1465 lines
38 KiB
C
1465 lines
38 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2007 Attilio Rao <attilio@freebsd.org>
|
|
* Copyright (c) 2001 Jason Evans <jasone@freebsd.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice(s), this list of conditions and the following disclaimer as
|
|
* the first lines of this file unmodified other than the possible
|
|
* addition of one or more copyright notices.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice(s), this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Shared/exclusive locks. This implementation attempts to ensure
|
|
* deterministic lock granting behavior, so that slocks and xlocks are
|
|
* interleaved.
|
|
*
|
|
* Priority propagation will not generally raise the priority of lock holders,
|
|
* so should not be relied upon in combination with sx locks.
|
|
*/
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_hwpmc_hooks.h"
|
|
#include "opt_no_adaptive_sx.h"
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sleepqueue.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#if defined(SMP) && !defined(NO_ADAPTIVE_SX)
|
|
#include <machine/cpu.h>
|
|
#endif
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
|
|
#if defined(SMP) && !defined(NO_ADAPTIVE_SX)
|
|
#define ADAPTIVE_SX
|
|
#endif
|
|
|
|
CTASSERT((SX_NOADAPTIVE & LO_CLASSFLAGS) == SX_NOADAPTIVE);
|
|
|
|
#ifdef HWPMC_HOOKS
|
|
#include <sys/pmckern.h>
|
|
PMC_SOFT_DECLARE( , , lock, failed);
|
|
#endif
|
|
|
|
/* Handy macros for sleep queues. */
|
|
#define SQ_EXCLUSIVE_QUEUE 0
|
|
#define SQ_SHARED_QUEUE 1
|
|
|
|
/*
|
|
* Variations on DROP_GIANT()/PICKUP_GIANT() for use in this file. We
|
|
* drop Giant anytime we have to sleep or if we adaptively spin.
|
|
*/
|
|
#define GIANT_DECLARE \
|
|
int _giantcnt = 0; \
|
|
WITNESS_SAVE_DECL(Giant) \
|
|
|
|
#define GIANT_SAVE(work) do { \
|
|
if (__predict_false(mtx_owned(&Giant))) { \
|
|
work++; \
|
|
WITNESS_SAVE(&Giant.lock_object, Giant); \
|
|
while (mtx_owned(&Giant)) { \
|
|
_giantcnt++; \
|
|
mtx_unlock(&Giant); \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
|
|
#define GIANT_RESTORE() do { \
|
|
if (_giantcnt > 0) { \
|
|
mtx_assert(&Giant, MA_NOTOWNED); \
|
|
while (_giantcnt--) \
|
|
mtx_lock(&Giant); \
|
|
WITNESS_RESTORE(&Giant.lock_object, Giant); \
|
|
} \
|
|
} while (0)
|
|
|
|
/*
|
|
* Returns true if an exclusive lock is recursed. It assumes
|
|
* curthread currently has an exclusive lock.
|
|
*/
|
|
#define sx_recursed(sx) ((sx)->sx_recurse != 0)
|
|
|
|
static void assert_sx(const struct lock_object *lock, int what);
|
|
#ifdef DDB
|
|
static void db_show_sx(const struct lock_object *lock);
|
|
#endif
|
|
static void lock_sx(struct lock_object *lock, uintptr_t how);
|
|
#ifdef KDTRACE_HOOKS
|
|
static int owner_sx(const struct lock_object *lock, struct thread **owner);
|
|
#endif
|
|
static uintptr_t unlock_sx(struct lock_object *lock);
|
|
|
|
struct lock_class lock_class_sx = {
|
|
.lc_name = "sx",
|
|
.lc_flags = LC_SLEEPLOCK | LC_SLEEPABLE | LC_RECURSABLE | LC_UPGRADABLE,
|
|
.lc_assert = assert_sx,
|
|
#ifdef DDB
|
|
.lc_ddb_show = db_show_sx,
|
|
#endif
|
|
.lc_lock = lock_sx,
|
|
.lc_unlock = unlock_sx,
|
|
#ifdef KDTRACE_HOOKS
|
|
.lc_owner = owner_sx,
|
|
#endif
|
|
};
|
|
|
|
#ifndef INVARIANTS
|
|
#define _sx_assert(sx, what, file, line)
|
|
#endif
|
|
|
|
#ifdef ADAPTIVE_SX
|
|
static __read_frequently u_int asx_retries;
|
|
static __read_frequently u_int asx_loops;
|
|
static SYSCTL_NODE(_debug, OID_AUTO, sx, CTLFLAG_RD, NULL, "sxlock debugging");
|
|
SYSCTL_UINT(_debug_sx, OID_AUTO, retries, CTLFLAG_RW, &asx_retries, 0, "");
|
|
SYSCTL_UINT(_debug_sx, OID_AUTO, loops, CTLFLAG_RW, &asx_loops, 0, "");
|
|
|
|
static struct lock_delay_config __read_frequently sx_delay;
|
|
|
|
SYSCTL_INT(_debug_sx, OID_AUTO, delay_base, CTLFLAG_RW, &sx_delay.base,
|
|
0, "");
|
|
SYSCTL_INT(_debug_sx, OID_AUTO, delay_max, CTLFLAG_RW, &sx_delay.max,
|
|
0, "");
|
|
|
|
static void
|
|
sx_lock_delay_init(void *arg __unused)
|
|
{
|
|
|
|
lock_delay_default_init(&sx_delay);
|
|
asx_retries = 10;
|
|
asx_loops = max(10000, sx_delay.max);
|
|
}
|
|
LOCK_DELAY_SYSINIT(sx_lock_delay_init);
|
|
#endif
|
|
|
|
void
|
|
assert_sx(const struct lock_object *lock, int what)
|
|
{
|
|
|
|
sx_assert((const struct sx *)lock, what);
|
|
}
|
|
|
|
void
|
|
lock_sx(struct lock_object *lock, uintptr_t how)
|
|
{
|
|
struct sx *sx;
|
|
|
|
sx = (struct sx *)lock;
|
|
if (how)
|
|
sx_slock(sx);
|
|
else
|
|
sx_xlock(sx);
|
|
}
|
|
|
|
uintptr_t
|
|
unlock_sx(struct lock_object *lock)
|
|
{
|
|
struct sx *sx;
|
|
|
|
sx = (struct sx *)lock;
|
|
sx_assert(sx, SA_LOCKED | SA_NOTRECURSED);
|
|
if (sx_xlocked(sx)) {
|
|
sx_xunlock(sx);
|
|
return (0);
|
|
} else {
|
|
sx_sunlock(sx);
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
int
|
|
owner_sx(const struct lock_object *lock, struct thread **owner)
|
|
{
|
|
const struct sx *sx;
|
|
uintptr_t x;
|
|
|
|
sx = (const struct sx *)lock;
|
|
x = sx->sx_lock;
|
|
*owner = NULL;
|
|
return ((x & SX_LOCK_SHARED) != 0 ? (SX_SHARERS(x) != 0) :
|
|
((*owner = (struct thread *)SX_OWNER(x)) != NULL));
|
|
}
|
|
#endif
|
|
|
|
void
|
|
sx_sysinit(void *arg)
|
|
{
|
|
struct sx_args *sargs = arg;
|
|
|
|
sx_init_flags(sargs->sa_sx, sargs->sa_desc, sargs->sa_flags);
|
|
}
|
|
|
|
void
|
|
sx_init_flags(struct sx *sx, const char *description, int opts)
|
|
{
|
|
int flags;
|
|
|
|
