1492 lines
43 KiB
C
1492 lines
43 KiB
C
/* Calculate branch probabilities, and basic block execution counts.
|
||
Copyright (C) 1990, 1991, 1992, 1993, 1994, 1996, 1997, 1998, 1999,
|
||
2000, 2001, 2002, 2003 Free Software Foundation, Inc.
|
||
Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
|
||
based on some ideas from Dain Samples of UC Berkeley.
|
||
Further mangling by Bob Manson, Cygnus Support.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
/* Generate basic block profile instrumentation and auxiliary files.
|
||
Profile generation is optimized, so that not all arcs in the basic
|
||
block graph need instrumenting. First, the BB graph is closed with
|
||
one entry (function start), and one exit (function exit). Any
|
||
ABNORMAL_EDGE cannot be instrumented (because there is no control
|
||
path to place the code). We close the graph by inserting fake
|
||
EDGE_FAKE edges to the EXIT_BLOCK, from the sources of abnormal
|
||
edges that do not go to the exit_block. We ignore such abnormal
|
||
edges. Naturally these fake edges are never directly traversed,
|
||
and so *cannot* be directly instrumented. Some other graph
|
||
massaging is done. To optimize the instrumentation we generate the
|
||
BB minimal span tree, only edges that are not on the span tree
|
||
(plus the entry point) need instrumenting. From that information
|
||
all other edge counts can be deduced. By construction all fake
|
||
edges must be on the spanning tree. We also attempt to place
|
||
EDGE_CRITICAL edges on the spanning tree.
|
||
|
||
The auxiliary file generated is <dumpbase>.bbg. The format is
|
||
described in full in gcov-io.h. */
|
||
|
||
/* ??? Register allocation should use basic block execution counts to
|
||
give preference to the most commonly executed blocks. */
|
||
|
||
/* ??? Should calculate branch probabilities before instrumenting code, since
|
||
then we can use arc counts to help decide which arcs to instrument. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "flags.h"
|
||
#include "output.h"
|
||
#include "regs.h"
|
||
#include "expr.h"
|
||
#include "function.h"
|
||
#include "toplev.h"
|
||
#include "coverage.h"
|
||
#include "value-prof.h"
|
||
#include "tree.h"
|
||
|
||
/* Additional information about the edges we need. */
|
||
struct edge_info {
|
||
unsigned int count_valid : 1;
|
||
|
||
/* Is on the spanning tree. */
|
||
unsigned int on_tree : 1;
|
||
|
||
/* Pretend this edge does not exist (it is abnormal and we've
|
||
inserted a fake to compensate). */
|
||
unsigned int ignore : 1;
|
||
};
|
||
|
||
struct bb_info {
|
||
unsigned int count_valid : 1;
|
||
|
||
/* Number of successor and predecessor edges. */
|
||
gcov_type succ_count;
|
||
gcov_type pred_count;
|
||
};
|
||
|
||
#define EDGE_INFO(e) ((struct edge_info *) (e)->aux)
|
||
#define BB_INFO(b) ((struct bb_info *) (b)->aux)
|
||
|
||
/* Counter summary from the last set of coverage counts read. */
|
||
|
||
const struct gcov_ctr_summary *profile_info;
|
||
|
||
/* Collect statistics on the performance of this pass for the entire source
|
||
file. */
|
||
|
||
static int total_num_blocks;
|
||
static int total_num_edges;
|
||
static int total_num_edges_ignored;
|
||
static int total_num_edges_instrumented;
|
||
static int total_num_blocks_created;
|
||
static int total_num_passes;
|
||
static int total_num_times_called;
|
||
static int total_hist_br_prob[20];
|
||
static int total_num_never_executed;
|
||
static int total_num_branches;
|
||
|
||
/* Forward declarations. */
|
||
static void find_spanning_tree (struct edge_list *);
|
||
static rtx gen_edge_profiler (int);
|
||
static rtx gen_interval_profiler (struct histogram_value *, unsigned,
|
||
unsigned);
|
||
static rtx gen_pow2_profiler (struct histogram_value *, unsigned, unsigned);
|
||
static rtx gen_one_value_profiler (struct histogram_value *, unsigned,
|
||
unsigned);
|
||
static rtx gen_const_delta_profiler (struct histogram_value *, unsigned,
|
||
unsigned);
|
||
static unsigned instrument_edges (struct edge_list *);
|
||
static void instrument_values (unsigned, struct histogram_value *);
|
||
static void compute_branch_probabilities (void);
|
||
static void compute_value_histograms (unsigned, struct histogram_value *);
|
||
static gcov_type * get_exec_counts (void);
|
||
static basic_block find_group (basic_block);
|
||
static void union_groups (basic_block, basic_block);
|
||
|
||
|
||
/* Add edge instrumentation code to the entire insn chain.
|
||
|
||
F is the first insn of the chain.
|
||
NUM_BLOCKS is the number of basic blocks found in F. */
|
||
|
||
static unsigned
|
||
instrument_edges (struct edge_list *el)
|
||
{
|
||
unsigned num_instr_edges = 0;
|
||
int num_edges = NUM_EDGES (el);
|
||
basic_block bb;
|
||
|
||
remove_fake_edges ();
|
||
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
||
{
|
||
edge e;
|
||
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
{
|
||
struct edge_info *inf = EDGE_INFO (e);
|
||
|
||
if (!inf->ignore && !inf->on_tree)
|
||
{
|
||
rtx edge_profile;
|
||
|
||
if (e->flags & EDGE_ABNORMAL)
|
||
abort ();
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Edge %d to %d instrumented%s\n",
|
||
e->src->index, e->dest->index,
|
||
EDGE_CRITICAL_P (e) ? " (and split)" : "");
|
||
edge_profile = gen_edge_profiler (num_instr_edges++);
|
||
insert_insn_on_edge (edge_profile, e);
|
||
rebuild_jump_labels (e->insns);
|
||
}
|
||
}
|
||
}
|
||
|
||
total_num_blocks_created += num_edges;
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "%d edges instrumented\n", num_instr_edges);
|
||
return num_instr_edges;
|
||
}
|
||
|
||
/* Add code to measure histograms list of VALUES of length N_VALUES. */
|
||
static void
|
||
instrument_values (unsigned n_values, struct histogram_value *values)
|
||
{
|
||
rtx sequence;
|
||
unsigned i, t;
|
||
edge e;
|
||
|
||
/* Emit code to generate the histograms before the insns. */
|
||
|
||
for (i = 0; i < n_values; i++)
|
||
{
|
||
e = split_block (BLOCK_FOR_INSN (values[i].insn),
|
||
PREV_INSN (values[i].insn));
|
||
switch (values[i].type)
|
||
{
|
||
case HIST_TYPE_INTERVAL:
|
||
t = GCOV_COUNTER_V_INTERVAL;
|
||
break;
|
||
|
||
case HIST_TYPE_POW2:
|
||
t = GCOV_COUNTER_V_POW2;
|
||
break;
|
||
|
||
case HIST_TYPE_SINGLE_VALUE:
|
||
t = GCOV_COUNTER_V_SINGLE;
|
||
break;
|
||
|
||
case HIST_TYPE_CONST_DELTA:
|
||
t = GCOV_COUNTER_V_DELTA;
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
if (!coverage_counter_alloc (t, values[i].n_counters))
|
||
continue;
|
||
|
||
switch (values[i].type)
|
||
{
|
||
case HIST_TYPE_INTERVAL:
|
||
sequence = gen_interval_profiler (values + i, t, 0);
|
||
break;
|
||
|
||
case HIST_TYPE_POW2:
|
||
sequence = gen_pow2_profiler (values + i, t, 0);
|
||
break;
|
||
|
||
case HIST_TYPE_SINGLE_VALUE:
|
||
sequence = gen_one_value_profiler (values + i, t, 0);
|
||
break;
|
||
|
||
case HIST_TYPE_CONST_DELTA:
|
||
sequence = gen_const_delta_profiler (values + i, t, 0);
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
safe_insert_insn_on_edge (sequence, e);
|
||
}
|
||
}
|
||
|
||
|
||
/* Computes hybrid profile for all matching entries in da_file. */
|
||
|
||
static gcov_type *
|
||
get_exec_counts (void)
|
||
{
|
||
unsigned num_edges = 0;
|
||
basic_block bb;
|
||
gcov_type *counts;
|
||
|
||
/* Count the edges to be (possibly) instrumented. */
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
||
{
|
||
edge e;
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
|
||
num_edges++;
|
||
}
|
||
|
||
counts = get_coverage_counts (GCOV_COUNTER_ARCS, num_edges, &profile_info);
|
||
if (!counts)
|
||
return NULL;
|
||
|
||
if (rtl_dump_file && profile_info)
|
||
fprintf(rtl_dump_file, "Merged %u profiles with maximal count %u.\n",
|
||
profile_info->runs, (unsigned) profile_info->sum_max);
|
||
|
||
return counts;
|
||
}
|
||
|
||
|
||
/* Compute the branch probabilities for the various branches.
