static uint64_t pci_emul_membase64;
#define PCI_EMUL_IOBASE 0x2000
#define PCI_EMUL_IOLIMIT 0x10000
#define PCI_EMUL_MEMBASE32 (lomem_sz)
#define PCI_EMUL_MEMLIMIT32 0xE0000000 /* 3.5GB */
#define PCI_EMUL_MEMBASE64 0xD000000000UL
#define PCI_EMUL_MEMLIMIT64 0xFD00000000UL
static int pci_emul_devices;
/*
* I/O access
*/
/*
* Slot options are in the form:
*
* <slot>[:<func>],<emul>[,<config>]
*
* slot is 0..31
* func is 0..7
* emul is a string describing the type of PCI device e.g. virtio-net
* config is an optional string, depending on the device, that can be
* used for configuration.
* Examples are:
* 1,virtio-net,tap0
* 3:0,dummy
*/
static void
pci_parse_slot_usage(char *aopt)
{
printf("Invalid PCI slot info field \"%s\"\n", aopt);
free(aopt);
}
void
pci_parse_slot(char *opt, int legacy)
{
char *slot, *func, *emul, *config;
char *str, *cpy;
int snum, fnum;
str = cpy = strdup(opt);
config = NULL;
if (strchr(str, ':') != NULL) {
slot = strsep(&str, ":");
func = strsep(&str, ",");
} else {
slot = strsep(&str, ",");
func = NULL;
}
emul = strsep(&str, ",");
if (str != NULL) {
config = strsep(&str, ",");
}
if (emul == NULL) {
pci_parse_slot_usage(cpy);
return;
}
snum = atoi(slot);
fnum = func ? atoi(func) : 0;
if (snum < 0 || snum >= MAXSLOTS || fnum < 0 || fnum >= MAXFUNCS) {
pci_parse_slot_usage(cpy);
} else {
pci_slotinfo[snum][fnum].si_name = emul;
pci_slotinfo[snum][fnum].si_param = config;
pci_slotinfo[snum][fnum].si_legacy = legacy;
}
}
static int
pci_emul_io_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
struct pci_devinst *pdi = arg;
struct pci_devemu *pe = pdi->pi_d;
uint64_t offset;
int i;
for (i = 0; i <= PCI_BARMAX; i++) {
if (pdi->pi_bar[i].type == PCIBAR_IO &&
port >= pdi->pi_bar[i].addr &&
port + bytes <=
pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
offset = port - pdi->pi_bar[i].addr;
if (in)
*eax = (*pe->pe_barread)(ctx, vcpu, pdi, i,
offset, bytes);
else
(*pe->pe_barwrite)(ctx, vcpu, pdi, i, offset,
bytes, *eax);
return (0);
}
}
return (-1);
}
static int
pci_emul_mem_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
int size, uint64_t *val, void *arg1, long arg2)
{
struct pci_devinst *pdi = arg1;
struct pci_devemu *pe = pdi->pi_d;
uint64_t offset;
int bidx = (int) arg2;
assert(bidx <= PCI_BARMAX);
assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
pdi->pi_bar[bidx].type == PCIBAR_MEM64);
assert(addr >= pdi->pi_bar[bidx].addr &&
addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
offset = addr - pdi->pi_bar[bidx].addr;
if (dir == MEM_F_WRITE)
(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset, size, *val);
else
*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx, offset, size);
return (0);
}
static int
pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
uint64_t *addr)
{
uint64_t base;
assert((size & (size - 1)) == 0); /* must be a power of 2 */
base = roundup2(*baseptr, size);
if (base + size <= limit) {
*addr = base;
*baseptr = base + size;
return (0);
} else
return (-1);
}
int
pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
uint64_t size)
{
return (pci_emul_alloc_pbar(pdi, idx, 0, type, size));
}
int
pci_emul_alloc_pbar(struct pci_devinst *pdi, int idx, uint64_t hostbase,
enum pcibar_type type, uint64_t size)
{
int i, error;
uint64_t *baseptr, limit, addr, mask, lobits, bar;
struct inout_port iop;
struct mem_range memp;
assert(idx >= 0 && idx <= PCI_BARMAX);
if ((size & (size - 1)) != 0)
size = 1UL << flsl(size); /* round up to a power of 2 */
switch (type) {
case PCIBAR_NONE:
baseptr = NULL;
addr = mask = lobits = 0;
break;
case PCIBAR_IO:
if (hostbase &&
pci_slotinfo[pdi->pi_slot][pdi->pi_func].si_legacy) {
assert(hostbase < PCI_EMUL_IOBASE);
baseptr = &hostbase;
} else {
baseptr = &pci_emul_iobase;
}
limit = PCI_EMUL_IOLIMIT;
mask = PCIM_BAR_IO_BASE;
lobits = PCIM_BAR_IO_SPACE;
break;
case PCIBAR_MEM64:
/*
* XXX
* Some drivers do not work well if the 64-bit BAR is allocated
* above 4GB. Allow for this by allocating small requests under
* 4GB unless then allocation size is larger than some arbitrary
* number (32MB currently).
