freebsd-nq/sys/pci/if_ax.c
1999-08-28 01:08:13 +00:00

2241 lines
51 KiB
C

/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* ASIX AX88140A and AX88141 fast ethernet PCI NIC driver.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The ASIX Electronics AX88140A is still another DEC 21x4x clone. It's
* a reasonably close copy of the tulip, except for the receiver filter
* programming. Where the DEC chip has a special setup frame that
* needs to be downloaded into the transmit DMA engine, the ASIX chip
* has a less complicated setup frame which is written into one of
* the registers.
*/
#include "bpf.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#if NBPF > 0
#include <net/bpf.h>
#endif
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#define AX_USEIOSPACE
/* #define AX_BACKGROUND_AUTONEG */
#include <pci/if_axreg.h>
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct ax_type ax_devs[] = {
{ AX_VENDORID, AX_DEVICEID_AX88140A,
"ASIX AX88140A 10/100BaseTX" },
{ AX_VENDORID, AX_DEVICEID_AX88140A,
"ASIX AX88141 10/100BaseTX" },
{ 0, 0, NULL }
};
/*
* Various supported PHY vendors/types and their names. Note that
* this driver will work with pretty much any MII-compliant PHY,
* so failure to positively identify the chip is not a fatal error.
*/
static struct ax_type ax_phys[] = {
{ TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" },
{ TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" },
{ NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"},
{ LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" },
{ INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" },
{ SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" },
{ 0, 0, "<MII-compliant physical interface>" }
};
static int ax_probe __P((device_t));
static int ax_attach __P((device_t));
static int ax_detach __P((device_t));
static int ax_newbuf __P((struct ax_softc *,
struct ax_chain_onefrag *,
struct mbuf *));
static int ax_encap __P((struct ax_softc *, struct ax_chain *,
struct mbuf *));
static void ax_rxeof __P((struct ax_softc *));
static void ax_rxeoc __P((struct ax_softc *));
static void ax_txeof __P((struct ax_softc *));
static void ax_txeoc __P((struct ax_softc *));
static void ax_intr __P((void *));
static void ax_start __P((struct ifnet *));
static int ax_ioctl __P((struct ifnet *, u_long, caddr_t));
static void ax_init __P((void *));
static void ax_stop __P((struct ax_softc *));
static void ax_watchdog __P((struct ifnet *));
static void ax_shutdown __P((device_t));
static int ax_ifmedia_upd __P((struct ifnet *));
static void ax_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static void ax_delay __P((struct ax_softc *));
static void ax_eeprom_idle __P((struct ax_softc *));
static void ax_eeprom_putbyte __P((struct ax_softc *, int));
static void ax_eeprom_getword __P((struct ax_softc *, int, u_int16_t *));
static void ax_read_eeprom __P((struct ax_softc *, caddr_t, int,
int, int));
static void ax_mii_writebit __P((struct ax_softc *, int));
static int ax_mii_readbit __P((struct ax_softc *));
static void ax_mii_sync __P((struct ax_softc *));
static void ax_mii_send __P((struct ax_softc *, u_int32_t, int));
static int ax_mii_readreg __P((struct ax_softc *, struct ax_mii_frame *));
static int ax_mii_writereg __P((struct ax_softc *, struct ax_mii_frame *));
static u_int16_t ax_phy_readreg __P((struct ax_softc *, int));
static void ax_phy_writereg __P((struct ax_softc *, int, int));
static void ax_autoneg_xmit __P((struct ax_softc *));
static void ax_autoneg_mii __P((struct ax_softc *, int, int));
static void ax_setmode_mii __P((struct ax_softc *, int));
static void ax_setmode __P((struct ax_softc *, int, int));
static void ax_getmode_mii __P((struct ax_softc *));
static void ax_setcfg __P((struct ax_softc *, int));
static u_int32_t ax_calchash __P((caddr_t));
static void ax_setmulti __P((struct ax_softc *));
static void ax_reset __P((struct ax_softc *));
static int ax_list_rx_init __P((struct ax_softc *));
static int ax_list_tx_init __P((struct ax_softc *));
#ifdef AX_USEIOSPACE
#define AX_RES SYS_RES_IOPORT
#define AX_RID AX_PCI_LOIO
#else
#define AX_RES SYS_RES_IOPORT
#define AX_RID AX_PCI_LOIO
#endif
static device_method_t ax_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ax_probe),
DEVMETHOD(device_attach, ax_attach),
DEVMETHOD(device_detach, ax_detach),
DEVMETHOD(device_shutdown, ax_shutdown),
{ 0, 0 }
};
static driver_t ax_driver = {
"ax",
ax_methods,
sizeof(struct ax_softc)
};
static devclass_t ax_devclass;
DRIVER_MODULE(ax, pci, ax_driver, ax_devclass, 0, 0);
#define AX_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | x)
#define AX_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~x)
#define SIO_SET(x) \
CSR_WRITE_4(sc, AX_SIO, \
CSR_READ_4(sc, AX_SIO) | x)
#define SIO_CLR(x) \
CSR_WRITE_4(sc, AX_SIO, \
CSR_READ_4(sc, AX_SIO) & ~x)
static void ax_delay(sc)
struct ax_softc *sc;
{
int idx;
for (idx = (300 / 33) + 1; idx > 0; idx--)
CSR_READ_4(sc, AX_BUSCTL);
}
static void ax_eeprom_idle(sc)
struct ax_softc *sc;
{
register int i;
CSR_WRITE_4(sc, AX_SIO, AX_SIO_EESEL);
ax_delay(sc);
AX_SETBIT(sc, AX_SIO, AX_SIO_ROMCTL_READ);
ax_delay(sc);
AX_SETBIT(sc, AX_SIO, AX_SIO_EE_CS);
ax_delay(sc);
AX_SETBIT(sc, AX_SIO, AX_SIO_EE_CLK);
ax_delay(sc);
for (i = 0; i < 25; i++) {
AX_CLRBIT(sc, AX_SIO, AX_SIO_EE_CLK);
ax_delay(sc);
AX_SETBIT(sc, AX_SIO, AX_SIO_EE_CLK);
ax_delay(sc);
}
AX_CLRBIT(sc, AX_SIO, AX_SIO_EE_CLK);
ax_delay(sc);
AX_CLRBIT(sc, AX_SIO, AX_SIO_EE_CS);
ax_delay(sc);
CSR_WRITE_4(sc, AX_SIO, 0x00000000);
return;
}
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void ax_eeprom_putbyte(sc, addr)
struct ax_softc *sc;
int addr;
{
register int d, i;
d = addr | AX_EECMD_READ;
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
SIO_SET(AX_SIO_EE_DATAIN);
} else {
SIO_CLR(AX_SIO_EE_DATAIN);
}
ax_delay(sc);
SIO_SET(AX_SIO_EE_CLK);
ax_delay(sc);
SIO_CLR(AX_SIO_EE_CLK);
ax_delay(sc);
}
return;
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void ax_eeprom_getword(sc, addr, dest)
struct ax_softc *sc;
int addr;
u_int16_t *dest;
{
register int i;
u_int16_t word = 0;
/* Force EEPROM to idle state. */
ax_eeprom_idle(sc);
/* Enter EEPROM access mode. */
CSR_WRITE_4(sc, AX_SIO, AX_SIO_EESEL);
ax_delay(sc);
AX_SETBIT(sc, AX_SIO, AX_SIO_ROMCTL_READ);
ax_delay(sc);
AX_SETBIT(sc, AX_SIO, AX_SIO_EE_CS);
ax_delay(sc);
AX_SETBIT(sc, AX_SIO, AX_SIO_EE_CLK);
ax_delay(sc);
/*
* Send address of word we want to read.