MPASS((opts & ~(SX_QUIET | SX_RECURSE | SX_NOWITNESS | SX_DUPOK |
|
|
SX_NOPROFILE | SX_NOADAPTIVE | SX_NEW)) == 0);
|
|
ASSERT_ATOMIC_LOAD_PTR(sx->sx_lock,
|
|
("%s: sx_lock not aligned for %s: %p", __func__, description,
|
|
&sx->sx_lock));
|
|
|
|
flags = LO_SLEEPABLE | LO_UPGRADABLE;
|
|
if (opts & SX_DUPOK)
|
|
flags |= LO_DUPOK;
|
|
if (opts & SX_NOPROFILE)
|
|
flags |= LO_NOPROFILE;
|
|
if (!(opts & SX_NOWITNESS))
|
|
flags |= LO_WITNESS;
|
|
if (opts & SX_RECURSE)
|
|
flags |= LO_RECURSABLE;
|
|
if (opts & SX_QUIET)
|
|
flags |= LO_QUIET;
|
|
if (opts & SX_NEW)
|
|
flags |= LO_NEW;
|
|
|
|
flags |= opts & SX_NOADAPTIVE;
|
|
lock_init(&sx->lock_object, &lock_class_sx, description, NULL, flags);
|
|
sx->sx_lock = SX_LOCK_UNLOCKED;
|
|
sx->sx_recurse = 0;
|
|
}
|
|
|
|
void
|
|
sx_destroy(struct sx *sx)
|
|
{
|
|
|
|
KASSERT(sx->sx_lock == SX_LOCK_UNLOCKED, ("sx lock still held"));
|
|
KASSERT(sx->sx_recurse == 0, ("sx lock still recursed"));
|
|
sx->sx_lock = SX_LOCK_DESTROYED;
|
|
lock_destroy(&sx->lock_object);
|
|
}
|
|
|
|
int
|
|
sx_try_slock_int(struct sx *sx LOCK_FILE_LINE_ARG_DEF)
|
|
{
|
|
uintptr_t x;
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return (1);
|
|
|
|
KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
|
|
("sx_try_slock() by idle thread %p on sx %s @ %s:%d",
|
|
curthread, sx->lock_object.lo_name, file, line));
|
|
|
|
x = sx->sx_lock;
|
|
for (;;) {
|
|
KASSERT(x != SX_LOCK_DESTROYED,
|
|
("sx_try_slock() of destroyed sx @ %s:%d", file, line));
|
|
if (!(x & SX_LOCK_SHARED))
|
|
break;
|
|
if (atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, x + SX_ONE_SHARER)) {
|
|
LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 1, file, line);
|
|
WITNESS_LOCK(&sx->lock_object, LOP_TRYLOCK, file, line);
|
|
LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire,
|
|
sx, 0, 0, file, line, LOCKSTAT_READER);
|
|
TD_LOCKS_INC(curthread);
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
LOCK_LOG_TRY("SLOCK", &sx->lock_object, 0, 0, file, line);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sx_try_slock_(struct sx *sx, const char *file, int line)
|
|
{
|
|
|
|
return (sx_try_slock_int(sx LOCK_FILE_LINE_ARG));
|
|
}
|
|
|
|
int
|
|
_sx_xlock(struct sx *sx, int opts, const char *file, int line)
|
|
{
|
|
uintptr_t tid, x;
|
|
int error = 0;
|
|
|
|
KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() ||
|
|
!TD_IS_IDLETHREAD(curthread),
|
|
("sx_xlock() by idle thread %p on sx %s @ %s:%d",
|
|
curthread, sx->lock_object.lo_name, file, line));
|
|
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
|
|
("sx_xlock() of destroyed sx @ %s:%d", file, line));
|
|
WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE, file,
|
|
line, NULL);
|
|
tid = (uintptr_t)curthread;
|
|
x = SX_LOCK_UNLOCKED;
|
|
if (!atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, tid))
|
|
error = _sx_xlock_hard(sx, x, opts LOCK_FILE_LINE_ARG);
|
|
else
|
|
LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire, sx,
|
|
0, 0, file, line, LOCKSTAT_WRITER);
|
|
if (!error) {
|
|
LOCK_LOG_LOCK("XLOCK", &sx->lock_object, 0, sx->sx_recurse,
|
|
file, line);
|
|
WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line);
|
|
TD_LOCKS_INC(curthread);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sx_try_xlock_int(struct sx *sx LOCK_FILE_LINE_ARG_DEF)
|
|
{
|
|
struct thread *td;
|
|
uintptr_t tid, x;
|
|
int rval;
|
|
bool recursed;
|
|
|
|
td = curthread;
|
|
tid = (uintptr_t)td;
|
|
if (SCHEDULER_STOPPED_TD(td))
|
|
return (1);
|
|
|
|
KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(td),
|
|
("sx_try_xlock() by idle thread %p on sx %s @ %s:%d",
|
|
curthread, sx->lock_object.lo_name, file, line));
|
|
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
|
|
("sx_try_xlock() of destroyed sx @ %s:%d", file, line));
|
|
|
|
rval = 1;
|
|
recursed = false;
|
|
x = SX_LOCK_UNLOCKED;
|
|
for (;;) {
|
|
if (atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, tid))
|
|
break;
|
|
if (x == SX_LOCK_UNLOCKED)
|
|
continue;
|
|
if (x == tid && (sx->lock_object.lo_flags & LO_RECURSABLE)) {
|
|
sx->sx_recurse++;
|
|
atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED);
|
|
break;
|
|
}
|
|
rval = 0;
|
|
break;
|
|
}
|
|
|
|
LOCK_LOG_TRY("XLOCK", &sx->lock_object, 0, rval, file, line);
|
|
if (rval) {
|
|
WITNESS_LOCK(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK,
|
|
file, line);
|
|
if (!recursed)
|
|
LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire,
|
|
sx, 0, 0, file, line, LOCKSTAT_WRITER);
|
|
TD_LOCKS_INC(curthread);
|
|
}
|
|
|
|
return (rval);
|
|
}
|
|
|
|
int
|
|
sx_try_xlock_(struct sx *sx, const char *file, int line)
|
|
{
|
|
|
|
return (sx_try_xlock_int(sx LOCK_FILE_LINE_ARG));
|
|
}
|
|
|
|
void
|
|
_sx_xunlock(struct sx *sx, const char *file, int line)
|
|
{
|
|
|
|
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
|
|
("sx_xunlock() of destroyed sx @ %s:%d", file, line));
|
|
_sx_assert(sx, SA_XLOCKED, file, line);
|
|
WITNESS_UNLOCK(&sx->lock_object, LOP_EXCLUSIVE, file, line);
|
|
LOCK_LOG_LOCK("XUNLOCK", &sx->lock_object, 0, sx->sx_recurse, file,
|
|
line);
|
|
#if LOCK_DEBUG > 0
|
|
_sx_xunlock_hard(sx, (uintptr_t)curthread, file, line);
|
|
#else
|
|
__sx_xunlock(sx, curthread, file, line);
|
|
#endif
|
|
TD_LOCKS_DEC(curthread);
|
|
}
|
|
|
|
/*
|
|
* Try to do a non-blocking upgrade from a shared lock to an exclusive lock.