*/
if (size > 32 * 1024 * 1024) {
/*
* XXX special case for device requiring peer-peer DMA
*/
if (size == 0x100000000UL)
baseptr = &hostbase;
else
baseptr = &pci_emul_membase64;
limit = PCI_EMUL_MEMLIMIT64;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
PCIM_BAR_MEM_PREFETCH;
break;
} else {
baseptr = &pci_emul_membase32;
limit = PCI_EMUL_MEMLIMIT32;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
}
break;
case PCIBAR_MEM32:
baseptr = &pci_emul_membase32;
limit = PCI_EMUL_MEMLIMIT32;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
break;
default:
printf("pci_emul_alloc_base: invalid bar type %d\n", type);
assert(0);
}
if (baseptr != NULL) {
error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
if (error != 0)
return (error);
}
pdi->pi_bar[idx].type = type;
pdi->pi_bar[idx].addr = addr;
pdi->pi_bar[idx].size = size;
/* Initialize the BAR register in config space */
bar = (addr & mask) | lobits;
pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
if (type == PCIBAR_MEM64) {
assert(idx + 1 <= PCI_BARMAX);
pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
}
/* add a handler to intercept accesses to the I/O bar */
if (type == PCIBAR_IO) {
iop.name = pdi->pi_name;
iop.flags = IOPORT_F_INOUT;
iop.handler = pci_emul_io_handler;
iop.arg = pdi;
for (i = 0; i < size; i++) {
iop.port = addr + i;
register_inout(&iop);
}
} else if (type == PCIBAR_MEM32 || type == PCIBAR_MEM64) {
/* add memory bar intercept handler */
memp.name = pdi->pi_name;
memp.flags = MEM_F_RW;
memp.base = addr;
memp.size = size;
memp.handler = pci_emul_mem_handler;
memp.arg1 = pdi;
memp.arg2 = idx;
error = register_mem(&memp);
assert(error == 0);
}
return (0);
}
#define CAP_START_OFFSET 0x40
static int
pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
{
int i, capoff, capid, reallen;
uint16_t sts;
static u_char endofcap[4] = {
PCIY_RESERVED, 0, 0, 0
};
assert(caplen > 0 && capdata[0] != PCIY_RESERVED);
reallen = roundup2(caplen, 4); /* dword aligned */
sts = pci_get_cfgdata16(pi, PCIR_STATUS);
if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
capoff = CAP_START_OFFSET;
pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
} else {
capoff = pci_get_cfgdata8(pi, PCIR_CAP_PTR);
while (1) {
assert((capoff & 0x3) == 0);
capid = pci_get_cfgdata8(pi, capoff);
if (capid == PCIY_RESERVED)
break;
capoff = pci_get_cfgdata8(pi, capoff + 1);
}
}
/* Check if we have enough space */
if (capoff + reallen + sizeof(endofcap) > PCI_REGMAX + 1)
return (-1);
/* Copy the capability */
for (i = 0; i < caplen; i++)
pci_set_cfgdata8(pi, capoff + i, capdata[i]);
/* Set the next capability pointer */
pci_set_cfgdata8(pi, capoff + 1, capoff + reallen);
/* Copy of the reserved capability which serves as the end marker */
for (i = 0; i < sizeof(endofcap); i++)
pci_set_cfgdata8(pi, capoff + reallen + i, endofcap[i]);
return (0);
}
static struct pci_devemu *
pci_emul_finddev(char *name)
{
struct pci_devemu **pdpp, *pdp;
