freebsd-nq/sys/arm/ti/ti_adc.c
Oleksandr Tymoshenko f7604b1b27 Align OF_getencprop_alloc API with OF_getencprop and OF_getprop_alloc
Change OF_getencprop_alloc semantics to be combination of malloc and
OF_getencprop and return size of the property, not number of elements
allocated.

For the use cases where number of elements is preferred introduce
OF_getencprop_alloc_multi helper function that copies semantics
of OF_getencprop_alloc prior to this change.

This is to make OF_getencprop_alloc and OF_getencprop_alloc_multi
function signatures consistent with OF_getencprop_alloc and
OF_getencprop_alloc_multi.

Functionality-wise this patch is mostly rename of OF_getencprop_alloc
to OF_getencprop_alloc_multi except two calls in ofw_bus_setup_iinfo
where 1 was used as a block size.
2018-04-09 22:06:16 +00:00

967 lines
24 KiB
C

/*-
* Copyright 2014 Luiz Otavio O Souza <loos@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_evdev.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <sys/selinfo.h>
#include <sys/poll.h>
#include <sys/uio.h>
#include <machine/bus.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#ifdef EVDEV_SUPPORT
#include <dev/evdev/input.h>
#include <dev/evdev/evdev.h>
#endif
#include <arm/ti/ti_prcm.h>
#include <arm/ti/ti_adcreg.h>
#include <arm/ti/ti_adcvar.h>
#undef DEBUG_TSC
#define DEFAULT_CHARGE_DELAY 0x400
#define STEPDLY_OPEN 0x98
#define ORDER_XP 0
#define ORDER_XN 1
#define ORDER_YP 2
#define ORDER_YN 3
/* Define our 8 steps, one for each input channel. */
static struct ti_adc_input ti_adc_inputs[TI_ADC_NPINS] = {
{ .stepconfig = ADC_STEPCFG(1), .stepdelay = ADC_STEPDLY(1) },
{ .stepconfig = ADC_STEPCFG(2), .stepdelay = ADC_STEPDLY(2) },
{ .stepconfig = ADC_STEPCFG(3), .stepdelay = ADC_STEPDLY(3) },
{ .stepconfig = ADC_STEPCFG(4), .stepdelay = ADC_STEPDLY(4) },
{ .stepconfig = ADC_STEPCFG(5), .stepdelay = ADC_STEPDLY(5) },
{ .stepconfig = ADC_STEPCFG(6), .stepdelay = ADC_STEPDLY(6) },
{ .stepconfig = ADC_STEPCFG(7), .stepdelay = ADC_STEPDLY(7) },
{ .stepconfig = ADC_STEPCFG(8), .stepdelay = ADC_STEPDLY(8) },
};
static int ti_adc_samples[5] = { 0, 2, 4, 8, 16 };
static int ti_adc_detach(device_t dev);
#ifdef EVDEV_SUPPORT
static void
ti_adc_ev_report(struct ti_adc_softc *sc)
{
evdev_push_event(sc->sc_evdev, EV_ABS, ABS_X, sc->sc_x);
evdev_push_event(sc->sc_evdev, EV_ABS, ABS_Y, sc->sc_y);
evdev_push_event(sc->sc_evdev, EV_KEY, BTN_TOUCH, sc->sc_pen_down);
evdev_sync(sc->sc_evdev);
}
#endif /* EVDEV */
static void
ti_adc_enable(struct ti_adc_softc *sc)
{
uint32_t reg;
TI_ADC_LOCK_ASSERT(sc);
if (sc->sc_last_state == 1)
return;
/* Enable the FIFO0 threshold and the end of sequence interrupt. */
ADC_WRITE4(sc, ADC_IRQENABLE_SET,
ADC_IRQ_FIFO0_THRES | ADC_IRQ_FIFO1_THRES | ADC_IRQ_END_OF_SEQ);
reg = ADC_CTRL_STEP_WP | ADC_CTRL_STEP_ID;
if (sc->sc_tsc_wires > 0) {
reg |= ADC_CTRL_TSC_ENABLE;
switch (sc->sc_tsc_wires) {
case 4:
reg |= ADC_CTRL_TSC_4WIRE;
break;
case 5:
reg |= ADC_CTRL_TSC_5WIRE;
break;
case 8:
reg |= ADC_CTRL_TSC_8WIRE;
