freebsd-nq/sys/netinet/ip_mroute.c
Wojciech Macek d40cd26a86 ip_mroute: rework ip_mroute
Approved by:     mw
Obtained from:   Semihalf
Sponsored by:    Stormshield
Differential Revision: https://reviews.freebsd.org/D30354

Changes:
1. add spinlock to bw_meter

If two contexts read and modify bw_meter values
it might happen that these are corrupted.
Guard only code fragments which do read-and-modify.
Context which only do "reads" are not done inside
spinlock block. The only sideffect that can happen is
an 1-p;acket outdated value reported back to userspace.

2. replace all locks with a single RWLOCK

Multiple locks caused a performance issue in routing
hot path, when two of them had to be taken. All locks
were replaced with single RWLOCK which makes the hot
path able to take only shared access to lock most of
the times.
All configuration routines have to take exclusive lock
(as it was done before) but these operation are very rare
compared to packet routing.

3. redesign MFC expire and UPCALL expire

Use generic kthread and cv_wait/cv_signal for deferring
work. Previously, upcalls could be sent from two contexts
which complicated the design. All upcall sending is now
done in a kthread which allows hot path to work more
efficient in some rare cases.

4. replace mutex-guarded linked list with lock free buf_ring

All message and data is now passed over lockless buf_ring.
This allowed to remove some heavy locking when linked
lists were used.
2021-05-31 05:48:15 +02:00

2868 lines
72 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1989 Stephen Deering
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Stephen Deering of Stanford University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
*/
/*
* IP multicast forwarding procedures
*
* Written by David Waitzman, BBN Labs, August 1988.
* Modified by Steve Deering, Stanford, February 1989.
* Modified by Mark J. Steiglitz, Stanford, May, 1991
* Modified by Van Jacobson, LBL, January 1993
* Modified by Ajit Thyagarajan, PARC, August 1993
* Modified by Bill Fenner, PARC, April 1995
* Modified by Ahmed Helmy, SGI, June 1996
* Modified by George Edmond Eddy (Rusty), ISI, February 1998
* Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
* Modified by Hitoshi Asaeda, WIDE, August 2000
* Modified by Pavlin Radoslavov, ICSI, October 2002
* Modified by Wojciech Macek, Semihalf, May 2021
*
* MROUTING Revision: 3.5
* and PIM-SMv2 and PIM-DM support, advanced API support,
* bandwidth metering and signaling
*/
/*
* TODO: Prefix functions with ipmf_.
* TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
* domain attachment (if_afdata) so we can track consumers of that service.
* TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
* move it to socket options.
* TODO: Cleanup LSRR removal further.
* TODO: Push RSVP stubs into raw_ip.c.
* TODO: Use bitstring.h for vif set.
* TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
* TODO: Sync ip6_mroute.c with this file.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_mrouting.h"
#define _PIM_VT 1
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/stddef.h>
#include <sys/condvar.h>
#include <sys/eventhandler.h>
#include <sys/lock.h>
#include <sys/kthread.h>
#include <sys/ktr.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/priv.h>
#include <sys/protosw.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockio.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/counter.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/netisr.h>
#include <net/route.h>
#include <net/vnet.h>
#include <netinet/in.h>
#include <netinet/igmp.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/ip_encap.h>
#include <netinet/ip_mroute.h>
#include <netinet/ip_var.h>
#include <netinet/ip_options.h>
#include <netinet/pim.h>
#include <netinet/pim_var.h>
#include <netinet/udp.h>
#include <machine/in_cksum.h>
#ifndef KTR_IPMF
#define KTR_IPMF KTR_INET
#endif
#define VIFI_INVALID ((vifi_t) -1)
static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
/*
* Locking. We use two locks: one for the virtual interface table and
* one for the forwarding table. These locks may be nested in which case
* the VIF lock must always be taken first. Note that each lock is used
* to cover not only the specific data structure but also related data
* structures.
*/
static struct rwlock mrouter_mtx;
#define MRW_RLOCK() rw_rlock(&mrouter_mtx)
#define MRW_WLOCK() rw_wlock(&mrouter_mtx)
#define MRW_RUNLOCK() rw_runlock(&mrouter_mtx)
#define MRW_WUNLOCK() rw_wunlock(&mrouter_mtx)
#define MRW_UNLOCK() rw_unlock(&mrouter_mtx)
#define MRW_LOCK_ASSERT() rw_assert(&mrouter_mtx, RA_LOCKED)
#define MRW_WLOCK_ASSERT() rw_assert(&mrouter_mtx, RA_WLOCKED)
#define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_mtx)
#define MRW_WOWNED() rw_wowned(&mrouter_mtx)
#define MRW_LOCK_INIT() \
rw_init(&mrouter_mtx, "IPv4 multicast forwarding")
#define MRW_LOCK_DESTROY() rw_destroy(&mrouter_mtx)
static int ip_mrouter_cnt; /* # of vnets with active mrouters */
static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat);
VNET_PCPUSTAT_SYSINIT(mrtstat);
VNET_PCPUSTAT_SYSUNINIT(mrtstat);
SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat,
mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
"netinet/ip_mroute.h)");
VNET_DEFINE_STATIC(u_long, mfchash);
#define V_mfchash VNET(mfchash)
#define MFCHASH(a, g) \
((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
#define MFCHASHSIZE 256
static u_long mfchashsize; /* Hash size */
VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */
#define V_nexpire VNET(nexpire)
VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
#define V_mfchashtbl VNET(mfchashtbl)
VNET_DEFINE_STATIC(vifi_t, numvifs);
#define V_numvifs VNET(numvifs)
VNET_DEFINE_STATIC(struct vif *, viftable);
#define V_viftable VNET(viftable)
static eventhandler_tag if_detach_event_tag = NULL;
VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch);
#define V_expire_upcalls_ch VNET(expire_upcalls_ch)
VNET_DEFINE_STATIC(struct mtx, upcall_thread_mtx);
#define V_upcall_thread_mtx VNET(upcall_thread_mtx)
VNET_DEFINE_STATIC(struct cv, upcall_thread_cv);
#define V_upcall_thread_cv VNET(upcall_thread_cv)
VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx);
#define V_buf_ring_mtx VNET(buf_ring_mtx)
#define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
#define UPCALL_EXPIRE 6 /* number of timeouts */
/*
* Bandwidth meter variables and constants
*/
static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
/*
* Pending upcalls are stored in a ring which is flushed when
* full, or periodically
*/
VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch);
#define V_bw_upcalls_ch VNET(bw_upcalls_ch)
VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring);
#define V_bw_upcalls_ring VNET(bw_upcalls_ring)
VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx);
#define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx)
#define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */
VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat);
VNET_PCPUSTAT_SYSINIT(pimstat);
VNET_PCPUSTAT_SYSUNINIT(pimstat);
SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"PIM");
SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat,
pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
static u_long pim_squelch_wholepkt = 0;
SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
&pim_squelch_wholepkt, 0,
"Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
static volatile int upcall_thread_shutdown = 0;
static const struct encaptab *pim_encap_cookie;
static int pim_encapcheck(const struct mbuf *, int, int, void *);
static int pim_input(struct mbuf *, int, int, void *);
extern int in_mcast_loop;
static const struct encap_config ipv4_encap_cfg = {
.proto = IPPROTO_PIM,
.min_length = sizeof(struct ip) + PIM_MINLEN,
.exact_match = 8,
.check = pim_encapcheck,
.input = pim_input
};
/*
* Note: the PIM Register encapsulation adds the following in front of a
* data packet:
*
* struct pim_encap_hdr {
* struct ip ip;
* struct pim_encap_pimhdr pim;
* }
*
*/
struct pim_encap_pimhdr {
struct pim pim;
uint32_t flags;
};
#define PIM_ENCAP_TTL 64
static struct ip pim_encap_iphdr = {
#if BYTE_ORDER == LITTLE_ENDIAN
sizeof(struct ip) >> 2,
IPVERSION,
#else
IPVERSION,
sizeof(struct ip) >> 2,
#endif
0, /* tos */
sizeof(struct ip), /* total length */
0, /* id */
0, /* frag offset */
PIM_ENCAP_TTL,
IPPROTO_PIM,
0, /* checksum */
};
static struct pim_encap_pimhdr pim_encap_pimhdr = {
{
PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
0, /* reserved */
0, /* checksum */
},
0 /* flags */
};
VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID;
#define V_reg_vif_num VNET(reg_vif_num)
VNET_DEFINE_STATIC(struct ifnet, multicast_register_if);
#define V_multicast_register_if VNET(multicast_register_if)
/*
* Private variables.