|
|
* This will only succeed if this thread holds a single shared lock.
|
|
* Return 1 if if the upgrade succeed, 0 otherwise.
|
|
*/
|
|
int
|
|
sx_try_upgrade_int(struct sx *sx LOCK_FILE_LINE_ARG_DEF)
|
|
{
|
|
uintptr_t x;
|
|
uintptr_t waiters;
|
|
int success;
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return (1);
|
|
|
|
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
|
|
("sx_try_upgrade() of destroyed sx @ %s:%d", file, line));
|
|
_sx_assert(sx, SA_SLOCKED, file, line);
|
|
|
|
/*
|
|
* Try to switch from one shared lock to an exclusive lock. We need
|
|
* to maintain the SX_LOCK_EXCLUSIVE_WAITERS flag if set so that
|
|
* we will wake up the exclusive waiters when we drop the lock.
|
|
*/
|
|
success = 0;
|
|
x = SX_READ_VALUE(sx);
|
|
for (;;) {
|
|
if (SX_SHARERS(x) > 1)
|
|
break;
|
|
waiters = (x & SX_LOCK_EXCLUSIVE_WAITERS);
|
|
if (atomic_fcmpset_acq_ptr(&sx->sx_lock, &x,
|
|
(uintptr_t)curthread | waiters)) {
|
|
success = 1;
|
|
break;
|
|
}
|
|
}
|
|
LOCK_LOG_TRY("XUPGRADE", &sx->lock_object, 0, success, file, line);
|
|
if (success) {
|
|
WITNESS_UPGRADE(&sx->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK,
|
|
file, line);
|
|
LOCKSTAT_RECORD0(sx__upgrade, sx);
|
|
}
|
|
return (success);
|
|
}
|
|
|
|
int
|
|
sx_try_upgrade_(struct sx *sx, const char *file, int line)
|
|
{
|
|
|
|
return (sx_try_upgrade_int(sx LOCK_FILE_LINE_ARG));
|
|
}
|
|
|
|
/*
|
|
* Downgrade an unrecursed exclusive lock into a single shared lock.
|
|
*/
|
|
void
|
|
sx_downgrade_int(struct sx *sx LOCK_FILE_LINE_ARG_DEF)
|
|
{
|
|
uintptr_t x;
|
|
int wakeup_swapper;
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return;
|
|
|
|
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
|
|
("sx_downgrade() of destroyed sx @ %s:%d", file, line));
|
|
_sx_assert(sx, SA_XLOCKED | SA_NOTRECURSED, file, line);
|
|
#ifndef INVARIANTS
|
|
if (sx_recursed(sx))
|
|
panic("downgrade of a recursed lock");
|
|
#endif
|
|
|
|
WITNESS_DOWNGRADE(&sx->lock_object, 0, file, line);
|
|
|
|
/*
|
|
* Try to switch from an exclusive lock with no shared waiters
|
|
* to one sharer with no shared waiters. If there are
|
|
* exclusive waiters, we don't need to lock the sleep queue so
|
|
* long as we preserve the flag. We do one quick try and if
|
|
* that fails we grab the sleepq lock to keep the flags from
|
|
* changing and do it the slow way.
|
|
*
|
|
* We have to lock the sleep queue if there are shared waiters
|
|
* so we can wake them up.
|
|
*/
|
|
x = sx->sx_lock;
|
|
if (!(x & SX_LOCK_SHARED_WAITERS) &&
|
|
atomic_cmpset_rel_ptr(&sx->sx_lock, x, SX_SHARERS_LOCK(1) |
|
|
(x & SX_LOCK_EXCLUSIVE_WAITERS)))
|
|
goto out;
|
|
|
|
/*
|
|
* Lock the sleep queue so we can read the waiters bits
|
|
* without any races and wakeup any shared waiters.
|
|
*/
|
|
sleepq_lock(&sx->lock_object);
|
|
|
|
/*
|
|
* Preserve SX_LOCK_EXCLUSIVE_WAITERS while downgraded to a single
|
|
* shared lock. If there are any shared waiters, wake them up.
|
|
*/
|
|
wakeup_swapper = 0;
|
|
x = sx->sx_lock;
|
|
atomic_store_rel_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) |
|
|
(x & SX_LOCK_EXCLUSIVE_WAITERS));
|
|
if (x & SX_LOCK_SHARED_WAITERS)
|
|
wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX,
|
|
0, SQ_SHARED_QUEUE);
|
|
sleepq_release(&sx->lock_object);
|
|
|
|
if (wakeup_swapper)
|
|
kick_proc0();
|
|
|
|
out:
|
|
LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line);
|
|
LOCKSTAT_RECORD0(sx__downgrade, sx);
|
|
}
|
|
|
|
void
|
|
sx_downgrade_(struct sx *sx, const char *file, int line)
|
|
{
|
|
|
|
sx_downgrade_int(sx LOCK_FILE_LINE_ARG);
|
|
}
|
|
|
|
/*
|
|
* This function represents the so-called 'hard case' for sx_xlock
|
|
* operation. All 'easy case' failures are redirected to this. Note
|
|
* that ideally this would be a static function, but it needs to be
|
|
* accessible from at least sx.h.