SET_FOREACH(pdpp, pci_devemu_set) {
pdp = *pdpp;
if (!strcmp(pdp->pe_emu, name)) {
return (pdp);
}
}
return (NULL);
}
static void
pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int slot, int func,
char *params)
{
struct pci_devinst *pdi;
pdi = malloc(sizeof(struct pci_devinst));
bzero(pdi, sizeof(*pdi));
pdi->pi_vmctx = ctx;
pdi->pi_bus = 0;
pdi->pi_slot = slot;
pdi->pi_func = func;
pdi->pi_d = pde;
snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot);
/* Disable legacy interrupts */
pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
pci_set_cfgdata8(pdi, PCIR_COMMAND,
PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
if ((*pde->pe_init)(ctx, pdi, params) != 0) {
free(pdi);
} else {
pci_emul_devices++;
pci_slotinfo[slot][func].si_devi = pdi;
}
}
void
pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
{
int mmc;
CTASSERT(sizeof(struct msicap) == 14);
/* Number of msi messages must be a power of 2 between 1 and 32 */
assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
mmc = ffs(msgnum) - 1;
bzero(msicap, sizeof(struct msicap));
msicap->capid = PCIY_MSI;
msicap->nextptr = nextptr;
msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
}
int
pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
{
struct msicap msicap;
pci_populate_msicap(&msicap, msgnum, 0);
return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
}
void
msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val)
{
uint16_t msgctrl, rwmask;
int off, table_bar;
off = offset - capoff;
table_bar = pi->pi_msix.table_bar;
/* Message Control Register */
if (off == 2 && bytes == 2) {
rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
msgctrl = pci_get_cfgdata16(pi, offset);
msgctrl &= ~rwmask;
msgctrl |= val & rwmask;
val = msgctrl;
pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
}
CFGWRITE(pi, offset, val, bytes);
}
void
msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val)
{
uint16_t msgctrl, rwmask, msgdata, mme;
uint32_t addrlo;
/*
* If guest is writing to the message control register make sure
* we do not overwrite read-only fields.
*/
if ((offset - capoff) == 2 && bytes == 2) {
rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
msgctrl = pci_get_cfgdata16(pi, offset);
msgctrl &= ~rwmask;
msgctrl |= val & rwmask;
val = msgctrl;
addrlo = pci_get_cfgdata32(pi, capoff + 4);
if (msgctrl & PCIM_MSICTRL_64BIT)
msgdata = pci_get_cfgdata16(pi, capoff + 12);
else
msgdata = pci_get_cfgdata16(pi, capoff + 8);
/*
* XXX check delivery mode, destination mode etc
*/
mme = msgctrl & PCIM_MSICTRL_MME_MASK;
pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
if (pi->pi_msi.enabled) {
pi->pi_msi.cpu = (addrlo >> 12) & 0xff;
pi->pi_msi.vector = msgdata & 0xff;
pi->pi_msi.msgnum = 1 << (mme >> 4);
} else {
pi->pi_msi.cpu = 0;
pi->pi_msi.vector = 0;
pi->pi_msi.msgnum = 0;
}
}
CFGWRITE(pi, offset, val, bytes);
}
/*
* This function assumes that 'coff' is in the capabilities region of the
* config space.