|
||
Annotate them accordingly. */
|
||
|
||
static void
|
||
compute_branch_probabilities (void)
|
||
{
|
||
basic_block bb;
|
||
int i;
|
||
int num_edges = 0;
|
||
int changes;
|
||
int passes;
|
||
int hist_br_prob[20];
|
||
int num_never_executed;
|
||
int num_branches;
|
||
gcov_type *exec_counts = get_exec_counts ();
|
||
int exec_counts_pos = 0;
|
||
|
||
/* Very simple sanity checks so we catch bugs in our profiling code. */
|
||
if (profile_info)
|
||
{
|
||
if (profile_info->run_max * profile_info->runs < profile_info->sum_max)
|
||
{
|
||
error ("corrupted profile info: run_max * runs < sum_max");
|
||
exec_counts = NULL;
|
||
}
|
||
|
||
if (profile_info->sum_all < profile_info->sum_max)
|
||
{
|
||
error ("corrupted profile info: sum_all is smaller than sum_max");
|
||
exec_counts = NULL;
|
||
}
|
||
}
|
||
|
||
/* Attach extra info block to each bb. */
|
||
|
||
alloc_aux_for_blocks (sizeof (struct bb_info));
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
||
{
|
||
edge e;
|
||
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
if (!EDGE_INFO (e)->ignore)
|
||
BB_INFO (bb)->succ_count++;
|
||
for (e = bb->pred; e; e = e->pred_next)
|
||
if (!EDGE_INFO (e)->ignore)
|
||
BB_INFO (bb)->pred_count++;
|
||
}
|
||
|
||
/* Avoid predicting entry on exit nodes. */
|
||
BB_INFO (EXIT_BLOCK_PTR)->succ_count = 2;
|
||
BB_INFO (ENTRY_BLOCK_PTR)->pred_count = 2;
|
||
|
||
/* For each edge not on the spanning tree, set its execution count from
|
||
the .da file. */
|
||
|
||
/* The first count in the .da file is the number of times that the function
|
||
was entered. This is the exec_count for block zero. */
|
||
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
||
{
|
||
edge e;
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
|
||
{
|
||
num_edges++;
|
||
if (exec_counts)
|
||
{
|
||
e->count = exec_counts[exec_counts_pos++];
|
||
if (e->count > profile_info->sum_max)
|
||
{
|
||
error ("corrupted profile info: edge from %i to %i exceeds maximal count",
|
||
bb->index, e->dest->index);
|
||
}
|
||
}
|
||
else
|
||
e->count = 0;
|
||
|
||
EDGE_INFO (e)->count_valid = 1;
|
||
BB_INFO (bb)->succ_count--;
|
||
BB_INFO (e->dest)->pred_count--;
|
||
if (rtl_dump_file)
|
||
{
|
||
fprintf (rtl_dump_file, "\nRead edge from %i to %i, count:",
|
||
bb->index, e->dest->index);
|
||
fprintf (rtl_dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
||
(HOST_WIDEST_INT) e->count);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "\n%d edge counts read\n", num_edges);
|
||
|
||
/* For every block in the file,
|
||
- if every exit/entrance edge has a known count, then set the block count
|
||
- if the block count is known, and every exit/entrance edge but one has
|
||
a known execution count, then set the count of the remaining edge
|
||
|
||
As edge counts are set, decrement the succ/pred count, but don't delete
|
||
the edge, that way we can easily tell when all edges are known, or only
|
||
one edge is unknown. */
|
||
|
||
/* The order that the basic blocks are iterated through is important.
|
||
Since the code that finds spanning trees starts with block 0, low numbered
|
||
edges are put on the spanning tree in preference to high numbered edges.
|
||
Hence, most instrumented edges are at the end. Graph solving works much
|
||
faster if we propagate numbers from the end to the start.