|
|
*/
|
|
int
|
|
_sx_xlock_hard(struct sx *sx, uintptr_t x, int opts LOCK_FILE_LINE_ARG_DEF)
|
|
{
|
|
GIANT_DECLARE;
|
|
uintptr_t tid;
|
|
#ifdef ADAPTIVE_SX
|
|
volatile struct thread *owner;
|
|
u_int i, n, spintries = 0;
|
|
enum { READERS, WRITER } sleep_reason = READERS;
|
|
bool adaptive;
|
|
#endif
|
|
#ifdef LOCK_PROFILING
|
|
uint64_t waittime = 0;
|
|
int contested = 0;
|
|
#endif
|
|
int error = 0;
|
|
#if defined(ADAPTIVE_SX) || defined(KDTRACE_HOOKS)
|
|
struct lock_delay_arg lda;
|
|
#endif
|
|
#ifdef KDTRACE_HOOKS
|
|
u_int sleep_cnt = 0;
|
|
int64_t sleep_time = 0;
|
|
int64_t all_time = 0;
|
|
#endif
|
|
#if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
|
|
uintptr_t state = 0;
|
|
#endif
|
|
int extra_work = 0;
|
|
|
|
tid = (uintptr_t)curthread;
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
if (LOCKSTAT_PROFILE_ENABLED(sx__acquire)) {
|
|
while (x == SX_LOCK_UNLOCKED) {
|
|
if (atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, tid))
|
|
goto out_lockstat;
|
|
}
|
|
extra_work = 1;
|
|
all_time -= lockstat_nsecs(&sx->lock_object);
|
|
state = x;
|
|
}
|
|
#endif
|
|
#ifdef LOCK_PROFILING
|
|
extra_work = 1;
|
|
state = x;
|
|
#endif
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return (0);
|
|
|
|
#if defined(ADAPTIVE_SX)
|
|
lock_delay_arg_init(&lda, &sx_delay);
|
|
#elif defined(KDTRACE_HOOKS)
|
|
lock_delay_arg_init(&lda, NULL);
|
|
#endif
|
|
|
|
if (__predict_false(x == SX_LOCK_UNLOCKED))
|
|
x = SX_READ_VALUE(sx);
|
|
|
|
/* If we already hold an exclusive lock, then recurse. */
|
|
if (__predict_false(lv_sx_owner(x) == (struct thread *)tid)) {
|
|
KASSERT((sx->lock_object.lo_flags & LO_RECURSABLE) != 0,
|
|
("_sx_xlock_hard: recursed on non-recursive sx %s @ %s:%d\n",
|
|
sx->lock_object.lo_name, file, line));
|
|
sx->sx_recurse++;
|
|
atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED);
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p recursing", __func__, sx);
|
|
return (0);
|
|
}
|
|
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__,
|
|
sx->lock_object.lo_name, (void *)sx->sx_lock, file, line);
|
|
|
|
#ifdef ADAPTIVE_SX
|
|
adaptive = ((sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0);
|
|
#endif
|
|
|
|
#ifdef HWPMC_HOOKS
|
|
PMC_SOFT_CALL( , , lock, failed);
|
|
#endif
|
|
lock_profile_obtain_lock_failed(&sx->lock_object, &contested,
|
|
&waittime);
|
|
|
|
#ifndef INVARIANTS
|
|
GIANT_SAVE(extra_work);
|
|
#endif
|
|
|
|
for (;;) {
|
|
if (x == SX_LOCK_UNLOCKED) {
|
|
if (atomic_fcmpset_acq_ptr(&sx->sx_lock, &x, tid))
|
|
break;
|
|
continue;
|
|
}
|
|
#ifdef INVARIANTS
|
|
GIANT_SAVE(extra_work);
|
|
#endif
|
|
#ifdef KDTRACE_HOOKS
|
|
lda.spin_cnt++;
|
|
#endif
|
|
#ifdef ADAPTIVE_SX
|
|
if (__predict_false(!adaptive))
|
|
goto sleepq;
|
|
/*
|
|
* If the lock is write locked and the owner is
|
|
* running on another CPU, spin until the owner stops
|
|
* running or the state of the lock changes.
|
|
*/
|
|
if ((x & SX_LOCK_SHARED) == 0) {
|
|
sleep_reason = WRITER;
|
|
owner = lv_sx_owner(x);
|
|
if (!TD_IS_RUNNING(owner))
|
|
goto sleepq;
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR3(KTR_LOCK, "%s: spinning on %p held by %p",
|
|
__func__, sx, owner);
|
|
KTR_STATE1(KTR_SCHED, "thread", sched_tdname(curthread),
|
|
"spinning", "lockname:\"%s\"",
|
|
sx->lock_object.lo_name);
|
|
do {
|
|
lock_delay(&lda);
|
|
x = SX_READ_VALUE(sx);
|
|
owner = lv_sx_owner(x);
|
|
} while (owner != NULL && TD_IS_RUNNING(owner));
|
|
KTR_STATE0(KTR_SCHED, "thread", sched_tdname(curthread),
|
|
"running");
|
|
continue;
|
|
} else if (SX_SHARERS(x) > 0) {
|
|
sleep_reason = READERS;
|
|
if (spintries == asx_retries)
|
|
goto sleepq;
|
|
spintries++;
|
|
KTR_STATE1(KTR_SCHED, "thread", sched_tdname(curthread),
|
|
"spinning", "lockname:\"%s\"",
|
|
sx->lock_object.lo_name);
|
|
for (i = 0; i < asx_loops; i += n) {
|
|
n = SX_SHARERS(x);
|
|
lock_delay_spin(n);
|
|
x = SX_READ_VALUE(sx);
|
|
if ((x & SX_LOCK_SHARED) == 0 ||
|
|
SX_SHARERS(x) == 0)
|
|
break;
|
|
}
|
|
#ifdef KDTRACE_HOOKS
|
|
lda.spin_cnt += i;
|
|
#endif
|
|
KTR_STATE0(KTR_SCHED, "thread", sched_tdname(curthread),
|
|
"running");
|
|
if (i < asx_loops)
|
|
continue;
|
|
}
|
|
sleepq:
|
|
#endif
|
|
sleepq_lock(&sx->lock_object);
|
|
x = SX_READ_VALUE(sx);
|
|
retry_sleepq:
|
|
|
|
/*
|
|
* If the lock was released while spinning on the
|
|
* sleep queue chain lock, try again.
|
|
*/
|
|
if (x == SX_LOCK_UNLOCKED) {
|
|
sleepq_release(&sx->lock_object);
|
|
continue;
|
|
}
|
|
|
|
#ifdef ADAPTIVE_SX
|
|
/*
|
|
* The current lock owner might have started executing
|
|
* on another CPU (or the lock could have changed
|
|
* owners) while we were waiting on the sleep queue
|
|
* chain lock. If so, drop the sleep queue lock and try
|
|
* again.
|
|
*/
|
|
if (adaptive) {
|
|
if (!(x & SX_LOCK_SHARED)) {
|
|
owner = (struct thread *)SX_OWNER(x);
|
|
if (TD_IS_RUNNING(owner)) {
|
|
sleepq_release(&sx->lock_object);
|
|
continue;
|
|
}
|
|
} else if (SX_SHARERS(x) > 0 && sleep_reason == WRITER) {
|
|
sleepq_release(&sx->lock_object);
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If an exclusive lock was released with both shared
|
|
* and exclusive waiters and a shared waiter hasn't
|
|
* woken up and acquired the lock yet, sx_lock will be
|
|
* set to SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS.
|
|
* If we see that value, try to acquire it once. Note
|
|
* that we have to preserve SX_LOCK_EXCLUSIVE_WAITERS
|
|
* as there are other exclusive waiters still. If we
|
|
* fail, restart the loop.
|
|
*/
|
|
if (x == (SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS)) {
|
|
if (!atomic_fcmpset_acq_ptr(&sx->sx_lock, &x,
|
|
tid | SX_LOCK_EXCLUSIVE_WAITERS))
|
|
goto retry_sleepq;
|
|
sleepq_release(&sx->lock_object);
|
|
CTR2(KTR_LOCK, "%s: %p claimed by new writer",
|
|
__func__, sx);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Try to set the SX_LOCK_EXCLUSIVE_WAITERS. If we fail,
|
|
* than loop back and retry.