*/
static u_long X_ip_mcast_src(int);
static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
struct ip_moptions *);
static int X_ip_mrouter_done(void);
static int X_ip_mrouter_get(struct socket *, struct sockopt *);
static int X_ip_mrouter_set(struct socket *, struct sockopt *);
static int X_legal_vif_num(int);
static int X_mrt_ioctl(u_long, caddr_t, int);
static int add_bw_upcall(struct bw_upcall *);
static int add_mfc(struct mfcctl2 *);
static int add_vif(struct vifctl *);
static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
static void bw_meter_geq_receive_packet(struct bw_meter *, int,
struct timeval *);
static void bw_upcalls_send(void);
static int del_bw_upcall(struct bw_upcall *);
static int del_mfc(struct mfcctl2 *);
static int del_vif(vifi_t);
static int del_vif_locked(vifi_t);
static void expire_bw_upcalls_send(void *);
static void expire_mfc(struct mfc *);
static void expire_upcalls(void *);
static void free_bw_list(struct bw_meter *);
static int get_sg_cnt(struct sioc_sg_req *);
static int get_vif_cnt(struct sioc_vif_req *);
static void if_detached_event(void *, struct ifnet *);
static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
static int ip_mrouter_init(struct socket *, int);
static __inline struct mfc *
mfc_find(struct in_addr *, struct in_addr *);
static void phyint_send(struct ip *, struct vif *, struct mbuf *);
static struct mbuf *
pim_register_prepare(struct ip *, struct mbuf *);
static int pim_register_send(struct ip *, struct vif *,
struct mbuf *, struct mfc *);
static int pim_register_send_rp(struct ip *, struct vif *,
struct mbuf *, struct mfc *);
static int pim_register_send_upcall(struct ip *, struct vif *,
struct mbuf *, struct mfc *);
static void send_packet(struct vif *, struct mbuf *);
static int set_api_config(uint32_t *);
static int set_assert(int);
static int socket_send(struct socket *, struct mbuf *,
struct sockaddr_in *);
/*
* Kernel multicast forwarding API capabilities and setup.
* If more API capabilities are added to the kernel, they should be
* recorded in `mrt_api_support'.
*/
#define MRT_API_VERSION 0x0305
static const int mrt_api_version = MRT_API_VERSION;
static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
MRT_MFC_FLAGS_BORDER_VIF |
MRT_MFC_RP |
MRT_MFC_BW_UPCALL);
VNET_DEFINE_STATIC(uint32_t, mrt_api_config);
#define V_mrt_api_config VNET(mrt_api_config)
VNET_DEFINE_STATIC(int, pim_assert_enabled);
#define V_pim_assert_enabled VNET(pim_assert_enabled)
static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */
/*
* Find a route for a given origin IP address and multicast group address.
* Statistics must be updated by the caller.
*/
static __inline struct mfc *
mfc_find(struct in_addr *o, struct in_addr *g)
{
struct mfc *rt;
/*
* Might be called both RLOCK and WLOCK.
* Check if any, it's caller responsibility
* to choose correct option.
*/
MRW_LOCK_ASSERT();
LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
if (in_hosteq(rt->mfc_origin, *o) &&
in_hosteq(rt->mfc_mcastgrp, *g) &&
buf_ring_empty(rt->mfc_stall_ring))
break;
}
return (rt);
}
static __inline struct mfc *
mfc_alloc(void)
{
struct mfc *rt;
rt = (struct mfc*) malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO);
if (rt == NULL)
return rt;
rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE,
M_NOWAIT, &V_buf_ring_mtx);
if (rt->mfc_stall_ring == NULL) {
free(rt, M_MRTABLE);
return NULL;
}
return rt;
}
/*
* Handle MRT setsockopt commands to modify the multicast forwarding tables.
*/
static int
X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
{
int error, optval;
vifi_t vifi;
struct vifctl vifc;
struct mfcctl2 mfc;
struct bw_upcall bw_upcall;
uint32_t i;
if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
return EPERM;
error = 0;
switch (sopt->sopt_name) {
case MRT_INIT:
error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
if (error)
break;
error = ip_mrouter_init(so, optval);
break;
case MRT_DONE:
error = ip_mrouter_done();
break;
case MRT_ADD_VIF:
error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
if (error)
break;
error = add_vif(&vifc);
break;
case MRT_DEL_VIF:
error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
if (error)
break;
error = del_vif(vifi);
break;
case MRT_ADD_MFC:
case MRT_DEL_MFC:
/*
* select data size depending on API version.
*/
if (sopt->sopt_name == MRT_ADD_MFC &&
V_mrt_api_config & MRT_API_FLAGS_ALL) {
error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
sizeof(struct mfcctl2));
} else {
error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
sizeof(struct mfcctl));
bzero((caddr_t)&mfc + sizeof(struct mfcctl),
sizeof(mfc) - sizeof(struct mfcctl));
}
if (error)
break;
if (sopt->sopt_name == MRT_ADD_MFC)
error = add_mfc(&mfc);
else
error = del_mfc(&mfc);
break;
case MRT_ASSERT:
error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
if (error)
break;
set_assert(optval);
break;
case MRT_API_CONFIG:
error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
if (!error)
error = set_api_config(&i);
if (!error)
error = sooptcopyout(sopt, &i, sizeof i);
break;
case MRT_ADD_BW_UPCALL:
case MRT_DEL_BW_UPCALL:
error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
sizeof bw_upcall);
if (error)
break;
if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
error = add_bw_upcall(&bw_upcall);
else
error = del_bw_upcall(&bw_upcall);
break;
default:
error = EOPNOTSUPP;
break;
}
return error;
}
/*
* Handle MRT getsockopt commands
*/
static int
X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
{
int error;
switch (sopt->sopt_name) {
case MRT_VERSION:
error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
break;
case MRT_ASSERT:
error = sooptcopyout(sopt, &V_pim_assert_enabled,
sizeof V_pim_assert_enabled);
break;
case MRT_API_SUPPORT:
error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
break;
case MRT_API_CONFIG:
error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config);
break;
default:
error = EOPNOTSUPP;
break;
}
return error;
}
/*
* Handle ioctl commands to obtain information from the cache
*/
static int
X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
{
int error = 0;
/*
* Currently the only function calling this ioctl routine is rtioctl_fib().
* Typically, only root can create the raw socket in order to execute
* this ioctl method, however the request might be coming from a prison
*/
error = priv_check(curthread, PRIV_NETINET_MROUTE);
if (error)
return (error);
switch (cmd) {
case (SIOCGETVIFCNT):
error = get_vif_cnt((struct sioc_vif_req *)data);
break;
case (SIOCGETSGCNT):
error = get_sg_cnt((struct sioc_sg_req *)data);
break;
default:
error = EINVAL;
break;
}
return error;
}
/*
* returns the packet, byte, rpf-failure count for the source group provided
*/
static int
get_sg_cnt(struct sioc_sg_req *req)
{
struct mfc *rt;
MRW_RLOCK();
rt = mfc_find(&req->src, &req->grp);
if (rt == NULL) {
MRW_RUNLOCK();
req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
return EADDRNOTAVAIL;
}
req->pktcnt = rt->mfc_pkt_cnt;
req->bytecnt = rt->mfc_byte_cnt;
req->wrong_if = rt->mfc_wrong_if;
MRW_RUNLOCK();
return 0;
}
/*
* returns the input and output packet and byte counts on the vif provided
*/
static int
get_vif_cnt(struct sioc_vif_req *req)
{
vifi_t vifi = req->vifi;
MRW_RLOCK();
if (vifi >= V_numvifs) {
MRW_RUNLOCK();
return EINVAL;
}
mtx_lock_spin(&V_viftable[vifi].v_spin);
req->icount = V_viftable[vifi].v_pkt_in;
req->ocount = V_viftable[vifi].v_pkt_out;
req->ibytes = V_viftable[vifi].v_bytes_in;
req->obytes = V_viftable[vifi].v_bytes_out;
mtx_unlock_spin(&V_viftable[vifi].v_spin);
MRW_RUNLOCK();
return 0;
}
static void
if_detached_event(void *arg __unused, struct ifnet *ifp)
{
vifi_t vifi;
u_long i;
MRW_WLOCK();
if (V_ip_mrouter == NULL) {
MRW_WUNLOCK();
return;
}
/*
* Tear down multicast forwarder state associated with this ifnet.
* 1. Walk the vif list, matching vifs against this ifnet.
* 2. Walk the multicast forwarding cache (mfc) looking for
* inner matches with this vif's index.
* 3. Expire any matching multicast forwarding cache entries.
* 4. Free vif state. This should disable ALLMULTI on the interface.
*/
for (vifi = 0; vifi < V_numvifs; vifi++) {
if (V_viftable[vifi].v_ifp != ifp)
continue;
for (i = 0; i < mfchashsize; i++) {
struct mfc *rt, *nrt;
LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
if (rt->mfc_parent == vifi) {
expire_mfc(rt);
}
}
}
del_vif_locked(vifi);
}
MRW_WUNLOCK();
}
static void
ip_mrouter_upcall_thread(void *arg)
{
CURVNET_SET((struct vnet *) arg);
while (upcall_thread_shutdown == 0) {
/* START: Event loop */
/* END: Event loop */
mtx_lock(&V_upcall_thread_mtx);
cv_timedwait(&V_upcall_thread_cv, &V_upcall_thread_mtx, hz);
mtx_unlock(&V_upcall_thread_mtx);
}
upcall_thread_shutdown = 0;
CURVNET_RESTORE();
kthread_exit();
}
/*
* Enable multicast forwarding.
