freebsd-nq/libexec/rtld-elf/sparc64/reloc.c
Konstantin Belousov 8569deaf1c Implement support for ELF filters in rtld. Both normal and auxillary
filters are implemented.

Filtees are loaded on demand, unless LD_LOADFLTR environment variable
is set or -z loadfltr was specified during the linking. This forces
rtld to upgrade read-locked rtld_bind_lock to write lock when it
encounters an object with filter during symbol lookup.

Consolidate common arguments of the symbol lookup functions in the
SymLook structure.  Track the state of the rtld locks in the
RtldLockState structure. Pass local RtldLockState through the rtld
symbol lookup calls to allow lock upgrades.

Reviewed by:	kan
Tested by:	Mykola Dzham <i levsha me>, nwhitehorn (powerpc)
2010-12-25 08:51:20 +00:00

755 lines
22 KiB
C

/* $NetBSD: mdreloc.c,v 1.5 2001/04/25 12:24:51 kleink Exp $ */
/*-
* Copyright (c) 2000 Eduardo Horvath.
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Kranenburg.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/mman.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "debug.h"
#include "rtld.h"
/*
* The following table holds for each relocation type:
* - the width in bits of the memory location the relocation
* applies to (not currently used)
* - the number of bits the relocation value must be shifted to the
* right (i.e. discard least significant bits) to fit into
* the appropriate field in the instruction word.
* - flags indicating whether
* * the relocation involves a symbol
* * the relocation is relative to the current position
* * the relocation is for a GOT entry
* * the relocation is relative to the load address
*
*/
#define _RF_S 0x80000000 /* Resolve symbol */
#define _RF_A 0x40000000 /* Use addend */
#define _RF_P 0x20000000 /* Location relative */
#define _RF_G 0x10000000 /* GOT offset */
#define _RF_B 0x08000000 /* Load address relative */
#define _RF_U 0x04000000 /* Unaligned */
#define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
#define _RF_RS(s) ( (s) & 0xff) /* right shift */
static const int reloc_target_flags[] = {
0, /* NONE */
_RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
_RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
_RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
_RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */
_RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
_RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
_RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */
_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
_RF_SZ(32) | _RF_RS(0), /* COPY */
_RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */
_RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
_RF_A| _RF_B| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */
_RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
_RF_A| _RF_SZ(32) | _RF_RS(0), /* PLT32 */
_RF_A| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */
_RF_A| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */
_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */
_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */
_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 10 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 11 */
_RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* 64 */
_RF_S|_RF_A|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(42), /* HH22 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(32), /* HM10 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LM22 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 7 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 5 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 6 */
_RF_S|_RF_A|_RF_P| _RF_SZ(64) | _RF_RS(0), /* DISP64 */
_RF_A| _RF_SZ(64) | _RF_RS(0), /* PLT64 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HIX22 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LOX10 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(22), /* H44 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(12), /* M44 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* L44 */
_RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* REGISTER */
_RF_S|_RF_A| _RF_U| _RF_SZ(64) | _RF_RS(0), /* UA64 */
_RF_S|_RF_A| _RF_U| _RF_SZ(16) | _RF_RS(0), /* UA16 */
};
#if 0
static const char *reloc_names[] = {
"NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
"DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
"22", "13", "LO10", "GOT10", "GOT13",
"GOT22", "PC10", "PC22", "WPLT30", "COPY",
"GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
"HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
"10", "11", "64", "OLO10", "HH22",
"HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
"WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
"DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
"L44", "REGISTER", "UA64", "UA16"
};
#endif
#define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
#define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
#define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
#define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
#define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
#define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
#define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
static const long reloc_target_bitmask[] = {
#define _BM(x) (~(-(1ULL << (x))))
0, /* NONE */
_BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
_BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
_BM(30), _BM(22), /* WDISP30, WDISP22 */
_BM(22), _BM(22), /* HI22, _22 */
_BM(13), _BM(10), /* RELOC_13, _LO10 */
_BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
_BM(10), _BM(22), /* _PC10, _PC22 */
_BM(30), 0, /* _WPLT30, _COPY */
_BM(32), _BM(32), _BM(32), /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
_BM(32), _BM(32), /* _UA32, PLT32 */
_BM(22), _BM(10), /* _HIPLT22, LOPLT10 */
_BM(32), _BM(22), _BM(10), /* _PCPLT32, _PCPLT22, _PCPLT10 */
_BM(10), _BM(11), -1, /* _10, _11, _64 */
_BM(13), _BM(22), /* _OLO10, _HH22 */
_BM(10), _BM(22), /* _HM10, _LM22 */
_BM(22), _BM(10), _BM(22), /* _PC_HH22, _PC_HM10, _PC_LM22 */
_BM(16), _BM(19), /* _WDISP16, _WDISP19 */
-1, /* GLOB_JMP */
_BM(7), _BM(5), _BM(6), /* _7, _5, _6 */
-1, -1, /* DISP64, PLT64 */
_BM(22), _BM(13), /* HIX22, LOX10 */
_BM(22), _BM(10), _BM(13), /* H44, M44, L44 */
-1, -1, _BM(16), /* REGISTER, UA64, UA16 */
#undef _BM
};
#define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
#undef flush
#define flush(va, offs) \
__asm __volatile("flush %0 + %1" : : "r" (va), "I" (offs));
static int reloc_nonplt_object(Obj_Entry *obj, const Elf_Rela *rela,
SymCache *cache, RtldLockState *lockstate);
static void install_plt(Elf_Word *pltgot, Elf_Addr proc);
extern char _rtld_bind_start_0[];
extern char _rtld_bind_start_1[];
int
do_copy_relocations(Obj_Entry *dstobj)
{
const Elf_Rela *relalim;
const Elf_Rela *rela;
const Elf_Sym *dstsym;
const Elf_Sym *srcsym;
void *dstaddr;
const void *srcaddr;
const Obj_Entry *srcobj, *defobj;
SymLook req;
const char *name;
size_t size;
int res;
assert(dstobj->mainprog); /* COPY relocations are invalid elsewhere */
relalim = (const Elf_Rela *)((caddr_t)dstobj->rela + dstobj->relasize);
for (rela = dstobj->rela; rela < relalim; rela++) {
if (ELF_R_TYPE(rela->r_info) == R_SPARC_COPY) {
dstaddr = (void *)(dstobj->relocbase + rela->r_offset);
dstsym = dstobj->symtab + ELF_R_SYM(rela->r_info);
name = dstobj->strtab + dstsym->st_name;
size = dstsym->st_size;
symlook_init(&req, name);
req.ventry = fetch_ventry(dstobj,
ELF_R_SYM(rela->r_info));
for (srcobj = dstobj->next; srcobj != NULL;
srcobj = srcobj->next) {
res = symlook_obj(&req, srcobj);
if (res == 0) {
srcsym = req.sym_out;
defobj = req.defobj_out;
break;
}
}
if (srcobj == NULL) {
_rtld_error("Undefined symbol \"%s\""
"referenced from COPY relocation"
"in %s", name, dstobj->path);
return (-1);
}
srcaddr = (const void *)(defobj->relocbase +
srcsym->st_value);
memcpy(dstaddr, srcaddr, size);
}
}
return (0);
}
int
reloc_non_plt(Obj_Entry *obj, Obj_Entry *obj_rtld, RtldLockState *lockstate)
{
const Elf_Rela *relalim;
const Elf_Rela *rela;
SymCache *cache;
int r = -1;
/*
* The dynamic loader may be called from a thread, we have
* limited amounts of stack available so we cannot use alloca().
*/
if (obj != obj_rtld) {
cache = calloc(obj->nchains, sizeof(SymCache));
/* No need to check for NULL here */
} else
cache = NULL;
relalim = (const Elf_Rela *)((caddr_t)obj->rela + obj->relasize);
for (rela = obj->rela; rela < relalim; rela++) {
if (reloc_nonplt_object(obj, rela, cache, lockstate) < 0)
goto done;
}
r = 0;
done:
if (cache != NULL)
free(cache);
return (r);
}
static int
reloc_nonplt_object(Obj_Entry *obj, const Elf_Rela *rela, SymCache *cache,
RtldLockState *lockstate)
{
const Obj_Entry *defobj;
const Elf_Sym *def;
Elf_Addr *where;
Elf_Word *where32;
Elf_Word type;
Elf_Addr value;
Elf_Addr mask;
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
where32 = (Elf_Word *)where;
defobj = NULL;
def = NULL;
type = ELF64_R_TYPE_ID(rela->r_info);
if (type == R_SPARC_NONE)
return (0);
/* We do JMP_SLOTs below */
if (type == R_SPARC_JMP_SLOT)
return (0);
/* COPY relocs are also handled elsewhere */
if (type == R_SPARC_COPY)
return (0);
/*
* Note: R_SPARC_UA16 must be numerically largest relocation type.