|
|
*/
|
|
if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) {
|
|
if (!atomic_fcmpset_ptr(&sx->sx_lock, &x,
|
|
x | SX_LOCK_EXCLUSIVE_WAITERS)) {
|
|
goto retry_sleepq;
|
|
}
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p set excl waiters flag",
|
|
__func__, sx);
|
|
}
|
|
|
|
/*
|
|
* Since we have been unable to acquire the exclusive
|
|
* lock and the exclusive waiters flag is set, we have
|
|
* to sleep.
|
|
*/
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p blocking on sleep queue",
|
|
__func__, sx);
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
sleep_time -= lockstat_nsecs(&sx->lock_object);
|
|
#endif
|
|
sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name,
|
|
SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ?
|
|
SLEEPQ_INTERRUPTIBLE : 0), SQ_EXCLUSIVE_QUEUE);
|
|
if (!(opts & SX_INTERRUPTIBLE))
|
|
sleepq_wait(&sx->lock_object, 0);
|
|
else
|
|
error = sleepq_wait_sig(&sx->lock_object, 0);
|
|
#ifdef KDTRACE_HOOKS
|
|
sleep_time += lockstat_nsecs(&sx->lock_object);
|
|
sleep_cnt++;
|
|
#endif
|
|
if (error) {
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK,
|
|
"%s: interruptible sleep by %p suspended by signal",
|
|
__func__, sx);
|
|
break;
|
|
}
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p resuming from sleep queue",
|
|
__func__, sx);
|
|
x = SX_READ_VALUE(sx);
|
|
}
|
|
#if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
|
|
if (__predict_true(!extra_work))
|
|
return (error);
|
|
#endif
|
|
#ifdef KDTRACE_HOOKS
|
|
all_time += lockstat_nsecs(&sx->lock_object);
|
|
if (sleep_time)
|
|
LOCKSTAT_RECORD4(sx__block, sx, sleep_time,
|
|
LOCKSTAT_WRITER, (state & SX_LOCK_SHARED) == 0,
|
|
(state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state));
|
|
if (lda.spin_cnt > sleep_cnt)
|
|
LOCKSTAT_RECORD4(sx__spin, sx, all_time - sleep_time,
|
|
LOCKSTAT_WRITER, (state & SX_LOCK_SHARED) == 0,
|
|
(state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state));
|
|
out_lockstat:
|
|
#endif
|
|
if (!error)
|
|
LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire, sx,
|
|
contested, waittime, file, line, LOCKSTAT_WRITER);
|
|
GIANT_RESTORE();
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* This function represents the so-called 'hard case' for sx_xunlock
|
|
* operation. All 'easy case' failures are redirected to this. Note
|
|
* that ideally this would be a static function, but it needs to be
|
|
* accessible from at least sx.h.
|
|
*/
|
|
void
|
|
_sx_xunlock_hard(struct sx *sx, uintptr_t x LOCK_FILE_LINE_ARG_DEF)
|
|
{
|
|
uintptr_t tid, setx;
|
|
int queue, wakeup_swapper;
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return;
|
|
|
|
tid = (uintptr_t)curthread;
|
|
|
|
if (__predict_false(x == tid))
|
|
x = SX_READ_VALUE(sx);
|
|
|
|
MPASS(!(x & SX_LOCK_SHARED));
|
|
|
|
if (__predict_false(x & SX_LOCK_RECURSED)) {
|
|
/* The lock is recursed, unrecurse one level. */
|
|
if ((--sx->sx_recurse) == 0)
|
|
atomic_clear_ptr(&sx->sx_lock, SX_LOCK_RECURSED);
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p unrecursing", __func__, sx);
|
|
return;
|
|
}
|
|
|
|
LOCKSTAT_PROFILE_RELEASE_RWLOCK(sx__release, sx, LOCKSTAT_WRITER);
|
|
if (x == tid &&
|
|
atomic_cmpset_rel_ptr(&sx->sx_lock, tid, SX_LOCK_UNLOCKED))
|
|
return;
|
|
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p contested", __func__, sx);
|
|
|
|
sleepq_lock(&sx->lock_object);
|
|
x = SX_READ_VALUE(sx);
|
|
MPASS(x & (SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS));
|
|
|
|
/*
|
|
* The wake up algorithm here is quite simple and probably not
|
|
* ideal. It gives precedence to shared waiters if they are
|
|
* present. For this condition, we have to preserve the
|
|
* state of the exclusive waiters flag.
|
|
* If interruptible sleeps left the shared queue empty avoid a
|
|
* starvation for the threads sleeping on the exclusive queue by giving
|
|
* them precedence and cleaning up the shared waiters bit anyway.
|
|
*/
|
|
setx = SX_LOCK_UNLOCKED;
|
|
queue = SQ_EXCLUSIVE_QUEUE;
|
|
if ((x & SX_LOCK_SHARED_WAITERS) != 0 &&
|
|
sleepq_sleepcnt(&sx->lock_object, SQ_SHARED_QUEUE) != 0) {
|
|
queue = SQ_SHARED_QUEUE;
|
|
setx |= (x & SX_LOCK_EXCLUSIVE_WAITERS);
|
|
}
|
|
atomic_store_rel_ptr(&sx->sx_lock, setx);
|
|
|
|
/* Wake up all the waiters for the specific queue. */
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR3(KTR_LOCK, "%s: %p waking up all threads on %s queue",
|
|
__func__, sx, queue == SQ_SHARED_QUEUE ? "shared" :
|
|
"exclusive");
|
|
|
|
wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX, 0,
|
|
queue);
|
|
sleepq_release(&sx->lock_object);
|
|
if (wakeup_swapper)
|
|
kick_proc0();
|
|
}
|
|
|
|
static bool __always_inline
|
|
__sx_slock_try(struct sx *sx, uintptr_t *xp LOCK_FILE_LINE_ARG_DEF)
|
|
{
|
|
|
|
/*
|
|
* If no other thread has an exclusive lock then try to bump up
|
|
* the count of sharers. Since we have to preserve the state
|
|
* of SX_LOCK_EXCLUSIVE_WAITERS, if we fail to acquire the
|
|
* shared lock loop back and retry.