*/
static void
pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val)
{
int capid;
uint8_t capoff, nextoff;
/* Do not allow un-aligned writes */
if ((offset & (bytes - 1)) != 0)
return;
/* Find the capability that we want to update */
capoff = CAP_START_OFFSET;
while (1) {
capid = pci_get_cfgdata8(pi, capoff);
if (capid == PCIY_RESERVED)
break;
nextoff = pci_get_cfgdata8(pi, capoff + 1);
if (offset >= capoff && offset < nextoff)
break;
capoff = nextoff;
}
assert(offset >= capoff);
/*
* Capability ID and Next Capability Pointer are readonly
*/
if (offset == capoff || offset == capoff + 1)
return;
switch (capid) {
case PCIY_MSI:
msicap_cfgwrite(pi, capoff, offset, bytes, val);
break;
default:
break;
}
}
static int
pci_emul_iscap(struct pci_devinst *pi, int offset)
{
int found;
uint16_t sts;
uint8_t capid, lastoff;
found = 0;
sts = pci_get_cfgdata16(pi, PCIR_STATUS);
if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
lastoff = pci_get_cfgdata8(pi, PCIR_CAP_PTR);
while (1) {
assert((lastoff & 0x3) == 0);
capid = pci_get_cfgdata8(pi, lastoff);
if (capid == PCIY_RESERVED)
break;
lastoff = pci_get_cfgdata8(pi, lastoff + 1);
}
if (offset >= CAP_START_OFFSET && offset <= lastoff)
found = 1;
}
return (found);
}
void
init_pci(struct vmctx *ctx)
{
struct pci_devemu *pde;
struct slotinfo *si;
int slot, func;
pci_emul_iobase = PCI_EMUL_IOBASE;
pci_emul_membase32 = PCI_EMUL_MEMBASE32;
pci_emul_membase64 = PCI_EMUL_MEMBASE64;
for (slot = 0; slot < MAXSLOTS; slot++) {
for (func = 0; func < MAXFUNCS; func++) {
si = &pci_slotinfo[slot][func];
if (si->si_name != NULL) {
pde = pci_emul_finddev(si->si_name);
if (pde != NULL) {
pci_emul_init(ctx, pde, slot, func,
si->si_param);
}
}
}
}
/*
* Allow ISA IRQs 5,10,11,12, and 15 to be available for
* generic use
*/
lirq[5].li_generic = 1;
lirq[10].li_generic = 1;
lirq[11].li_generic = 1;
lirq[12].li_generic = 1;
lirq[15].li_generic = 1;
}
int
pci_msi_enabled(struct pci_devinst *pi)
{
return (pi->pi_msi.enabled);
}
int
pci_msi_msgnum(struct pci_devinst *pi)
{
if (pi->pi_msi.enabled)
return (pi->pi_msi.msgnum);
else
return (0);
}
void
pci_generate_msi(struct pci_devinst *pi, int msg)
{
if (pci_msi_enabled(pi) && msg < pci_msi_msgnum(pi)) {
vm_lapic_irq(pi->pi_vmctx,
pi->pi_msi.cpu,
pi->pi_msi.vector + msg);
}
}
int
pci_is_legacy(struct pci_devinst *pi)
{
return (pci_slotinfo[pi->pi_slot][pi->pi_func].si_legacy);
}
static int
pci_lintr_alloc(struct pci_devinst *pi, int vec)
{
int i;
assert(vec < NLIRQ);
if (vec == -1) {
for (i = 0; i < NLIRQ; i++) {
if (lirq[i].li_generic &&
lirq[i].li_owner == NULL) {
vec = i;
break;
}
}
} else {
if (lirq[vec].li_owner != NULL) {
vec = -1;
}
}
assert(vec != -1);
lirq[vec].li_owner = pi;
pi->pi_lintr_pin = vec;
return (vec);
}
int
pci_lintr_request(struct pci_devinst *pi, int vec)
{
vec = pci_lintr_alloc(pi, vec);
pci_set_cfgdata8(pi, PCIR_INTLINE, vec);
pci_set_cfgdata8(pi, PCIR_INTPIN, 1);
return (0);
}
void
pci_lintr_assert(struct pci_devinst *pi)
{
assert(pi->pi_lintr_pin);
ioapic_assert_pin(pi->pi_vmctx, pi->pi_lintr_pin);
}
void
pci_lintr_deassert(struct pci_devinst *pi)
{
assert(pi->pi_lintr_pin);
ioapic_deassert_pin(pi->pi_vmctx, pi->pi_lintr_pin);
}
/*
* Return 1 if the emulated device in 'slot' is a multi-function device.
* Return 0 otherwise.
*/
static int
pci_emul_is_mfdev(int slot)
{
int f, numfuncs;
numfuncs = 0;
for (f = 0; f < MAXFUNCS; f++) {
if (pci_slotinfo[slot][f].si_devi != NULL) {
numfuncs++;
}
}
return (numfuncs > 1);
}
/*
* Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
* whether or not is a multi-function being emulated in the pci 'slot'.