*/
static int
ip_mrouter_init(struct socket *so, int version)
{
CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
so->so_type, so->so_proto->pr_protocol);
if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
return EOPNOTSUPP;
if (version != 1)
return ENOPROTOOPT;
MRW_WLOCK();
if (ip_mrouter_unloading) {
MRW_WUNLOCK();
return ENOPROTOOPT;
}
if (V_ip_mrouter != NULL) {
MRW_WUNLOCK();
return EADDRINUSE;
}
V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
HASH_NOWAIT);
/* Create upcall ring */
mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF);
V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE,
M_NOWAIT, &V_bw_upcalls_ring_mtx);
if (!V_bw_upcalls_ring)
return (ENOMEM);
/* Create upcall thread */
upcall_thread_shutdown = 0;
mtx_init(&V_upcall_thread_mtx, "ip_mroute upcall thread mtx", NULL, MTX_DEF);
cv_init(&V_upcall_thread_cv, "ip_mroute upcall cv");
kthread_add(ip_mrouter_upcall_thread, curvnet,
NULL, NULL, 0, 0, "ip_mroute upcall thread");
callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
curvnet);
callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
curvnet);
V_ip_mrouter = so;
ip_mrouter_cnt++;
/* This is a mutex required by buf_ring init, but not used internally */
mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF);
MRW_WUNLOCK();
CTR1(KTR_IPMF, "%s: done", __func__);
return 0;
}
/*
* Disable multicast forwarding.
*/
static int
X_ip_mrouter_done(void)
{
struct ifnet *ifp;
u_long i;
vifi_t vifi;
struct bw_upcall *bu;
MRW_WLOCK();
if (V_ip_mrouter == NULL) {
MRW_WUNLOCK();
return EINVAL;
}
/*
* Detach/disable hooks to the reset of the system.
*/
V_ip_mrouter = NULL;
ip_mrouter_cnt--;
V_mrt_api_config = 0;
MROUTER_WAIT();
upcall_thread_shutdown = 1;
mtx_lock(&V_upcall_thread_mtx);
cv_signal(&V_upcall_thread_cv);
mtx_unlock(&V_upcall_thread_mtx);
/* Wait for thread shutdown */
while (upcall_thread_shutdown == 1) {};
mtx_destroy(&V_upcall_thread_mtx);
/* Destroy upcall ring */
while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
free(bu, M_MRTABLE);
}
buf_ring_free(V_bw_upcalls_ring, M_MRTABLE);
mtx_destroy(&V_bw_upcalls_ring_mtx);
/*
* For each phyint in use, disable promiscuous reception of all IP
* multicasts.
*/
for (vifi = 0; vifi < V_numvifs; vifi++) {
if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
!(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
ifp = V_viftable[vifi].v_ifp;
if_allmulti(ifp, 0);
}
}
bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS);
V_numvifs = 0;
V_pim_assert_enabled = 0;
callout_stop(&V_expire_upcalls_ch);
callout_stop(&V_bw_upcalls_ch);
/*
* Free all multicast forwarding cache entries.
* Do not use hashdestroy(), as we must perform other cleanup.
*/
for (i = 0; i < mfchashsize; i++) {
struct mfc *rt, *nrt;
LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
expire_mfc(rt);
}
}
free(V_mfchashtbl, M_MRTABLE);
V_mfchashtbl = NULL;
bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
V_reg_vif_num = VIFI_INVALID;
mtx_destroy(&V_buf_ring_mtx);
MRW_WUNLOCK();
CTR1(KTR_IPMF, "%s: done", __func__);
return 0;
}
/*
* Set PIM assert processing global
*/
static int
set_assert(int i)
{
if ((i != 1) && (i != 0))
return EINVAL;
V_pim_assert_enabled = i;
return 0;
}
/*
* Configure API capabilities
*/
int
set_api_config(uint32_t *apival)
{
u_long i;
/*
* We can set the API capabilities only if it is the first operation
* after MRT_INIT. I.e.:
* - there are no vifs installed
* - pim_assert is not enabled
* - the MFC table is empty
*/
if (V_numvifs > 0) {
*apival = 0;
return EPERM;
}
if (V_pim_assert_enabled) {
*apival = 0;
return EPERM;
}
MRW_RLOCK();
for (i = 0; i < mfchashsize; i++) {
if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
MRW_RUNLOCK();
*apival = 0;
return EPERM;
}
}
MRW_RUNLOCK();
V_mrt_api_config = *apival & mrt_api_support;
*apival = V_mrt_api_config;
return 0;
}
/*
* Add a vif to the vif table
*/
static int
add_vif(struct vifctl *vifcp)
{
struct vif *vifp = V_viftable + vifcp->vifc_vifi;
struct sockaddr_in sin = {sizeof sin, AF_INET};
struct ifaddr *ifa;
struct ifnet *ifp;
int error;
MRW_WLOCK();
if (vifcp->vifc_vifi >= MAXVIFS) {
MRW_WUNLOCK();
return EINVAL;
}
/* rate limiting is no longer supported by this code */
if (vifcp->vifc_rate_limit != 0) {
log(LOG_ERR, "rate limiting is no longer supported\n");
MRW_WUNLOCK();
return EINVAL;
}
if (!in_nullhost(vifp->v_lcl_addr)) {
MRW_WUNLOCK();
return EADDRINUSE;
}
if (in_nullhost(vifcp->vifc_lcl_addr)) {
MRW_WUNLOCK();
return EADDRNOTAVAIL;
}
/* Find the interface with an address in AF_INET family */
if (vifcp->vifc_flags & VIFF_REGISTER) {
/*
* XXX: Because VIFF_REGISTER does not really need a valid
* local interface (e.g. it could be 127.0.0.2), we don't
* check its address.
*/
ifp = NULL;
} else {
struct epoch_tracker et;
sin.sin_addr = vifcp->vifc_lcl_addr;
NET_EPOCH_ENTER(et);
ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
if (ifa == NULL) {
NET_EPOCH_EXIT(et);
MRW_WUNLOCK();
return EADDRNOTAVAIL;
}
ifp = ifa->ifa_ifp;
/* XXX FIXME we need to take a ref on ifp and cleanup properly! */
NET_EPOCH_EXIT(et);
}
if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
MRW_WUNLOCK();
return EOPNOTSUPP;
} else if (vifcp->vifc_flags & VIFF_REGISTER) {
ifp = &V_multicast_register_if;
CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
if (V_reg_vif_num == VIFI_INVALID) {
if_initname(&V_multicast_register_if, "register_vif", 0);
V_multicast_register_if.if_flags = IFF_LOOPBACK;
V_reg_vif_num = vifcp->vifc_vifi;
}
} else { /* Make sure the interface supports multicast */
if ((ifp->if_flags & IFF_MULTICAST) == 0) {
MRW_WUNLOCK();
return EOPNOTSUPP;
}
/* Enable promiscuous reception of all IP multicasts from the if */
error = if_allmulti(ifp, 1);
if (error) {
MRW_WUNLOCK();
return error;
}
}
vifp->v_flags = vifcp->vifc_flags;
vifp->v_threshold = vifcp->vifc_threshold;
vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
vifp->v_ifp = ifp;
/* initialize per vif pkt counters */
vifp->v_pkt_in = 0;
vifp->v_pkt_out = 0;
vifp->v_bytes_in = 0;
vifp->v_bytes_out = 0;
sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi);
mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN);
/* Adjust numvifs up if the vifi is higher than numvifs */
if (V_numvifs <= vifcp->vifc_vifi)
V_numvifs = vifcp->vifc_vifi + 1;
MRW_WUNLOCK();
CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__,
(int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr),
(int)vifcp->vifc_threshold);
return 0;
}
/*
* Delete a vif from the vif table
*/
static int
del_vif_locked(vifi_t vifi)
{
struct vif *vifp;
MRW_WLOCK_ASSERT();
if (vifi >= V_numvifs) {
return EINVAL;
}
vifp = &V_viftable[vifi];
if (in_nullhost(vifp->v_lcl_addr)) {
return EADDRNOTAVAIL;
}
if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
if_allmulti(vifp->v_ifp, 0);
if (vifp->v_flags & VIFF_REGISTER)
V_reg_vif_num = VIFI_INVALID;
mtx_destroy(&vifp->v_spin);
bzero((caddr_t)vifp, sizeof (*vifp));
CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
/* Adjust numvifs down */
for (vifi = V_numvifs; vifi > 0; vifi--)
if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
break;
V_numvifs = vifi;
return 0;
}
static int
del_vif(vifi_t vifi)
{
int cc;
MRW_WLOCK();
cc = del_vif_locked(vifi);
MRW_WUNLOCK();
return cc;
}
/*
* update an mfc entry without resetting counters and S,G addresses.