|
|
*/
|
|
while (*xp & SX_LOCK_SHARED) {
|
|
MPASS(!(*xp & SX_LOCK_SHARED_WAITERS));
|
|
if (atomic_fcmpset_acq_ptr(&sx->sx_lock, xp,
|
|
*xp + SX_ONE_SHARER)) {
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR4(KTR_LOCK, "%s: %p succeed %p -> %p",
|
|
__func__, sx, (void *)*xp,
|
|
(void *)(*xp + SX_ONE_SHARER));
|
|
return (true);
|
|
}
|
|
}
|
|
return (false);
|
|
}
|
|
|
|
static int __noinline
|
|
_sx_slock_hard(struct sx *sx, int opts, uintptr_t x LOCK_FILE_LINE_ARG_DEF)
|
|
{
|
|
GIANT_DECLARE;
|
|
#ifdef ADAPTIVE_SX
|
|
volatile struct thread *owner;
|
|
bool adaptive;
|
|
#endif
|
|
#ifdef LOCK_PROFILING
|
|
uint64_t waittime = 0;
|
|
int contested = 0;
|
|
#endif
|
|
int error = 0;
|
|
#if defined(ADAPTIVE_SX) || defined(KDTRACE_HOOKS)
|
|
struct lock_delay_arg lda;
|
|
#endif
|
|
#ifdef KDTRACE_HOOKS
|
|
u_int sleep_cnt = 0;
|
|
int64_t sleep_time = 0;
|
|
int64_t all_time = 0;
|
|
#endif
|
|
#if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
|
|
uintptr_t state = 0;
|
|
#endif
|
|
int extra_work = 0;
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
if (LOCKSTAT_PROFILE_ENABLED(sx__acquire)) {
|
|
if (__sx_slock_try(sx, &x LOCK_FILE_LINE_ARG))
|
|
goto out_lockstat;
|
|
extra_work = 1;
|
|
all_time -= lockstat_nsecs(&sx->lock_object);
|
|
state = x;
|
|
}
|
|
#endif
|
|
#ifdef LOCK_PROFILING
|
|
extra_work = 1;
|
|
state = x;
|
|
#endif
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return (0);
|
|
|
|
#if defined(ADAPTIVE_SX)
|
|
lock_delay_arg_init(&lda, &sx_delay);
|
|
#elif defined(KDTRACE_HOOKS)
|
|
lock_delay_arg_init(&lda, NULL);
|
|
#endif
|
|
|
|
#ifdef ADAPTIVE_SX
|
|
adaptive = ((sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0);
|
|
#endif
|
|
|
|
#ifdef HWPMC_HOOKS
|
|
PMC_SOFT_CALL( , , lock, failed);
|
|
#endif
|
|
lock_profile_obtain_lock_failed(&sx->lock_object, &contested,
|
|
&waittime);
|
|
|
|
#ifndef INVARIANTS
|
|
GIANT_SAVE(extra_work);
|
|
#endif
|
|
|
|
/*
|
|
* As with rwlocks, we don't make any attempt to try to block
|
|
* shared locks once there is an exclusive waiter.
|
|
*/
|
|
for (;;) {
|
|
if (__sx_slock_try(sx, &x LOCK_FILE_LINE_ARG))
|
|
break;
|
|
#ifdef INVARIANTS
|
|
GIANT_SAVE(extra_work);
|
|
#endif
|
|
#ifdef KDTRACE_HOOKS
|
|
lda.spin_cnt++;
|
|
#endif
|
|
|
|
#ifdef ADAPTIVE_SX
|
|
if (__predict_false(!adaptive))
|
|
goto sleepq;
|
|
/*
|
|
* If the owner is running on another CPU, spin until
|
|
* the owner stops running or the state of the lock
|
|
* changes.
|
|
*/
|
|
owner = lv_sx_owner(x);
|
|
if (TD_IS_RUNNING(owner)) {
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR3(KTR_LOCK,
|
|
"%s: spinning on %p held by %p",
|
|
__func__, sx, owner);
|
|
KTR_STATE1(KTR_SCHED, "thread",
|
|
sched_tdname(curthread), "spinning",
|
|
"lockname:\"%s\"", sx->lock_object.lo_name);
|
|
do {
|
|
lock_delay(&lda);
|
|
x = SX_READ_VALUE(sx);
|
|
owner = lv_sx_owner(x);
|
|
} while (owner != NULL && TD_IS_RUNNING(owner));
|
|
KTR_STATE0(KTR_SCHED, "thread",
|
|
sched_tdname(curthread), "running");
|
|
continue;
|
|
}
|
|
sleepq:
|
|
#endif
|
|
|
|
/*
|
|
* Some other thread already has an exclusive lock, so
|
|
* start the process of blocking.
|
|
*/
|
|
sleepq_lock(&sx->lock_object);
|
|
x = SX_READ_VALUE(sx);
|
|
retry_sleepq:
|
|
/*
|
|
* The lock could have been released while we spun.
|
|
* In this case loop back and retry.
|
|
*/
|
|
if (x & SX_LOCK_SHARED) {
|
|
sleepq_release(&sx->lock_object);
|
|
continue;
|
|
}
|
|
|
|
#ifdef ADAPTIVE_SX
|
|
/*
|
|
* If the owner is running on another CPU, spin until
|
|
* the owner stops running or the state of the lock
|
|
* changes.
|
|
*/
|
|
if (!(x & SX_LOCK_SHARED) && adaptive) {
|
|
owner = (struct thread *)SX_OWNER(x);
|
|
if (TD_IS_RUNNING(owner)) {
|
|
sleepq_release(&sx->lock_object);
|
|
x = SX_READ_VALUE(sx);
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Try to set the SX_LOCK_SHARED_WAITERS flag. If we
|
|
* fail to set it drop the sleep queue lock and loop
|
|
* back.
|
|
*/
|
|
if (!(x & SX_LOCK_SHARED_WAITERS)) {
|
|
if (!atomic_fcmpset_ptr(&sx->sx_lock, &x,
|
|
x | SX_LOCK_SHARED_WAITERS))
|
|
goto retry_sleepq;
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p set shared waiters flag",
|
|
__func__, sx);
|
|
}
|
|
|
|
/*
|
|
* Since we have been unable to acquire the shared lock,
|
|
* we have to sleep.
|
|
*/
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p blocking on sleep queue",
|
|
__func__, sx);
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
sleep_time -= lockstat_nsecs(&sx->lock_object);
|
|
#endif
|
|
sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name,
|
|
SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ?