*/
ax_eeprom_putbyte(sc, addr);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
SIO_SET(AX_SIO_EE_CLK);
ax_delay(sc);
if (CSR_READ_4(sc, AX_SIO) & AX_SIO_EE_DATAOUT)
word |= i;
ax_delay(sc);
SIO_CLR(AX_SIO_EE_CLK);
ax_delay(sc);
}
/* Turn off EEPROM access mode. */
ax_eeprom_idle(sc);
*dest = word;
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void ax_read_eeprom(sc, dest, off, cnt, swap)
struct ax_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
ax_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return;
}
/*
* Write a bit to the MII bus.
*/
static void ax_mii_writebit(sc, bit)
struct ax_softc *sc;
int bit;
{
if (bit)
CSR_WRITE_4(sc, AX_SIO, AX_SIO_ROMCTL_WRITE|AX_SIO_MII_DATAOUT);
else
CSR_WRITE_4(sc, AX_SIO, AX_SIO_ROMCTL_WRITE);
AX_SETBIT(sc, AX_SIO, AX_SIO_MII_CLK);
AX_CLRBIT(sc, AX_SIO, AX_SIO_MII_CLK);
return;
}
/*
* Read a bit from the MII bus.
*/
static int ax_mii_readbit(sc)
struct ax_softc *sc;
{
CSR_WRITE_4(sc, AX_SIO, AX_SIO_ROMCTL_READ|AX_SIO_MII_DIR);
CSR_READ_4(sc, AX_SIO);
AX_SETBIT(sc, AX_SIO, AX_SIO_MII_CLK);
AX_CLRBIT(sc, AX_SIO, AX_SIO_MII_CLK);
if (CSR_READ_4(sc, AX_SIO) & AX_SIO_MII_DATAIN)
return(1);
return(0);
}
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void ax_mii_sync(sc)
struct ax_softc *sc;
{
register int i;
CSR_WRITE_4(sc, AX_SIO, AX_SIO_ROMCTL_WRITE);
for (i = 0; i < 32; i++)
ax_mii_writebit(sc, 1);
return;
}
/*
* Clock a series of bits through the MII.
*/
static void ax_mii_send(sc, bits, cnt)
struct ax_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
for (i = (0x1 << (cnt - 1)); i; i >>= 1)
ax_mii_writebit(sc, bits & i);
}
/*
* Read an PHY register through the MII.
*/
static int ax_mii_readreg(sc, frame)
struct ax_softc *sc;
struct ax_mii_frame *frame;
{
int i, ack, s;
s = splimp();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = AX_MII_STARTDELIM;
frame->mii_opcode = AX_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
/*
* Sync the PHYs.
*/
ax_mii_sync(sc);
/*
* Send command/address info.
*/
ax_mii_send(sc, frame->mii_stdelim, 2);
ax_mii_send(sc, frame->mii_opcode, 2);
ax_mii_send(sc, frame->mii_phyaddr, 5);
ax_mii_send(sc, frame->mii_regaddr, 5);
#ifdef notdef
/* Idle bit */
ax_mii_writebit(sc, 1);
ax_mii_writebit(sc, 0);
#endif
/* Check for ack */
ack = ax_mii_readbit(sc);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
ax_mii_readbit(sc);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
if (!ack) {
if (ax_mii_readbit(sc))
frame->mii_data |= i;
}
}
fail:
ax_mii_writebit(sc, 0);
ax_mii_writebit(sc, 0);
splx(s);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int ax_mii_writereg(sc, frame)
struct ax_softc *sc;
struct ax_mii_frame *frame;
{
int s;
s = splimp();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = AX_MII_STARTDELIM;
frame->mii_opcode = AX_MII_WRITEOP;
frame->mii_turnaround = AX_MII_TURNAROUND;
/*
* Sync the PHYs.
*/
ax_mii_sync(sc);
ax_mii_send(sc, frame->mii_stdelim, 2);
ax_mii_send(sc, frame->mii_opcode, 2);
ax_mii_send(sc, frame->mii_phyaddr, 5);
ax_mii_send(sc, frame->mii_regaddr, 5);
ax_mii_send(sc, frame->mii_turnaround, 2);
ax_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
ax_mii_writebit(sc, 0);
ax_mii_writebit(sc, 0);
splx(s);
return(0);
}
static u_int16_t ax_phy_readreg(sc, reg)
struct ax_softc *sc;
int reg;
{
struct ax_mii_frame frame;
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = sc->ax_phy_addr;
frame.mii_regaddr = reg;
ax_mii_readreg(sc, &frame);
return(frame.mii_data);
}
static void ax_phy_writereg(sc, reg, data)
struct ax_softc *sc;
int reg;
int data;
{
struct ax_mii_frame frame;
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = sc->ax_phy_addr;
frame.mii_regaddr = reg;
frame.mii_data = data;
ax_mii_writereg(sc, &frame);
return;
}
/*
* Calculate CRC of a multicast group address, return the lower 6 bits.