*/
if (type >= sizeof(reloc_target_bitmask) /
sizeof(*reloc_target_bitmask))
return (-1);
value = rela->r_addend;
/*
* Handle relative relocs here, because we might not
* be able to access globals yet.
*/
if (type == R_SPARC_RELATIVE) {
/* XXXX -- apparently we ignore the preexisting value */
*where = (Elf_Addr)(obj->relocbase + value);
return (0);
}
/*
* If we get here while relocating rtld itself, we will crash because
* a non-local variable is accessed.
*/
if (RELOC_RESOLVE_SYMBOL(type)) {
/* Find the symbol */
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
false, cache, lockstate);
if (def == NULL)
return (-1);
/* Add in the symbol's absolute address */
value += (Elf_Addr)(defobj->relocbase + def->st_value);
}
if (type == R_SPARC_OLO10)
value = (value & 0x3ff) + ELF64_R_TYPE_DATA(rela->r_info);
if (RELOC_PC_RELATIVE(type))
value -= (Elf_Addr)where;
if (RELOC_BASE_RELATIVE(type)) {
/*
* Note that even though sparcs use `Elf_rela' exclusively
* we still need the implicit memory addend in relocations
* referring to GOT entries. Undoubtedly, someone f*cked
* this up in the distant past, and now we're stuck with
* it in the name of compatibility for all eternity..
*
* In any case, the implicit and explicit should be mutually
* exclusive. We provide a check for that here.
*/
/* XXXX -- apparently we ignore the preexisting value */
value += (Elf_Addr)(obj->relocbase);
}
mask = RELOC_VALUE_BITMASK(type);
value >>= RELOC_VALUE_RIGHTSHIFT(type);
value &= mask;
if (RELOC_UNALIGNED(type)) {
/* Handle unaligned relocations. */
Elf_Addr tmp;
char *ptr;
int size;
int i;
size = RELOC_TARGET_SIZE(type) / 8;
ptr = (char *)where;
tmp = 0;
/* Read it in one byte at a time. */
for (i = 0; i < size; i++)
tmp = (tmp << 8) | ptr[i];
tmp &= ~mask;
tmp |= value;
/* Write it back out. */
for (i = 0; i < size; i++)
ptr[i] = ((tmp >> ((size - i - 1) * 8)) & 0xff);
} else if (RELOC_TARGET_SIZE(type) > 32) {
*where &= ~mask;
*where |= value;
} else {
*where32 &= ~mask;
*where32 |= value;
}
return (0);
}
int
reloc_plt(Obj_Entry *obj)
{
#if 0
const Obj_Entry *defobj;
const Elf_Rela *relalim;
const Elf_Rela *rela;
const Elf_Sym *def;
Elf_Addr *where;
Elf_Addr value;
relalim = (const Elf_Rela *)((char *)obj->pltrela + obj->pltrelasize);
for (rela = obj->pltrela; rela < relalim; rela++) {
if (rela->r_addend == 0)
continue;
assert(ELF64_R_TYPE_ID(rela->r_info) == R_SPARC_JMP_SLOT);
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
true, NULL, lockstate);
value = (Elf_Addr)(defobj->relocbase + def->st_value);
*where = value;
}
#endif
return (0);
}
/*
* Instruction templates:
*/
#define BAA 0x10400000 /* ba,a %xcc, 0 */
#define SETHI 0x03000000 /* sethi %hi(0), %g1 */
#define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 */
#define NOP 0x01000000 /* sethi %hi(0), %g0 */
#define OR 0x82806000 /* or %g1, 0, %g1 */
#define XOR 0x82c06000 /* xor %g1, 0, %g1 */
#define MOV71 0x8283a000 /* or %o7, 0, %g1 */
#define MOV17 0x9c806000 /* or %g1, 0, %o7 */
#define CALL 0x40000000 /* call 0 */
#define SLLX 0x8b407000 /* sllx %g1, 0, %g1 */
#define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */
#define ORG5 0x82804005 /* or %g1, %g5, %g1 */
/* %hi(v) with variable shift */
#define HIVAL(v, s) (((v) >> (s)) & 0x003fffff)
#define LOVAL(v) ((v) & 0x000003ff)
int
reloc_jmpslots(Obj_Entry *obj, RtldLockState *lockstate)
{
const Obj_Entry *defobj;
const Elf_Rela *relalim;
const Elf_Rela *rela;
const Elf_Sym *def;
Elf_Addr *where;
Elf_Addr target;
relalim = (const Elf_Rela *)((char *)obj->pltrela + obj->pltrelasize);
for (rela = obj->pltrela; rela < relalim; rela++) {
assert(ELF64_R_TYPE_ID(rela->r_info) == R_SPARC_JMP_SLOT);
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
true, NULL, lockstate);
if (def == NULL)
return -1;
target = (Elf_Addr)(defobj->relocbase + def->st_value);
reloc_jmpslot(where, target, defobj, obj, (Elf_Rel *)rela);
}
obj->jmpslots_done = true;
return (0);
}
Elf_Addr
reloc_jmpslot(Elf_Addr *wherep, Elf_Addr target, const Obj_Entry *obj,
const Obj_Entry *refobj, const Elf_Rel *rel)
{
const Elf_Rela *rela = (const Elf_Rela *)rel;
Elf_Addr offset;
Elf_Word *where;
if (rela - refobj->pltrela < 32764) {
/*
* At the PLT entry pointed at by `where', we now construct
* a direct transfer to the now fully resolved function
* address.