*/
static void
update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
{
int i;
rt->mfc_parent = mfccp->mfcc_parent;
for (i = 0; i < V_numvifs; i++) {
rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
MRT_MFC_FLAGS_ALL;
}
/* set the RP address */
if (V_mrt_api_config & MRT_MFC_RP)
rt->mfc_rp = mfccp->mfcc_rp;
else
rt->mfc_rp.s_addr = INADDR_ANY;
}
/*
* fully initialize an mfc entry from the parameter.
*/
static void
init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
{
rt->mfc_origin = mfccp->mfcc_origin;
rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
update_mfc_params(rt, mfccp);
/* initialize pkt counters per src-grp */
rt->mfc_pkt_cnt = 0;
rt->mfc_byte_cnt = 0;
rt->mfc_wrong_if = 0;
timevalclear(&rt->mfc_last_assert);
}
static void
expire_mfc(struct mfc *rt)
{
struct rtdetq *rte;
MRW_WLOCK_ASSERT();
free_bw_list(rt->mfc_bw_meter_leq);
free_bw_list(rt->mfc_bw_meter_geq);
while (!buf_ring_empty(rt->mfc_stall_ring)) {
rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
if (rte) {
m_freem(rte->m);
free(rte, M_MRTABLE);
}
}
buf_ring_free(rt->mfc_stall_ring, M_MRTABLE);
LIST_REMOVE(rt, mfc_hash);
free(rt, M_MRTABLE);
}
/*
* Add an mfc entry
*/
static int
add_mfc(struct mfcctl2 *mfccp)
{
struct mfc *rt;
struct rtdetq *rte;
u_long hash = 0;
u_short nstl;
MRW_WLOCK();
rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
/* If an entry already exists, just update the fields */
if (rt) {
CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x",
__func__, ntohl(mfccp->mfcc_origin.s_addr),
(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
mfccp->mfcc_parent);
update_mfc_params(rt, mfccp);
MRW_WUNLOCK();
return (0);
}
/*
* Find the entry for which the upcall was made and update
*/
nstl = 0;
hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
!buf_ring_empty(rt->mfc_stall_ring)) {
CTR5(KTR_IPMF,
"%s: add mfc orig 0x%08x group %lx parent %x qh %p",
__func__, ntohl(mfccp->mfcc_origin.s_addr),
(u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
mfccp->mfcc_parent,
rt->mfc_stall_ring);
if (nstl++)
CTR1(KTR_IPMF, "%s: multiple matches", __func__);
init_mfc_params(rt, mfccp);
rt->mfc_expire = 0; /* Don't clean this guy up */
V_nexpire[hash]--;
/* Free queued packets, but attempt to forward them first. */
while (!buf_ring_empty(rt->mfc_stall_ring)) {
rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
if (rte->ifp != NULL)
ip_mdq(rte->m, rte->ifp, rt, -1);
m_freem(rte->m);
free(rte, M_MRTABLE);
}
}
}
/*
* It is possible that an entry is being inserted without an upcall
*/
if (nstl == 0) {
CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
init_mfc_params(rt, mfccp);
if (rt->mfc_expire)
V_nexpire[hash]--;
rt->mfc_expire = 0;
break; /* XXX */
}
}
if (rt == NULL) { /* no upcall, so make a new entry */
rt = mfc_alloc();
if (rt == NULL) {
MRW_WUNLOCK();
return (ENOBUFS);
}
init_mfc_params(rt, mfccp);
rt->mfc_expire = 0;
rt->mfc_bw_meter_leq = NULL;
rt->mfc_bw_meter_geq = NULL;
/* insert new entry at head of hash chain */
LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
}
}
MRW_WUNLOCK();
return (0);
}
/*
* Delete an mfc entry
*/
static int
del_mfc(struct mfcctl2 *mfccp)
{
struct in_addr origin;
struct in_addr mcastgrp;
struct mfc *rt;
origin = mfccp->mfcc_origin;
mcastgrp = mfccp->mfcc_mcastgrp;
CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__,
ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
MRW_WLOCK();
rt = mfc_find(&origin, &mcastgrp);
if (rt == NULL) {
MRW_WUNLOCK();
return EADDRNOTAVAIL;
}
/*
* free the bw_meter entries
*/
free_bw_list(rt->mfc_bw_meter_leq);
rt->mfc_bw_meter_leq = NULL;
free_bw_list(rt->mfc_bw_meter_geq);
rt->mfc_bw_meter_geq = NULL;
LIST_REMOVE(rt, mfc_hash);
free(rt, M_MRTABLE);
MRW_WUNLOCK();
return (0);
}
/*
* Send a message to the routing daemon on the multicast routing socket.
*/
static int
socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
{
if (s) {
SOCKBUF_LOCK(&s->so_rcv);
if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
NULL) != 0) {
sorwakeup_locked(s);
return 0;
}
SOCKBUF_UNLOCK(&s->so_rcv);
}
m_freem(mm);
return -1;
}
/*
* IP multicast forwarding function. This function assumes that the packet
* pointed to by "ip" has arrived on (or is about to be sent to) the interface
* pointed to by "ifp", and the packet is to be relayed to other networks
* that have members of the packet's destination IP multicast group.
*
* The packet is returned unscathed to the caller, unless it is
* erroneous, in which case a non-zero return value tells the caller to
* discard it.
*/
#define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
static int
X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
struct ip_moptions *imo)
{
struct mfc *rt;
int error;
vifi_t vifi;
struct mbuf *mb0;
struct rtdetq *rte;
u_long hash;
int hlen;
CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p",
ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
/*
* Packet arrived via a physical interface or
* an encapsulated tunnel or a register_vif.
*/
} else {
/*
* Packet arrived through a source-route tunnel.
* Source-route tunnels are no longer supported.
*/
return (1);
}
/*
* BEGIN: MCAST ROUTING HOT PATH
*/
MRW_RLOCK();
if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
if (ip->ip_ttl < MAXTTL)
ip->ip_ttl++; /* compensate for -1 in *_send routines */
error = ip_mdq(m, ifp, NULL, vifi);
MRW_RUNLOCK();
return error;
}
/*
* Don't forward a packet with time-to-live of zero or one,
* or a packet destined to a local-only group.
*/
if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
MRW_RUNLOCK();
return 0;
}
mfc_find_retry:
/*
* Determine forwarding vifs from the forwarding cache table
*/
MRTSTAT_INC(mrts_mfc_lookups);
rt = mfc_find(&ip->ip_src, &ip->ip_dst);
/* Entry exists, so forward if necessary */
if (rt != NULL) {
error = ip_mdq(m, ifp, rt, -1);
/* Generic unlock here as we might release R or W lock */
MRW_UNLOCK();
return error;
}
/*
* END: MCAST ROUTING HOT PATH
*/
/* Further processing must be done with WLOCK taken */
if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) {
MRW_RUNLOCK();
MRW_WLOCK();
goto mfc_find_retry;
}
/*
* If we don't have a route for packet's origin,
* Make a copy of the packet & send message to routing daemon
*/
hlen = ip->ip_hl << 2;
MRTSTAT_INC(mrts_mfc_misses);
MRTSTAT_INC(mrts_no_route);
CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)",
ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr));
/*
* Allocate mbufs early so that we don't do extra work if we are
* just going to fail anyway. Make sure to pullup the header so
* that other people can't step on it.
*/
rte = (struct rtdetq*) malloc((sizeof *rte), M_MRTABLE,
M_NOWAIT|M_ZERO);
if (rte == NULL) {
MRW_WUNLOCK();
return ENOBUFS;
}
mb0 = m_copypacket(m, M_NOWAIT);
if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen))
mb0 = m_pullup(mb0, hlen);
if (mb0 == NULL) {
free(rte, M_MRTABLE);
MRW_WUNLOCK();
return ENOBUFS;
}
/* is there an upcall waiting for this flow ? */
hash = MFCHASH(ip->ip_src, ip->ip_dst);
LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash)
{
if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
!buf_ring_empty(rt->mfc_stall_ring))
break;
}
if (rt == NULL) {
int i;
struct igmpmsg *im;
struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
struct mbuf *mm;
/*
* Locate the vifi for the incoming interface for this packet.
* If none found, drop packet.