|
|
SLEEPQ_INTERRUPTIBLE : 0), SQ_SHARED_QUEUE);
|
|
if (!(opts & SX_INTERRUPTIBLE))
|
|
sleepq_wait(&sx->lock_object, 0);
|
|
else
|
|
error = sleepq_wait_sig(&sx->lock_object, 0);
|
|
#ifdef KDTRACE_HOOKS
|
|
sleep_time += lockstat_nsecs(&sx->lock_object);
|
|
sleep_cnt++;
|
|
#endif
|
|
if (error) {
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK,
|
|
"%s: interruptible sleep by %p suspended by signal",
|
|
__func__, sx);
|
|
break;
|
|
}
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p resuming from sleep queue",
|
|
__func__, sx);
|
|
x = SX_READ_VALUE(sx);
|
|
}
|
|
#if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
|
|
if (__predict_true(!extra_work))
|
|
return (error);
|
|
#endif
|
|
#ifdef KDTRACE_HOOKS
|
|
all_time += lockstat_nsecs(&sx->lock_object);
|
|
if (sleep_time)
|
|
LOCKSTAT_RECORD4(sx__block, sx, sleep_time,
|
|
LOCKSTAT_READER, (state & SX_LOCK_SHARED) == 0,
|
|
(state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state));
|
|
if (lda.spin_cnt > sleep_cnt)
|
|
LOCKSTAT_RECORD4(sx__spin, sx, all_time - sleep_time,
|
|
LOCKSTAT_READER, (state & SX_LOCK_SHARED) == 0,
|
|
(state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state));
|
|
out_lockstat:
|
|
#endif
|
|
if (error == 0) {
|
|
LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire, sx,
|
|
contested, waittime, file, line, LOCKSTAT_READER);
|
|
}
|
|
GIANT_RESTORE();
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
_sx_slock_int(struct sx *sx, int opts LOCK_FILE_LINE_ARG_DEF)
|
|
{
|
|
uintptr_t x;
|
|
int error;
|
|
|
|
KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() ||
|
|
!TD_IS_IDLETHREAD(curthread),
|
|
("sx_slock() by idle thread %p on sx %s @ %s:%d",
|
|
curthread, sx->lock_object.lo_name, file, line));
|
|
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
|
|
("sx_slock() of destroyed sx @ %s:%d", file, line));
|
|
WITNESS_CHECKORDER(&sx->lock_object, LOP_NEWORDER, file, line, NULL);
|
|
|
|
error = 0;
|
|
x = SX_READ_VALUE(sx);
|
|
if (__predict_false(LOCKSTAT_PROFILE_ENABLED(sx__acquire) ||
|
|
!__sx_slock_try(sx, &x LOCK_FILE_LINE_ARG)))
|
|
error = _sx_slock_hard(sx, opts, x LOCK_FILE_LINE_ARG);
|
|
else
|
|
lock_profile_obtain_lock_success(&sx->lock_object, 0, 0,
|
|
file, line);
|
|
if (error == 0) {
|
|
LOCK_LOG_LOCK("SLOCK", &sx->lock_object, 0, 0, file, line);
|
|
WITNESS_LOCK(&sx->lock_object, 0, file, line);
|
|
TD_LOCKS_INC(curthread);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
_sx_slock(struct sx *sx, int opts, const char *file, int line)
|
|
{
|
|
|
|
return (_sx_slock_int(sx, opts LOCK_FILE_LINE_ARG));
|
|
}
|
|
|
|
static bool __always_inline
|
|
_sx_sunlock_try(struct sx *sx, uintptr_t *xp)
|
|
{
|
|
|
|
for (;;) {
|
|
/*
|
|
* We should never have sharers while at least one thread
|
|
* holds a shared lock.
|
|
*/
|
|
KASSERT(!(*xp & SX_LOCK_SHARED_WAITERS),
|
|
("%s: waiting sharers", __func__));
|
|
|
|
/*
|
|
* See if there is more than one shared lock held. If
|
|
* so, just drop one and return.
|
|
*/
|
|
if (SX_SHARERS(*xp) > 1) {
|
|
if (atomic_fcmpset_rel_ptr(&sx->sx_lock, xp,
|
|
*xp - SX_ONE_SHARER)) {
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR4(KTR_LOCK,
|
|
"%s: %p succeeded %p -> %p",
|
|
__func__, sx, (void *)*xp,
|
|
(void *)(*xp - SX_ONE_SHARER));
|
|
return (true);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If there aren't any waiters for an exclusive lock,
|
|
* then try to drop it quickly.
|
|
*/
|
|
if (!(*xp & SX_LOCK_EXCLUSIVE_WAITERS)) {
|
|
MPASS(*xp == SX_SHARERS_LOCK(1));
|
|
*xp = SX_SHARERS_LOCK(1);
|
|
if (atomic_fcmpset_rel_ptr(&sx->sx_lock,
|
|
xp, SX_LOCK_UNLOCKED)) {
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p last succeeded",
|
|
__func__, sx);
|
|
return (true);
|
|
}
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
return (false);
|
|
}
|
|
|
|
static void __noinline
|
|
_sx_sunlock_hard(struct sx *sx, uintptr_t x LOCK_FILE_LINE_ARG_DEF)
|
|
{
|
|
int wakeup_swapper = 0;
|
|
uintptr_t setx;
|
|
|
|
if (SCHEDULER_STOPPED())
|
|
return;
|
|
|
|
if (_sx_sunlock_try(sx, &x))
|
|
goto out_lockstat;
|
|
|
|
/*
|
|
* At this point, there should just be one sharer with
|
|
* exclusive waiters.
|
|
*/
|
|
MPASS(x == (SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS));
|
|
|
|
sleepq_lock(&sx->lock_object);
|
|
x = SX_READ_VALUE(sx);
|
|
for (;;) {
|
|
MPASS(x & SX_LOCK_EXCLUSIVE_WAITERS);
|
|
MPASS(!(x & SX_LOCK_SHARED_WAITERS));
|
|
if (_sx_sunlock_try(sx, &x))
|
|
break;
|
|
|
|
/*
|
|
* Wake up semantic here is quite simple:
|
|
* Just wake up all the exclusive waiters.
|
|
* Note that the state of the lock could have changed,
|
|
* so if it fails loop back and retry.
|
|
*/
|
|
setx = x - SX_ONE_SHARER;
|
|
setx &= ~SX_LOCK_EXCLUSIVE_WAITERS;
|
|
if (!atomic_fcmpset_rel_ptr(&sx->sx_lock, &x, setx))
|
|
continue;
|
|
if (LOCK_LOG_TEST(&sx->lock_object, 0))
|
|
CTR2(KTR_LOCK, "%s: %p waking up all thread on"
|
|
"exclusive queue", __func__, sx);
|
|
wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX,
|
|
0, SQ_EXCLUSIVE_QUEUE);
|
|
break;
|
|
}
|
|
sleepq_release(&sx->lock_object);
|
|
if (wakeup_swapper)
|
|
kick_proc0();
|
|
out_lockstat:
|
|
LOCKSTAT_PROFILE_RELEASE_RWLOCK(sx__release, sx, LOCKSTAT_READER);
|
|
}
|
|
|
|
void
|
|
_sx_sunlock_int(struct sx *sx LOCK_FILE_LINE_ARG_DEF)
|
|
{
|
|
uintptr_t x;
|
|
|
|
KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
|
|
("sx_sunlock() of destroyed sx @ %s:%d", file, line));
|
|
_sx_assert(sx, SA_SLOCKED, file, line);
|
|
WITNESS_UNLOCK(&sx->lock_object, 0, file, line);
|
|
LOCK_LOG_LOCK("SUNLOCK", &sx->lock_object, 0, 0, file, line);
|
|
|
|
x = SX_READ_VALUE(sx);
|
|
if (__predict_false(LOCKSTAT_PROFILE_ENABLED(sx__release) ||
|
|
!_sx_sunlock_try(sx, &x)))
|
|
_sx_sunlock_hard(sx, x LOCK_FILE_LINE_ARG);
|
|
else
|
|
lock_profile_release_lock(&sx->lock_object);
|
|
|
|
TD_LOCKS_DEC(curthread);
|
|
}
|
|
|
|
void
|
|
_sx_sunlock(struct sx *sx, const char *file, int line)
|
|
{
|
|
|
|
_sx_sunlock_int(sx LOCK_FILE_LINE_ARG);
|
|
}
|
|
|
|
#ifdef INVARIANT_SUPPORT
|
|
#ifndef INVARIANTS
|
|
#undef _sx_assert
|
|
#endif
|
|
|
|
/*
|
|
* In the non-WITNESS case, sx_assert() can only detect that at least
|
|
* *some* thread owns an slock, but it cannot guarantee that *this*
|
|
* thread owns an slock.