|
||
|
||
This takes an average of slightly more than 3 passes. */
|
||
|
||
changes = 1;
|
||
passes = 0;
|
||
while (changes)
|
||
{
|
||
passes++;
|
||
changes = 0;
|
||
FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR, NULL, prev_bb)
|
||
{
|
||
struct bb_info *bi = BB_INFO (bb);
|
||
if (! bi->count_valid)
|
||
{
|
||
if (bi->succ_count == 0)
|
||
{
|
||
edge e;
|
||
gcov_type total = 0;
|
||
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
total += e->count;
|
||
bb->count = total;
|
||
bi->count_valid = 1;
|
||
changes = 1;
|
||
}
|
||
else if (bi->pred_count == 0)
|
||
{
|
||
edge e;
|
||
gcov_type total = 0;
|
||
|
||
for (e = bb->pred; e; e = e->pred_next)
|
||
total += e->count;
|
||
bb->count = total;
|
||
bi->count_valid = 1;
|
||
changes = 1;
|
||
}
|
||
}
|
||
if (bi->count_valid)
|
||
{
|
||
if (bi->succ_count == 1)
|
||
{
|
||
edge e;
|
||
gcov_type total = 0;
|
||
|
||
/* One of the counts will be invalid, but it is zero,
|
||
so adding it in also doesn't hurt. */
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
total += e->count;
|
||
|
||
/* Seedgeh for the invalid edge, and set its count. */
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
if (! EDGE_INFO (e)->count_valid && ! EDGE_INFO (e)->ignore)
|
||
break;
|
||
|
||
/* Calculate count for remaining edge by conservation. */
|
||
total = bb->count - total;
|
||
|
||
if (! e)
|
||
abort ();
|
||
EDGE_INFO (e)->count_valid = 1;
|
||
e->count = total;
|
||
bi->succ_count--;
|
||
|
||
BB_INFO (e->dest)->pred_count--;
|
||
changes = 1;
|
||
}
|
||
if (bi->pred_count == 1)
|
||
{
|
||
edge e;
|
||
gcov_type total = 0;
|
||
|
||
/* One of the counts will be invalid, but it is zero,
|
||
so adding it in also doesn't hurt. */
|
||
for (e = bb->pred; e; e = e->pred_next)
|
||
total += e->count;
|
||
|
||
/* Search for the invalid edge, and set its count. */
|
||
for (e = bb->pred; e; e = e->pred_next)
|
||
if (!EDGE_INFO (e)->count_valid && !EDGE_INFO (e)->ignore)
|
||
break;
|
||
|
||
/* Calculate count for remaining edge by conservation. */
|
||
total = bb->count - total + e->count;
|
||
|
||
if (! e)
|
||
abort ();
|
||
EDGE_INFO (e)->count_valid = 1;
|
||
e->count = total;
|
||
bi->pred_count--;
|
||
|
||
BB_INFO (e->src)->succ_count--;
|
||
changes = 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (rtl_dump_file)
|
||
dump_flow_info (rtl_dump_file);
|
||
|
||
total_num_passes += passes;
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Graph solving took %d passes.\n\n", passes);
|
||
|
||
/* If the graph has been correctly solved, every block will have a
|
||
succ and pred count of zero. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
if (BB_INFO (bb)->succ_count || BB_INFO (bb)->pred_count)
|
||
abort ();
|
||
}
|
||
|
||
/* For every edge, calculate its branch probability and add a reg_note
|
||
to the branch insn to indicate this. */
|
||
|
||
for (i = 0; i < 20; i++)
|
||
hist_br_prob[i] = 0;
|
||
num_never_executed = 0;
|
||
num_branches = 0;
|
||
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
||
{
|
||
edge e;
|
||
rtx note;
|
||
|
||
if (bb->count < 0)
|
||
{
|
||
error ("corrupted profile info: number of iterations for basic block %d thought to be %i",
|
||
bb->index, (int)bb->count);
|
||
bb->count = 0;
|
||
}
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
{
|
||
/* Function may return twice in the cased the called function is
|
||
setjmp or calls fork, but we can't represent this by extra
|
||
edge from the entry, since extra edge from the exit is
|
||
already present. We get negative frequency from the entry
|
||
point. */
|
||
if ((e->count < 0
|
||
&& e->dest == EXIT_BLOCK_PTR)
|
||
|| (e->count > bb->count
|
||
&& e->dest != EXIT_BLOCK_PTR))
|
||
{
|
||
rtx insn = BB_END (bb);
|
||
|
||
while (GET_CODE (insn) != CALL_INSN
|
||
&& insn != BB_HEAD (bb)
|
||
&& keep_with_call_p (insn))
|
||
insn = PREV_INSN (insn);
|
||
if (GET_CODE (insn) == CALL_INSN)
|
||
e->count = e->count < 0 ? 0 : bb->count;
|
||
}
|
||
if (e->count < 0 || e->count > bb->count)
|
||
{
|
||
error ("corrupted profile info: number of executions for edge %d-%d thought to be %i",
|
||
e->src->index, e->dest->index,
|
||
(int)e->count);
|
||
e->count = bb->count / 2;
|
||
}
|
||
}
|
||
if (bb->count)
|
||
{
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
e->probability = (e->count * REG_BR_PROB_BASE + bb->count / 2) / bb->count;
|
||
if (bb->index >= 0
|
||
&& any_condjump_p (BB_END (bb))
|
||
&& bb->succ->succ_next)
|
||
{
|
||
int prob;
|
||
edge e;
|
||
int index;
|
||
|
||
/* Find the branch edge. It is possible that we do have fake
|
||
edges here. */
|
||
for (e = bb->succ; e->flags & (EDGE_FAKE | EDGE_FALLTHRU);
|
||
e = e->succ_next)
|
||
continue; /* Loop body has been intentionally left blank. */
|
||
|
||
prob = e->probability;
|
||
index = prob * 20 / REG_BR_PROB_BASE;
|
||
|
||
if (index == 20)
|
||
index = 19;
|
||
hist_br_prob[index]++;
|
||
|
||
note = find_reg_note (BB_END (bb), REG_BR_PROB, 0);
|
||
/* There may be already note put by some other pass, such
|
||
as builtin_expect expander. */
|
||
if (note)
|
||
XEXP (note, 0) = GEN_INT (prob);
|
||
else
|
||
REG_NOTES (BB_END (bb))
|
||
= gen_rtx_EXPR_LIST (REG_BR_PROB, GEN_INT (prob),
|
||
REG_NOTES (BB_END (bb)));
|
||
num_branches++;
|
||
}
|
||
}
|
||
/* Otherwise distribute the probabilities evenly so we get sane
|
||
sum. Use simple heuristics that if there are normal edges,
|
||
give all abnormals frequency of 0, otherwise distribute the
|
||
frequency over abnormals (this is the case of noreturn
|
||
calls). */
|
||
else
|
||
{
|
||
int total = 0;
|
||
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
|
||
total ++;
|
||
if (total)
|
||
{
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
|
||
e->probability = REG_BR_PROB_BASE / total;
|
||
else
|
||
e->probability = 0;
|
||
}
|
||
else
|
||
{
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
total ++;
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
e->probability = REG_BR_PROB_BASE / total;
|
||
}
|
||
if (bb->index >= 0
|
||
&& any_condjump_p (BB_END (bb))
|
||
&& bb->succ->succ_next)
|
||
num_branches++, num_never_executed;
|
||
}
|
||
}
|
||
|
||
if (rtl_dump_file)
|
||
{
|
||
fprintf (rtl_dump_file, "%d branches\n", num_branches);
|
||
fprintf (rtl_dump_file, "%d branches never executed\n",
|
||
num_never_executed);
|
||
if (num_branches)
|
||
for (i = 0; i < 10; i++)
|
||
fprintf (rtl_dump_file, "%d%% branches in range %d-%d%%\n",
|
||
(hist_br_prob[i] + hist_br_prob[19-i]) * 100 / num_branches,
|
||
5 * i, 5 * i + 5);
|
||
|
||
total_num_branches += num_branches;
|
||
total_num_never_executed += num_never_executed;
|
||
for (i = 0; i < 20; i++)
|
||
total_hist_br_prob[i] += hist_br_prob[i];
|
||
|
||
fputc ('\n', rtl_dump_file);
|
||
fputc ('\n', rtl_dump_file);
|
||
}
|
||
|
||
free_aux_for_blocks ();
|
||
}
|
||
|
||
/* Load value histograms for N_VALUES values whose description is stored
|
||
in VALUES array from .da file. */
|
||