*/
for (vifi = 0; vifi < V_numvifs &&
V_viftable[vifi].v_ifp != ifp; vifi++)
;
if (vifi >= V_numvifs) /* vif not found, drop packet */
goto non_fatal;
/* no upcall, so make a new entry */
rt = mfc_alloc();
if (rt == NULL)
goto fail;
/* Make a copy of the header to send to the user level process */
mm = m_copym(mb0, 0, hlen, M_NOWAIT);
if (mm == NULL)
goto fail1;
/*
* Send message to routing daemon to install
* a route into the kernel table
*/
im = mtod(mm, struct igmpmsg*);
im->im_msgtype = IGMPMSG_NOCACHE;
im->im_mbz = 0;
im->im_vif = vifi;
MRTSTAT_INC(mrts_upcalls);
k_igmpsrc.sin_addr = ip->ip_src;
if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
CTR0(KTR_IPMF, "ip_mforward: socket queue full");
MRTSTAT_INC(mrts_upq_sockfull);
fail1: free(rt, M_MRTABLE);
fail: free(rte, M_MRTABLE);
m_freem(mb0);
MRW_WUNLOCK();
return ENOBUFS;
}
/* insert new entry at head of hash chain */
rt->mfc_origin.s_addr = ip->ip_src.s_addr;
rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr;
rt->mfc_expire = UPCALL_EXPIRE;
V_nexpire[hash]++;
for (i = 0; i < V_numvifs; i++) {
rt->mfc_ttls[i] = 0;
rt->mfc_flags[i] = 0;
}
rt->mfc_parent = -1;
/* clear the RP address */
rt->mfc_rp.s_addr = INADDR_ANY;
rt->mfc_bw_meter_leq = NULL;
rt->mfc_bw_meter_geq = NULL;
/* initialize pkt counters per src-grp */
rt->mfc_pkt_cnt = 0;
rt->mfc_byte_cnt = 0;
rt->mfc_wrong_if = 0;
timevalclear(&rt->mfc_last_assert);
buf_ring_enqueue(rt->mfc_stall_ring, rte);
} else {
/* determine if queue has overflowed */
if (buf_ring_full(rt->mfc_stall_ring)) {
MRTSTAT_INC(mrts_upq_ovflw);
non_fatal: free(rte, M_MRTABLE);
m_freem(mb0);
MRW_WUNLOCK();
return (0);
}
buf_ring_enqueue(rt->mfc_stall_ring, rte);
}
rte->m = mb0;
rte->ifp = ifp;
MRW_WUNLOCK();
return 0;
}
/*
* Clean up the cache entry if upcall is not serviced
*/
static void
expire_upcalls(void *arg)
{
u_long i;
CURVNET_SET((struct vnet *) arg);
/*This callout is always run with MRW_WLOCK taken. */
for (i = 0; i < mfchashsize; i++) {
struct mfc *rt, *nrt;
if (V_nexpire[i] == 0)
continue;
LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
if (buf_ring_empty(rt->mfc_stall_ring))
continue;
if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
continue;
MRTSTAT_INC(mrts_cache_cleanups);
CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
(u_long)ntohl(rt->mfc_origin.s_addr),
(u_long)ntohl(rt->mfc_mcastgrp.s_addr));
expire_mfc(rt);
}
}
callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
curvnet);
CURVNET_RESTORE();
}
/*
* Packet forwarding routine once entry in the cache is made
*/
static int
ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
{
struct ip *ip = mtod(m, struct ip *);
vifi_t vifi;
int plen = ntohs(ip->ip_len);
MRW_LOCK_ASSERT();
/*
* If xmt_vif is not -1, send on only the requested vif.
*
* (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
*/
if (xmt_vif < V_numvifs) {
if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
pim_register_send(ip, V_viftable + xmt_vif, m, rt);
else
phyint_send(ip, V_viftable + xmt_vif, m);
return 1;
}
/*
* Don't forward if it didn't arrive from the parent vif for its origin.
*/
vifi = rt->mfc_parent;
if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
__func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
MRTSTAT_INC(mrts_wrong_if);
++rt->mfc_wrong_if;
/*
* If we are doing PIM assert processing, send a message
* to the routing daemon.
*
* XXX: A PIM-SM router needs the WRONGVIF detection so it
* can complete the SPT switch, regardless of the type
* of the iif (broadcast media, GRE tunnel, etc).
*/
if (V_pim_assert_enabled && (vifi < V_numvifs) &&
V_viftable[vifi].v_ifp) {
if (ifp == &V_multicast_register_if)
PIMSTAT_INC(pims_rcv_registers_wrongiif);
/* Get vifi for the incoming packet */
for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp;
vifi++)
;
if (vifi >= V_numvifs)
return 0; /* The iif is not found: ignore the packet. */
if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
return 0; /* WRONGVIF disabled: ignore the packet */
if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
struct igmpmsg *im;
int hlen = ip->ip_hl << 2;
struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT);
if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen))
mm = m_pullup(mm, hlen);
if (mm == NULL)
return ENOBUFS;
im = mtod(mm, struct igmpmsg *);
im->im_msgtype = IGMPMSG_WRONGVIF;
im->im_mbz = 0;
im->im_vif = vifi;
MRTSTAT_INC(mrts_upcalls);
k_igmpsrc.sin_addr = im->im_src;
if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
CTR1(KTR_IPMF, "%s: socket queue full", __func__);
MRTSTAT_INC(mrts_upq_sockfull);
return ENOBUFS;
}
}
}
return 0;
}
/* If I sourced this packet, it counts as output, else it was input. */
mtx_lock_spin(&V_viftable[vifi].v_spin);
if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
V_viftable[vifi].v_pkt_out++;
V_viftable[vifi].v_bytes_out += plen;
} else {
V_viftable[vifi].v_pkt_in++;
V_viftable[vifi].v_bytes_in += plen;
}
mtx_unlock_spin(&V_viftable[vifi].v_spin);
rt->mfc_pkt_cnt++;
rt->mfc_byte_cnt += plen;
/*
* For each vif, decide if a copy of the packet should be forwarded.
* Forward if:
* - the ttl exceeds the vif's threshold
* - there are group members downstream on interface
*/
for (vifi = 0; vifi < V_numvifs; vifi++)
if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
V_viftable[vifi].v_pkt_out++;
V_viftable[vifi].v_bytes_out += plen;
if (V_viftable[vifi].v_flags & VIFF_REGISTER)
pim_register_send(ip, V_viftable + vifi, m, rt);
else
phyint_send(ip, V_viftable + vifi, m);
}
/*
* Perform upcall-related bw measuring.
*/
if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) {
struct bw_meter *x;
struct timeval now;
microtime(&now);
/* Process meters for Greater-or-EQual case */
for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next)
bw_meter_geq_receive_packet(x, plen, &now);
/* Process meters for Lower-or-EQual case */
for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) {
/*
* Record that a packet is received.
* Spin lock has to be taken as callout context
* (expire_bw_meter_leq) might modify these fields
* as well
*/
mtx_lock_spin(&x->bm_spin);
x->bm_measured.b_packets++;
x->bm_measured.b_bytes += plen;
mtx_unlock_spin(&x->bm_spin);
}
}
return 0;
}
/*
* Check if a vif number is legal/ok. This is used by in_mcast.c.
*/
static int
X_legal_vif_num(int vif)
{
int ret;
ret = 0;
if (vif < 0)
return (ret);
MRW_RLOCK();
if (vif < V_numvifs)
ret = 1;
MRW_RUNLOCK();
return (ret);
}
/*
* Return the local address used by this vif
*/
static u_long
X_ip_mcast_src(int vifi)
{
in_addr_t addr;
addr = INADDR_ANY;
if (vifi < 0)
return (addr);
MRW_RLOCK();
if (vifi < V_numvifs)
addr = V_viftable[vifi].v_lcl_addr.s_addr;
MRW_RUNLOCK();
return (addr);
}
static void
phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
{
struct mbuf *mb_copy;
int hlen = ip->ip_hl << 2;
MRW_LOCK_ASSERT();
/*
* Make a new reference to the packet; make sure that
* the IP header is actually copied, not just referenced,
* so that ip_output() only scribbles on the copy.
*/
mb_copy = m_copypacket(m, M_NOWAIT);
if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen))
mb_copy = m_pullup(mb_copy, hlen);
if (mb_copy == NULL)
return;
send_packet(vifp, mb_copy);
}
static void
send_packet(struct vif *vifp, struct mbuf *m)
{
struct ip_moptions imo;
int error __unused;
MRW_LOCK_ASSERT();
imo.imo_multicast_ifp = vifp->v_ifp;
imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
imo.imo_multicast_loop = !!in_mcast_loop;
imo.imo_multicast_vif = -1;
STAILQ_INIT(&imo.imo_head);
/*
* Re-entrancy should not be a problem here, because
* the packets that we send out and are looped back at us
* should get rejected because they appear to come from
* the loopback interface, thus preventing looping.
*/
error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
(ptrdiff_t)(vifp - V_viftable), error);
}
/*
* Stubs for old RSVP socket shim implementation.