*/
static u_int32_t ax_calchash(addr)
caddr_t addr;
{
u_int32_t crc, carry;
int i, j;
u_int8_t c;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (i = 0; i < 6; i++) {
c = *(addr + i);
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
/* return the filter bit position */
return((crc >> 26) & 0x0000003F);
}
static void ax_setmulti(sc)
struct ax_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
u_int32_t rxfilt;
ifp = &sc->arpcom.ac_if;
rxfilt = CSR_READ_4(sc, AX_NETCFG);
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
rxfilt |= AX_NETCFG_RX_ALLMULTI;
CSR_WRITE_4(sc, AX_NETCFG, rxfilt);
return;
} else
rxfilt &= ~AX_NETCFG_RX_ALLMULTI;
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, AX_FILTIDX, AX_FILTIDX_MAR0);
CSR_WRITE_4(sc, AX_FILTDATA, 0);
CSR_WRITE_4(sc, AX_FILTIDX, AX_FILTIDX_MAR1);
CSR_WRITE_4(sc, AX_FILTDATA, 0);
/* now program new ones */
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ax_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
CSR_WRITE_4(sc, AX_FILTIDX, AX_FILTIDX_MAR0);
CSR_WRITE_4(sc, AX_FILTDATA, hashes[0]);
CSR_WRITE_4(sc, AX_FILTIDX, AX_FILTIDX_MAR1);
CSR_WRITE_4(sc, AX_FILTDATA, hashes[1]);
CSR_WRITE_4(sc, AX_NETCFG, rxfilt);
return;
}
/*
* Initiate an autonegotiation session.
*/
static void ax_autoneg_xmit(sc)
struct ax_softc *sc;
{
u_int16_t phy_sts;
ax_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
DELAY(500);
while(ax_phy_readreg(sc, PHY_BMCR)
& PHY_BMCR_RESET);
phy_sts = ax_phy_readreg(sc, PHY_BMCR);
phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
ax_phy_writereg(sc, PHY_BMCR, phy_sts);
return;
}
/*
* Invoke autonegotiation on a PHY.
*/
static void ax_autoneg_mii(sc, flag, verbose)
struct ax_softc *sc;
int flag;
int verbose;
{
u_int16_t phy_sts = 0, media, advert, ability;
struct ifnet *ifp;
struct ifmedia *ifm;
ifm = &sc->ifmedia;
ifp = &sc->arpcom.ac_if;
ifm->ifm_media = IFM_ETHER | IFM_AUTO;
/*
* The 100baseT4 PHY on the 3c905-T4 has the 'autoneg supported'
* bit cleared in the status register, but has the 'autoneg enabled'
* bit set in the control register. This is a contradiction, and
* I'm not sure how to handle it. If you want to force an attempt
* to autoneg for 100baseT4 PHYs, #define FORCE_AUTONEG_TFOUR
* and see what happens.
*/
#ifndef FORCE_AUTONEG_TFOUR
/*
* First, see if autoneg is supported. If not, there's
* no point in continuing.
*/
phy_sts = ax_phy_readreg(sc, PHY_BMSR);
if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
if (verbose)
printf("ax%d: autonegotiation not supported\n",
sc->ax_unit);
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
return;
}
#endif
switch (flag) {
case AX_FLAG_FORCEDELAY:
/*
* XXX Never use this option anywhere but in the probe
* routine: making the kernel stop dead in its tracks
* for three whole seconds after we've gone multi-user
* is really bad manners.
*/
ax_autoneg_xmit(sc);
DELAY(5000000);
break;
case AX_FLAG_SCHEDDELAY:
/*
* Wait for the transmitter to go idle before starting
* an autoneg session, otherwise ax_start() may clobber
* our timeout, and we don't want to allow transmission
* during an autoneg session since that can screw it up.
*/
if (sc->ax_cdata.ax_tx_head != NULL) {
sc->ax_want_auto = 1;
return;
}
ax_autoneg_xmit(sc);
ifp->if_timer = 5;
sc->ax_autoneg = 1;
sc->ax_want_auto = 0;
return;
break;
case AX_FLAG_DELAYTIMEO:
ifp->if_timer = 0;
sc->ax_autoneg = 0;
break;
default:
printf("ax%d: invalid autoneg flag: %d\n", sc->ax_unit, flag);
return;
}
if (ax_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
if (verbose)
printf("ax%d: autoneg complete, ", sc->ax_unit);
phy_sts = ax_phy_readreg(sc, PHY_BMSR);
} else {
if (verbose)
printf("ax%d: autoneg not complete, ", sc->ax_unit);
}
media = ax_phy_readreg(sc, PHY_BMCR);
/* Link is good. Report modes and set duplex mode. */
if (ax_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
if (verbose)
printf("link status good ");
advert = ax_phy_readreg(sc, PHY_ANAR);
ability = ax_phy_readreg(sc, PHY_LPAR);
if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
ifm->ifm_media = IFM_ETHER|IFM_100_T4;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(100baseT4)\n");
} else if (advert & PHY_ANAR_100BTXFULL &&
ability & PHY_ANAR_100BTXFULL) {
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
media |= PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_100BTXHALF &&
ability & PHY_ANAR_100BTXHALF) {
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_10BTFULL &&
ability & PHY_ANAR_10BTFULL) {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
media &= ~PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 10Mbps)\n");
} else if (advert & PHY_ANAR_10BTHALF &&
ability & PHY_ANAR_10BTHALF) {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
media &= ~PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 10Mbps)\n");
}
media &= ~PHY_BMCR_AUTONEGENBL;
/* Set ASIC's duplex mode to match the PHY. */
ax_setcfg(sc, media);
ax_phy_writereg(sc, PHY_BMCR, media);
} else {
if (verbose)
printf("no carrier\n");
}
ax_init(sc);
if (sc->ax_tx_pend) {
sc->ax_autoneg = 0;
sc->ax_tx_pend = 0;
ax_start(ifp);
}
return;
}
static void ax_getmode_mii(sc)
struct ax_softc *sc;
{
u_int16_t bmsr;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
bmsr = ax_phy_readreg(sc, PHY_BMSR);
if (bootverbose)
printf("ax%d: PHY status word: %x\n", sc->ax_unit, bmsr);
/* fallback */
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
if (bmsr & PHY_BMSR_10BTHALF) {
if (bootverbose)
printf("ax%d: 10Mbps half-duplex mode supported\n",
sc->ax_unit);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
}
if (bmsr & PHY_BMSR_10BTFULL) {
if (bootverbose)
printf("ax%d: 10Mbps full-duplex mode supported\n",
sc->ax_unit);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
}
if (bmsr & PHY_BMSR_100BTXHALF) {
if (bootverbose)
printf("ax%d: 100Mbps half-duplex mode supported\n",
sc->ax_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
}
if (bmsr & PHY_BMSR_100BTXFULL) {
if (bootverbose)
printf("ax%d: 100Mbps full-duplex mode supported\n",
sc->ax_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
}
/* Some also support 100BaseT4. */
if (bmsr & PHY_BMSR_100BT4) {
if (bootverbose)
printf("ax%d: 100baseT4 mode supported\n", sc->ax_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4;
#ifdef FORCE_AUTONEG_TFOUR
if (bootverbose)
printf("ax%d: forcing on autoneg support for BT4\n",
sc->ax_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0 NULL):
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
#endif
}
if (bmsr & PHY_BMSR_CANAUTONEG) {
if (bootverbose)
printf("ax%d: autoneg supported\n", sc->ax_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
}
return;
}
/*
* Set speed and duplex mode.