*/
static void
pci_emul_hdrtype_fixup(int slot, int off, int bytes, uint32_t *rv)
{
int mfdev;
if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
mfdev = pci_emul_is_mfdev(slot);
switch (bytes) {
case 1:
case 2:
*rv &= ~PCIM_MFDEV;
if (mfdev) {
*rv |= PCIM_MFDEV;
}
break;
case 4:
*rv &= ~(PCIM_MFDEV << 16);
if (mfdev) {
*rv |= (PCIM_MFDEV << 16);
}
break;
}
}
}
static int cfgbus, cfgslot, cfgfunc, cfgoff;
static int
pci_emul_cfgaddr(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
uint32_t x;
assert(!in);
if (bytes != 4)
return (-1);
x = *eax;
cfgoff = x & PCI_REGMAX;
cfgfunc = (x >> 8) & PCI_FUNCMAX;
cfgslot = (x >> 11) & PCI_SLOTMAX;
cfgbus = (x >> 16) & PCI_BUSMAX;
return (0);
}
INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_OUT, pci_emul_cfgaddr);
static int
pci_emul_cfgdata(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
struct pci_devinst *pi;
struct pci_devemu *pe;
int coff, idx, needcfg;
uint64_t mask, bar;
assert(bytes == 1 || bytes == 2 || bytes == 4);
pi = pci_slotinfo[cfgslot][cfgfunc].si_devi;
coff = cfgoff + (port - CONF1_DATA_PORT);
#if 0
printf("pcicfg-%s from 0x%0x of %d bytes (%d/%d/%d)\n\r",
in ? "read" : "write", coff, bytes, cfgbus, cfgslot, cfgfunc);
#endif
/*
* Just return if there is no device at this cfgslot:cfgfunc or
* if the guest is doing an un-aligned access
*/
if (pi == NULL || (coff & (bytes - 1)) != 0) {
if (in)
*eax = 0xffffffff;
return (0);
}
pe = pi->pi_d;
/*
* Config read
*/
if (in) {
/* Let the device emulation override the default handler */
if (pe->pe_cfgread != NULL) {
needcfg = pe->pe_cfgread(ctx, vcpu, pi,
coff, bytes, eax);
} else {
needcfg = 1;
}
if (needcfg) {
if (bytes == 1)
*eax = pci_get_cfgdata8(pi, coff);
else if (bytes == 2)
*eax = pci_get_cfgdata16(pi, coff);
else
*eax = pci_get_cfgdata32(pi, coff);
}
pci_emul_hdrtype_fixup(cfgslot, coff, bytes, eax);
} else {
/* Let the device emulation override the default handler */
if (pe->pe_cfgwrite != NULL &&
(*pe->pe_cfgwrite)(ctx, vcpu, pi, coff, bytes, *eax) == 0)
return (0);
/*
* Special handling for write to BAR registers
*/
if (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1)) {
/*
* Ignore writes to BAR registers that are not
* 4-byte aligned.
*/
if (bytes != 4 || (coff & 0x3) != 0)
return (0);
idx = (coff - PCIR_BAR(0)) / 4;
switch (pi->pi_bar[idx].type) {
case PCIBAR_NONE:
bar = 0;
break;
case PCIBAR_IO:
mask = ~(pi->pi_bar[idx].size - 1);
mask &= PCIM_BAR_IO_BASE;
bar = (*eax & mask) | PCIM_BAR_IO_SPACE;
break;
case PCIBAR_MEM32:
mask = ~(pi->pi_bar[idx].size - 1);
mask &= PCIM_BAR_MEM_BASE;
bar = *eax & mask;
bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
break;
case PCIBAR_MEM64:
mask = ~(pi->pi_bar[idx].size - 1);
mask &= PCIM_BAR_MEM_BASE;
bar = *eax & mask;
bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
PCIM_BAR_MEM_PREFETCH;
break;
case PCIBAR_MEMHI64:
mask = ~(pi->pi_bar[idx - 1].size - 1);
mask &= PCIM_BAR_MEM_BASE;
bar = ((uint64_t)*eax << 32) & mask;
bar = bar >> 32;
break;
default:
assert(0);
}
pci_set_cfgdata32(pi, coff, bar);
} else if (pci_emul_iscap(pi, coff)) {
pci_emul_capwrite(pi, coff, bytes, *eax);
} else {
CFGWRITE(pi, coff, *eax, bytes);
}
}
return (0);
}
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
/*
* I/O ports to configure PCI IRQ routing. We ignore all writes to it.