break;
default:
break;
}
}
reg |= ADC_CTRL_ENABLE;
/* Enable the ADC. Run thru enabled steps, start the conversions. */
ADC_WRITE4(sc, ADC_CTRL, reg);
sc->sc_last_state = 1;
}
static void
ti_adc_disable(struct ti_adc_softc *sc)
{
int count;
uint32_t data;
TI_ADC_LOCK_ASSERT(sc);
if (sc->sc_last_state == 0)
return;
/* Disable all the enabled steps. */
ADC_WRITE4(sc, ADC_STEPENABLE, 0);
/* Disable the ADC. */
ADC_WRITE4(sc, ADC_CTRL, ADC_READ4(sc, ADC_CTRL) & ~ADC_CTRL_ENABLE);
/* Disable the FIFO0 threshold and the end of sequence interrupt. */
ADC_WRITE4(sc, ADC_IRQENABLE_CLR,
ADC_IRQ_FIFO0_THRES | ADC_IRQ_FIFO1_THRES | ADC_IRQ_END_OF_SEQ);
/* ACK any pending interrupt. */
ADC_WRITE4(sc, ADC_IRQSTATUS, ADC_READ4(sc, ADC_IRQSTATUS));
/* Drain the FIFO data. */
count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK;
while (count > 0) {
data = ADC_READ4(sc, ADC_FIFO0DATA);
count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK;
}
count = ADC_READ4(sc, ADC_FIFO1COUNT) & ADC_FIFO_COUNT_MSK;
while (count > 0) {
data = ADC_READ4(sc, ADC_FIFO1DATA);
count = ADC_READ4(sc, ADC_FIFO1COUNT) & ADC_FIFO_COUNT_MSK;
}
sc->sc_last_state = 0;
}
static int
ti_adc_setup(struct ti_adc_softc *sc)
{
int ain, i;
uint32_t enabled;
TI_ADC_LOCK_ASSERT(sc);
/* Check for enabled inputs. */
enabled = sc->sc_tsc_enabled;
for (i = 0; i < sc->sc_adc_nchannels; i++) {
ain = sc->sc_adc_channels[i];
if (ti_adc_inputs[ain].enable)
enabled |= (1U << (ain + 1));
}
/* Set the ADC global status. */
if (enabled != 0) {
ti_adc_enable(sc);
/* Update the enabled steps. */
if (enabled != ADC_READ4(sc, ADC_STEPENABLE))
ADC_WRITE4(sc, ADC_STEPENABLE, enabled);
} else
ti_adc_disable(sc);
return (0);
}
static void
ti_adc_input_setup(struct ti_adc_softc *sc, int32_t ain)
{
struct ti_adc_input *input;
uint32_t reg, val;
TI_ADC_LOCK_ASSERT(sc);
input = &ti_adc_inputs[ain];
reg = input->stepconfig;
val = ADC_READ4(sc, reg);
/* Set single ended operation. */
val &= ~ADC_STEP_DIFF_CNTRL;
/* Set the negative voltage reference. */
val &= ~ADC_STEP_RFM_MSK;
/* Set the positive voltage reference. */
val &= ~ADC_STEP_RFP_MSK;
/* Set the samples average. */
val &= ~ADC_STEP_AVG_MSK;
val |= input->samples << ADC_STEP_AVG_SHIFT;
/* Select the desired input. */
val &= ~ADC_STEP_INP_MSK;
val |= ain << ADC_STEP_INP_SHIFT;
/* Set the ADC to one-shot mode. */
val &= ~ADC_STEP_MODE_MSK;
ADC_WRITE4(sc, reg, val);
}
static void
ti_adc_reset(struct ti_adc_softc *sc)
{
int ain, i;
TI_ADC_LOCK_ASSERT(sc);
/* Disable all the inputs. */
for (i = 0; i < sc->sc_adc_nchannels; i++) {
ain = sc->sc_adc_channels[i];
ti_adc_inputs[ain].enable = 0;
}
}
static int
ti_adc_clockdiv_proc(SYSCTL_HANDLER_ARGS)
{
int error, reg;
struct ti_adc_softc *sc;
sc = (struct ti_adc_softc *)arg1;
TI_ADC_LOCK(sc);
reg = (int)ADC_READ4(sc, ADC_CLKDIV) + 1;
TI_ADC_UNLOCK(sc);
error = sysctl_handle_int(oidp, &reg, sizeof(reg), req);
if (error != 0 || req->newptr == NULL)
return (error);
/*
* The actual written value is the prescaler setting - 1.