*/
static void ax_setmode_mii(sc, media)
struct ax_softc *sc;
int media;
{
u_int16_t bmcr;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/*
* If an autoneg session is in progress, stop it.
*/
if (sc->ax_autoneg) {
printf("ax%d: canceling autoneg session\n", sc->ax_unit);
ifp->if_timer = sc->ax_autoneg = sc->ax_want_auto = 0;
bmcr = ax_phy_readreg(sc, PHY_BMCR);
bmcr &= ~PHY_BMCR_AUTONEGENBL;
ax_phy_writereg(sc, PHY_BMCR, bmcr);
}
printf("ax%d: selecting MII, ", sc->ax_unit);
bmcr = ax_phy_readreg(sc, PHY_BMCR);
bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL|
PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK);
if (IFM_SUBTYPE(media) == IFM_100_T4) {
printf("100Mbps/T4, half-duplex\n");
bmcr |= PHY_BMCR_SPEEDSEL;
bmcr &= ~PHY_BMCR_DUPLEX;
}
if (IFM_SUBTYPE(media) == IFM_100_TX) {
printf("100Mbps, ");
bmcr |= PHY_BMCR_SPEEDSEL;
}
if (IFM_SUBTYPE(media) == IFM_10_T) {
printf("10Mbps, ");
bmcr &= ~PHY_BMCR_SPEEDSEL;
}
if ((media & IFM_GMASK) == IFM_FDX) {
printf("full duplex\n");
bmcr |= PHY_BMCR_DUPLEX;
} else {
printf("half duplex\n");
bmcr &= ~PHY_BMCR_DUPLEX;
}
ax_setcfg(sc, bmcr);
ax_phy_writereg(sc, PHY_BMCR, bmcr);
return;
}
/*
* Set speed and duplex mode on internal transceiver.
*/
static void ax_setmode(sc, media, verbose)
struct ax_softc *sc;
int media;
int verbose;
{
struct ifnet *ifp;
u_int32_t mode;
ifp = &sc->arpcom.ac_if;
if (verbose)
printf("ax%d: selecting internal xcvr, ", sc->ax_unit);
mode = CSR_READ_4(sc, AX_NETCFG);
mode &= ~(AX_NETCFG_FULLDUPLEX|AX_NETCFG_PORTSEL|
AX_NETCFG_PCS|AX_NETCFG_SCRAMBLER|AX_NETCFG_SPEEDSEL);
if (IFM_SUBTYPE(media) == IFM_100_T4) {
if (verbose)
printf("100Mbps/T4, half-duplex\n");
mode |= AX_NETCFG_PORTSEL|AX_NETCFG_PCS|AX_NETCFG_SCRAMBLER;
}
if (IFM_SUBTYPE(media) == IFM_100_TX) {
if (verbose)
printf("100Mbps, ");
mode |= AX_NETCFG_PORTSEL|AX_NETCFG_PCS|AX_NETCFG_SCRAMBLER;
}
if (IFM_SUBTYPE(media) == IFM_10_T) {
if (verbose)
printf("10Mbps, ");
mode &= ~AX_NETCFG_PORTSEL;
mode |= AX_NETCFG_SPEEDSEL;
}
if ((media & IFM_GMASK) == IFM_FDX) {
if (verbose)
printf("full duplex\n");
mode |= AX_NETCFG_FULLDUPLEX;
} else {
if (verbose)
printf("half duplex\n");
mode &= ~AX_NETCFG_FULLDUPLEX;
}
CSR_WRITE_4(sc, AX_NETCFG, mode);
return;
}
/*
* In order to fiddle with the
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
* first have to put the transmit and/or receive logic in the idle state.
*/
static void ax_setcfg(sc, bmcr)
struct ax_softc *sc;
int bmcr;
{
int i, restart = 0;
if (CSR_READ_4(sc, AX_NETCFG) & (AX_NETCFG_TX_ON|AX_NETCFG_RX_ON)) {
restart = 1;
AX_CLRBIT(sc, AX_NETCFG, (AX_NETCFG_TX_ON|AX_NETCFG_RX_ON));
for (i = 0; i < AX_TIMEOUT; i++) {
DELAY(10);
if (CSR_READ_4(sc, AX_ISR) & AX_ISR_TX_IDLE)
break;
}
if (i == AX_TIMEOUT)
printf("ax%d: failed to force tx and "
"rx to idle state\n", sc->ax_unit);
}
if (bmcr & PHY_BMCR_SPEEDSEL)
AX_CLRBIT(sc, AX_NETCFG, AX_NETCFG_SPEEDSEL);
else
AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_SPEEDSEL);
if (bmcr & PHY_BMCR_DUPLEX)
AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_FULLDUPLEX);
else
AX_CLRBIT(sc, AX_NETCFG, AX_NETCFG_FULLDUPLEX);
if (restart)
AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_TX_ON|AX_NETCFG_RX_ON);
return;
}
static void ax_reset(sc)
struct ax_softc *sc;
{
register int i;
AX_SETBIT(sc, AX_BUSCTL, AX_BUSCTL_RESET);
for (i = 0; i < AX_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, AX_BUSCTL) & AX_BUSCTL_RESET))
break;
}
#ifdef notdef
if (i == AX_TIMEOUT)
printf("ax%d: reset never completed!\n", sc->ax_unit);
#endif
CSR_WRITE_4(sc, AX_BUSCTL, AX_BUSCTL_CONFIG);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
return;
}
/*
* Probe for an ASIX chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
int ax_probe(dev)
device_t dev;
{
struct ax_type *t;
u_int32_t rev;
t = ax_devs;
while(t->ax_name != NULL) {
if ((pci_get_vendor(dev) == t->ax_vid) &&
(pci_get_device(dev) == t->ax_did)) {
/* Check the PCI revision */
rev = pci_read_config(dev, AX_PCI_REVID, 4) & 0xFF;
if (rev >= AX_REVISION_88141)
t++;
device_set_desc(dev, t->ax_name);
return(0);
}
t++;
}
return(ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int ax_attach(dev)
device_t dev;
{
int s, i;
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t command;
struct ax_softc *sc;
struct ifnet *ifp;
int media = IFM_ETHER|IFM_100_TX|IFM_FDX;
unsigned int round;
caddr_t roundptr;
struct ax_type *p;
u_int16_t phy_vid, phy_did, phy_sts;
int unit, error = 0, rid;
s = splimp();
sc = device_get_softc(dev);
unit = device_get_unit(dev);
bzero(sc, sizeof(struct ax_softc));
/*
* Handle power management nonsense.
