Andrew Gallatin 6554362c66 kTLS support for TLS 1.3
TLS 1.3 requires a few changes because 1.3 pretends to be 1.2
with a record type of application data. The "real" record type is
then included at the end of the user-supplied plaintext
data. This required adding a field to the mbuf_ext_pgs struct to
save the record type, and passing the real record type to the
sw_encrypt() ktls backend functions.

Reviewed by:	jhb, hselasky
Sponsored by:	Netflix
Differential Revision:	D21801
2019-09-27 19:17:40 +00:00

309 lines
7.8 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2019 Netflix Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/counter.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/ktls.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <opencrypto/cryptodev.h>
struct ocf_session {
crypto_session_t sid;
int crda_alg;
struct mtx lock;
};
struct ocf_operation {
struct ocf_session *os;
bool done;
struct iovec iov[0];
};
static MALLOC_DEFINE(M_KTLS_OCF, "ktls_ocf", "OCF KTLS");
SYSCTL_DECL(_kern_ipc_tls);
SYSCTL_DECL(_kern_ipc_tls_stats);
static counter_u64_t ocf_gcm_crypts;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ocf_gcm_crypts, CTLFLAG_RD,
&ocf_gcm_crypts,
"Total number of OCF GCM encryption operations");
static counter_u64_t ocf_retries;
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ocf_retries, CTLFLAG_RD,
&ocf_retries,
"Number of OCF encryption operation retries");
static int
ktls_ocf_callback(struct cryptop *crp)
{
struct ocf_operation *oo;
oo = crp->crp_opaque;
mtx_lock(&oo->os->lock);
oo->done = true;
mtx_unlock(&oo->os->lock);
wakeup(oo);
return (0);
}
static int
ktls_ocf_encrypt(struct ktls_session *tls, const struct tls_record_layer *hdr,
uint8_t *trailer, struct iovec *iniov, struct iovec *outiov, int iovcnt,
uint64_t seqno, uint8_t record_type __unused)
{
struct uio uio;
struct tls_aead_data ad;
struct tls_nonce_data nd;
struct cryptodesc *crde, *crda;
struct cryptop *crp;
struct ocf_session *os;
struct ocf_operation *oo;
struct iovec *iov;
int i, error;
uint16_t tls_comp_len;
os = tls->cipher;
oo = malloc(sizeof(*oo) + (iovcnt + 2) * sizeof(*iov), M_KTLS_OCF,
M_WAITOK | M_ZERO);
oo->os = os;
iov = oo->iov;
crp = crypto_getreq(2);
if (crp == NULL) {
free(oo, M_KTLS_OCF);
return (ENOMEM);
}
/* Setup the IV. */
memcpy(nd.fixed, tls->params.iv, TLS_AEAD_GCM_LEN);
memcpy(&nd.seq, hdr + 1, sizeof(nd.seq));
/* Setup the AAD. */
tls_comp_len = ntohs(hdr->tls_length) -
(AES_GMAC_HASH_LEN + sizeof(nd.seq));
ad.seq = htobe64(seqno);
ad.type = hdr->tls_type;
ad.tls_vmajor = hdr->tls_vmajor;
ad.tls_vminor = hdr->tls_vminor;
ad.tls_length = htons(tls_comp_len);
iov[0].iov_base = &ad;
iov[0].iov_len = sizeof(ad);
uio.uio_resid = sizeof(ad);
/*
* OCF always does encryption in place, so copy the data if
* needed. Ugh.