* Enforce a minimum value of 10 (i.e. 9) which limits the maximum
* ADC clock to ~2.4Mhz (CLK_M_OSC / 10).
*/
reg--;
if (reg < 9)
reg = 9;
if (reg > USHRT_MAX)
reg = USHRT_MAX;
TI_ADC_LOCK(sc);
/* Disable the ADC. */
ti_adc_disable(sc);
/* Update the ADC prescaler setting. */
ADC_WRITE4(sc, ADC_CLKDIV, reg);
/* Enable the ADC again. */
ti_adc_setup(sc);
TI_ADC_UNLOCK(sc);
return (0);
}
static int
ti_adc_enable_proc(SYSCTL_HANDLER_ARGS)
{
int error;
int32_t enable;
struct ti_adc_softc *sc;
struct ti_adc_input *input;
input = (struct ti_adc_input *)arg1;
sc = input->sc;
enable = input->enable;
error = sysctl_handle_int(oidp, &enable, sizeof(enable),
req);
if (error != 0 || req->newptr == NULL)
return (error);
if (enable)
enable = 1;
TI_ADC_LOCK(sc);
/* Setup the ADC as needed. */
if (input->enable != enable) {
input->enable = enable;
ti_adc_setup(sc);
if (input->enable == 0)
input->value = 0;
}
TI_ADC_UNLOCK(sc);
return (0);
}
static int
ti_adc_open_delay_proc(SYSCTL_HANDLER_ARGS)
{
int error, reg;
struct ti_adc_softc *sc;
struct ti_adc_input *input;
input = (struct ti_adc_input *)arg1;
sc = input->sc;
TI_ADC_LOCK(sc);
reg = (int)ADC_READ4(sc, input->stepdelay) & ADC_STEP_OPEN_DELAY;
TI_ADC_UNLOCK(sc);
error = sysctl_handle_int(oidp, &reg, sizeof(reg), req);
if (error != 0 || req->newptr == NULL)
return (error);
if (reg < 0)
reg = 0;
TI_ADC_LOCK(sc);
ADC_WRITE4(sc, input->stepdelay, reg & ADC_STEP_OPEN_DELAY);
TI_ADC_UNLOCK(sc);
return (0);
}
static int
ti_adc_samples_avg_proc(SYSCTL_HANDLER_ARGS)
{
int error, samples, i;
struct ti_adc_softc *sc;
struct ti_adc_input *input;
input = (struct ti_adc_input *)arg1;
sc = input->sc;
if (input->samples > nitems(ti_adc_samples))
input->samples = nitems(ti_adc_samples);
samples = ti_adc_samples[input->samples];
error = sysctl_handle_int(oidp, &samples, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
TI_ADC_LOCK(sc);
if (samples != ti_adc_samples[input->samples]) {
input->samples = 0;
for (i = 0; i < nitems(ti_adc_samples); i++)
if (samples >= ti_adc_samples[i])
input->samples = i;
ti_adc_input_setup(sc, input->input);
}
TI_ADC_UNLOCK(sc);
return (error);
}
static void
ti_adc_read_data(struct ti_adc_softc *sc)
{
int count, ain;
struct ti_adc_input *input;
uint32_t data;
TI_ADC_LOCK_ASSERT(sc);
/* Read the available data. */
count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK;
while (count > 0) {
data = ADC_READ4(sc, ADC_FIFO0DATA);
ain = (data & ADC_FIFO_STEP_ID_MSK) >> ADC_FIFO_STEP_ID_SHIFT;
input = &ti_adc_inputs[ain];
if (input->enable == 0)
input->value = 0;
else
input->value = (int32_t)(data & ADC_FIFO_DATA_MSK);
count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK;
}
}
static int
cmp_values(const void *a, const void *b)