|
|
*/
|
|
void
|
|
_sx_assert(const struct sx *sx, int what, const char *file, int line)
|
|
{
|
|
#ifndef WITNESS
|
|
int slocked = 0;
|
|
#endif
|
|
|
|
if (panicstr != NULL)
|
|
return;
|
|
switch (what) {
|
|
case SA_SLOCKED:
|
|
case SA_SLOCKED | SA_NOTRECURSED:
|
|
case SA_SLOCKED | SA_RECURSED:
|
|
#ifndef WITNESS
|
|
slocked = 1;
|
|
/* FALLTHROUGH */
|
|
#endif
|
|
case SA_LOCKED:
|
|
case SA_LOCKED | SA_NOTRECURSED:
|
|
case SA_LOCKED | SA_RECURSED:
|
|
#ifdef WITNESS
|
|
witness_assert(&sx->lock_object, what, file, line);
|
|
#else
|
|
/*
|
|
* If some other thread has an exclusive lock or we
|
|
* have one and are asserting a shared lock, fail.
|
|
* Also, if no one has a lock at all, fail.
|
|
*/
|
|
if (sx->sx_lock == SX_LOCK_UNLOCKED ||
|
|
(!(sx->sx_lock & SX_LOCK_SHARED) && (slocked ||
|
|
sx_xholder(sx) != curthread)))
|
|
panic("Lock %s not %slocked @ %s:%d\n",
|
|
sx->lock_object.lo_name, slocked ? "share " : "",
|
|
file, line);
|
|
|
|
if (!(sx->sx_lock & SX_LOCK_SHARED)) {
|
|
if (sx_recursed(sx)) {
|
|
if (what & SA_NOTRECURSED)
|
|
panic("Lock %s recursed @ %s:%d\n",
|
|
sx->lock_object.lo_name, file,
|
|
line);
|
|
} else if (what & SA_RECURSED)
|
|
panic("Lock %s not recursed @ %s:%d\n",
|
|
sx->lock_object.lo_name, file, line);
|
|
}
|
|
#endif
|
|
break;
|
|
case SA_XLOCKED:
|
|
case SA_XLOCKED | SA_NOTRECURSED:
|
|
case SA_XLOCKED | SA_RECURSED:
|
|
if (sx_xholder(sx) != curthread)
|
|
panic("Lock %s not exclusively locked @ %s:%d\n",
|
|
sx->lock_object.lo_name, file, line);
|
|
if (sx_recursed(sx)) {
|
|
if (what & SA_NOTRECURSED)
|
|
panic("Lock %s recursed @ %s:%d\n",
|
|
sx->lock_object.lo_name, file, line);
|
|
} else if (what & SA_RECURSED)
|
|
panic("Lock %s not recursed @ %s:%d\n",
|
|
sx->lock_object.lo_name, file, line);
|
|
break;
|
|
case SA_UNLOCKED:
|
|
#ifdef WITNESS
|
|
witness_assert(&sx->lock_object, what, file, line);
|
|
#else
|
|
/*
|
|
* If we hold an exclusve lock fail. We can't
|
|
* reliably check to see if we hold a shared lock or
|
|
* not.
|
|
*/
|
|
if (sx_xholder(sx) == curthread)
|
|
panic("Lock %s exclusively locked @ %s:%d\n",
|
|
sx->lock_object.lo_name, file, line);
|
|
#endif
|
|
break;
|
|
default:
|
|
panic("Unknown sx lock assertion: %d @ %s:%d", what, file,
|
|
line);
|
|
}
|
|
}
|
|
#endif /* INVARIANT_SUPPORT */
|
|
|
|
#ifdef DDB
|
|
static void
|
|
db_show_sx(const struct lock_object *lock)
|
|
{
|
|
struct thread *td;
|
|
const struct sx *sx;
|
|
|
|
sx = (const struct sx *)lock;
|
|
|
|
db_printf(" state: ");
|
|
if (sx->sx_lock == SX_LOCK_UNLOCKED)
|
|
db_printf("UNLOCKED\n");
|
|
else if (sx->sx_lock == SX_LOCK_DESTROYED) {
|
|
db_printf("DESTROYED\n");
|
|
return;
|
|
} else if (sx->sx_lock & SX_LOCK_SHARED)
|
|
db_printf("SLOCK: %ju\n", (uintmax_t)SX_SHARERS(sx->sx_lock));
|
|
else {
|
|
td = sx_xholder(sx);
|
|
db_printf("XLOCK: %p (tid %d, pid %d, \"%s\")\n", td,
|
|
td->td_tid, td->td_proc->p_pid, td->td_name);
|
|
if (sx_recursed(sx))
|
|
db_printf(" recursed: %d\n", sx->sx_recurse);
|
|
}
|
|
|
|
db_printf(" waiters: ");
|
|
switch(sx->sx_lock &
|
|
(SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS)) {
|
|
case SX_LOCK_SHARED_WAITERS:
|
|
db_printf("shared\n");
|
|
break;
|
|
case SX_LOCK_EXCLUSIVE_WAITERS:
|
|
db_printf("exclusive\n");
|
|
break;
|
|
case SX_LOCK_SHARED_WAITERS | SX_LOCK_EXCLUSIVE_WAITERS:
|
|
db_printf("exclusive and shared\n");
|
|
break;
|
|
default:
|
|
db_printf("none\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check to see if a thread that is blocked on a sleep queue is actually
|
|
* blocked on an sx lock. If so, output some details and return true.
|
|
* If the lock has an exclusive owner, return that in *ownerp.
|
|
*/
|
|
int
|
|
sx_chain(struct thread *td, struct thread **ownerp)
|
|
{
|
|
struct sx *sx;
|
|
|
|
/*
|
|
* Check to see if this thread is blocked on an sx lock.
|
|
* First, we check the lock class. If that is ok, then we
|
|
* compare the lock name against the wait message.
|
|
*/
|
|
sx = td->td_wchan;
|
|
if (LOCK_CLASS(&sx->lock_object) != &lock_class_sx ||
|
|
sx->lock_object.lo_name != td->td_wmesg)
|
|
return (0);
|
|
|
|
/* We think we have an sx lock, so output some details. */
|
|
db_printf("blocked on sx \"%s\" ", td->td_wmesg);
|
|
*ownerp = sx_xholder(sx);
|
|
if (sx->sx_lock & SX_LOCK_SHARED)
|
|
db_printf("SLOCK (count %ju)\n",
|
|
(uintmax_t)SX_SHARERS(sx->sx_lock));
|
|
else
|
|
db_printf("XLOCK\n");
|
|
return (1);
|
|
}
|
|
#endif
|