static void
|
||
compute_value_histograms (unsigned n_values, struct histogram_value *values)
|
||
{
|
||
unsigned i, j, t, any;
|
||
unsigned n_histogram_counters[GCOV_N_VALUE_COUNTERS];
|
||
gcov_type *histogram_counts[GCOV_N_VALUE_COUNTERS];
|
||
gcov_type *act_count[GCOV_N_VALUE_COUNTERS];
|
||
gcov_type *aact_count;
|
||
|
||
for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
|
||
n_histogram_counters[t] = 0;
|
||
|
||
for (i = 0; i < n_values; i++)
|
||
n_histogram_counters[(int) (values[i].type)] += values[i].n_counters;
|
||
|
||
any = 0;
|
||
for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
|
||
{
|
||
if (!n_histogram_counters[t])
|
||
{
|
||
histogram_counts[t] = NULL;
|
||
continue;
|
||
}
|
||
|
||
histogram_counts[t] =
|
||
get_coverage_counts (COUNTER_FOR_HIST_TYPE (t),
|
||
n_histogram_counters[t], NULL);
|
||
if (histogram_counts[t])
|
||
any = 1;
|
||
act_count[t] = histogram_counts[t];
|
||
}
|
||
if (!any)
|
||
return;
|
||
|
||
for (i = 0; i < n_values; i++)
|
||
{
|
||
rtx hist_list = NULL_RTX;
|
||
t = (int) (values[i].type);
|
||
|
||
aact_count = act_count[t];
|
||
act_count[t] += values[i].n_counters;
|
||
for (j = values[i].n_counters; j > 0; j--)
|
||
hist_list = alloc_EXPR_LIST (0, GEN_INT (aact_count[j - 1]), hist_list);
|
||
hist_list = alloc_EXPR_LIST (0, copy_rtx (values[i].value), hist_list);
|
||
hist_list = alloc_EXPR_LIST (0, GEN_INT (values[i].type), hist_list);
|
||
REG_NOTES (values[i].insn) =
|
||
alloc_EXPR_LIST (REG_VALUE_PROFILE, hist_list,
|
||
REG_NOTES (values[i].insn));
|
||
}
|
||
|
||
for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
|
||
if (histogram_counts[t])
|
||
free (histogram_counts[t]);
|
||
}
|
||
|
||
/* Instrument and/or analyze program behavior based on program flow graph.
|
||
In either case, this function builds a flow graph for the function being
|
||
compiled. The flow graph is stored in BB_GRAPH.
|
||
|
||
When FLAG_PROFILE_ARCS is nonzero, this function instruments the edges in
|
||
the flow graph that are needed to reconstruct the dynamic behavior of the
|
||
flow graph.
|
||
|
||
When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary
|
||
information from a data file containing edge count information from previous
|
||
executions of the function being compiled. In this case, the flow graph is
|
||
annotated with actual execution counts, which are later propagated into the
|
||
rtl for optimization purposes.
|
||
|
||
Main entry point of this file. */
|
||
|
||
void
|
||
branch_prob (void)
|
||
{
|
||
basic_block bb;
|
||
unsigned i;
|
||
unsigned num_edges, ignored_edges;
|
||
unsigned num_instrumented;
|
||
struct edge_list *el;
|
||
unsigned n_values = 0;
|
||
struct histogram_value *values = NULL;
|
||
|
||
total_num_times_called++;
|
||
|
||
flow_call_edges_add (NULL);
|
||
add_noreturn_fake_exit_edges ();
|
||
|
||
/* We can't handle cyclic regions constructed using abnormal edges.
|
||
To avoid these we replace every source of abnormal edge by a fake
|
||
edge from entry node and every destination by fake edge to exit.
|
||
This keeps graph acyclic and our calculation exact for all normal
|
||
edges except for exit and entrance ones.
|
||
|
||
We also add fake exit edges for each call and asm statement in the
|
||
basic, since it may not return. */
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
int need_exit_edge = 0, need_entry_edge = 0;
|
||
int have_exit_edge = 0, have_entry_edge = 0;
|
||
edge e;
|
||
|
||
/* Functions returning multiple times are not handled by extra edges.
|
||
Instead we simply allow negative counts on edges from exit to the
|
||
block past call and corresponding probabilities. We can't go
|
||
with the extra edges because that would result in flowgraph that
|
||
needs to have fake edges outside the spanning tree. */
|
||
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
{
|
||
if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
|
||
&& e->dest != EXIT_BLOCK_PTR)
|
||
need_exit_edge = 1;
|
||
if (e->dest == EXIT_BLOCK_PTR)
|
||
have_exit_edge = 1;
|
||
}
|
||
for (e = bb->pred; e; e = e->pred_next)
|
||
{
|
||
if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
|
||
&& e->src != ENTRY_BLOCK_PTR)
|
||
need_entry_edge = 1;
|
||
if (e->src == ENTRY_BLOCK_PTR)
|
||
have_entry_edge = 1;
|
||
}
|
||
|
||
if (need_exit_edge && !have_exit_edge)
|
||
{
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Adding fake exit edge to bb %i\n",
|
||
bb->index);
|
||
make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
|
||
}
|
||
if (need_entry_edge && !have_entry_edge)
|
||
{
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Adding fake entry edge to bb %i\n",
|
||
bb->index);
|
||
make_edge (ENTRY_BLOCK_PTR, bb, EDGE_FAKE);
|
||
}
|
||
}
|
||
|
||
el = create_edge_list ();
|
||
num_edges = NUM_EDGES (el);
|
||
alloc_aux_for_edges (sizeof (struct edge_info));
|
||
|
||
/* The basic blocks are expected to be numbered sequentially. */
|
||
compact_blocks ();
|
||
|
||
ignored_edges = 0;
|
||
for (i = 0 ; i < num_edges ; i++)
|
||
{
|
||
edge e = INDEX_EDGE (el, i);
|
||
e->count = 0;
|
||
|
||
/* Mark edges we've replaced by fake edges above as ignored. */
|
||
if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
|
||
&& e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR)
|
||
{
|
||
EDGE_INFO (e)->ignore = 1;
|
||
ignored_edges++;
|
||
}
|
||
}
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
verify_flow_info ();
|
||
#endif
|
||
|
||
/* Create spanning tree from basic block graph, mark each edge that is
|
||
on the spanning tree. We insert as many abnormal and critical edges
|
||
as possible to minimize number of edge splits necessary. */
|
||
|
||
find_spanning_tree (el);
|
||
|
||
/* Fake edges that are not on the tree will not be instrumented, so
|
||
mark them ignored. */
|
||
for (num_instrumented = i = 0; i < num_edges; i++)
|
||
{
|
||
edge e = INDEX_EDGE (el, i);
|
||
struct edge_info *inf = EDGE_INFO (e);
|
||
|
||
if (inf->ignore || inf->on_tree)
|
||
/*NOP*/;
|
||
else if (e->flags & EDGE_FAKE)
|
||
{
|
||
inf->ignore = 1;
|
||
ignored_edges++;
|
||
}
|
||
else
|
||
num_instrumented++;
|
||
}
|
||
|
||
total_num_blocks += n_basic_blocks + 2;
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "%d basic blocks\n", n_basic_blocks);
|
||
|
||
total_num_edges += num_edges;
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "%d edges\n", num_edges);
|
||
|
||
total_num_edges_ignored += ignored_edges;
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "%d ignored edges\n", ignored_edges);
|
||
|
||
/* Write the data from which gcov can reconstruct the basic block
|
||
graph. */
|
||
|
||
/* Basic block flags */
|
||
if (coverage_begin_output ())
|
||
{
|
||
gcov_position_t offset;
|
||
|
||
offset = gcov_write_tag (GCOV_TAG_BLOCKS);
|
||
for (i = 0; i != (unsigned) (n_basic_blocks + 2); i++)
|
||
gcov_write_unsigned (0);
|
||
gcov_write_length (offset);
|
||
}
|
||
|
||
/* Keep all basic block indexes nonnegative in the gcov output.