{
const uint32_t *v1, *v2;
v1 = a;
v2 = b;
if (*v1 < *v2)
return -1;
if (*v1 > *v2)
return 1;
return (0);
}
static void
ti_adc_tsc_read_data(struct ti_adc_softc *sc)
{
int count;
uint32_t data[16];
uint32_t x, y;
int i, start, end;
TI_ADC_LOCK_ASSERT(sc);
/* Read the available data. */
count = ADC_READ4(sc, ADC_FIFO1COUNT) & ADC_FIFO_COUNT_MSK;
if (count == 0)
return;
i = 0;
while (count > 0) {
data[i++] = ADC_READ4(sc, ADC_FIFO1DATA) & ADC_FIFO_DATA_MSK;
count = ADC_READ4(sc, ADC_FIFO1COUNT) & ADC_FIFO_COUNT_MSK;
}
if (sc->sc_coord_readouts > 3) {
start = 1;
end = sc->sc_coord_readouts - 1;
qsort(data, sc->sc_coord_readouts,
sizeof(data[0]), &cmp_values);
qsort(&data[sc->sc_coord_readouts + 2],
sc->sc_coord_readouts,
sizeof(data[0]), &cmp_values);
}
else {
start = 0;
end = sc->sc_coord_readouts;
}
x = y = 0;
for (i = start; i < end; i++)
y += data[i];
y /= (end - start);
for (i = sc->sc_coord_readouts + 2 + start; i < sc->sc_coord_readouts + 2 + end; i++)
x += data[i];
x /= (end - start);
#ifdef DEBUG_TSC
device_printf(sc->sc_dev, "touchscreen x: %d, y: %d\n", x, y);
#endif
#ifdef EVDEV_SUPPORT
if ((sc->sc_x != x) || (sc->sc_y != y)) {
sc->sc_x = x;
sc->sc_y = y;
ti_adc_ev_report(sc);
}
#endif
}
static void
ti_adc_intr_locked(struct ti_adc_softc *sc, uint32_t status)
{
/* Read the available data. */
if (status & ADC_IRQ_FIFO0_THRES)
ti_adc_read_data(sc);
}
static void
ti_adc_tsc_intr_locked(struct ti_adc_softc *sc, uint32_t status)
{
/* Read the available data. */
if (status & ADC_IRQ_FIFO1_THRES)
ti_adc_tsc_read_data(sc);
}
static void
ti_adc_intr(void *arg)
{
struct ti_adc_softc *sc;
uint32_t status, rawstatus;
sc = (struct ti_adc_softc *)arg;
TI_ADC_LOCK(sc);
rawstatus = ADC_READ4(sc, ADC_IRQSTATUS_RAW);
status = ADC_READ4(sc, ADC_IRQSTATUS);
if (rawstatus & ADC_IRQ_HW_PEN_ASYNC) {
sc->sc_pen_down = 1;
status |= ADC_IRQ_HW_PEN_ASYNC;
ADC_WRITE4(sc, ADC_IRQENABLE_CLR,
ADC_IRQ_HW_PEN_ASYNC);
#ifdef EVDEV_SUPPORT
ti_adc_ev_report(sc);
#endif
}
if (rawstatus & ADC_IRQ_PEN_UP) {
sc->sc_pen_down = 0;
status |= ADC_IRQ_PEN_UP;
#ifdef EVDEV_SUPPORT
ti_adc_ev_report(sc);
#endif
}
if (status & ADC_IRQ_FIFO0_THRES)
ti_adc_intr_locked(sc, status);
if (status & ADC_IRQ_FIFO1_THRES)
ti_adc_tsc_intr_locked(sc, status);
if (status) {
/* ACK the interrupt. */
ADC_WRITE4(sc, ADC_IRQSTATUS, status);
}
/* Start the next conversion ? */
if (status & ADC_IRQ_END_OF_SEQ)
ti_adc_setup(sc);
TI_ADC_UNLOCK(sc);
}
static void
ti_adc_sysctl_init(struct ti_adc_softc *sc)
{
char pinbuf[3];
struct sysctl_ctx_list *ctx;
struct sysctl_oid *tree_node, *inp_node, *inpN_node;
struct sysctl_oid_list *tree, *inp_tree, *inpN_tree;
int ain, i;
/*
* Add per-pin sysctl tree/handlers.