*
* A PLT entry is supposed to start by looking like this:
*
* sethi (. - .PLT0), %g1
* ba,a %xcc, .PLT1
* nop
* nop
* nop
* nop
* nop
* nop
*
* When we replace these entries we start from the second
* entry and do it in reverse order so the last thing we
* do is replace the branch. That allows us to change this
* atomically.
*
* We now need to find out how far we need to jump. We
* have a choice of several different relocation techniques
* which are increasingly expensive.
*/
where = (Elf_Word *)wherep;
offset = ((Elf_Addr)where) - target;
if (offset <= (1L<<20) && offset >= -(1L<<20)) {
/*
* We're within 1MB -- we can use a direct branch insn.
*
* We can generate this pattern:
*
* sethi %hi(. - .PLT0), %g1
* ba,a %xcc, addr
* nop
* nop
* nop
* nop
* nop
* nop
*
*/
where[1] = BAA | ((offset >> 2) &0x3fffff);
flush(where, 4);
} else if (target >= 0 && target < (1L<<32)) {
/*
* We're withing 32-bits of address zero.
*
* The resulting code in the jump slot is:
*
* sethi %hi(. - .PLT0), %g1
* sethi %hi(addr), %g1
* jmp %g1+%lo(addr)
* nop
* nop
* nop
* nop
* nop
*
*/
where[2] = JMP | LOVAL(target);
flush(where, 8);
where[1] = SETHI | HIVAL(target, 10);
flush(where, 4);
} else if (target <= 0 && target > -(1L<<32)) {
/*
* We're withing 32-bits of address -1.
*
* The resulting code in the jump slot is:
*
* sethi %hi(. - .PLT0), %g1
* sethi %hix(addr), %g1
* xor %g1, %lox(addr), %g1
* jmp %g1
* nop
* nop
* nop
* nop
*
*/
where[3] = JMP;
flush(where, 12);
where[2] = XOR | ((~target) & 0x00001fff);
flush(where, 8);
where[1] = SETHI | HIVAL(~target, 10);
flush(where, 4);
} else if (offset <= (1L<<32) && offset >= -((1L<<32) - 4)) {
/*
* We're withing 32-bits -- we can use a direct call
* insn
*
* The resulting code in the jump slot is:
*
* sethi %hi(. - .PLT0), %g1
* mov %o7, %g1
* call (.+offset)
* mov %g1, %o7
* nop
* nop
* nop
* nop
*
*/
where[3] = MOV17;
flush(where, 12);
where[2] = CALL | ((offset >> 4) & 0x3fffffff);
flush(where, 8);
where[1] = MOV71;
flush(where, 4);
} else if (offset >= 0 && offset < (1L<<44)) {
/*
* We're withing 44 bits. We can generate this pattern:
*
* The resulting code in the jump slot is:
*
* sethi %hi(. - .PLT0), %g1
* sethi %h44(addr), %g1
* or %g1, %m44(addr), %g1
* sllx %g1, 12, %g1
* jmp %g1+%l44(addr)
* nop
* nop
* nop
*
*/
where[4] = JMP | LOVAL(offset);
flush(where, 16);
where[3] = SLLX | 12;
flush(where, 12);
where[2] = OR | (((offset) >> 12) & 0x00001fff);
flush(where, 8);
where[1] = SETHI | HIVAL(offset, 22);
flush(where, 4);
} else if (offset < 0 && offset > -(1L<<44)) {
/*
* We're withing 44 bits. We can generate this pattern:
*
* The resulting code in the jump slot is:
*
* sethi %hi(. - .PLT0), %g1
* sethi %h44(-addr), %g1