|
||
Index 0 is used for entry block, last index is for exit block.
|
||
*/
|
||
ENTRY_BLOCK_PTR->index = -1;
|
||
EXIT_BLOCK_PTR->index = last_basic_block;
|
||
#define BB_TO_GCOV_INDEX(bb) ((bb)->index + 1)
|
||
|
||
/* Arcs */
|
||
if (coverage_begin_output ())
|
||
{
|
||
gcov_position_t offset;
|
||
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
|
||
{
|
||
edge e;
|
||
|
||
offset = gcov_write_tag (GCOV_TAG_ARCS);
|
||
gcov_write_unsigned (BB_TO_GCOV_INDEX (bb));
|
||
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
{
|
||
struct edge_info *i = EDGE_INFO (e);
|
||
if (!i->ignore)
|
||
{
|
||
unsigned flag_bits = 0;
|
||
|
||
if (i->on_tree)
|
||
flag_bits |= GCOV_ARC_ON_TREE;
|
||
if (e->flags & EDGE_FAKE)
|
||
flag_bits |= GCOV_ARC_FAKE;
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
flag_bits |= GCOV_ARC_FALLTHROUGH;
|
||
|
||
gcov_write_unsigned (BB_TO_GCOV_INDEX (e->dest));
|
||
gcov_write_unsigned (flag_bits);
|
||
}
|
||
}
|
||
|
||
gcov_write_length (offset);
|
||
}
|
||
}
|
||
|
||
/* Line numbers. */
|
||
if (coverage_begin_output ())
|
||
{
|
||
char const *prev_file_name = NULL;
|
||
gcov_position_t offset;
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
rtx insn = BB_HEAD (bb);
|
||
int ignore_next_note = 0;
|
||
|
||
offset = 0;
|
||
|
||
/* We are looking for line number notes. Search backward
|
||
before basic block to find correct ones. */
|
||
insn = prev_nonnote_insn (insn);
|
||
if (!insn)
|
||
insn = get_insns ();
|
||
else
|
||
insn = NEXT_INSN (insn);
|
||
|
||
while (insn != BB_END (bb))
|
||
{
|
||
if (GET_CODE (insn) == NOTE)
|
||
{
|
||
/* Must ignore the line number notes that
|
||
immediately follow the end of an inline function
|
||
to avoid counting it twice. There is a note
|
||
before the call, and one after the call. */
|
||
if (NOTE_LINE_NUMBER (insn)
|
||
== NOTE_INSN_REPEATED_LINE_NUMBER)
|
||
ignore_next_note = 1;
|
||
else if (NOTE_LINE_NUMBER (insn) <= 0)
|
||
/*NOP*/;
|
||
else if (ignore_next_note)
|
||
ignore_next_note = 0;
|
||
else
|
||
{
|
||
if (!offset)
|
||
{
|
||
offset = gcov_write_tag (GCOV_TAG_LINES);
|
||
gcov_write_unsigned (BB_TO_GCOV_INDEX (bb));
|
||
}
|
||
|
||
/* If this is a new source file, then output the
|
||
file's name to the .bb file. */
|
||
if (!prev_file_name
|
||
|| strcmp (NOTE_SOURCE_FILE (insn),
|
||
prev_file_name))
|
||
{
|
||
prev_file_name = NOTE_SOURCE_FILE (insn);
|
||
gcov_write_unsigned (0);
|
||
gcov_write_string (prev_file_name);
|
||
}
|
||
gcov_write_unsigned (NOTE_LINE_NUMBER (insn));
|
||
}
|
||
}
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
|
||
if (offset)
|
||
{
|
||
/* A file of NULL indicates the end of run. */
|
||
gcov_write_unsigned (0);
|
||
gcov_write_string (NULL);
|
||
gcov_write_length (offset);
|
||
}
|
||
}
|
||
}
|
||
ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
|
||
EXIT_BLOCK_PTR->index = EXIT_BLOCK;
|
||
#undef BB_TO_GCOV_INDEX
|
||
|
||
if (flag_profile_values)
|
||
{
|
||
life_analysis (get_insns (), NULL, PROP_DEATH_NOTES);
|
||
find_values_to_profile (&n_values, &values);
|
||
allocate_reg_info (max_reg_num (), FALSE, FALSE);
|
||
}
|
||
|
||
if (flag_branch_probabilities)
|
||
{
|
||
compute_branch_probabilities ();
|
||
if (flag_profile_values)
|
||
compute_value_histograms (n_values, values);
|
||
}
|
||
|
||
/* For each edge not on the spanning tree, add counting code as rtl. */
|
||
if (profile_arc_flag
|
||
&& coverage_counter_alloc (GCOV_COUNTER_ARCS, num_instrumented))
|
||
{
|
||
unsigned n_instrumented = instrument_edges (el);
|
||
|
||
if (n_instrumented != num_instrumented)
|
||
abort ();
|
||
|
||
if (flag_profile_values)
|
||
instrument_values (n_values, values);
|
||
|
||
/* Commit changes done by instrumentation. */
|
||
commit_edge_insertions_watch_calls ();
|
||
allocate_reg_info (max_reg_num (), FALSE, FALSE);
|
||
}
|
||
|
||
remove_fake_edges ();
|
||
free_aux_for_edges ();
|
||
/* Re-merge split basic blocks and the mess introduced by
|
||
insert_insn_on_edge. */
|
||
cleanup_cfg (profile_arc_flag ? CLEANUP_EXPENSIVE : 0);
|
||
if (rtl_dump_file)
|
||
dump_flow_info (rtl_dump_file);
|
||
|
||
free_edge_list (el);
|
||
}
|
||
|
||
/* Union find algorithm implementation for the basic blocks using
|
||
aux fields. */
|
||
|
||
static basic_block
|
||
find_group (basic_block bb)
|
||
{
|
||
basic_block group = bb, bb1;
|
||
|
||
while ((basic_block) group->aux != group)
|
||
group = (basic_block) group->aux;
|
||
|
||
/* Compress path. */
|
||
while ((basic_block) bb->aux != group)
|
||
{
|
||
bb1 = (basic_block) bb->aux;
|
||
bb->aux = (void *) group;
|
||
bb = bb1;
|
||
}
|
||
return group;
|
||
}
|
||
|
||
static void
|
||
union_groups (basic_block bb1, basic_block bb2)
|
||
{
|
||
basic_block bb1g = find_group (bb1);
|
||
basic_block bb2g = find_group (bb2);
|
||
|
||
/* ??? I don't have a place for the rank field. OK. Lets go w/o it,
|
||
this code is unlikely going to be performance problem anyway. */
|
||
if (bb1g == bb2g)
|
||
abort ();
|
||
|
||
bb1g->aux = bb2g;
|
||
}
|
||
|
||
/* This function searches all of the edges in the program flow graph, and puts