*/
ctx = device_get_sysctl_ctx(sc->sc_dev);
tree_node = device_get_sysctl_tree(sc->sc_dev);
tree = SYSCTL_CHILDREN(tree_node);
SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "clockdiv",
CTLFLAG_RW | CTLTYPE_UINT, sc, 0,
ti_adc_clockdiv_proc, "IU", "ADC clock prescaler");
inp_node = SYSCTL_ADD_NODE(ctx, tree, OID_AUTO, "ain",
CTLFLAG_RD, NULL, "ADC inputs");
inp_tree = SYSCTL_CHILDREN(inp_node);
for (i = 0; i < sc->sc_adc_nchannels; i++) {
ain = sc->sc_adc_channels[i];
snprintf(pinbuf, sizeof(pinbuf), "%d", ain);
inpN_node = SYSCTL_ADD_NODE(ctx, inp_tree, OID_AUTO, pinbuf,
CTLFLAG_RD, NULL, "ADC input");
inpN_tree = SYSCTL_CHILDREN(inpN_node);
SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "enable",
CTLFLAG_RW | CTLTYPE_UINT, &ti_adc_inputs[ain], 0,
ti_adc_enable_proc, "IU", "Enable ADC input");
SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "open_delay",
CTLFLAG_RW | CTLTYPE_UINT, &ti_adc_inputs[ain], 0,
ti_adc_open_delay_proc, "IU", "ADC open delay");
SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "samples_avg",
CTLFLAG_RW | CTLTYPE_UINT, &ti_adc_inputs[ain], 0,
ti_adc_samples_avg_proc, "IU", "ADC samples average");
SYSCTL_ADD_INT(ctx, inpN_tree, OID_AUTO, "input",
CTLFLAG_RD, &ti_adc_inputs[ain].value, 0,
"Converted raw value for the ADC input");
}
}
static void
ti_adc_inputs_init(struct ti_adc_softc *sc)
{
int ain, i;
struct ti_adc_input *input;
TI_ADC_LOCK(sc);
for (i = 0; i < sc->sc_adc_nchannels; i++) {
ain = sc->sc_adc_channels[i];
input = &ti_adc_inputs[ain];
input->sc = sc;
input->input = ain;
input->value = 0;
input->enable = 0;
input->samples = 0;
ti_adc_input_setup(sc, ain);
}
TI_ADC_UNLOCK(sc);
}
static void
ti_adc_tsc_init(struct ti_adc_softc *sc)
{
int i, start_step, end_step;
uint32_t stepconfig, val;
TI_ADC_LOCK(sc);
/* X coordinates */
stepconfig = ADC_STEP_FIFO1 | (4 << ADC_STEP_AVG_SHIFT) |
ADC_STEP_MODE_HW_ONESHOT | sc->sc_xp_bit;
if (sc->sc_tsc_wires == 4)
stepconfig |= ADC_STEP_INP(sc->sc_yp_inp) | sc->sc_xn_bit;
else if (sc->sc_tsc_wires == 5)
stepconfig |= ADC_STEP_INP(4) |
sc->sc_xn_bit | sc->sc_yn_bit | sc->sc_yp_bit;
else if (sc->sc_tsc_wires == 8)
stepconfig |= ADC_STEP_INP(sc->sc_yp_inp) | sc->sc_xn_bit;
start_step = ADC_STEPS - sc->sc_coord_readouts + 1;
end_step = start_step + sc->sc_coord_readouts - 1;
for (i = start_step; i <= end_step; i++) {
ADC_WRITE4(sc, ADC_STEPCFG(i), stepconfig);
ADC_WRITE4(sc, ADC_STEPDLY(i), STEPDLY_OPEN);
}
/* Y coordinates */
stepconfig = ADC_STEP_FIFO1 | (4 << ADC_STEP_AVG_SHIFT) |
ADC_STEP_MODE_HW_ONESHOT | sc->sc_yn_bit |
ADC_STEP_INM(8);
if (sc->sc_tsc_wires == 4)
stepconfig |= ADC_STEP_INP(sc->sc_xp_inp) | sc->sc_yp_bit;
else if (sc->sc_tsc_wires == 5)
stepconfig |= ADC_STEP_INP(4) |
sc->sc_xp_bit | sc->sc_xn_bit | sc->sc_yp_bit;
else if (sc->sc_tsc_wires == 8)