*/
static int
X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
{
return (EOPNOTSUPP);
}
static void
X_ip_rsvp_force_done(struct socket *so __unused)
{
}
static int
X_rsvp_input(struct mbuf **mp, int *offp, int proto)
{
struct mbuf *m;
m = *mp;
*mp = NULL;
if (!V_rsvp_on)
m_freem(m);
return (IPPROTO_DONE);
}
/*
* Code for bandwidth monitors
*/
/*
* Define common interface for timeval-related methods
*/
#define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
#define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
#define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
static uint32_t
compute_bw_meter_flags(struct bw_upcall *req)
{
uint32_t flags = 0;
if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
flags |= BW_METER_UNIT_PACKETS;
if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
flags |= BW_METER_UNIT_BYTES;
if (req->bu_flags & BW_UPCALL_GEQ)
flags |= BW_METER_GEQ;
if (req->bu_flags & BW_UPCALL_LEQ)
flags |= BW_METER_LEQ;
return flags;
}
static void
expire_bw_meter_leq(void *arg)
{
struct bw_meter *x = arg;
struct timeval now;
/*
* INFO:
* callout is always executed with MRW_WLOCK taken
*/
CURVNET_SET((struct vnet *)x->arg);
microtime(&now);
/*
* Test if we should deliver an upcall
*/
if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
(x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
((x->bm_flags & BW_METER_UNIT_BYTES) &&
(x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
/* Prepare an upcall for delivery */
bw_meter_prepare_upcall(x, &now);
}
/* Send all upcalls that are pending delivery */
mtx_lock(&V_upcall_thread_mtx);
cv_signal(&V_upcall_thread_cv);
mtx_unlock(&V_upcall_thread_mtx);
/* Reset counters */
x->bm_start_time = now;
/* Spin lock has to be taken as ip_forward context
* might modify these fields as well
*/
mtx_lock_spin(&x->bm_spin);
x->bm_measured.b_bytes = 0;
x->bm_measured.b_packets = 0;
mtx_unlock_spin(&x->bm_spin);
callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time));
CURVNET_RESTORE();
}
/*
* Add a bw_meter entry
*/
static int
add_bw_upcall(struct bw_upcall *req)
{
struct mfc *mfc;
struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
struct timeval now;
struct bw_meter *x, **bwm_ptr;
uint32_t flags;
if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
return EOPNOTSUPP;
/* Test if the flags are valid */
if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
return EINVAL;
if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
return EINVAL;
if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
== (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
return EINVAL;
/* Test if the threshold time interval is valid */
if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
return EINVAL;
flags = compute_bw_meter_flags(req);
/*
* Find if we have already same bw_meter entry
*/
MRW_WLOCK();
mfc = mfc_find(&req->bu_src, &req->bu_dst);
if (mfc == NULL) {
MRW_WUNLOCK();
return EADDRNOTAVAIL;
}
/* Choose an appropriate bw_meter list */
if (req->bu_flags & BW_UPCALL_GEQ)
bwm_ptr = &mfc->mfc_bw_meter_geq;
else
bwm_ptr = &mfc->mfc_bw_meter_leq;
for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) {
if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
&req->bu_threshold.b_time, ==))
&& (x->bm_threshold.b_packets
== req->bu_threshold.b_packets)
&& (x->bm_threshold.b_bytes
== req->bu_threshold.b_bytes)
&& (x->bm_flags & BW_METER_USER_FLAGS)
== flags) {
MRW_WUNLOCK();
return 0; /* XXX Already installed */
}
}
/* Allocate the new bw_meter entry */
x = (struct bw_meter*) malloc(sizeof(*x), M_BWMETER,
M_ZERO | M_NOWAIT);
if (x == NULL) {
MRW_WUNLOCK();
return ENOBUFS;
}
/* Set the new bw_meter entry */
x->bm_threshold.b_time = req->bu_threshold.b_time;
microtime(&now);
x->bm_start_time = now;
x->bm_threshold.b_packets = req->bu_threshold.b_packets;
x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
x->bm_measured.b_packets = 0;
x->bm_measured.b_bytes = 0;
x->bm_flags = flags;
x->bm_time_next = NULL;
x->bm_mfc = mfc;
x->arg = curvnet;
sprintf(x->bm_spin_name, "BM spin %p", x);
mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN);
/* For LEQ case create periodic callout */
if (req->bu_flags & BW_UPCALL_LEQ) {
callout_init_rw(&x->bm_meter_callout, &mrouter_mtx, CALLOUT_SHAREDLOCK);
callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time),
expire_bw_meter_leq, x);
}
/* Add the new bw_meter entry to the front of entries for this MFC */
x->bm_mfc_next = *bwm_ptr;
*bwm_ptr = x;
MRW_WUNLOCK();
return 0;
}
static void
free_bw_list(struct bw_meter *list)
{
while (list != NULL) {
struct bw_meter *x = list;
/* MRW_WLOCK must be held here */
if (x->bm_flags & BW_METER_LEQ) {
callout_drain(&x->bm_meter_callout);
mtx_destroy(&x->bm_spin);
}
list = list->bm_mfc_next;
free(x, M_BWMETER);
}
}
/*
* Delete one or multiple bw_meter entries
*/
static int
del_bw_upcall(struct bw_upcall *req)
{
struct mfc *mfc;
struct bw_meter *x, **bwm_ptr;
if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
return EOPNOTSUPP;
MRW_WLOCK();
/* Find the corresponding MFC entry */
mfc = mfc_find(&req->bu_src, &req->bu_dst);
if (mfc == NULL) {
MRW_WUNLOCK();
return EADDRNOTAVAIL;
} else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
/*
* Delete all bw_meter entries for this mfc
*/
struct bw_meter *list;
/* Free LEQ list */
list = mfc->mfc_bw_meter_leq;
mfc->mfc_bw_meter_leq = NULL;
free_bw_list(list);
/* Free GEQ list */
list = mfc->mfc_bw_meter_geq;
mfc->mfc_bw_meter_geq = NULL;
free_bw_list(list);
MRW_WUNLOCK();
return 0;
} else { /* Delete a single bw_meter entry */
struct bw_meter *prev;
uint32_t flags = 0;
flags = compute_bw_meter_flags(req);
/* Choose an appropriate bw_meter list */
if (req->bu_flags & BW_UPCALL_GEQ)
bwm_ptr = &mfc->mfc_bw_meter_geq;
else
bwm_ptr = &mfc->mfc_bw_meter_leq;
/* Find the bw_meter entry to delete */
for (prev = NULL, x = *bwm_ptr; x != NULL;
prev = x, x = x->bm_mfc_next) {
if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
&req->bu_threshold.b_time, ==)) &&
(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
(x->bm_flags & BW_METER_USER_FLAGS) == flags)
break;
}
if (x != NULL) { /* Delete entry from the list for this MFC */
if (prev != NULL)
prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/
else
*bwm_ptr = x->bm_mfc_next;/* new head of list */
if (req->bu_flags & BW_UPCALL_LEQ)
callout_stop(&x->bm_meter_callout);
MRW_WUNLOCK();
/* Free the bw_meter entry */
free(x, M_BWMETER);
return 0;
} else {
MRW_WUNLOCK();
return EINVAL;
}
}
/* NOTREACHED */
}
/*
* Perform bandwidth measurement processing that may result in an upcall
*/
static void
bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
{
struct timeval delta;
MRW_LOCK_ASSERT();
delta = *nowp;
BW_TIMEVALDECR(&delta, &x->bm_start_time);
/*
* Processing for ">=" type of bw_meter entry.
* bm_spin does not have to be hold here as in GEQ
* case this is the only context accessing bm_measured.
*/
if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
/* Reset the bw_meter entry */
x->bm_start_time = *nowp;
x->bm_measured.b_packets = 0;
x->bm_measured.b_bytes = 0;
x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
}
/* Record that a packet is received */
x->bm_measured.b_packets++;
x->bm_measured.b_bytes += plen;
/*
* Test if we should deliver an upcall
*/
if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
(x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
((x->bm_flags & BW_METER_UNIT_BYTES) &&
(x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
/* Prepare an upcall for delivery */
bw_meter_prepare_upcall(x, nowp);
x->bm_flags |= BW_METER_UPCALL_DELIVERED;
}
}
}
/*
* Prepare a bandwidth-related upcall
*/
static void
bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
{
struct timeval delta;
struct bw_upcall *u;
MRW_LOCK_ASSERT();
/*
* Compute the measured time interval
*/
delta = *nowp;
BW_TIMEVALDECR(&delta, &x->bm_start_time);
/*
* Set the bw_upcall entry
*/
u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO);
if (!u) {
log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n");
return;
}
u->bu_src = x->bm_mfc->mfc_origin;
u->bu_dst = x->bm_mfc->mfc_mcastgrp;
u->bu_threshold.b_time = x->bm_threshold.b_time;
u->bu_threshold.b_packets = x->bm_threshold.b_packets;
u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
u->bu_measured.b_time = delta;
u->bu_measured.b_packets = x->bm_measured.b_packets;
u->bu_measured.b_bytes = x->bm_measured.b_bytes;
u->bu_flags = 0;
if (x->bm_flags & BW_METER_UNIT_PACKETS)
u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
if (x->bm_flags & BW_METER_UNIT_BYTES)
u->bu_flags |= BW_UPCALL_UNIT_BYTES;
if (x->bm_flags & BW_METER_GEQ)
u->bu_flags |= BW_UPCALL_GEQ;
if (x->bm_flags & BW_METER_LEQ)
u->bu_flags |= BW_UPCALL_LEQ;
if (buf_ring_enqueue(V_bw_upcalls_ring, u))
log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n");
if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) {
mtx_lock(&V_upcall_thread_mtx);
cv_signal(&V_upcall_thread_cv);
mtx_unlock(&V_upcall_thread_mtx);
}
}
/*
* Send the pending bandwidth-related upcalls
*/
static void
bw_upcalls_send(void)
{
struct mbuf *m;
int len = 0;
struct bw_upcall *bu;
struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
static struct igmpmsg igmpmsg = { 0, /* unused1 */
0, /* unused2 */
IGMPMSG_BW_UPCALL,/* im_msgtype */
0, /* im_mbz */
0, /* im_vif */
0, /* unused3 */
{ 0 }, /* im_src */
{ 0 } }; /* im_dst */
MRW_LOCK_ASSERT();
if (buf_ring_empty(V_bw_upcalls_ring))
return;
/*
* Allocate a new mbuf, initialize it with the header and
* the payload for the pending calls.