|
||
as many bad edges as possible onto the spanning tree. Bad edges include
|
||
abnormals edges, which can't be instrumented at the moment. Since it is
|
||
possible for fake edges to form a cycle, we will have to develop some
|
||
better way in the future. Also put critical edges to the tree, since they
|
||
are more expensive to instrument. */
|
||
|
||
static void
|
||
find_spanning_tree (struct edge_list *el)
|
||
{
|
||
int i;
|
||
int num_edges = NUM_EDGES (el);
|
||
basic_block bb;
|
||
|
||
/* We use aux field for standard union-find algorithm. */
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
||
bb->aux = bb;
|
||
|
||
/* Add fake edge exit to entry we can't instrument. */
|
||
union_groups (EXIT_BLOCK_PTR, ENTRY_BLOCK_PTR);
|
||
|
||
/* First add all abnormal edges to the tree unless they form a cycle. Also
|
||
add all edges to EXIT_BLOCK_PTR to avoid inserting profiling code behind
|
||
setting return value from function. */
|
||
for (i = 0; i < num_edges; i++)
|
||
{
|
||
edge e = INDEX_EDGE (el, i);
|
||
if (((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_FAKE))
|
||
|| e->dest == EXIT_BLOCK_PTR)
|
||
&& !EDGE_INFO (e)->ignore
|
||
&& (find_group (e->src) != find_group (e->dest)))
|
||
{
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Abnormal edge %d to %d put to tree\n",
|
||
e->src->index, e->dest->index);
|
||
EDGE_INFO (e)->on_tree = 1;
|
||
union_groups (e->src, e->dest);
|
||
}
|
||
}
|
||
|
||
/* Now insert all critical edges to the tree unless they form a cycle. */
|
||
for (i = 0; i < num_edges; i++)
|
||
{
|
||
edge e = INDEX_EDGE (el, i);
|
||
if (EDGE_CRITICAL_P (e) && !EDGE_INFO (e)->ignore
|
||
&& find_group (e->src) != find_group (e->dest))
|
||
{
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Critical edge %d to %d put to tree\n",
|
||
e->src->index, e->dest->index);
|
||
EDGE_INFO (e)->on_tree = 1;
|
||
union_groups (e->src, e->dest);
|
||
}
|
||
}
|
||
|
||
/* And now the rest. */
|
||
for (i = 0; i < num_edges; i++)
|
||
{
|
||
edge e = INDEX_EDGE (el, i);
|
||
if (!EDGE_INFO (e)->ignore
|
||
&& find_group (e->src) != find_group (e->dest))
|
||
{
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Normal edge %d to %d put to tree\n",
|
||
e->src->index, e->dest->index);
|
||
EDGE_INFO (e)->on_tree = 1;
|
||
union_groups (e->src, e->dest);
|
||
}
|
||
}
|
||
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
||
bb->aux = NULL;
|
||
}
|
||
|
||
/* Perform file-level initialization for branch-prob processing. */
|
||
|
||
void
|
||
init_branch_prob (void)
|
||
{
|
||
int i;
|
||
|
||
total_num_blocks = 0;
|
||
total_num_edges = 0;
|
||
total_num_edges_ignored = 0;
|
||
total_num_edges_instrumented = 0;
|
||
total_num_blocks_created = 0;
|
||
total_num_passes = 0;
|
||
total_num_times_called = 0;
|
||
total_num_branches = 0;
|
||
total_num_never_executed = 0;
|
||
for (i = 0; i < 20; i++)
|
||
total_hist_br_prob[i] = 0;
|
||
}
|
||
|
||
/* Performs file-level cleanup after branch-prob processing
|
||
is completed. */
|
||
|
||
void
|
||
end_branch_prob (void)
|
||
{
|
||
if (rtl_dump_file)
|
||
{
|
||
fprintf (rtl_dump_file, "\n");
|
||
fprintf (rtl_dump_file, "Total number of blocks: %d\n",
|
||
total_num_blocks);
|
||
fprintf (rtl_dump_file, "Total number of edges: %d\n", total_num_edges);
|
||
fprintf (rtl_dump_file, "Total number of ignored edges: %d\n",
|
||
total_num_edges_ignored);
|
||
fprintf (rtl_dump_file, "Total number of instrumented edges: %d\n",
|
||
total_num_edges_instrumented);
|
||
fprintf (rtl_dump_file, "Total number of blocks created: %d\n",
|
||
total_num_blocks_created);
|
||
fprintf (rtl_dump_file, "Total number of graph solution passes: %d\n",
|
||
total_num_passes);
|
||
if (total_num_times_called != 0)
|
||
fprintf (rtl_dump_file, "Average number of graph solution passes: %d\n",
|
||
(total_num_passes + (total_num_times_called >> 1))
|
||
/ total_num_times_called);
|
||
fprintf (rtl_dump_file, "Total number of branches: %d\n",
|
||
total_num_branches);
|
||
fprintf (rtl_dump_file, "Total number of branches never executed: %d\n",
|
||
total_num_never_executed);
|
||
if (total_num_branches)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < 10; i++)
|
||
fprintf (rtl_dump_file, "%d%% branches in range %d-%d%%\n",
|
||
(total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100
|
||
/ total_num_branches, 5*i, 5*i+5);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Output instructions as RTL to increment the edge execution count. */
|
||
|
||
static rtx
|
||
gen_edge_profiler (int edgeno)
|
||
{
|
||
rtx ref = coverage_counter_ref (GCOV_COUNTER_ARCS, edgeno);
|
||
rtx tmp;
|
||
enum machine_mode mode = GET_MODE (ref);
|
||
rtx sequence;
|
||
|
||
start_sequence ();
|
||
ref = validize_mem (ref);
|
||
|
||
tmp = expand_simple_binop (mode, PLUS, ref, const1_rtx,
|
||
ref, 0, OPTAB_WIDEN);
|
||
|
||
if (tmp != ref)
|
||
emit_move_insn (copy_rtx (ref), tmp);
|
||
|
||
sequence = get_insns ();
|
||
end_sequence ();
|
||
return sequence;
|
||
}
|
||
|
||
/* Output instructions as RTL to increment the interval histogram counter.