stepconfig |= ADC_STEP_INP(sc->sc_xp_inp) | sc->sc_yp_bit;
start_step = ADC_STEPS - (sc->sc_coord_readouts*2 + 2) + 1;
end_step = start_step + sc->sc_coord_readouts - 1;
for (i = start_step; i <= end_step; i++) {
ADC_WRITE4(sc, ADC_STEPCFG(i), stepconfig);
ADC_WRITE4(sc, ADC_STEPDLY(i), STEPDLY_OPEN);
}
/* Charge config */
val = ADC_READ4(sc, ADC_IDLECONFIG);
ADC_WRITE4(sc, ADC_TC_CHARGE_STEPCONFIG, val);
ADC_WRITE4(sc, ADC_TC_CHARGE_DELAY, sc->sc_charge_delay);
/* 2 steps for Z */
start_step = ADC_STEPS - (sc->sc_coord_readouts + 2) + 1;
stepconfig = ADC_STEP_FIFO1 | (4 << ADC_STEP_AVG_SHIFT) |
ADC_STEP_MODE_HW_ONESHOT | sc->sc_yp_bit |
sc->sc_xn_bit | ADC_STEP_INP(sc->sc_xp_inp) |
ADC_STEP_INM(8);
ADC_WRITE4(sc, ADC_STEPCFG(start_step), stepconfig);
ADC_WRITE4(sc, ADC_STEPDLY(start_step), STEPDLY_OPEN);
start_step++;
stepconfig |= ADC_STEP_INP(sc->sc_yn_inp);
ADC_WRITE4(sc, ADC_STEPCFG(start_step), stepconfig);
ADC_WRITE4(sc, ADC_STEPDLY(start_step), STEPDLY_OPEN);
ADC_WRITE4(sc, ADC_FIFO1THRESHOLD, (sc->sc_coord_readouts*2 + 2) - 1);
sc->sc_tsc_enabled = 1;
start_step = ADC_STEPS - (sc->sc_coord_readouts*2 + 2) + 1;
end_step = ADC_STEPS;
for (i = start_step; i <= end_step; i++) {
sc->sc_tsc_enabled |= (1 << i);
}
TI_ADC_UNLOCK(sc);
}
static void
ti_adc_idlestep_init(struct ti_adc_softc *sc)
{
uint32_t val;
val = ADC_STEP_YNN_SW | ADC_STEP_INM(8) | ADC_STEP_INP(8) | ADC_STEP_YPN_SW;
ADC_WRITE4(sc, ADC_IDLECONFIG, val);
}
static int
ti_adc_config_wires(struct ti_adc_softc *sc, int *wire_configs, int nwire_configs)
{
int i;
int wire, ai;
for (i = 0; i < nwire_configs; i++) {
wire = wire_configs[i] & 0xf;
ai = (wire_configs[i] >> 4) & 0xf;
switch (wire) {
case ORDER_XP:
sc->sc_xp_bit = ADC_STEP_XPP_SW;
sc->sc_xp_inp = ai;
break;
case ORDER_XN:
sc->sc_xn_bit = ADC_STEP_XNN_SW;
sc->sc_xn_inp = ai;
break;
case ORDER_YP:
sc->sc_yp_bit = ADC_STEP_YPP_SW;
sc->sc_yp_inp = ai;
break;
case ORDER_YN:
sc->sc_yn_bit = ADC_STEP_YNN_SW;
sc->sc_yn_inp = ai;
break;
default:
device_printf(sc->sc_dev, "Invalid wire config\n");
return (-1);
}
}
return (0);
}
static int
ti_adc_probe(device_t dev)
{
if (!ofw_bus_is_compatible(dev, "ti,am3359-tscadc"))
return (ENXIO);
device_set_desc(dev, "TI ADC controller");
return (BUS_PROBE_DEFAULT);
}
static int
ti_adc_attach(device_t dev)
{
int err, rid, i;
struct ti_adc_softc *sc;
uint32_t rev, reg;
phandle_t node, child;
pcell_t cell;
int *channels;
int nwire_configs;
int *wire_configs;
sc = device_get_softc(dev);
sc->sc_dev = dev;
node = ofw_bus_get_node(dev);
sc->sc_tsc_wires = 0;
sc->sc_coord_readouts = 1;
sc->sc_x_plate_resistance = 0;
sc->sc_charge_delay = DEFAULT_CHARGE_DELAY;
/* Read "tsc" node properties */
child = ofw_bus_find_child(node, "tsc");
if (child != 0 && OF_hasprop(child, "ti,wires")) {