*/
static int
pci_irq_port_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
assert(in == 0);
return (0);
}
INOUT_PORT(pci_irq, 0xC00, IOPORT_F_OUT, pci_irq_port_handler);
INOUT_PORT(pci_irq, 0xC01, IOPORT_F_OUT, pci_irq_port_handler);
#define PCI_EMUL_TEST
#ifdef PCI_EMUL_TEST
/*
* Define a dummy test device
*/
#define DIOSZ 20
#define DMEMSZ 4096
struct pci_emul_dsoftc {
uint8_t ioregs[DIOSZ];
uint8_t memregs[DMEMSZ];
};
#define PCI_EMUL_MSI_MSGS 4
#define PCI_EMUL_MSIX_MSGS 16
static int
pci_emul_dinit(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
{
int error;
struct pci_emul_dsoftc *sc;
sc = malloc(sizeof(struct pci_emul_dsoftc));
memset(sc, 0, sizeof(struct pci_emul_dsoftc));
pi->pi_arg = sc;
pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
assert(error == 0);
error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
assert(error == 0);
error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
assert(error == 0);
return (0);
}
static void
pci_emul_diow(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
uint64_t offset, int size, uint64_t value)
{
int i;
struct pci_emul_dsoftc *sc = pi->pi_arg;
if (baridx == 0) {
if (offset + size > DIOSZ) {
printf("diow: iow too large, offset %ld size %d\n",
offset, size);
return;
}
if (size == 1) {
sc->ioregs[offset] = value & 0xff;
} else if (size == 2) {
*(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
} else if (size == 4) {
*(uint32_t *)&sc->ioregs[offset] = value;
} else {
printf("diow: iow unknown size %d\n", size);
}
/*
* Special magic value to generate an interrupt
*/
if (offset == 4 && size == 4 && pci_msi_enabled(pi))
pci_generate_msi(pi, value % pci_msi_msgnum(pi));
if (value == 0xabcdef) {
for (i = 0; i < pci_msi_msgnum(pi); i++)
pci_generate_msi(pi, i);
}
}
if (baridx == 1) {
if (offset + size > DMEMSZ) {
printf("diow: memw too large, offset %ld size %d\n",
offset, size);
return;
}
if (size == 1) {
sc->memregs[offset] = value;
} else if (size == 2) {
*(uint16_t *)&sc->memregs[offset] = value;
} else if (size == 4) {
*(uint32_t *)&sc->memregs[offset] = value;
} else if (size == 8) {
*(uint64_t *)&sc->memregs[offset] = value;
} else {
printf("diow: memw unknown size %d\n", size);
}
/*
* magic interrupt ??
*/
}
if (baridx > 1) {
printf("diow: unknown bar idx %d\n", baridx);
}
}
static uint64_t
pci_emul_dior(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
uint64_t offset, int size)
{
struct pci_emul_dsoftc *sc = pi->pi_arg;
uint32_t value;
if (baridx == 0) {
if (offset + size > DIOSZ) {
printf("dior: ior too large, offset %ld size %d\n",
offset, size);
return (0);
}
if (size == 1) {
value = sc->ioregs[offset];
} else if (size == 2) {
value = *(uint16_t *) &sc->ioregs[offset];
} else if (size == 4) {
value = *(uint32_t *) &sc->ioregs[offset];
} else {
printf("dior: ior unknown size %d\n", size);
}
}
if (baridx == 1) {
if (offset + size > DMEMSZ) {
printf("dior: memr too large, offset %ld size %d\n",
offset, size);
return (0);
}
if (size == 1) {
value = sc->memregs[offset];
} else if (size == 2) {
value = *(uint16_t *) &sc->memregs[offset];
} else if (size == 4) {
value = *(uint32_t *) &sc->memregs[offset];
} else if (size == 8) {
value = *(uint64_t *) &sc->memregs[offset];
} else {
printf("dior: ior unknown size %d\n", size);
}
}
if (baridx > 1) {
printf("dior: unknown bar idx %d\n", baridx);
return (0);
}
return (value);
}
struct pci_devemu pci_dummy = {
.pe_emu = "dummy",
.pe_init = pci_emul_dinit,
.pe_barwrite = pci_emul_diow,
.pe_barread = pci_emul_dior
};
PCI_EMUL_SET(pci_dummy);
#endif /* PCI_EMUL_TEST */