|
||
VALUE is the expression whose value is profiled. TAG is the tag of the
|
||
section for counters, BASE is offset of the counter position. */
|
||
|
||
static rtx
|
||
gen_interval_profiler (struct histogram_value *value, unsigned tag,
|
||
unsigned base)
|
||
{
|
||
unsigned gcov_size = tree_low_cst (TYPE_SIZE (GCOV_TYPE_NODE), 1);
|
||
enum machine_mode mode = mode_for_size (gcov_size, MODE_INT, 0);
|
||
rtx mem_ref, tmp, tmp1, mr, val;
|
||
rtx sequence;
|
||
rtx more_label = gen_label_rtx ();
|
||
rtx less_label = gen_label_rtx ();
|
||
rtx end_of_code_label = gen_label_rtx ();
|
||
int per_counter = gcov_size / BITS_PER_UNIT;
|
||
|
||
start_sequence ();
|
||
|
||
if (value->seq)
|
||
emit_insn (value->seq);
|
||
|
||
mr = gen_reg_rtx (Pmode);
|
||
|
||
tmp = coverage_counter_ref (tag, base);
|
||
tmp = force_reg (Pmode, XEXP (tmp, 0));
|
||
|
||
val = expand_simple_binop (value->mode, MINUS,
|
||
copy_rtx (value->value),
|
||
GEN_INT (value->hdata.intvl.int_start),
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
|
||
if (value->hdata.intvl.may_be_more)
|
||
do_compare_rtx_and_jump (copy_rtx (val), GEN_INT (value->hdata.intvl.steps),
|
||
GE, 0, value->mode, NULL_RTX, NULL_RTX, more_label);
|
||
if (value->hdata.intvl.may_be_less)
|
||
do_compare_rtx_and_jump (copy_rtx (val), const0_rtx, LT, 0, value->mode,
|
||
NULL_RTX, NULL_RTX, less_label);
|
||
|
||
/* We are in range. */
|
||
tmp1 = expand_simple_binop (value->mode, MULT,
|
||
copy_rtx (val), GEN_INT (per_counter),
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
tmp1 = expand_simple_binop (Pmode, PLUS, copy_rtx (tmp), tmp1, mr,
|
||
0, OPTAB_WIDEN);
|
||
if (tmp1 != mr)
|
||
emit_move_insn (copy_rtx (mr), tmp1);
|
||
|
||
if (value->hdata.intvl.may_be_more
|
||
|| value->hdata.intvl.may_be_less)
|
||
{
|
||
emit_jump_insn (gen_jump (end_of_code_label));
|
||
emit_barrier ();
|
||
}
|
||
|
||
/* Above the interval. */
|
||
if (value->hdata.intvl.may_be_more)
|
||
{
|
||
emit_label (more_label);
|
||
tmp1 = expand_simple_binop (Pmode, PLUS, copy_rtx (tmp),
|
||
GEN_INT (per_counter * value->hdata.intvl.steps),
|
||
mr, 0, OPTAB_WIDEN);
|
||
if (tmp1 != mr)
|
||
emit_move_insn (copy_rtx (mr), tmp1);
|
||
if (value->hdata.intvl.may_be_less)
|
||
{
|
||
emit_jump_insn (gen_jump (end_of_code_label));
|
||
emit_barrier ();
|
||
}
|
||
}
|
||
|
||
/* Below the interval. */
|
||
if (value->hdata.intvl.may_be_less)
|
||
{
|
||
emit_label (less_label);
|
||
tmp1 = expand_simple_binop (Pmode, PLUS, copy_rtx (tmp),
|
||
GEN_INT (per_counter * (value->hdata.intvl.steps
|
||
+ (value->hdata.intvl.may_be_more ? 1 : 0))),
|
||
mr, 0, OPTAB_WIDEN);
|
||
if (tmp1 != mr)
|
||
emit_move_insn (copy_rtx (mr), tmp1);
|
||
}
|
||
|
||
if (value->hdata.intvl.may_be_more
|
||
|| value->hdata.intvl.may_be_less)
|
||
emit_label (end_of_code_label);
|
||
|
||
mem_ref = validize_mem (gen_rtx_MEM (mode, mr));
|
||
|
||
tmp = expand_simple_binop (mode, PLUS, copy_rtx (mem_ref), const1_rtx,
|
||
mem_ref, 0, OPTAB_WIDEN);
|
||
|
||
if (tmp != mem_ref)
|
||
emit_move_insn (copy_rtx (mem_ref), tmp);
|
||
|
||
sequence = get_insns ();
|
||
end_sequence ();
|
||
rebuild_jump_labels (sequence);
|
||
return sequence;
|
||
}
|
||
|
||
/* Output instructions as RTL to increment the power of two histogram counter.
|
||
VALUE is the expression whose value is profiled. TAG is the tag of the
|
||
section for counters, BASE is offset of the counter position. */
|
||
|
||
static rtx
|
||
gen_pow2_profiler (struct histogram_value *value, unsigned tag, unsigned base)
|
||
{
|
||
unsigned gcov_size = tree_low_cst (TYPE_SIZE (GCOV_TYPE_NODE), 1);
|
||
enum machine_mode mode = mode_for_size (gcov_size, MODE_INT, 0);
|
||
rtx mem_ref, tmp, mr, uval;
|
||
rtx sequence;
|
||
rtx end_of_code_label = gen_label_rtx ();
|
||
rtx loop_label = gen_label_rtx ();
|
||
int per_counter = gcov_size / BITS_PER_UNIT;
|
||
|
||
start_sequence ();
|
||
|
||
if (value->seq)
|
||
emit_insn (value->seq);
|
||
|
||
mr = gen_reg_rtx (Pmode);
|
||
tmp = coverage_counter_ref (tag, base);
|
||
tmp = force_reg (Pmode, XEXP (tmp, 0));
|
||
emit_move_insn (mr, tmp);
|
||
|
||
uval = gen_reg_rtx (value->mode);
|
||
emit_move_insn (uval, copy_rtx (value->value));
|
||
|
||
/* Check for non-power of 2. */
|
||
if (value->hdata.pow2.may_be_other)
|
||
{
|
||
do_compare_rtx_and_jump (copy_rtx (uval), const0_rtx, LE, 0, value->mode,
|
||
NULL_RTX, NULL_RTX, end_of_code_label);
|
||
tmp = expand_simple_binop (value->mode, PLUS, copy_rtx (uval),
|
||
constm1_rtx, NULL_RTX, 0, OPTAB_WIDEN);
|
||
tmp = expand_simple_binop (value->mode, AND, copy_rtx (uval), tmp,
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
do_compare_rtx_and_jump (tmp, const0_rtx, NE, 0, value->mode, NULL_RTX,
|
||
NULL_RTX, end_of_code_label);
|
||
}
|
||
|
||
/* Count log_2(value). */
|
||
emit_label (loop_label);
|
||
|
||
tmp = expand_simple_binop (Pmode, PLUS, copy_rtx (mr), GEN_INT (per_counter), mr, 0, OPTAB_WIDEN);
|
||
if (tmp != mr)
|
||
emit_move_insn (copy_rtx (mr), tmp);
|
||
|
||
tmp = expand_simple_binop (value->mode, ASHIFTRT, copy_rtx (uval), const1_rtx,
|
||
uval, 0, OPTAB_WIDEN);
|
||
if (tmp != uval)
|
||
emit_move_insn (copy_rtx (uval), tmp);
|
||
|
||
do_compare_rtx_and_jump (copy_rtx (uval), const0_rtx, NE, 0, value->mode,
|
||
NULL_RTX, NULL_RTX, loop_label);
|
||
|
||
/* Increase the counter. */
|
||
emit_label (end_of_code_label);
|
||
|
||
mem_ref = validize_mem (gen_rtx_MEM (mode, mr));
|
||
|
||
tmp = expand_simple_binop (mode, PLUS, copy_rtx (mem_ref), const1_rtx,
|
||
mem_ref, 0, OPTAB_WIDEN);
|
||
|
||
if (tmp != mem_ref)
|
||
emit_move_insn (copy_rtx (mem_ref), tmp);
|
||
|
||
sequence = get_insns ();
|
||
end_sequence ();
|
||
rebuild_jump_labels (sequence);
|
||
return sequence;
|
||
}
|
||
|
||
/* Output instructions as RTL for code to find the most common value.