if ((OF_getencprop(child, "ti,wires", &cell, sizeof(cell))) > 0)
sc->sc_tsc_wires = cell;
if ((OF_getencprop(child, "ti,coordinate-readouts", &cell,
sizeof(cell))) > 0)
sc->sc_coord_readouts = cell;
if ((OF_getencprop(child, "ti,x-plate-resistance", &cell,
sizeof(cell))) > 0)
sc->sc_x_plate_resistance = cell;
if ((OF_getencprop(child, "ti,charge-delay", &cell,
sizeof(cell))) > 0)
sc->sc_charge_delay = cell;
nwire_configs = OF_getencprop_alloc_multi(child,
"ti,wire-config", sizeof(*wire_configs),
(void **)&wire_configs);
if (nwire_configs != sc->sc_tsc_wires) {
device_printf(sc->sc_dev,
"invalid number of ti,wire-config: %d (should be %d)\n",
nwire_configs, sc->sc_tsc_wires);
OF_prop_free(wire_configs);
return (EINVAL);
}
err = ti_adc_config_wires(sc, wire_configs, nwire_configs);
OF_prop_free(wire_configs);
if (err)
return (EINVAL);
}
/* Read "adc" node properties */
child = ofw_bus_find_child(node, "adc");
if (child != 0) {
sc->sc_adc_nchannels = OF_getencprop_alloc_multi(child,
"ti,adc-channels", sizeof(*channels), (void **)&channels);
if (sc->sc_adc_nchannels > 0) {
for (i = 0; i < sc->sc_adc_nchannels; i++)
sc->sc_adc_channels[i] = channels[i];
OF_prop_free(channels);
}
}
/* Sanity check FDT data */
if (sc->sc_tsc_wires + sc->sc_adc_nchannels > TI_ADC_NPINS) {
device_printf(dev, "total number of chanels (%d) is larger than %d\n",
sc->sc_tsc_wires + sc->sc_adc_nchannels, TI_ADC_NPINS);
return (ENXIO);
}
rid = 0;
sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (!sc->sc_mem_res) {
device_printf(dev, "cannot allocate memory window\n");
return (ENXIO);
}
/* Activate the ADC_TSC module. */
err = ti_prcm_clk_enable(TSC_ADC_CLK);
if (err)
return (err);
rid = 0;
sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (!sc->sc_irq_res) {
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
device_printf(dev, "cannot allocate interrupt\n");
return (ENXIO);
}
if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
NULL, ti_adc_intr, sc, &sc->sc_intrhand) != 0) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
device_printf(dev, "Unable to setup the irq handler.\n");
return (ENXIO);
}
/* Check the ADC revision. */
rev = ADC_READ4(sc, ADC_REVISION);
device_printf(dev,
"scheme: %#x func: %#x rtl: %d rev: %d.%d custom rev: %d\n",
(rev & ADC_REV_SCHEME_MSK) >> ADC_REV_SCHEME_SHIFT,
(rev & ADC_REV_FUNC_MSK) >> ADC_REV_FUNC_SHIFT,
(rev & ADC_REV_RTL_MSK) >> ADC_REV_RTL_SHIFT,
(rev & ADC_REV_MAJOR_MSK) >> ADC_REV_MAJOR_SHIFT,
rev & ADC_REV_MINOR_MSK,
(rev & ADC_REV_CUSTOM_MSK) >> ADC_REV_CUSTOM_SHIFT);
reg = ADC_READ4(sc, ADC_CTRL);
ADC_WRITE4(sc, ADC_CTRL, reg | ADC_CTRL_STEP_WP | ADC_CTRL_STEP_ID);
/*
* Set the ADC prescaler to 2400 if touchscreen is not enabled
* and to 24 if it is. This sets the ADC clock to ~10Khz and
* ~1Mhz respectively (CLK_M_OSC / prescaler).