*/
for (i = 0; i < iovcnt; i++) {
iov[i + 1] = outiov[i];
if (iniov[i].iov_base != outiov[i].iov_base)
memcpy(outiov[i].iov_base, iniov[i].iov_base,
outiov[i].iov_len);
uio.uio_resid += outiov[i].iov_len;
}
iov[iovcnt + 1].iov_base = trailer;
iov[iovcnt + 1].iov_len = AES_GMAC_HASH_LEN;
uio.uio_resid += AES_GMAC_HASH_LEN;
uio.uio_iov = iov;
uio.uio_iovcnt = iovcnt + 2;
uio.uio_offset = 0;
uio.uio_segflg = UIO_SYSSPACE;
uio.uio_td = curthread;
crp->crp_session = os->sid;
crp->crp_flags = CRYPTO_F_IOV | CRYPTO_F_CBIMM;
crp->crp_uio = &uio;
crp->crp_ilen = uio.uio_resid;
crp->crp_opaque = oo;
crp->crp_callback = ktls_ocf_callback;
crde = crp->crp_desc;
crda = crde->crd_next;
crda->crd_alg = os->crda_alg;
crda->crd_skip = 0;
crda->crd_len = sizeof(ad);
crda->crd_inject = crp->crp_ilen - AES_GMAC_HASH_LEN;
crde->crd_alg = CRYPTO_AES_NIST_GCM_16;
crde->crd_skip = sizeof(ad);
crde->crd_len = crp->crp_ilen - (sizeof(ad) + AES_GMAC_HASH_LEN);
crde->crd_flags = CRD_F_ENCRYPT | CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT;
memcpy(crde->crd_iv, &nd, sizeof(nd));
counter_u64_add(ocf_gcm_crypts, 1);
for (;;) {
error = crypto_dispatch(crp);
if (error)
break;
mtx_lock(&os->lock);
while (!oo->done)
mtx_sleep(oo, &os->lock, 0, "ocfktls", 0);
mtx_unlock(&os->lock);
if (crp->crp_etype != EAGAIN) {
error = crp->crp_etype;
break;
}
crp->crp_etype = 0;
crp->crp_flags &= ~CRYPTO_F_DONE;
oo->done = false;
counter_u64_add(ocf_retries, 1);
}
crypto_freereq(crp);
free(oo, M_KTLS_OCF);
return (error);
}
static void
ktls_ocf_free(struct ktls_session *tls)
{
struct ocf_session *os;
os = tls->cipher;
mtx_destroy(&os->lock);
explicit_bzero(os, sizeof(*os));
free(os, M_KTLS_OCF);
}
static int
ktls_ocf_try(struct socket *so, struct ktls_session *tls)
{
struct cryptoini cria, crie;
struct ocf_session *os;
int error;
memset(&cria, 0, sizeof(cria));
memset(&crie, 0, sizeof(crie));
switch (tls->params.cipher_algorithm) {
case CRYPTO_AES_NIST_GCM_16:
if (tls->params.iv_len != TLS_AEAD_GCM_LEN)
return (EINVAL);
switch (tls->params.cipher_key_len) {
case 128 / 8:
cria.cri_alg = CRYPTO_AES_128_NIST_GMAC;
break;
case 256 / 8:
cria.cri_alg = CRYPTO_AES_256_NIST_GMAC;
break;
default:
return (EINVAL);
}
cria.cri_key = tls->params.cipher_key;
cria.cri_klen = tls->params.cipher_key_len * 8;
break;
default:
return (EPROTONOSUPPORT);
}
/* Only TLS 1.1 and TLS 1.2 are currently supported. */
if (tls->params.tls_vmajor != TLS_MAJOR_VER_ONE ||
tls->params.tls_vminor < TLS_MINOR_VER_ONE ||
tls->params.tls_vminor > TLS_MINOR_VER_TWO)
return (EPROTONOSUPPORT);
os = malloc(sizeof(*os), M_KTLS_OCF, M_NOWAIT | M_ZERO);
if (os == NULL)
return (ENOMEM);
crie.cri_alg = tls->params.cipher_algorithm;
crie.cri_key = tls->params.cipher_key;
crie.cri_klen = tls->params.cipher_key_len * 8;
crie.cri_next = &cria;
error = crypto_newsession(&os->sid, &crie,
CRYPTO_FLAG_HARDWARE | CRYPTO_FLAG_SOFTWARE);
if (error) {
free(os, M_KTLS_OCF);
return (error);
}
os->crda_alg = cria.cri_alg;
mtx_init(&os->lock, "ktls_ocf", NULL, MTX_DEF);
tls->cipher = os;
tls->sw_encrypt = ktls_ocf_encrypt;
tls->free = ktls_ocf_free;
return (0);
}
struct ktls_crypto_backend ocf_backend = {
.name = "OCF",
.prio = 5,
.api_version = KTLS_API_VERSION,
.try = ktls_ocf_try,
};
static int
ktls_ocf_modevent(module_t mod, int what, void *arg)
{
int error;
switch (what) {
case MOD_LOAD:
ocf_gcm_crypts = counter_u64_alloc(M_WAITOK);
ocf_retries = counter_u64_alloc(M_WAITOK);
return (ktls_crypto_backend_register(&ocf_backend));
case MOD_UNLOAD:
error = ktls_crypto_backend_deregister(&ocf_backend);
if (error)
return (error);
counter_u64_free(ocf_gcm_crypts);
counter_u64_free(ocf_retries);
return (0);
default:
return (EOPNOTSUPP);
}
}
static moduledata_t ktls_ocf_moduledata = {
"ktls_ocf",
ktls_ocf_modevent,
NULL
};
DECLARE_MODULE(ktls_ocf, ktls_ocf_moduledata, SI_SUB_PROTO_END, SI_ORDER_ANY);