*/
command = pci_read_config(dev, AX_PCI_CAPID, 4) & 0x000000FF;
if (command == 0x01) {
command = pci_read_config(dev, AX_PCI_PWRMGMTCTRL, 4);
if (command & AX_PSTATE_MASK) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_read_config(dev, AX_PCI_LOIO, 4);
membase = pci_read_config(dev, AX_PCI_LOMEM, 4);
irq = pci_read_config(dev, AX_PCI_INTLINE, 4);
/* Reset the power state. */
printf("ax%d: chip is in D%d power mode "
"-- setting to D0\n", unit, command & AX_PSTATE_MASK);
command &= 0xFFFFFFFC;
pci_write_config(dev, AX_PCI_PWRMGMTCTRL, command, 4);
/* Restore PCI config data. */
pci_write_config(dev, AX_PCI_LOIO, iobase, 4);
pci_write_config(dev, AX_PCI_LOMEM, membase, 4);
pci_write_config(dev, AX_PCI_INTLINE, irq, 4);
}
}
/*
* Map control/status registers.
*/
command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
#ifdef AX_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("ax%d: failed to enable I/O ports!\n", unit);
error = ENXIO;;
goto fail;
}
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("ax%d: failed to enable memory mapping!\n", unit);
error = ENXIO;;
goto fail;
}
#endif
rid = AX_RID;
sc->ax_res = bus_alloc_resource(dev, AX_RES, &rid,
0, ~0, 1, RF_ACTIVE);
if (sc->ax_res == NULL) {
printf("ax%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->ax_btag = rman_get_bustag(sc->ax_res);
sc->ax_bhandle = rman_get_bushandle(sc->ax_res);
/* Allocate interrupt */
rid = 0;
sc->ax_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->ax_irq == NULL) {
printf("ax%d: couldn't map interrupt\n", unit);
bus_release_resource(dev, AX_RES, AX_RID, sc->ax_res);
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, sc->ax_irq, INTR_TYPE_NET,
ax_intr, sc, &sc->ax_intrhand);
if (error) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ax_res);
bus_release_resource(dev, AX_RES, AX_RID, sc->ax_res);
printf("ax%d: couldn't set up irq\n", unit);
goto fail;
}
/* Reset the adapter. */
ax_reset(sc);
/*
* Get station address from the EEPROM.
*/
ax_read_eeprom(sc, (caddr_t)&eaddr, AX_EE_NODEADDR, 3, 0);
/*
* An ASIX chip was detected. Inform the world.
*/
printf("ax%d: Ethernet address: %6D\n", unit, eaddr, ":");
sc->ax_unit = unit;
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
sc->ax_ldata_ptr = malloc(sizeof(struct ax_list_data) + 8,
M_DEVBUF, M_NOWAIT);
if (sc->ax_ldata_ptr == NULL) {
printf("ax%d: no memory for list buffers!\n", unit);
bus_teardown_intr(dev, sc->ax_irq, sc->ax_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ax_res);
bus_release_resource(dev, AX_RES, AX_RID, sc->ax_res);
error = ENXIO;
goto fail;
}
sc->ax_ldata = (struct ax_list_data *)sc->ax_ldata_ptr;
round = (uintptr_t)sc->ax_ldata_ptr & 0xF;
roundptr = sc->ax_ldata_ptr;
for (i = 0; i < 8; i++) {
if (round % 8) {
round++;
roundptr++;
} else
break;
}
sc->ax_ldata = (struct ax_list_data *)roundptr;
bzero(sc->ax_ldata, sizeof(struct ax_list_data));
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "ax";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = ax_ioctl;
ifp->if_output = ether_output;
ifp->if_start = ax_start;
ifp->if_watchdog = ax_watchdog;
ifp->if_init = ax_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = AX_TX_LIST_CNT - 1;
if (bootverbose)
printf("ax%d: probing for a PHY\n", sc->ax_unit);
for (i = AX_PHYADDR_MIN; i < AX_PHYADDR_MAX + 1; i++) {
if (bootverbose)
printf("ax%d: checking address: %d\n",
sc->ax_unit, i);
sc->ax_phy_addr = i;
ax_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
DELAY(500);
while(ax_phy_readreg(sc, PHY_BMCR)
& PHY_BMCR_RESET);
if ((phy_sts = ax_phy_readreg(sc, PHY_BMSR)))
break;
}
if (phy_sts) {
phy_vid = ax_phy_readreg(sc, PHY_VENID);
phy_did = ax_phy_readreg(sc, PHY_DEVID);
if (bootverbose)
printf("ax%d: found PHY at address %d, ",
sc->ax_unit, sc->ax_phy_addr);
if (bootverbose)
printf("vendor id: %x device id: %x\n",
phy_vid, phy_did);
p = ax_phys;
while(p->ax_vid) {
if (phy_vid == p->ax_vid &&
(phy_did | 0x000F) == p->ax_did) {
sc->ax_pinfo = p;
break;
}
p++;
}
if (sc->ax_pinfo == NULL)
sc->ax_pinfo = &ax_phys[PHY_UNKNOWN];
if (bootverbose)
printf("ax%d: PHY type: %s\n",
sc->ax_unit, sc->ax_pinfo->ax_name);
} else {
#ifdef DIAGNOSTIC
printf("ax%d: MII without any phy!\n", sc->ax_unit);
#endif
}
/*
* Do ifmedia setup.
*/
ifmedia_init(&sc->ifmedia, 0, ax_ifmedia_upd, ax_ifmedia_sts);
if (sc->ax_pinfo != NULL) {
ax_getmode_mii(sc);
if (cold) {
ax_autoneg_mii(sc, AX_FLAG_FORCEDELAY, 1);
ax_stop(sc);
} else {
ax_init(sc);
ax_autoneg_mii(sc, AX_FLAG_SCHEDDELAY, 1);
}
} else {
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
}
media = sc->ifmedia.ifm_media;
ifmedia_set(&sc->ifmedia, media);
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
#if NBPF > 0
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
fail:
splx(s);
return(error);
}
static int ax_detach(dev)
device_t dev;
{
struct ax_softc *sc;
struct ifnet *ifp;
int s;
s = splimp();
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
ax_stop(sc);
if_detach(ifp);
bus_teardown_intr(dev, sc->ax_irq, sc->ax_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ax_res);
bus_release_resource(dev, AX_RES, AX_RID, sc->ax_res);
free(sc->ax_ldata_ptr, M_DEVBUF);
ifmedia_removeall(&sc->ifmedia);
splx(s);
return(0);
}
/*
* Initialize the transmit descriptors.