*/
if (sc->sc_tsc_wires)
ADC_WRITE4(sc, ADC_CLKDIV, 24 - 1);
else
ADC_WRITE4(sc, ADC_CLKDIV, 2400 - 1);
TI_ADC_LOCK_INIT(sc);
ti_adc_idlestep_init(sc);
ti_adc_inputs_init(sc);
ti_adc_sysctl_init(sc);
ti_adc_tsc_init(sc);
TI_ADC_LOCK(sc);
ti_adc_setup(sc);
TI_ADC_UNLOCK(sc);
#ifdef EVDEV_SUPPORT
if (sc->sc_tsc_wires > 0) {
sc->sc_evdev = evdev_alloc();
evdev_set_name(sc->sc_evdev, device_get_desc(dev));
evdev_set_phys(sc->sc_evdev, device_get_nameunit(dev));
evdev_set_id(sc->sc_evdev, BUS_VIRTUAL, 0, 0, 0);
evdev_support_prop(sc->sc_evdev, INPUT_PROP_DIRECT);
evdev_support_event(sc->sc_evdev, EV_SYN);
evdev_support_event(sc->sc_evdev, EV_ABS);
evdev_support_event(sc->sc_evdev, EV_KEY);
evdev_support_abs(sc->sc_evdev, ABS_X, 0, 0,
ADC_MAX_VALUE, 0, 0, 0);
evdev_support_abs(sc->sc_evdev, ABS_Y, 0, 0,
ADC_MAX_VALUE, 0, 0, 0);
evdev_support_key(sc->sc_evdev, BTN_TOUCH);
err = evdev_register(sc->sc_evdev);
if (err) {
device_printf(dev,
"failed to register evdev: error=%d\n", err);
ti_adc_detach(dev);
return (err);
}
sc->sc_pen_down = 0;
sc->sc_x = -1;
sc->sc_y = -1;
}
#endif /* EVDEV */
return (0);
}
static int
ti_adc_detach(device_t dev)
{
struct ti_adc_softc *sc;
sc = device_get_softc(dev);
/* Turn off the ADC. */
TI_ADC_LOCK(sc);
ti_adc_reset(sc);
ti_adc_setup(sc);
#ifdef EVDEV_SUPPORT
evdev_free(sc->sc_evdev);
#endif
TI_ADC_UNLOCK(sc);
TI_ADC_LOCK_DESTROY(sc);
if (sc->sc_intrhand)
bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand);
if (sc->sc_irq_res)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
if (sc->sc_mem_res)
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
return (bus_generic_detach(dev));
}
static device_method_t ti_adc_methods[] = {
DEVMETHOD(device_probe, ti_adc_probe),
DEVMETHOD(device_attach, ti_adc_attach),
DEVMETHOD(device_detach, ti_adc_detach),
DEVMETHOD_END
};
static driver_t ti_adc_driver = {
"ti_adc",
ti_adc_methods,
sizeof(struct ti_adc_softc),
};
static devclass_t ti_adc_devclass;
DRIVER_MODULE(ti_adc, simplebus, ti_adc_driver, ti_adc_devclass, 0, 0);
MODULE_VERSION(ti_adc, 1);
MODULE_DEPEND(ti_adc, simplebus, 1, 1, 1);
#ifdef EVDEV_SUPPORT
MODULE_DEPEND(ti_adc, evdev, 1, 1, 1);
#endif