John Baldwin fd036deac1 Dynamically allocate IRQ ranges on x86.
Previously, x86 used static ranges of IRQ values for different types
of I/O interrupts.  Interrupt pins on I/O APICs and 8259A PICs used
IRQ values from 0 to 254.  MSI interrupts used a compile-time-defined
range starting at 256, and Xen event channels used a
compile-time-defined range after MSI.  Some recent systems have more
than 255 I/O APIC interrupt pins which resulted in those IRQ values
overflowing into the MSI range triggering an assertion failure.

Replace statically assigned ranges with dynamic ranges.  Do a single
pass computing the sizes of the IRQ ranges (PICs, MSI, Xen) to
determine the total number of IRQs required.  Allocate the interrupt
source and interrupt count arrays dynamically once this pass has
completed.  To minimize runtime complexity these arrays are only sized
once during bootup.  The PIC range is determined by the PICs present
in the system.  The MSI and Xen ranges continue to use a fixed size,
though this does make it possible to turn the MSI range size into a
tunable in the future.

As a result, various places are updated to use dynamic limits instead
of constants.  In addition, the vmstat(8) utility has been taught to
understand that some kernels may treat 'intrcnt' and 'intrnames' as
pointers rather than arrays when extracting interrupt stats from a
crashdump.  This is determined by the presence (vs absence) of a
global 'nintrcnt' symbol.

This change reverts r189404 which worked around a buggy BIOS which
enumerated an I/O APIC twice (using the same memory mapped address for
both entries but using an IRQ base of 256 for one entry and a valid
IRQ base for the second entry).  Making the "base" of MSI IRQ values
dynamic avoids the panic that r189404 worked around, and there may now
be valid I/O APICs with an IRQ base above 256 which this workaround
would incorrectly skip.

If in the future the issue reported in PR 130483 reoccurs, we will
have to add a pass over the I/O APIC entries in the MADT to detect
duplicates using the memory mapped address and use some strategy to
choose the "correct" one.

While here, reserve room in intrcnts for the Hyper-V counters.

PR:		229429, 130483
Reviewed by:	kib, royger, cem
Tested by:	royger (Xen), kib (DMAR)
Approved by:	re (gjb)
MFC after:	2 weeks
Differential Revision:	https://reviews.freebsd.org/D16861
2018-08-28 21:09:19 +00:00
2018-07-16 18:53:28 +00:00
2018-08-25 15:47:52 +00:00
2018-08-28 14:53:03 +00:00
2018-08-19 07:12:35 +00:00
2016-09-29 06:19:45 +00:00
2017-12-19 03:38:06 +00:00
2018-07-01 13:50:37 +00:00
2018-06-09 03:08:04 +00:00
2018-08-14 16:18:14 +00:00
2018-08-14 16:18:14 +00:00

FreeBSD Source:

This is the top level of the FreeBSD source directory. This file was last revised on: FreeBSD

FreeBSD is an operating system used to power modern servers, desktops, and embedded platforms. A large community has continually developed it for more than thirty years. Its advanced networking, security, and storage features have made FreeBSD the platform of choice for many of the busiest web sites and most pervasive embedded networking and storage devices.

For copyright information, please see the file COPYRIGHT in this directory. Additional copyright information also exists for some sources in this tree - please see the specific source directories for more information.

The Makefile in this directory supports a number of targets for building components (or all) of the FreeBSD source tree. See build(7), config(8), https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/makeworld.html, and https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html for more information, including setting make(1) variables.

Source Roadmap:

bin		System/user commands.

cddl		Various commands and libraries under the Common Development
		and Distribution License.

contrib		Packages contributed by 3rd parties.

crypto		Cryptography stuff (see crypto/README).

etc		Template files for /etc.

gnu		Various commands and libraries under the GNU Public License.
		Please see gnu/COPYING* for more information.

include		System include files.

kerberos5	Kerberos5 (Heimdal) package.

lib		System libraries.

libexec		System daemons.

release		Release building Makefile & associated tools.

rescue		Build system for statically linked /rescue utilities.

sbin		System commands.

secure		Cryptographic libraries and commands.

share		Shared resources.

stand		Boot loader sources.

sys		Kernel sources.

sys/<arch>/conf Kernel configuration files. GENERIC is the configuration
		used in release builds. NOTES contains documentation of
		all possible entries.

tests		Regression tests which can be run by Kyua.  See tests/README
		for additional information.

tools		Utilities for regression testing and miscellaneous tasks.

usr.bin		User commands.

usr.sbin	System administration commands.

For information on synchronizing your source tree with one or more of the FreeBSD Project's development branches, please see:

https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/current-stable.html

Description
freebsd with flexible iflib nic queues
Readme 2.6 GiB
Languages
C 60.1%
C++ 26.1%
Roff 4.9%
Shell 3%
Assembly 1.7%
Other 3.7%