* xor %g1, %m44(-addr), %g1
* sllx %g1, 12, %g1
* jmp %g1+%l44(addr)
* nop
* nop
* nop
*
*/
where[4] = JMP | LOVAL(offset);
flush(where, 16);
where[3] = SLLX | 12;
flush(where, 12);
where[2] = XOR | (((~offset) >> 12) & 0x00001fff);
flush(where, 8);
where[1] = SETHI | HIVAL(~offset, 22);
flush(where, 4);
} else {
/*
* We need to load all 64-bits
*
* The resulting code in the jump slot is:
*
* sethi %hi(. - .PLT0), %g1
* sethi %hh(addr), %g1
* sethi %lm(addr), %g5
* or %g1, %hm(addr), %g1
* sllx %g1, 32, %g1
* or %g1, %g5, %g1
* jmp %g1+%lo(addr)
* nop
*
*/
where[6] = JMP | LOVAL(target);
flush(where, 24);
where[5] = ORG5;
flush(where, 20);
where[4] = SLLX | 32;
flush(where, 16);
where[3] = OR | LOVAL((target) >> 32);
flush(where, 12);
where[2] = SETHIG5 | HIVAL(target, 10);
flush(where, 8);
where[1] = SETHI | HIVAL(target, 42);
flush(where, 4);
}
} else {
/*
* This is a high PLT slot; the relocation offset specifies a
* pointer that needs to be frobbed; no actual code needs to
* be modified. The pointer to be calculated needs the addend
* added and the reference object relocation base subtraced.
*/
*wherep = target + rela->r_addend -
(Elf_Addr)refobj->relocbase;
}
return (target);
}
/*
* Install rtld function call into this PLT slot.
*/
#define SAVE 0x9de3bf50
#define SETHI_l0 0x21000000
#define SETHI_l1 0x23000000
#define OR_l0_l0 0xa0142000
#define SLLX_l0_32_l0 0xa12c3020
#define OR_l0_l1_l0 0xa0140011
#define JMPL_l0_o1 0x93c42000
#define MOV_g1_o0 0x90100001
void
init_pltgot(Obj_Entry *obj)
{
Elf_Word *entry;
if (obj->pltgot != NULL) {
entry = (Elf_Word *)obj->pltgot;
install_plt(&entry[0], (Elf_Addr)_rtld_bind_start_0);
install_plt(&entry[8], (Elf_Addr)_rtld_bind_start_1);
obj->pltgot[8] = (Elf_Addr)obj;
}
}
static void
install_plt(Elf_Word *pltgot, Elf_Addr proc)
{
pltgot[0] = SAVE;
flush(pltgot, 0);
pltgot[1] = SETHI_l0 | HIVAL(proc, 42);
flush(pltgot, 4);
pltgot[2] = SETHI_l1 | HIVAL(proc, 10);
flush(pltgot, 8);
pltgot[3] = OR_l0_l0 | LOVAL((proc) >> 32);
flush(pltgot, 12);
pltgot[4] = SLLX_l0_32_l0;
flush(pltgot, 16);
pltgot[5] = OR_l0_l1_l0;
flush(pltgot, 20);
pltgot[6] = JMPL_l0_o1 | LOVAL(proc);
flush(pltgot, 24);
pltgot[7] = MOV_g1_o0;
flush(pltgot, 28);
}
void
allocate_initial_tls(Obj_Entry *objs)
{
Elf_Addr* tpval;
/*
* Fix the size of the static TLS block by using the maximum
* offset allocated so far and adding a bit for dynamic modules to
* use.
*/
tls_static_space = tls_last_offset + RTLD_STATIC_TLS_EXTRA;
tpval = allocate_tls(objs, NULL, 3*sizeof(Elf_Addr), sizeof(Elf_Addr));
__asm __volatile("mov %0, %%g7" : : "r" (tpval));
}
void *__tls_get_addr(tls_index *ti)
{
register Elf_Addr** tp __asm__("%g7");
return tls_get_addr_common(tp, ti->ti_module, ti->ti_offset);
}