*/
m = m_gethdr(M_NOWAIT, MT_DATA);
if (m == NULL) {
log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
return;
}
m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
len += sizeof(struct igmpmsg);
while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu);
len += sizeof(struct bw_upcall);
free(bu, M_MRTABLE);
}
/*
* Send the upcalls
* XXX do we need to set the address in k_igmpsrc ?
*/
MRTSTAT_INC(mrts_upcalls);
if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
MRTSTAT_INC(mrts_upq_sockfull);
}
}
/*
* A periodic function for sending all upcalls that are pending delivery
*/
static void
expire_bw_upcalls_send(void *arg)
{
CURVNET_SET((struct vnet *) arg);
/* This callout is run with MRW_RLOCK taken */
bw_upcalls_send();
callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
curvnet);
CURVNET_RESTORE();
}
/*
* End of bandwidth monitoring code
*/
/*
* Send the packet up to the user daemon, or eventually do kernel encapsulation
*
*/
static int
pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
struct mfc *rt)
{
struct mbuf *mb_copy, *mm;
/*
* Do not send IGMP_WHOLEPKT notifications to userland, if the
* rendezvous point was unspecified, and we were told not to.
*/
if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
in_nullhost(rt->mfc_rp))
return 0;
mb_copy = pim_register_prepare(ip, m);
if (mb_copy == NULL)
return ENOBUFS;
/*
* Send all the fragments. Note that the mbuf for each fragment
* is freed by the sending machinery.
*/
for (mm = mb_copy; mm; mm = mb_copy) {
mb_copy = mm->m_nextpkt;
mm->m_nextpkt = 0;
mm = m_pullup(mm, sizeof(struct ip));
if (mm != NULL) {
ip = mtod(mm, struct ip *);
if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
pim_register_send_rp(ip, vifp, mm, rt);
} else {
pim_register_send_upcall(ip, vifp, mm, rt);
}
}
}
return 0;
}
/*
* Return a copy of the data packet that is ready for PIM Register
* encapsulation.
* XXX: Note that in the returned copy the IP header is a valid one.
*/
static struct mbuf *
pim_register_prepare(struct ip *ip, struct mbuf *m)
{
struct mbuf *mb_copy = NULL;
int mtu;
/* Take care of delayed checksums */
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
in_delayed_cksum(m);
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
}
/*
* Copy the old packet & pullup its IP header into the
* new mbuf so we can modify it.
*/
mb_copy = m_copypacket(m, M_NOWAIT);
if (mb_copy == NULL)
return NULL;
mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
if (mb_copy == NULL)
return NULL;
/* take care of the TTL */
ip = mtod(mb_copy, struct ip *);
--ip->ip_ttl;
/* Compute the MTU after the PIM Register encapsulation */
mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
if (ntohs(ip->ip_len) <= mtu) {
/* Turn the IP header into a valid one */
ip->ip_sum = 0;
ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
} else {
/* Fragment the packet */
mb_copy->m_pkthdr.csum_flags |= CSUM_IP;
if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) {
m_freem(mb_copy);
return NULL;
}
}
return mb_copy;
}
/*
* Send an upcall with the data packet to the user-level process.
*/
static int
pim_register_send_upcall(struct ip *ip, struct vif *vifp,
struct mbuf *mb_copy, struct mfc *rt)
{
struct mbuf *mb_first;
int len = ntohs(ip->ip_len);
struct igmpmsg *im;
struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
MRW_LOCK_ASSERT();
/*
* Add a new mbuf with an upcall header
*/
mb_first = m_gethdr(M_NOWAIT, MT_DATA);
if (mb_first == NULL) {
m_freem(mb_copy);
return ENOBUFS;
}
mb_first->m_data += max_linkhdr;
mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
mb_first->m_len = sizeof(struct igmpmsg);
mb_first->m_next = mb_copy;
/* Send message to routing daemon */
im = mtod(mb_first, struct igmpmsg *);
im->im_msgtype = IGMPMSG_WHOLEPKT;
im->im_mbz = 0;
im->im_vif = vifp - V_viftable;
im->im_src = ip->ip_src;
im->im_dst = ip->ip_dst;
k_igmpsrc.sin_addr = ip->ip_src;
MRTSTAT_INC(mrts_upcalls);
if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
CTR1(KTR_IPMF, "%s: socket queue full", __func__);
MRTSTAT_INC(mrts_upq_sockfull);
return ENOBUFS;
}
/* Keep statistics */
PIMSTAT_INC(pims_snd_registers_msgs);
PIMSTAT_ADD(pims_snd_registers_bytes, len);
return 0;
}
/*
* Encapsulate the data packet in PIM Register message and send it to the RP.
*/
static int
pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
struct mfc *rt)
{
struct mbuf *mb_first;
struct ip *ip_outer;
struct pim_encap_pimhdr *pimhdr;
int len = ntohs(ip->ip_len);
vifi_t vifi = rt->mfc_parent;
MRW_LOCK_ASSERT();
if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
m_freem(mb_copy);
return EADDRNOTAVAIL; /* The iif vif is invalid */
}
/*
* Add a new mbuf with the encapsulating header
*/
mb_first = m_gethdr(M_NOWAIT, MT_DATA);
if (mb_first == NULL) {
m_freem(mb_copy);
return ENOBUFS;
}
mb_first->m_data += max_linkhdr;
mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
mb_first->m_next = mb_copy;
mb_first->m_pkthdr.len = len + mb_first->m_len;
/*
* Fill in the encapsulating IP and PIM header
*/
ip_outer = mtod(mb_first, struct ip *);
*ip_outer = pim_encap_iphdr;
ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
sizeof(pim_encap_pimhdr));
ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
ip_outer->ip_dst = rt->mfc_rp;
/*
* Copy the inner header TOS to the outer header, and take care of the
* IP_DF bit.
*/
ip_outer->ip_tos = ip->ip_tos;
if (ip->ip_off & htons(IP_DF))
ip_outer->ip_off |= htons(IP_DF);
ip_fillid(ip_outer);
pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
+ sizeof(pim_encap_iphdr));
*pimhdr = pim_encap_pimhdr;
/* If the iif crosses a border, set the Border-bit */
if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
mb_first->m_data += sizeof(pim_encap_iphdr);
pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
mb_first->m_data -= sizeof(pim_encap_iphdr);
send_packet(vifp, mb_first);
/* Keep statistics */
PIMSTAT_INC(pims_snd_registers_msgs);
PIMSTAT_ADD(pims_snd_registers_bytes, len);
return 0;
}
/*
* pim_encapcheck() is called by the encap4_input() path at runtime to
* determine if a packet is for PIM; allowing PIM to be dynamically loaded
* into the kernel.
*/
static int
pim_encapcheck(const struct mbuf *m __unused, int off __unused,
int proto __unused, void *arg __unused)
{
KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
return (8); /* claim the datagram. */
}
/*
* PIM-SMv2 and PIM-DM messages processing.
* Receives and verifies the PIM control messages, and passes them
* up to the listening socket, using rip_input().
* The only message with special processing is the PIM_REGISTER message
* (used by PIM-SM): the PIM header is stripped off, and the inner packet
* is passed to if_simloop().
*/
static int
pim_input(struct mbuf *m, int off, int proto, void *arg __unused)
{
struct ip *ip = mtod(m, struct ip *);
struct pim *pim;
int iphlen = off;
int minlen;
int datalen = ntohs(ip->ip_len) - iphlen;
int ip_tos;
/* Keep statistics */
PIMSTAT_INC(pims_rcv_total_msgs);
PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
/*
* Validate lengths
*/
if (datalen < PIM_MINLEN) {
PIMSTAT_INC(pims_rcv_tooshort);
CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x",
__func__, datalen, ntohl(ip->ip_src.s_addr));
m_freem(m);
return (IPPROTO_DONE);
}
/*
* If the packet is at least as big as a REGISTER, go agead
* and grab the PIM REGISTER header size, to avoid another
* possible m_pullup() later.
*
* PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8
* PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
*/
minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
/*
* Get the IP and PIM headers in contiguous memory, and
* possibly the PIM REGISTER header.
*/
if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) {
CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
return (IPPROTO_DONE);
}
/* m_pullup() may have given us a new mbuf so reset ip. */
ip = mtod(m, struct ip *);
ip_tos = ip->ip_tos;
/* adjust mbuf to point to the PIM header */
m->m_data += iphlen;
m->m_len -= iphlen;
pim = mtod(m, struct pim *);
/*
* Validate checksum. If PIM REGISTER, exclude the data packet.