|
||
VALUE is the expression whose value is profiled. TAG is the tag of the
|
||
section for counters, BASE is offset of the counter position. */
|
||
|
||
static rtx
|
||
gen_one_value_profiler (struct histogram_value *value, unsigned tag,
|
||
unsigned base)
|
||
{
|
||
unsigned gcov_size = tree_low_cst (TYPE_SIZE (GCOV_TYPE_NODE), 1);
|
||
enum machine_mode mode = mode_for_size (gcov_size, MODE_INT, 0);
|
||
rtx stored_value_ref, counter_ref, all_ref, stored_value, counter, all;
|
||
rtx tmp, uval;
|
||
rtx sequence;
|
||
rtx same_label = gen_label_rtx ();
|
||
rtx zero_label = gen_label_rtx ();
|
||
rtx end_of_code_label = gen_label_rtx ();
|
||
|
||
start_sequence ();
|
||
|
||
if (value->seq)
|
||
emit_insn (value->seq);
|
||
|
||
stored_value_ref = coverage_counter_ref (tag, base);
|
||
counter_ref = coverage_counter_ref (tag, base + 1);
|
||
all_ref = coverage_counter_ref (tag, base + 2);
|
||
stored_value = validize_mem (stored_value_ref);
|
||
counter = validize_mem (counter_ref);
|
||
all = validize_mem (all_ref);
|
||
|
||
uval = gen_reg_rtx (mode);
|
||
convert_move (uval, copy_rtx (value->value), 0);
|
||
|
||
/* Check if the stored value matches. */
|
||
do_compare_rtx_and_jump (copy_rtx (uval), copy_rtx (stored_value), EQ,
|
||
0, mode, NULL_RTX, NULL_RTX, same_label);
|
||
|
||
/* Does not match; check whether the counter is zero. */
|
||
do_compare_rtx_and_jump (copy_rtx (counter), const0_rtx, EQ, 0, mode,
|
||
NULL_RTX, NULL_RTX, zero_label);
|
||
|
||
/* The counter is not zero yet. */
|
||
tmp = expand_simple_binop (mode, PLUS, copy_rtx (counter), constm1_rtx,
|
||
counter, 0, OPTAB_WIDEN);
|
||
|
||
if (tmp != counter)
|
||
emit_move_insn (copy_rtx (counter), tmp);
|
||
|
||
emit_jump_insn (gen_jump (end_of_code_label));
|
||
emit_barrier ();
|
||
|
||
emit_label (zero_label);
|
||
/* Set new value. */
|
||
emit_move_insn (copy_rtx (stored_value), copy_rtx (uval));
|
||
|
||
emit_label (same_label);
|
||
/* Increase the counter. */
|
||
tmp = expand_simple_binop (mode, PLUS, copy_rtx (counter), const1_rtx,
|
||
counter, 0, OPTAB_WIDEN);
|
||
|
||
if (tmp != counter)
|
||
emit_move_insn (copy_rtx (counter), tmp);
|
||
|
||
emit_label (end_of_code_label);
|
||
|
||
/* Increase the counter of all executions; this seems redundant given
|
||
that ve have counts for edges in cfg, but it may happen that some
|
||
optimization will change the counts for the block (either because
|
||
it is unable to update them correctly, or because it will duplicate
|
||
the block or its part). */
|
||
tmp = expand_simple_binop (mode, PLUS, copy_rtx (all), const1_rtx,
|
||
all, 0, OPTAB_WIDEN);
|
||
|
||
if (tmp != all)
|
||
emit_move_insn (copy_rtx (all), tmp);
|
||
sequence = get_insns ();
|
||
end_sequence ();
|
||
rebuild_jump_labels (sequence);
|
||
return sequence;
|
||
}
|
||
|
||
/* Output instructions as RTL for code to find the most common value of
|
||
a difference between two evaluations of an expression.
|
||
VALUE is the expression whose value is profiled. TAG is the tag of the
|
||
section for counters, BASE is offset of the counter position. */
|
||
|
||
static rtx
|
||
gen_const_delta_profiler (struct histogram_value *value, unsigned tag,
|
||
unsigned base)
|
||
{
|
||
struct histogram_value one_value_delta;
|
||
unsigned gcov_size = tree_low_cst (TYPE_SIZE (GCOV_TYPE_NODE), 1);
|
||
enum machine_mode mode = mode_for_size (gcov_size, MODE_INT, 0);
|
||
rtx stored_value_ref, stored_value, tmp, uval;
|
||
rtx sequence;
|
||
|
||
start_sequence ();
|
||
|
||
if (value->seq)
|
||
emit_insn (value->seq);
|
||
|
||
stored_value_ref = coverage_counter_ref (tag, base);
|
||
stored_value = validize_mem (stored_value_ref);
|
||
|
||
uval = gen_reg_rtx (mode);
|
||
convert_move (uval, copy_rtx (value->value), 0);
|
||
tmp = expand_simple_binop (mode, MINUS,
|
||
copy_rtx (uval), copy_rtx (stored_value),
|
||
NULL_RTX, 0, OPTAB_WIDEN);
|
||
|
||
one_value_delta.value = tmp;
|
||
one_value_delta.mode = mode;
|
||
one_value_delta.seq = NULL_RTX;
|
||
one_value_delta.insn = value->insn;
|
||
one_value_delta.type = HIST_TYPE_SINGLE_VALUE;
|
||
emit_insn (gen_one_value_profiler (&one_value_delta, tag, base + 1));
|
||
|
||
emit_move_insn (copy_rtx (stored_value), uval);
|
||
sequence = get_insns ();
|
||
end_sequence ();
|
||
rebuild_jump_labels (sequence);
|
||
return sequence;
|
||
}
|