*/
static int ax_list_tx_init(sc)
struct ax_softc *sc;
{
struct ax_chain_data *cd;
struct ax_list_data *ld;
int i;
cd = &sc->ax_cdata;
ld = sc->ax_ldata;
for (i = 0; i < AX_TX_LIST_CNT; i++) {
cd->ax_tx_chain[i].ax_ptr = &ld->ax_tx_list[i];
if (i == (AX_TX_LIST_CNT - 1))
cd->ax_tx_chain[i].ax_nextdesc =
&cd->ax_tx_chain[0];
else
cd->ax_tx_chain[i].ax_nextdesc =
&cd->ax_tx_chain[i + 1];
}
cd->ax_tx_free = &cd->ax_tx_chain[0];
cd->ax_tx_tail = cd->ax_tx_head = NULL;
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int ax_list_rx_init(sc)
struct ax_softc *sc;
{
struct ax_chain_data *cd;
struct ax_list_data *ld;
int i;
cd = &sc->ax_cdata;
ld = sc->ax_ldata;
for (i = 0; i < AX_RX_LIST_CNT; i++) {
cd->ax_rx_chain[i].ax_ptr =
(volatile struct ax_desc *)&ld->ax_rx_list[i];
if (ax_newbuf(sc, &cd->ax_rx_chain[i], NULL) == ENOBUFS)
return(ENOBUFS);
if (i == (AX_RX_LIST_CNT - 1)) {
cd->ax_rx_chain[i].ax_nextdesc =
&cd->ax_rx_chain[0];
ld->ax_rx_list[i].ax_next =
vtophys(&ld->ax_rx_list[0]);
} else {
cd->ax_rx_chain[i].ax_nextdesc =
&cd->ax_rx_chain[i + 1];
ld->ax_rx_list[i].ax_next =
vtophys(&ld->ax_rx_list[i + 1]);
}
}
cd->ax_rx_head = &cd->ax_rx_chain[0];
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
* Note: the length fields are only 11 bits wide, which means the
* largest size we can specify is 2047. This is important because
* MCLBYTES is 2048, so we have to subtract one otherwise we'll
* overflow the field and make a mess.
*/
static int ax_newbuf(sc, c, m)
struct ax_softc *sc;
struct ax_chain_onefrag *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("ax%d: no memory for rx list "
"-- packet dropped!\n", sc->ax_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("ax%d: no memory for rx list "
"-- packet dropped!\n", sc->ax_unit);
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, sizeof(u_int64_t));
c->ax_mbuf = m_new;
c->ax_ptr->ax_status = AX_RXSTAT;
c->ax_ptr->ax_data = vtophys(mtod(m_new, caddr_t));
c->ax_ptr->ax_ctl = MCLBYTES - 1;
return(0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void ax_rxeof(sc)
struct ax_softc *sc;
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct ax_chain_onefrag *cur_rx;
int total_len = 0;
u_int32_t rxstat;
ifp = &sc->arpcom.ac_if;
while(!((rxstat = sc->ax_cdata.ax_rx_head->ax_ptr->ax_status) &
AX_RXSTAT_OWN)) {
struct mbuf *m0 = NULL;
cur_rx = sc->ax_cdata.ax_rx_head;
sc->ax_cdata.ax_rx_head = cur_rx->ax_nextdesc;
m = cur_rx->ax_mbuf;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & AX_RXSTAT_RXERR) {
ifp->if_ierrors++;
if (rxstat & AX_RXSTAT_COLLSEEN)
ifp->if_collisions++;
ax_newbuf(sc, cur_rx, m);
continue;
}
/* No errors; receive the packet. */
total_len = AX_RXBYTES(cur_rx->ax_ptr->ax_status);
total_len -= ETHER_CRC_LEN;
m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
total_len + ETHER_ALIGN, 0, ifp, NULL);
ax_newbuf(sc, cur_rx, m);
if (m0 == NULL) {
ifp->if_ierrors++;
continue;
}
m_adj(m0, ETHER_ALIGN);
m = m0;
ifp->if_ipackets++;
eh = mtod(m, struct ether_header *);
#if NBPF > 0
/*
* Handle BPF listeners. Let the BPF user see the packet, but
* don't pass it up to the ether_input() layer unless it's
* a broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp, m);
if (ifp->if_flags & IFF_PROMISC &&
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN) &&
(eh->ether_dhost[0] & 1) == 0)) {
m_freem(m);
continue;
}
}
#endif
/* Remove header from mbuf and pass it on. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
return;
}
void ax_rxeoc(sc)
struct ax_softc *sc;
{
ax_rxeof(sc);
AX_CLRBIT(sc, AX_NETCFG, AX_NETCFG_RX_ON);
CSR_WRITE_4(sc, AX_RXADDR, vtophys(sc->ax_cdata.ax_rx_head->ax_ptr));
AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_RX_ON);
CSR_WRITE_4(sc, AX_RXSTART, 0xFFFFFFFF);
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void ax_txeof(sc)
struct ax_softc *sc;
{
struct ax_chain *cur_tx;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
if (sc->ax_cdata.ax_tx_head == NULL)
return;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
while(sc->ax_cdata.ax_tx_head->ax_mbuf != NULL) {
u_int32_t txstat;
cur_tx = sc->ax_cdata.ax_tx_head;
txstat = AX_TXSTATUS(cur_tx);
if (txstat & AX_TXSTAT_OWN)
break;
if (txstat & AX_TXSTAT_ERRSUM) {
ifp->if_oerrors++;
if (txstat & AX_TXSTAT_EXCESSCOLL)
ifp->if_collisions++;
if (txstat & AX_TXSTAT_LATECOLL)
ifp->if_collisions++;
}
ifp->if_collisions += (txstat & AX_TXSTAT_COLLCNT) >> 3;
ifp->if_opackets++;
m_freem(cur_tx->ax_mbuf);
cur_tx->ax_mbuf = NULL;
if (sc->ax_cdata.ax_tx_head == sc->ax_cdata.ax_tx_tail) {
sc->ax_cdata.ax_tx_head = NULL;
sc->ax_cdata.ax_tx_tail = NULL;
break;
}
sc->ax_cdata.ax_tx_head = cur_tx->ax_nextdesc;
}
return;
}
/*
* TX 'end of channel' interrupt handler.
*/
static void ax_txeoc(sc)
struct ax_softc *sc;
{
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
if (sc->ax_cdata.ax_tx_head == NULL) {
ifp->if_flags &= ~IFF_OACTIVE;
sc->ax_cdata.ax_tx_tail = NULL;
if (sc->ax_want_auto)
ax_autoneg_mii(sc, AX_FLAG_DELAYTIMEO, 1);
}
return;
}
static void ax_intr(arg)
void *arg;
{
struct ax_softc *sc;
struct ifnet *ifp;
u_int32_t status;
sc = arg;
ifp = &sc->arpcom.ac_if;
/* Supress unwanted interrupts */
if (!(ifp->if_flags & IFF_UP)) {
ax_stop(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, AX_IMR, 0x00000000);
for (;;) {
status = CSR_READ_4(sc, AX_ISR);
if (status)
CSR_WRITE_4(sc, AX_ISR, status);
if ((status & AX_INTRS) == 0)
break;
if ((status & AX_ISR_TX_OK) || (status & AX_ISR_TX_EARLY))
ax_txeof(sc);
if (status & AX_ISR_TX_NOBUF)
ax_txeoc(sc);
if (status & AX_ISR_TX_IDLE) {
ax_txeof(sc);
if (sc->ax_cdata.ax_tx_head != NULL) {
AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_TX_ON);
CSR_WRITE_4(sc, AX_TXSTART, 0xFFFFFFFF);
}
}
if (status & AX_ISR_TX_UNDERRUN) {
u_int32_t cfg;
cfg = CSR_READ_4(sc, AX_NETCFG);
if ((cfg & AX_NETCFG_TX_THRESH) == AX_TXTHRESH_160BYTES)
AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_STORENFWD);
else
CSR_WRITE_4(sc, AX_NETCFG, cfg + 0x4000);
}
if (status & AX_ISR_RX_OK)
ax_rxeof(sc);
if ((status & AX_ISR_RX_WATDOGTIMEO)
|| (status & AX_ISR_RX_NOBUF))
ax_rxeoc(sc);
if (status & AX_ISR_BUS_ERR) {
ax_reset(sc);
ax_init(sc);
}
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, AX_IMR, AX_INTRS);
if (ifp->if_snd.ifq_head != NULL) {
ax_start(ifp);
}
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int ax_encap(sc, c, m_head)
struct ax_softc *sc;
struct ax_chain *c;
struct mbuf *m_head;
{
int frag = 0;
volatile struct ax_desc *f = NULL;
int total_len;
struct mbuf *m;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
total_len = 0;
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (frag == AX_MAXFRAGS)
break;
total_len += m->m_len;
f = &c->ax_ptr->ax_frag[frag];
f->ax_ctl = m->m_len;
if (frag == 0) {
f->ax_status = 0;
f->ax_ctl |= AX_TXCTL_FIRSTFRAG;
} else
f->ax_status = AX_TXSTAT_OWN;
f->ax_next = vtophys(&c->ax_ptr->ax_frag[frag + 1]);
f->ax_data = vtophys(mtod(m, vm_offset_t));
frag++;
}
}
/*
* Handle special case: we ran out of fragments,
* but we have more mbufs left in the chain. Copy the
* data into an mbuf cluster. Note that we don't
* bother clearing the values in the other fragment
* pointers/counters; it wouldn't gain us anything,
* and would waste cycles.
*/
if (m != NULL) {
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("ax%d: no memory for tx list", sc->ax_unit);
return(1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
printf("ax%d: no memory for tx list",
sc->ax_unit);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
f = &c->ax_ptr->ax_frag[0];
f->ax_status = 0;
f->ax_data = vtophys(mtod(m_new, caddr_t));
f->ax_ctl = total_len = m_new->m_len;
f->ax_ctl |= AX_TXCTL_FIRSTFRAG;
frag = 1;
}
c->ax_mbuf = m_head;
c->ax_lastdesc = frag - 1;
AX_TXCTL(c) |= AX_TXCTL_LASTFRAG|AX_TXCTL_FINT;
c->ax_ptr->ax_frag[0].ax_ctl |= AX_TXCTL_FINT;
AX_TXNEXT(c) = vtophys(&c->ax_nextdesc->ax_ptr->ax_frag[0]);
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void ax_start(ifp)
struct ifnet *ifp;
{
struct ax_softc *sc;
struct mbuf *m_head = NULL;
struct ax_chain *cur_tx = NULL, *start_tx;
sc = ifp->if_softc;
if (sc->ax_autoneg) {
sc->ax_tx_pend = 1;
return;
}
/*
* Check for an available queue slot. If there are none,
* punt.
*/
if (sc->ax_cdata.ax_tx_free->ax_mbuf != NULL) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
start_tx = sc->ax_cdata.ax_tx_free;
while(sc->ax_cdata.ax_tx_free->ax_mbuf == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Pick a descriptor off the free list. */
cur_tx = sc->ax_cdata.ax_tx_free;
sc->ax_cdata.ax_tx_free = cur_tx->ax_nextdesc;
/* Pack the data into the descriptor. */
ax_encap(sc, cur_tx, m_head);
if (cur_tx != start_tx)
AX_TXOWN(cur_tx) = AX_TXSTAT_OWN;
#if NBPF > 0
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, cur_tx->ax_mbuf);
#endif
AX_TXOWN(cur_tx) = AX_TXSTAT_OWN;
CSR_WRITE_4(sc, AX_TXSTART, 0xFFFFFFFF);
}
sc->ax_cdata.ax_tx_tail = cur_tx;
if (sc->ax_cdata.ax_tx_head == NULL)
sc->ax_cdata.ax_tx_head = start_tx;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static void ax_init(xsc)
void *xsc;
{
struct ax_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
u_int16_t phy_bmcr = 0;
int s;
if (sc->ax_autoneg)
return;
s = splimp();
if (sc->ax_pinfo != NULL)
phy_bmcr = ax_phy_readreg(sc, PHY_BMCR);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
ax_stop(sc);
ax_reset(sc);
/*
* Set cache alignment and burst length.
*/
CSR_WRITE_4(sc, AX_BUSCTL, AX_BUSCTL_CONFIG);
AX_CLRBIT(sc, AX_NETCFG, AX_NETCFG_HEARTBEAT);
AX_CLRBIT(sc, AX_NETCFG, AX_NETCFG_STORENFWD);
if (sc->ax_pinfo != NULL) {
AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_PORTSEL);
ax_setcfg(sc, ax_phy_readreg(sc, PHY_BMCR));
} else
ax_setmode(sc, sc->ifmedia.ifm_media, 0);
AX_CLRBIT(sc, AX_NETCFG, AX_NETCFG_TX_THRESH);
AX_CLRBIT(sc, AX_NETCFG, AX_NETCFG_SPEEDSEL);
if (IFM_SUBTYPE(sc->ifmedia.ifm_media) == IFM_10_T)
AX_SETBIT(sc, AX_NETCFG, AX_TXTHRESH_160BYTES);
else
AX_SETBIT(sc, AX_NETCFG, AX_TXTHRESH_72BYTES);
/* Init our MAC address */
CSR_WRITE_4(sc, AX_FILTIDX, AX_FILTIDX_PAR0);
CSR_WRITE_4(sc, AX_FILTDATA, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
CSR_WRITE_4(sc, AX_FILTIDX, AX_FILTIDX_PAR1);
CSR_WRITE_4(sc, AX_FILTDATA, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
/* Init circular RX list. */
if (ax_list_rx_init(sc) == ENOBUFS) {
printf("ax%d: initialization failed: no "
"memory for rx buffers\n", sc->ax_unit);
ax_stop(sc);
(void)splx(s);
return;
}
/*
* Init tx descriptors.
*/
ax_list_tx_init(sc);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_RX_PROMISC);
} else {
AX_CLRBIT(sc, AX_NETCFG, AX_NETCFG_RX_PROMISC);
}
/*
* Set the capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_RX_BROAD);
} else {
AX_CLRBIT(sc, AX_NETCFG, AX_NETCFG_RX_BROAD);
}
/*
* Load the multicast filter.
*/
ax_setmulti(sc);
/*
* Load the address of the RX list.
*/
CSR_WRITE_4(sc, AX_RXADDR, vtophys(sc->ax_cdata.ax_rx_head->ax_ptr));
CSR_WRITE_4(sc, AX_TXADDR, vtophys(&sc->ax_ldata->ax_tx_list[0]));
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, AX_IMR, AX_INTRS);
CSR_WRITE_4(sc, AX_ISR, 0xFFFFFFFF);
/* Enable receiver and transmitter. */
AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_TX_ON|AX_NETCFG_RX_ON);
CSR_WRITE_4(sc, AX_RXSTART, 0xFFFFFFFF);
/* Restore state of BMCR */
if (sc->ax_pinfo != NULL)
ax_phy_writereg(sc, PHY_BMCR, phy_bmcr);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
(void)splx(s);
return;
}
/*
* Set media options.
*/
static int ax_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct ax_softc *sc;
struct ifmedia *ifm;
sc = ifp->if_softc;
ifm = &sc->ifmedia;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return(EINVAL);
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
ax_autoneg_mii(sc, AX_FLAG_SCHEDDELAY, 1);
else {
if (sc->ax_pinfo == NULL)
ax_setmode(sc, ifm->ifm_media, 1);
else
ax_setmode_mii(sc, ifm->ifm_media);
}
return(0);
}
/*
* Report current media status.
*/
static void ax_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct ax_softc *sc;
u_int16_t advert = 0, ability = 0;
u_int32_t media = 0;
sc = ifp->if_softc;
ifmr->ifm_active = IFM_ETHER;
if (sc->ax_pinfo == NULL) {
media = CSR_READ_4(sc, AX_NETCFG);
if (media & AX_NETCFG_PORTSEL)
ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
else
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
if (media & AX_NETCFG_FULLDUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
return;
}
if (!(ax_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
if (ax_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
else
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
if (ax_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
return;
}
ability = ax_phy_readreg(sc, PHY_LPAR);
advert = ax_phy_readreg(sc, PHY_ANAR);
if (advert & PHY_ANAR_100BT4 &&
ability & PHY_ANAR_100BT4) {
ifmr->ifm_active = IFM_ETHER|IFM_100_T4;
} else if (advert & PHY_ANAR_100BTXFULL &&
ability & PHY_ANAR_100BTXFULL) {
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX;
} else if (advert & PHY_ANAR_100BTXHALF &&
ability & PHY_ANAR_100BTXHALF) {
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX;
} else if (advert & PHY_ANAR_10BTFULL &&
ability & PHY_ANAR_10BTFULL) {
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX;
} else if (advert & PHY_ANAR_10BTHALF &&
ability & PHY_ANAR_10BTHALF) {
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX;
}
return;
}
static int ax_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct ax_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splimp();
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
ax_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
ax_stop(sc);
}
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
ax_setmulti(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
default:
error = EINVAL;
break;
}
(void)splx(s);
return(error);
}
static void ax_watchdog(ifp)
struct ifnet *ifp;
{
struct ax_softc *sc;
sc = ifp->if_softc;
if (sc->ax_autoneg) {
ax_autoneg_mii(sc, AX_FLAG_DELAYTIMEO, 1);
if (!(ifp->if_flags & IFF_UP))
ax_stop(sc);
return;
}
ifp->if_oerrors++;
printf("ax%d: watchdog timeout\n", sc->ax_unit);
if (sc->ax_pinfo != NULL) {
if (!(ax_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
printf("ax%d: no carrier - transceiver "
"cable problem?\n", sc->ax_unit);
}
ax_stop(sc);
ax_reset(sc);
ax_init(sc);
if (ifp->if_snd.ifq_head != NULL)
ax_start(ifp);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void ax_stop(sc)
struct ax_softc *sc;
{
register int i;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
AX_CLRBIT(sc, AX_NETCFG, (AX_NETCFG_RX_ON|AX_NETCFG_TX_ON));
CSR_WRITE_4(sc, AX_IMR, 0x00000000);
CSR_WRITE_4(sc, AX_TXADDR, 0x00000000);
CSR_WRITE_4(sc, AX_RXADDR, 0x00000000);
/*
* Free data in the RX lists.
*/
for (i = 0; i < AX_RX_LIST_CNT; i++) {
if (sc->ax_cdata.ax_rx_chain[i].ax_mbuf != NULL) {
m_freem(sc->ax_cdata.ax_rx_chain[i].ax_mbuf);
sc->ax_cdata.ax_rx_chain[i].ax_mbuf = NULL;
}
}
bzero((char *)&sc->ax_ldata->ax_rx_list,
sizeof(sc->ax_ldata->ax_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < AX_TX_LIST_CNT; i++) {
if (sc->ax_cdata.ax_tx_chain[i].ax_mbuf != NULL) {
m_freem(sc->ax_cdata.ax_tx_chain[i].ax_mbuf);
sc->ax_cdata.ax_tx_chain[i].ax_mbuf = NULL;
}
}
bzero((char *)&sc->ax_ldata->ax_tx_list,
sizeof(sc->ax_ldata->ax_tx_list));
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void ax_shutdown(dev)
device_t dev;
{
struct ax_softc *sc;
sc = device_get_softc(dev);
ax_stop(sc);
return;
}