*
* XXX: some older PIMv2 implementations don't make this distinction,
* so for compatibility reason perform the checksum over part of the
* message, and if error, then over the whole message.
*/
if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
/* do nothing, checksum okay */
} else if (in_cksum(m, datalen)) {
PIMSTAT_INC(pims_rcv_badsum);
CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
m_freem(m);
return (IPPROTO_DONE);
}
/* PIM version check */
if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
PIMSTAT_INC(pims_rcv_badversion);
CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
(int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
m_freem(m);
return (IPPROTO_DONE);
}
/* restore mbuf back to the outer IP */
m->m_data -= iphlen;
m->m_len += iphlen;
if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
/*
* Since this is a REGISTER, we'll make a copy of the register
* headers ip + pim + u_int32 + encap_ip, to be passed up to the
* routing daemon.
*/
struct sockaddr_in dst = { sizeof(dst), AF_INET };
struct mbuf *mcp;
struct ip *encap_ip;
u_int32_t *reghdr;
struct ifnet *vifp;
MRW_RLOCK();
if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
MRW_RUNLOCK();
CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
(int)V_reg_vif_num);
m_freem(m);
return (IPPROTO_DONE);
}
/* XXX need refcnt? */
vifp = V_viftable[V_reg_vif_num].v_ifp;
MRW_RUNLOCK();
/*
* Validate length
*/
if (datalen < PIM_REG_MINLEN) {
PIMSTAT_INC(pims_rcv_tooshort);
PIMSTAT_INC(pims_rcv_badregisters);
CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
m_freem(m);
return (IPPROTO_DONE);
}
reghdr = (u_int32_t *)(pim + 1);
encap_ip = (struct ip *)(reghdr + 1);
CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d",
__func__, ntohl(encap_ip->ip_src.s_addr),
ntohs(encap_ip->ip_len));
/* verify the version number of the inner packet */
if (encap_ip->ip_v != IPVERSION) {
PIMSTAT_INC(pims_rcv_badregisters);
CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
m_freem(m);
return (IPPROTO_DONE);
}
/* verify the inner packet is destined to a mcast group */
if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
PIMSTAT_INC(pims_rcv_badregisters);
CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__,
ntohl(encap_ip->ip_dst.s_addr));
m_freem(m);
return (IPPROTO_DONE);
}
/* If a NULL_REGISTER, pass it to the daemon */
if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
goto pim_input_to_daemon;
/*
* Copy the TOS from the outer IP header to the inner IP header.
*/
if (encap_ip->ip_tos != ip_tos) {
/* Outer TOS -> inner TOS */
encap_ip->ip_tos = ip_tos;
/* Recompute the inner header checksum. Sigh... */
/* adjust mbuf to point to the inner IP header */
m->m_data += (iphlen + PIM_MINLEN);
m->m_len -= (iphlen + PIM_MINLEN);
encap_ip->ip_sum = 0;
encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
/* restore mbuf to point back to the outer IP header */
m->m_data -= (iphlen + PIM_MINLEN);
m->m_len += (iphlen + PIM_MINLEN);
}
/*
* Decapsulate the inner IP packet and loopback to forward it
* as a normal multicast packet. Also, make a copy of the
* outer_iphdr + pimhdr + reghdr + encap_iphdr
* to pass to the daemon later, so it can take the appropriate
* actions (e.g., send back PIM_REGISTER_STOP).
* XXX: here m->m_data points to the outer IP header.
*/
mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT);
if (mcp == NULL) {
CTR1(KTR_IPMF, "%s: m_copym() failed", __func__);
m_freem(m);
return (IPPROTO_DONE);
}
/* Keep statistics */
/* XXX: registers_bytes include only the encap. mcast pkt */
PIMSTAT_INC(pims_rcv_registers_msgs);
PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
/*
* forward the inner ip packet; point m_data at the inner ip.
*/
m_adj(m, iphlen + PIM_MINLEN);
CTR4(KTR_IPMF,
"%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
__func__,
(u_long)ntohl(encap_ip->ip_src.s_addr),
(u_long)ntohl(encap_ip->ip_dst.s_addr),
(int)V_reg_vif_num);
/* NB: vifp was collected above; can it change on us? */
if_simloop(vifp, m, dst.sin_family, 0);
/* prepare the register head to send to the mrouting daemon */
m = mcp;
}
pim_input_to_daemon:
/*
* Pass the PIM message up to the daemon; if it is a Register message,
* pass the 'head' only up to the daemon. This includes the
* outer IP header, PIM header, PIM-Register header and the
* inner IP header.
* XXX: the outer IP header pkt size of a Register is not adjust to
* reflect the fact that the inner multicast data is truncated.
*/
return (rip_input(&m, &off, proto));
}
static int
sysctl_mfctable(SYSCTL_HANDLER_ARGS)
{
struct mfc *rt;
int error, i;
if (req->newptr)
return (EPERM);
if (V_mfchashtbl == NULL) /* XXX unlocked */
return (0);
error = sysctl_wire_old_buffer(req, 0);
if (error)
return (error);
MRW_RLOCK();
for (i = 0; i < mfchashsize; i++) {
LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
if (error)
goto out_locked;
}
}
out_locked:
MRW_RUNLOCK();
return (error);
}
static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable,
"IPv4 Multicast Forwarding Table "
"(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
static int
sysctl_viflist(SYSCTL_HANDLER_ARGS)
{
int error;
if (req->newptr)
return (EPERM);
if (V_viftable == NULL) /* XXX unlocked */
return (0);
error = sysctl_wire_old_buffer(req, sizeof(*V_viftable) * MAXVIFS);
if (error)
return (error);
MRW_RLOCK();
error = SYSCTL_OUT(req, V_viftable, sizeof(*V_viftable) * MAXVIFS);
MRW_RUNLOCK();
return (error);
}
SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable,
CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
sysctl_viflist, "S,vif[MAXVIFS]",
"IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
static void
vnet_mroute_init(const void *unused __unused)
{
V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable),
M_MRTABLE, M_WAITOK|M_ZERO);
callout_init_rw(&V_expire_upcalls_ch, &mrouter_mtx, 0);
callout_init_rw(&V_bw_upcalls_ch, &mrouter_mtx, 0);
}
VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init,
NULL);
static void
vnet_mroute_uninit(const void *unused __unused)
{
free(V_viftable, M_MRTABLE);
free(V_nexpire, M_MRTABLE);
V_nexpire = NULL;
}
VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE,
vnet_mroute_uninit, NULL);
static int
ip_mroute_modevent(module_t mod, int type, void *unused)
{
switch (type) {
case MOD_LOAD:
MRW_LOCK_INIT();
if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
if (if_detach_event_tag == NULL) {
printf("ip_mroute: unable to register "
"ifnet_departure_event handler\n");
MRW_LOCK_DESTROY();
return (EINVAL);
}
mfchashsize = MFCHASHSIZE;
if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
!powerof2(mfchashsize)) {
printf("WARNING: %s not a power of 2; using default\n",
"net.inet.ip.mfchashsize");
mfchashsize = MFCHASHSIZE;
}
pim_squelch_wholepkt = 0;
TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
&pim_squelch_wholepkt);
pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK);
if (pim_encap_cookie == NULL) {
printf("ip_mroute: unable to attach pim encap\n");
MRW_LOCK_DESTROY();
return (EINVAL);
}
ip_mcast_src = X_ip_mcast_src;
ip_mforward = X_ip_mforward;
ip_mrouter_done = X_ip_mrouter_done;
ip_mrouter_get = X_ip_mrouter_get;
ip_mrouter_set = X_ip_mrouter_set;
ip_rsvp_force_done = X_ip_rsvp_force_done;
ip_rsvp_vif = X_ip_rsvp_vif;
legal_vif_num = X_legal_vif_num;
mrt_ioctl = X_mrt_ioctl;
rsvp_input_p = X_rsvp_input;
break;
case MOD_UNLOAD:
/*
* Typically module unload happens after the user-level
* process has shutdown the kernel services (the check
* below insures someone can't just yank the module out
* from under a running process). But if the module is
* just loaded and then unloaded w/o starting up a user
* process we still need to cleanup.
*/
MRW_WLOCK();
if (ip_mrouter_cnt != 0) {
MRW_WUNLOCK();
return (EINVAL);
}
ip_mrouter_unloading = 1;
MRW_WUNLOCK();
EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
if (pim_encap_cookie) {
ip_encap_detach(pim_encap_cookie);
pim_encap_cookie = NULL;
}
ip_mcast_src = NULL;
ip_mforward = NULL;
ip_mrouter_done = NULL;
ip_mrouter_get = NULL;
ip_mrouter_set = NULL;
ip_rsvp_force_done = NULL;
ip_rsvp_vif = NULL;
legal_vif_num = NULL;
mrt_ioctl = NULL;
rsvp_input_p = NULL;
MRW_LOCK_DESTROY();
break;
default:
return EOPNOTSUPP;
}
return 0;
}
static moduledata_t ip_mroutemod = {
"ip_mroute",
ip_mroute_modevent,
0
};
DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE);