freebsd-nq/sys/cam/mmc/mmc_da.c
Mitchell Horne 489ba22236 kerneldump: remove physical argument from d_dumper
The physical address argument is essentially ignored by every dumper
method. In addition, the dump routines don't actually pass a real
address; every call to dump_append() passes a value of zero for
physical.

Reviewed by:	markj
MFC after:	2 weeks
Differential Revision:	https://reviews.freebsd.org/D35173
2022-05-13 10:42:48 -03:00

2077 lines
61 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2006 Bernd Walter <tisco@FreeBSD.org> All rights reserved.
* Copyright (c) 2009 Alexander Motin <mav@FreeBSD.org> All rights reserved.
* Copyright (c) 2015-2017 Ilya Bakulin <kibab@FreeBSD.org> All rights reserved.
* Copyright (c) 2006 M. Warner Losh <imp@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Some code derived from the sys/dev/mmc and sys/cam/ata
* Thanks to Warner Losh <imp@FreeBSD.org>, Alexander Motin <mav@FreeBSD.org>
* Bernd Walter <tisco@FreeBSD.org>, and other authors.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
//#include "opt_sdda.h"
#include <sys/param.h>
#ifdef _KERNEL
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bio.h>
#include <sys/sysctl.h>
#include <sys/endian.h>
#include <sys/taskqueue.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/conf.h>
#include <sys/devicestat.h>
#include <sys/eventhandler.h>
#include <sys/malloc.h>
#include <sys/cons.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <geom/geom_disk.h>
#include <machine/_inttypes.h> /* for PRIu64 */
#endif /* _KERNEL */
#ifndef _KERNEL
#include <stdio.h>
#include <string.h>
#endif /* _KERNEL */
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_queue.h>
#include <cam/cam_periph.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_xpt_internal.h>
#include <cam/cam_debug.h>
#include <cam/mmc/mmc_all.h>
#ifdef _KERNEL
typedef enum {
SDDA_FLAG_OPEN = 0x0002,
SDDA_FLAG_DIRTY = 0x0004
} sdda_flags;
typedef enum {
SDDA_STATE_INIT,
SDDA_STATE_INVALID,
SDDA_STATE_NORMAL,
SDDA_STATE_PART_SWITCH,
} sdda_state;
#define SDDA_FMT_BOOT "sdda%dboot"
#define SDDA_FMT_GP "sdda%dgp"
#define SDDA_FMT_RPMB "sdda%drpmb"
#define SDDA_LABEL_ENH "enh"
#define SDDA_PART_NAMELEN (16 + 1)
struct sdda_softc;
struct sdda_part {
struct disk *disk;
struct bio_queue_head bio_queue;
sdda_flags flags;
struct sdda_softc *sc;
u_int cnt;
u_int type;
bool ro;
char name[SDDA_PART_NAMELEN];
};
struct sdda_softc {
int outstanding_cmds; /* Number of active commands */
int refcount; /* Active xpt_action() calls */
sdda_state state;
struct mmc_data *mmcdata;
struct cam_periph *periph;
// sdda_quirks quirks;
struct task start_init_task;
uint32_t raw_csd[4];
uint8_t raw_ext_csd[512]; /* MMC only? */
struct mmc_csd csd;
struct mmc_cid cid;
struct mmc_scr scr;
/* Calculated from CSD */
uint64_t sector_count;
uint64_t mediasize;
/* Calculated from CID */
char card_id_string[64];/* Formatted CID info (serial, MFG, etc) */
char card_sn_string[16];/* Formatted serial # for disk->d_ident */
/* Determined from CSD + is highspeed card*/
uint32_t card_f_max;
/* Generic switch timeout */
uint32_t cmd6_time;
uint32_t timings; /* Mask of bus timings supported */
uint32_t vccq_120; /* Mask of bus timings at VCCQ of 1.2 V */
uint32_t vccq_180; /* Mask of bus timings at VCCQ of 1.8 V */
/* MMC partitions support */
struct sdda_part *part[MMC_PART_MAX];
uint8_t part_curr; /* Partition currently switched to */
uint8_t part_requested; /* What partition we're currently switching to */
uint32_t part_time; /* Partition switch timeout [us] */
off_t enh_base; /* Enhanced user data area slice base ... */
off_t enh_size; /* ... and size [bytes] */
int log_count;
struct timeval log_time;
};
static const char *mmc_errmsg[] =
{
"None",
"Timeout",
"Bad CRC",
"Fifo",
"Failed",
"Invalid",
"NO MEMORY"
};
#define ccb_bp ppriv_ptr1
static disk_strategy_t sddastrategy;
static dumper_t sddadump;
static periph_init_t sddainit;
static void sddaasync(void *callback_arg, u_int32_t code,
struct cam_path *path, void *arg);
static periph_ctor_t sddaregister;
static periph_dtor_t sddacleanup;
static periph_start_t sddastart;
static periph_oninv_t sddaoninvalidate;
static void sddadone(struct cam_periph *periph,
union ccb *done_ccb);
static int sddaerror(union ccb *ccb, u_int32_t cam_flags,
u_int32_t sense_flags);
static int mmc_handle_reply(union ccb *ccb);
static uint16_t get_rca(struct cam_periph *periph);
static void sdda_start_init(void *context, union ccb *start_ccb);
static void sdda_start_init_task(void *context, int pending);
static void sdda_process_mmc_partitions(struct cam_periph *periph, union ccb *start_ccb);
static uint32_t sdda_get_host_caps(struct cam_periph *periph, union ccb *ccb);
static int mmc_select_card(struct cam_periph *periph, union ccb *ccb, uint32_t rca);
static inline uint32_t mmc_get_sector_size(struct cam_periph *periph) {return MMC_SECTOR_SIZE;}
static SYSCTL_NODE(_kern_cam, OID_AUTO, sdda, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"CAM Direct Access Disk driver");
static int sdda_mmcsd_compat = 1;
SYSCTL_INT(_kern_cam_sdda, OID_AUTO, mmcsd_compat, CTLFLAG_RDTUN,
&sdda_mmcsd_compat, 1, "Enable creation of mmcsd aliases.");
/* TODO: actually issue GET_TRAN_SETTINGS to get R/O status */
static inline bool sdda_get_read_only(struct cam_periph *periph, union ccb *start_ccb)
{
return (false);
}
static uint32_t mmc_get_spec_vers(struct cam_periph *periph);
static uint64_t mmc_get_media_size(struct cam_periph *periph);
static uint32_t mmc_get_cmd6_timeout(struct cam_periph *periph);
static bool sdda_add_part(struct cam_periph *periph, u_int type,
const char *name, u_int cnt, off_t media_size, bool ro);
static struct periph_driver sddadriver =
{
sddainit, "sdda",
TAILQ_HEAD_INITIALIZER(sddadriver.units), /* generation */ 0
};
PERIPHDRIVER_DECLARE(sdda, sddadriver);
static MALLOC_DEFINE(M_SDDA, "sd_da", "sd_da buffers");
static const int exp[8] = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000
};
static const int mant[16] = {
0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80
};
static const int cur_min[8] = {
500, 1000, 5000, 10000, 25000, 35000, 60000, 100000
};
static const int cur_max[8] = {
1000, 5000, 10000, 25000, 35000, 45000, 800000, 200000
};
static uint16_t
get_rca(struct cam_periph *periph) {
return periph->path->device->mmc_ident_data.card_rca;
}
/*
* Figure out if CCB execution resulted in error.
* Look at both CAM-level errors and on MMC protocol errors.
*
* Return value is always MMC error.
*/
static int
mmc_handle_reply(union ccb *ccb)
{
KASSERT(ccb->ccb_h.func_code == XPT_MMC_IO,
("ccb %p: cannot handle non-XPT_MMC_IO errors, got func_code=%d",
ccb, ccb->ccb_h.func_code));
/* CAM-level error should always correspond to MMC-level error */
if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) &&
(ccb->mmcio.cmd.error != MMC_ERR_NONE))
panic("CCB status is OK but MMC error != MMC_ERR_NONE");
if (ccb->mmcio.cmd.error != MMC_ERR_NONE) {
xpt_print_path(ccb->ccb_h.path);
printf("CMD%d failed, err %d (%s)\n",
ccb->mmcio.cmd.opcode,
ccb->mmcio.cmd.error,
mmc_errmsg[ccb->mmcio.cmd.error]);
}
return (ccb->mmcio.cmd.error);
}
static uint32_t
mmc_get_bits(uint32_t *bits, int bit_len, int start, int size)
{
const int i = (bit_len / 32) - (start / 32) - 1;
const int shift = start & 31;
uint32_t retval = bits[i] >> shift;
if (size + shift > 32)
retval |= bits[i - 1] << (32 - shift);
return (retval & ((1llu << size) - 1));
}
static void
mmc_decode_csd_sd(uint32_t *raw_csd, struct mmc_csd *csd)
{
int v;
int m;
int e;
memset(csd, 0, sizeof(*csd));
csd->csd_structure = v = mmc_get_bits(raw_csd, 128, 126, 2);
/* Common members between 1.0 and 2.0 */
m = mmc_get_bits(raw_csd, 128, 115, 4);
e = mmc_get_bits(raw_csd, 128, 112, 3);
csd->tacc = (exp[e] * mant[m] + 9) / 10;
csd->nsac = mmc_get_bits(raw_csd, 128, 104, 8) * 100;
m = mmc_get_bits(raw_csd, 128, 99, 4);
e = mmc_get_bits(raw_csd, 128, 96, 3);
csd->tran_speed = exp[e] * 10000 * mant[m];
csd->ccc = mmc_get_bits(raw_csd, 128, 84, 12);
csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 128, 80, 4);
csd->read_bl_partial = mmc_get_bits(raw_csd, 128, 79, 1);
csd->write_blk_misalign = mmc_get_bits(raw_csd, 128, 78, 1);
csd->read_blk_misalign = mmc_get_bits(raw_csd, 128, 77, 1);
csd->dsr_imp = mmc_get_bits(raw_csd, 128, 76, 1);
csd->erase_blk_en = mmc_get_bits(raw_csd, 128, 46, 1);
csd->erase_sector = mmc_get_bits(raw_csd, 128, 39, 7) + 1;
csd->wp_grp_size = mmc_get_bits(raw_csd, 128, 32, 7);
csd->wp_grp_enable = mmc_get_bits(raw_csd, 128, 31, 1);
csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 128, 26, 3);
csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 128, 22, 4);
csd->write_bl_partial = mmc_get_bits(raw_csd, 128, 21, 1);
if (v == 0) {
csd->vdd_r_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 59, 3)];
csd->vdd_r_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 56, 3)];
csd->vdd_w_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 53, 3)];
csd->vdd_w_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 50, 3)];
m = mmc_get_bits(raw_csd, 128, 62, 12);
e = mmc_get_bits(raw_csd, 128, 47, 3);
csd->capacity = ((1 + m) << (e + 2)) * csd->read_bl_len;
} else if (v == 1) {
csd->capacity = ((uint64_t)mmc_get_bits(raw_csd, 128, 48, 22) + 1) *
512 * 1024;
} else
panic("unknown SD CSD version");
}
static void
mmc_decode_csd_mmc(uint32_t *raw_csd, struct mmc_csd *csd)
{
int m;
int e;
memset(csd, 0, sizeof(*csd));
csd->csd_structure = mmc_get_bits(raw_csd, 128, 126, 2);
csd->spec_vers = mmc_get_bits(raw_csd, 128, 122, 4);
m = mmc_get_bits(raw_csd, 128, 115, 4);
e = mmc_get_bits(raw_csd, 128, 112, 3);
csd->tacc = exp[e] * mant[m] + 9 / 10;
csd->nsac = mmc_get_bits(raw_csd, 128, 104, 8) * 100;
m = mmc_get_bits(raw_csd, 128, 99, 4);
e = mmc_get_bits(raw_csd, 128, 96, 3);
csd->tran_speed = exp[e] * 10000 * mant[m];
csd->ccc = mmc_get_bits(raw_csd, 128, 84, 12);
csd->read_bl_len = 1 << mmc_get_bits(raw_csd, 128, 80, 4);
csd->read_bl_partial = mmc_get_bits(raw_csd, 128, 79, 1);
csd->write_blk_misalign = mmc_get_bits(raw_csd, 128, 78, 1);
csd->read_blk_misalign = mmc_get_bits(raw_csd, 128, 77, 1);
csd->dsr_imp = mmc_get_bits(raw_csd, 128, 76, 1);
csd->vdd_r_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 59, 3)];
csd->vdd_r_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 56, 3)];
csd->vdd_w_curr_min = cur_min[mmc_get_bits(raw_csd, 128, 53, 3)];
csd->vdd_w_curr_max = cur_max[mmc_get_bits(raw_csd, 128, 50, 3)];
m = mmc_get_bits(raw_csd, 128, 62, 12);
e = mmc_get_bits(raw_csd, 128, 47, 3);
csd->capacity = ((1 + m) << (e + 2)) * csd->read_bl_len;
csd->erase_blk_en = 0;
csd->erase_sector = (mmc_get_bits(raw_csd, 128, 42, 5) + 1) *
(mmc_get_bits(raw_csd, 128, 37, 5) + 1);
csd->wp_grp_size = mmc_get_bits(raw_csd, 128, 32, 5);
csd->wp_grp_enable = mmc_get_bits(raw_csd, 128, 31, 1);
csd->r2w_factor = 1 << mmc_get_bits(raw_csd, 128, 26, 3);
csd->write_bl_len = 1 << mmc_get_bits(raw_csd, 128, 22, 4);
csd->write_bl_partial = mmc_get_bits(raw_csd, 128, 21, 1);
}
static void
mmc_decode_cid_sd(uint32_t *raw_cid, struct mmc_cid *cid)
{
int i;
/* There's no version info, so we take it on faith */
memset(cid, 0, sizeof(*cid));
cid->mid = mmc_get_bits(raw_cid, 128, 120, 8);
cid->oid = mmc_get_bits(raw_cid, 128, 104, 16);
for (i = 0; i < 5; i++)
cid->pnm[i] = mmc_get_bits(raw_cid, 128, 96 - i * 8, 8);
cid->pnm[5] = 0;
cid->prv = mmc_get_bits(raw_cid, 128, 56, 8);
cid->psn = mmc_get_bits(raw_cid, 128, 24, 32);
cid->mdt_year = mmc_get_bits(raw_cid, 128, 12, 8) + 2000;
cid->mdt_month = mmc_get_bits(raw_cid, 128, 8, 4);
}
static void
mmc_decode_cid_mmc(uint32_t *raw_cid, struct mmc_cid *cid)
{
int i;
/* There's no version info, so we take it on faith */
memset(cid, 0, sizeof(*cid));
cid->mid = mmc_get_bits(raw_cid, 128, 120, 8);
cid->oid = mmc_get_bits(raw_cid, 128, 104, 8);
for (i = 0; i < 6; i++)
cid->pnm[i] = mmc_get_bits(raw_cid, 128, 96 - i * 8, 8);
cid->pnm[6] = 0;
cid->prv = mmc_get_bits(raw_cid, 128, 48, 8);
cid->psn = mmc_get_bits(raw_cid, 128, 16, 32);
cid->mdt_month = mmc_get_bits(raw_cid, 128, 12, 4);
cid->mdt_year = mmc_get_bits(raw_cid, 128, 8, 4) + 1997;
}
static void
mmc_format_card_id_string(struct sdda_softc *sc, struct mmc_params *mmcp)
{
char oidstr[8];
uint8_t c1;
uint8_t c2;
/*
* Format a card ID string for use by the mmcsd driver, it's what
* appears between the <> in the following:
* mmcsd0: 968MB <SD SD01G 8.0 SN 2686905 Mfg 08/2008 by 3 TN> at mmc0
* 22.5MHz/4bit/128-block
*
* Also format just the card serial number, which the mmcsd driver will
* use as the disk->d_ident string.
*
* The card_id_string in mmc_ivars is currently allocated as 64 bytes,
* and our max formatted length is currently 55 bytes if every field
* contains the largest value.
*
* Sometimes the oid is two printable ascii chars; when it's not,
* format it as 0xnnnn instead.
*/
c1 = (sc->cid.oid >> 8) & 0x0ff;
c2 = sc->cid.oid & 0x0ff;
if (c1 > 0x1f && c1 < 0x7f && c2 > 0x1f && c2 < 0x7f)
snprintf(oidstr, sizeof(oidstr), "%c%c", c1, c2);
else
snprintf(oidstr, sizeof(oidstr), "0x%04x", sc->cid.oid);
snprintf(sc->card_sn_string, sizeof(sc->card_sn_string),
"%08X", sc->cid.psn);
snprintf(sc->card_id_string, sizeof(sc->card_id_string),
"%s%s %s %d.%d SN %08X MFG %02d/%04d by %d %s",
mmcp->card_features & CARD_FEATURE_MMC ? "MMC" : "SD",
mmcp->card_features & CARD_FEATURE_SDHC ? "HC" : "",
sc->cid.pnm, sc->cid.prv >> 4, sc->cid.prv & 0x0f,
sc->cid.psn, sc->cid.mdt_month, sc->cid.mdt_year,
sc->cid.mid, oidstr);
}
static int
sddaopen(struct disk *dp)
{
struct sdda_part *part;
struct cam_periph *periph;
struct sdda_softc *softc;
int error;
part = (struct sdda_part *)dp->d_drv1;
softc = part->sc;
periph = softc->periph;
if (cam_periph_acquire(periph) != 0) {
return(ENXIO);
}
cam_periph_lock(periph);
if ((error = cam_periph_hold(periph, PRIBIO|PCATCH)) != 0) {
cam_periph_unlock(periph);
cam_periph_release(periph);
return (error);
}
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddaopen\n"));
part->flags |= SDDA_FLAG_OPEN;
cam_periph_unhold(periph);
cam_periph_unlock(periph);
return (0);
}
static int
sddaclose(struct disk *dp)
{
struct sdda_part *part;
struct cam_periph *periph;
struct sdda_softc *softc;
part = (struct sdda_part *)dp->d_drv1;
softc = part->sc;
periph = softc->periph;
part->flags &= ~SDDA_FLAG_OPEN;
cam_periph_lock(periph);
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddaclose\n"));
while (softc->refcount != 0)
cam_periph_sleep(periph, &softc->refcount, PRIBIO, "sddaclose", 1);
cam_periph_unlock(periph);
cam_periph_release(periph);
return (0);
}
static void
sddaschedule(struct cam_periph *periph)
{
struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
struct sdda_part *part;
struct bio *bp;
int i;
/* Check if we have more work to do. */
/* Find partition that has outstanding commands. Prefer current partition. */
bp = bioq_first(&softc->part[softc->part_curr]->bio_queue);
if (bp == NULL) {
for (i = 0; i < MMC_PART_MAX; i++) {
if ((part = softc->part[i]) != NULL &&
(bp = bioq_first(&softc->part[i]->bio_queue)) != NULL)
break;
}
}
if (bp != NULL) {
xpt_schedule(periph, CAM_PRIORITY_NORMAL);
}
}
/*
* Actually translate the requested transfer into one the physical driver
* can understand. The transfer is described by a buf and will include
* only one physical transfer.
*/
static void
sddastrategy(struct bio *bp)
{
struct cam_periph *periph;
struct sdda_part *part;
struct sdda_softc *softc;
part = (struct sdda_part *)bp->bio_disk->d_drv1;
softc = part->sc;
periph = softc->periph;
cam_periph_lock(periph);
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddastrategy(%p)\n", bp));
/*
* If the device has been made invalid, error out
*/
if ((periph->flags & CAM_PERIPH_INVALID) != 0) {
cam_periph_unlock(periph);
biofinish(bp, NULL, ENXIO);
return;
}
/*
* Place it in the queue of disk activities for this disk
*/
bioq_disksort(&part->bio_queue, bp);
/*
* Schedule ourselves for performing the work.
*/
sddaschedule(periph);
cam_periph_unlock(periph);
return;
}
static void
sddainit(void)
{
cam_status status;
/*
* Install a global async callback. This callback will
* receive async callbacks like "new device found".
*/
status = xpt_register_async(AC_FOUND_DEVICE, sddaasync, NULL, NULL);
if (status != CAM_REQ_CMP) {
printf("sdda: Failed to attach master async callback "
"due to status 0x%x!\n", status);
}
}
/*
* Callback from GEOM, called when it has finished cleaning up its
* resources.
*/
static void
sddadiskgonecb(struct disk *dp)
{
struct cam_periph *periph;
struct sdda_part *part;
part = (struct sdda_part *)dp->d_drv1;
periph = part->sc->periph;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddadiskgonecb\n"));
cam_periph_release(periph);
}
static void
sddaoninvalidate(struct cam_periph *periph)
{
struct sdda_softc *softc;
struct sdda_part *part;
softc = (struct sdda_softc *)periph->softc;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddaoninvalidate\n"));
/*
* De-register any async callbacks.
*/
xpt_register_async(0, sddaasync, periph, periph->path);
/*
* Return all queued I/O with ENXIO.
* XXX Handle any transactions queued to the card
* with XPT_ABORT_CCB.
*/
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("bioq_flush start\n"));
for (int i = 0; i < MMC_PART_MAX; i++) {
if ((part = softc->part[i]) != NULL) {
bioq_flush(&part->bio_queue, NULL, ENXIO);
disk_gone(part->disk);
}
}
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("bioq_flush end\n"));
}
static void
sddacleanup(struct cam_periph *periph)
{
struct sdda_softc *softc;
struct sdda_part *part;
int i;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddacleanup\n"));
softc = (struct sdda_softc *)periph->softc;
cam_periph_unlock(periph);
for (i = 0; i < MMC_PART_MAX; i++) {
if ((part = softc->part[i]) != NULL) {
disk_destroy(part->disk);
free(part, M_DEVBUF);
softc->part[i] = NULL;
}
}
free(softc, M_DEVBUF);
cam_periph_lock(periph);
}
static void
sddaasync(void *callback_arg, u_int32_t code,
struct cam_path *path, void *arg)
{
struct ccb_getdev cgd;
struct cam_periph *periph;
periph = (struct cam_periph *)callback_arg;
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("sddaasync(code=%d)\n", code));
switch (code) {
case AC_FOUND_DEVICE:
{
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("=> AC_FOUND_DEVICE\n"));
struct ccb_getdev *cgd;
cam_status status;
cgd = (struct ccb_getdev *)arg;
if (cgd == NULL)
break;
if (cgd->protocol != PROTO_MMCSD)
break;
if (!(path->device->mmc_ident_data.card_features & CARD_FEATURE_MEMORY)) {
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("No memory on the card!\n"));
break;
}
/*
* Allocate a peripheral instance for
* this device and start the probe
* process.
*/
status = cam_periph_alloc(sddaregister, sddaoninvalidate,
sddacleanup, sddastart,
"sdda", CAM_PERIPH_BIO,
path, sddaasync,
AC_FOUND_DEVICE, cgd);
if (status != CAM_REQ_CMP
&& status != CAM_REQ_INPROG)
printf("sddaasync: Unable to attach to new device "
"due to status 0x%x\n", status);
break;
}
case AC_GETDEV_CHANGED:
{
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("=> AC_GETDEV_CHANGED\n"));
memset(&cgd, 0, sizeof(cgd));
xpt_setup_ccb(&cgd.ccb_h, periph->path, CAM_PRIORITY_NORMAL);
cgd.ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action((union ccb *)&cgd);
cam_periph_async(periph, code, path, arg);
break;
}
case AC_ADVINFO_CHANGED:
{
uintptr_t buftype;
int i;
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("=> AC_ADVINFO_CHANGED\n"));
buftype = (uintptr_t)arg;
if (buftype == CDAI_TYPE_PHYS_PATH) {
struct sdda_softc *softc;
struct sdda_part *part;
softc = periph->softc;
for (i = 0; i < MMC_PART_MAX; i++) {
if ((part = softc->part[i]) != NULL) {
disk_attr_changed(part->disk, "GEOM::physpath",
M_NOWAIT);
}
}
}
break;
}
default:
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("=> default?!\n"));
cam_periph_async(periph, code, path, arg);
break;
}
}
static int
sddagetattr(struct bio *bp)
{
struct cam_periph *periph;
struct sdda_softc *softc;
struct sdda_part *part;
int ret;
part = (struct sdda_part *)bp->bio_disk->d_drv1;
softc = part->sc;
periph = softc->periph;
cam_periph_lock(periph);
ret = xpt_getattr(bp->bio_data, bp->bio_length, bp->bio_attribute,
periph->path);
cam_periph_unlock(periph);
if (ret == 0)
bp->bio_completed = bp->bio_length;
return (ret);
}
static cam_status
sddaregister(struct cam_periph *periph, void *arg)
{
struct sdda_softc *softc;
struct ccb_getdev *cgd;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddaregister\n"));
cgd = (struct ccb_getdev *)arg;
if (cgd == NULL) {
printf("sddaregister: no getdev CCB, can't register device\n");
return (CAM_REQ_CMP_ERR);
}
softc = (struct sdda_softc *)malloc(sizeof(*softc), M_DEVBUF,
M_NOWAIT|M_ZERO);
if (softc == NULL) {
printf("sddaregister: Unable to probe new device. "
"Unable to allocate softc\n");
return (CAM_REQ_CMP_ERR);
}
softc->state = SDDA_STATE_INIT;
softc->mmcdata =
(struct mmc_data *)malloc(sizeof(struct mmc_data), M_DEVBUF, M_NOWAIT|M_ZERO);
if (softc->mmcdata == NULL) {
printf("sddaregister: Unable to probe new device. "
"Unable to allocate mmcdata\n");
free(softc, M_DEVBUF);
return (CAM_REQ_CMP_ERR);
}
periph->softc = softc;
softc->periph = periph;
xpt_schedule(periph, CAM_PRIORITY_XPT);
TASK_INIT(&softc->start_init_task, 0, sdda_start_init_task, periph);
taskqueue_enqueue(taskqueue_thread, &softc->start_init_task);
return (CAM_REQ_CMP);
}
static int
mmc_exec_app_cmd(struct cam_periph *periph, union ccb *ccb,
struct mmc_command *cmd) {
int err;
/* Send APP_CMD first */
memset(&ccb->mmcio.cmd, 0, sizeof(struct mmc_command));
memset(&ccb->mmcio.stop, 0, sizeof(struct mmc_command));
cam_fill_mmcio(&ccb->mmcio,
/*retries*/ 0,
/*cbfcnp*/ NULL,
/*flags*/ CAM_DIR_NONE,
/*mmc_opcode*/ MMC_APP_CMD,
/*mmc_arg*/ get_rca(periph) << 16,
/*mmc_flags*/ MMC_RSP_R1 | MMC_CMD_AC,
/*mmc_data*/ NULL,
/*timeout*/ 0);
cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL);
err = mmc_handle_reply(ccb);
if (err != 0)
return (err);
if (!(ccb->mmcio.cmd.resp[0] & R1_APP_CMD))
return (EIO);
/* Now exec actual command */
int flags = 0;
if (cmd->data != NULL) {
ccb->mmcio.cmd.data = cmd->data;
if (cmd->data->flags & MMC_DATA_READ)
flags |= CAM_DIR_IN;
if (cmd->data->flags & MMC_DATA_WRITE)
flags |= CAM_DIR_OUT;
} else flags = CAM_DIR_NONE;
cam_fill_mmcio(&ccb->mmcio,
/*retries*/ 0,
/*cbfcnp*/ NULL,
/*flags*/ flags,
/*mmc_opcode*/ cmd->opcode,
/*mmc_arg*/ cmd->arg,
/*mmc_flags*/ cmd->flags,
/*mmc_data*/ cmd->data,
/*timeout*/ 0);
cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL);
err = mmc_handle_reply(ccb);
if (err != 0)
return (err);
memcpy(cmd->resp, ccb->mmcio.cmd.resp, sizeof(cmd->resp));
cmd->error = ccb->mmcio.cmd.error;
return (0);
}
static int
mmc_app_get_scr(struct cam_periph *periph, union ccb *ccb, uint32_t *rawscr) {
int err;
struct mmc_command cmd;
struct mmc_data d;
memset(&cmd, 0, sizeof(cmd));
memset(&d, 0, sizeof(d));
memset(rawscr, 0, 8);
cmd.opcode = ACMD_SEND_SCR;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
cmd.arg = 0;
d.data = rawscr;
d.len = 8;
d.flags = MMC_DATA_READ;
cmd.data = &d;
err = mmc_exec_app_cmd(periph, ccb, &cmd);
rawscr[0] = be32toh(rawscr[0]);
rawscr[1] = be32toh(rawscr[1]);
return (err);
}
static int
mmc_send_ext_csd(struct cam_periph *periph, union ccb *ccb,
uint8_t *rawextcsd, size_t buf_len) {
int err;
struct mmc_data d;
KASSERT(buf_len == 512, ("Buffer for ext csd must be 512 bytes"));
memset(&d, 0, sizeof(d));
d.data = rawextcsd;
d.len = buf_len;
d.flags = MMC_DATA_READ;
memset(d.data, 0, d.len);
cam_fill_mmcio(&ccb->mmcio,
/*retries*/ 0,
/*cbfcnp*/ NULL,
/*flags*/ CAM_DIR_IN,
/*mmc_opcode*/ MMC_SEND_EXT_CSD,
/*mmc_arg*/ 0,
/*mmc_flags*/ MMC_RSP_R1 | MMC_CMD_ADTC,
/*mmc_data*/ &d,
/*timeout*/ 0);
cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL);
err = mmc_handle_reply(ccb);
return (err);
}
static void
mmc_app_decode_scr(uint32_t *raw_scr, struct mmc_scr *scr)
{
unsigned int scr_struct;
memset(scr, 0, sizeof(*scr));
scr_struct = mmc_get_bits(raw_scr, 64, 60, 4);
if (scr_struct != 0) {
printf("Unrecognised SCR structure version %d\n",
scr_struct);
return;
}
scr->sda_vsn = mmc_get_bits(raw_scr, 64, 56, 4);
scr->bus_widths = mmc_get_bits(raw_scr, 64, 48, 4);
}
static inline void
mmc_switch_fill_mmcio(union ccb *ccb,
uint8_t set, uint8_t index, uint8_t value, u_int timeout)
{
int arg = (MMC_SWITCH_FUNC_WR << 24) |
(index << 16) |
(value << 8) |
set;
cam_fill_mmcio(&ccb->mmcio,
/*retries*/ 0,
/*cbfcnp*/ NULL,
/*flags*/ CAM_DIR_NONE,
/*mmc_opcode*/ MMC_SWITCH_FUNC,
/*mmc_arg*/ arg,
/*mmc_flags*/ MMC_RSP_R1B | MMC_CMD_AC,
/*mmc_data*/ NULL,
/*timeout*/ timeout);
}
static int
mmc_select_card(struct cam_periph *periph, union ccb *ccb, uint32_t rca)
{
int flags, err;
flags = (rca ? MMC_RSP_R1B : MMC_RSP_NONE) | MMC_CMD_AC;
cam_fill_mmcio(&ccb->mmcio,
/*retries*/ 0,
/*cbfcnp*/ NULL,
/*flags*/ CAM_DIR_IN,
/*mmc_opcode*/ MMC_SELECT_CARD,
/*mmc_arg*/ rca << 16,
/*mmc_flags*/ flags,
/*mmc_data*/ NULL,
/*timeout*/ 0);
cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL);
err = mmc_handle_reply(ccb);
return (err);
}
static int
mmc_switch(struct cam_periph *periph, union ccb *ccb,
uint8_t set, uint8_t index, uint8_t value, u_int timeout)
{
int err;
mmc_switch_fill_mmcio(ccb, set, index, value, timeout);
cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL);
err = mmc_handle_reply(ccb);
return (err);
}
static uint32_t
mmc_get_spec_vers(struct cam_periph *periph) {
struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
return (softc->csd.spec_vers);
}
static uint64_t
mmc_get_media_size(struct cam_periph *periph) {
struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
return (softc->mediasize);
}
static uint32_t
mmc_get_cmd6_timeout(struct cam_periph *periph)
{
struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
if (mmc_get_spec_vers(periph) >= 6)
return (softc->raw_ext_csd[EXT_CSD_GEN_CMD6_TIME] * 10);
return (500 * 1000);
}
static int
mmc_sd_switch(struct cam_periph *periph, union ccb *ccb,
uint8_t mode, uint8_t grp, uint8_t value,
uint8_t *res) {
struct mmc_data mmc_d;
uint32_t arg;
int err;
memset(res, 0, 64);
memset(&mmc_d, 0, sizeof(mmc_d));
mmc_d.len = 64;
mmc_d.data = res;
mmc_d.flags = MMC_DATA_READ;
arg = mode << 31; /* 0 - check, 1 - set */
arg |= 0x00FFFFFF;
arg &= ~(0xF << (grp * 4));
arg |= value << (grp * 4);
cam_fill_mmcio(&ccb->mmcio,
/*retries*/ 0,
/*cbfcnp*/ NULL,
/*flags*/ CAM_DIR_IN,
/*mmc_opcode*/ SD_SWITCH_FUNC,
/*mmc_arg*/ arg,
/*mmc_flags*/ MMC_RSP_R1 | MMC_CMD_ADTC,
/*mmc_data*/ &mmc_d,
/*timeout*/ 0);
cam_periph_runccb(ccb, sddaerror, CAM_FLAG_NONE, /*sense_flags*/0, NULL);
err = mmc_handle_reply(ccb);
return (err);
}
static int
mmc_set_timing(struct cam_periph *periph,
union ccb *ccb,
enum mmc_bus_timing timing)
{
u_char switch_res[64];
int err;
uint8_t value;
struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
struct mmc_params *mmcp = &periph->path->device->mmc_ident_data;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
("mmc_set_timing(timing=%d)", timing));
switch (timing) {
case bus_timing_normal:
value = 0;
break;
case bus_timing_hs:
value = 1;
break;
default:
return (MMC_ERR_INVALID);
}
if (mmcp->card_features & CARD_FEATURE_MMC) {
err = mmc_switch(periph, ccb, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING, value, softc->cmd6_time);
} else {
err = mmc_sd_switch(periph, ccb, SD_SWITCH_MODE_SET, SD_SWITCH_GROUP1, value, switch_res);
}
/* Set high-speed timing on the host */
struct ccb_trans_settings_mmc *cts;
cts = &ccb->cts.proto_specific.mmc;
ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
ccb->ccb_h.flags = CAM_DIR_NONE;
ccb->ccb_h.retry_count = 0;
ccb->ccb_h.timeout = 100;
ccb->ccb_h.cbfcnp = NULL;
cts->ios.timing = timing;
cts->ios_valid = MMC_BT;
xpt_action(ccb);
return (err);
}
static void
sdda_start_init_task(void *context, int pending) {
union ccb *new_ccb;
struct cam_periph *periph;
periph = (struct cam_periph *)context;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sdda_start_init_task\n"));
new_ccb = xpt_alloc_ccb();
xpt_setup_ccb(&new_ccb->ccb_h, periph->path,
CAM_PRIORITY_NONE);
cam_periph_lock(periph);
cam_periph_hold(periph, PRIBIO|PCATCH);
sdda_start_init(context, new_ccb);
cam_periph_unhold(periph);
cam_periph_unlock(periph);
xpt_free_ccb(new_ccb);
}
static void
sdda_set_bus_width(struct cam_periph *periph, union ccb *ccb, int width) {
struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
struct mmc_params *mmcp = &periph->path->device->mmc_ident_data;
int err;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sdda_set_bus_width\n"));
/* First set for the card, then for the host */
if (mmcp->card_features & CARD_FEATURE_MMC) {
uint8_t value;
switch (width) {
case bus_width_1:
value = EXT_CSD_BUS_WIDTH_1;
break;
case bus_width_4:
value = EXT_CSD_BUS_WIDTH_4;
break;
case bus_width_8:
value = EXT_CSD_BUS_WIDTH_8;
break;
default:
panic("Invalid bus width %d", width);
}
err = mmc_switch(periph, ccb, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH, value, softc->cmd6_time);
} else {
/* For SD cards we send ACMD6 with the required bus width in arg */
struct mmc_command cmd;
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = ACMD_SET_BUS_WIDTH;
cmd.arg = width;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_exec_app_cmd(periph, ccb, &cmd);
}
if (err != MMC_ERR_NONE) {
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Error %d when setting bus width on the card\n", err));
return;
}
/* Now card is done, set the host to the same width */
struct ccb_trans_settings_mmc *cts;
cts = &ccb->cts.proto_specific.mmc;
ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
ccb->ccb_h.flags = CAM_DIR_NONE;
ccb->ccb_h.retry_count = 0;
ccb->ccb_h.timeout = 100;
ccb->ccb_h.cbfcnp = NULL;
cts->ios.bus_width = width;
cts->ios_valid = MMC_BW;
xpt_action(ccb);
}
static inline const char
*part_type(u_int type)
{
switch (type) {
case EXT_CSD_PART_CONFIG_ACC_RPMB:
return ("RPMB");
case EXT_CSD_PART_CONFIG_ACC_DEFAULT:
return ("default");
case EXT_CSD_PART_CONFIG_ACC_BOOT0:
return ("boot0");
case EXT_CSD_PART_CONFIG_ACC_BOOT1:
return ("boot1");
case EXT_CSD_PART_CONFIG_ACC_GP0:
case EXT_CSD_PART_CONFIG_ACC_GP1:
case EXT_CSD_PART_CONFIG_ACC_GP2:
case EXT_CSD_PART_CONFIG_ACC_GP3:
return ("general purpose");
default:
return ("(unknown type)");
}
}
static inline const char
*bus_width_str(enum mmc_bus_width w)
{
switch (w) {
case bus_width_1:
return ("1-bit");
case bus_width_4:
return ("4-bit");
case bus_width_8:
return ("8-bit");
default:
__assert_unreachable();
}
}
static uint32_t
sdda_get_host_caps(struct cam_periph *periph, union ccb *ccb)
{
struct ccb_trans_settings_mmc *cts;
cts = &ccb->cts.proto_specific.mmc;
ccb->ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
ccb->ccb_h.flags = CAM_DIR_NONE;
ccb->ccb_h.retry_count = 0;
ccb->ccb_h.timeout = 100;
ccb->ccb_h.cbfcnp = NULL;
xpt_action(ccb);
if (ccb->ccb_h.status != CAM_REQ_CMP)
panic("Cannot get host caps");
return (cts->host_caps);
}
static uint32_t
sdda_get_max_data(struct cam_periph *periph, union ccb *ccb)
{
struct ccb_trans_settings_mmc *cts;
cts = &ccb->cts.proto_specific.mmc;
memset(cts, 0, sizeof(struct ccb_trans_settings_mmc));
ccb->ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
ccb->ccb_h.flags = CAM_DIR_NONE;
ccb->ccb_h.retry_count = 0;
ccb->ccb_h.timeout = 100;
ccb->ccb_h.cbfcnp = NULL;
xpt_action(ccb);
if (ccb->ccb_h.status != CAM_REQ_CMP)
panic("Cannot get host max data");
KASSERT(cts->host_max_data != 0, ("host_max_data == 0?!"));
return (cts->host_max_data);
}
static void
sdda_start_init(void *context, union ccb *start_ccb)
{
struct cam_periph *periph = (struct cam_periph *)context;
struct ccb_trans_settings_mmc *cts;
uint32_t host_caps;
uint32_t sec_count;
int err;
int host_f_max;
uint8_t card_type;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sdda_start_init\n"));
/* periph was held for us when this task was enqueued */
if ((periph->flags & CAM_PERIPH_INVALID) != 0) {
cam_periph_release(periph);
return;
}
struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
struct mmc_params *mmcp = &periph->path->device->mmc_ident_data;
struct cam_ed *device = periph->path->device;
if (mmcp->card_features & CARD_FEATURE_MMC) {
mmc_decode_csd_mmc(mmcp->card_csd, &softc->csd);
mmc_decode_cid_mmc(mmcp->card_cid, &softc->cid);
if (mmc_get_spec_vers(periph) >= 4) {
err = mmc_send_ext_csd(periph, start_ccb,
(uint8_t *)&softc->raw_ext_csd,
sizeof(softc->raw_ext_csd));
if (err != 0) {
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH,
("Cannot read EXT_CSD, err %d", err));
return;
}
}
} else {
mmc_decode_csd_sd(mmcp->card_csd, &softc->csd);
mmc_decode_cid_sd(mmcp->card_cid, &softc->cid);
}
softc->sector_count = softc->csd.capacity / MMC_SECTOR_SIZE;
softc->mediasize = softc->csd.capacity;
softc->cmd6_time = mmc_get_cmd6_timeout(periph);
/* MMC >= 4.x have EXT_CSD that has its own opinion about capacity */
if (mmc_get_spec_vers(periph) >= 4) {
sec_count = softc->raw_ext_csd[EXT_CSD_SEC_CNT] +
(softc->raw_ext_csd[EXT_CSD_SEC_CNT + 1] << 8) +
(softc->raw_ext_csd[EXT_CSD_SEC_CNT + 2] << 16) +
(softc->raw_ext_csd[EXT_CSD_SEC_CNT + 3] << 24);
if (sec_count != 0) {
softc->sector_count = sec_count;
softc->mediasize = softc->sector_count * MMC_SECTOR_SIZE;
/* FIXME: there should be a better name for this option...*/
mmcp->card_features |= CARD_FEATURE_SDHC;
}
}
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH,
("Capacity: %"PRIu64", sectors: %"PRIu64"\n",
softc->mediasize,
softc->sector_count));
mmc_format_card_id_string(softc, mmcp);
/* Update info for CAM */
device->serial_num_len = strlen(softc->card_sn_string);
device->serial_num = (u_int8_t *)malloc((device->serial_num_len + 1),
M_CAMXPT, M_NOWAIT);
strlcpy(device->serial_num, softc->card_sn_string, device->serial_num_len + 1);
device->device_id_len = strlen(softc->card_id_string);
device->device_id = (u_int8_t *)malloc((device->device_id_len + 1),
M_CAMXPT, M_NOWAIT);
strlcpy(device->device_id, softc->card_id_string, device->device_id_len + 1);
strlcpy(mmcp->model, softc->card_id_string, sizeof(mmcp->model));
/* Set the clock frequency that the card can handle */
cts = &start_ccb->cts.proto_specific.mmc;
/* First, get the host's max freq */
start_ccb->ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
start_ccb->ccb_h.flags = CAM_DIR_NONE;
start_ccb->ccb_h.retry_count = 0;
start_ccb->ccb_h.timeout = 100;
start_ccb->ccb_h.cbfcnp = NULL;
xpt_action(start_ccb);
if (start_ccb->ccb_h.status != CAM_REQ_CMP)
panic("Cannot get max host freq");
host_f_max = cts->host_f_max;
host_caps = cts->host_caps;
if (cts->ios.bus_width != bus_width_1)
panic("Bus width in ios is not 1-bit");
/* Now check if the card supports High-speed */
softc->card_f_max = softc->csd.tran_speed;
if (host_caps & MMC_CAP_HSPEED) {
/* Find out if the card supports High speed timing */
if (mmcp->card_features & CARD_FEATURE_SD20) {
/* Get and decode SCR */
uint32_t rawscr[2];
uint8_t res[64];
if (mmc_app_get_scr(periph, start_ccb, rawscr)) {
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Cannot get SCR\n"));
goto finish_hs_tests;
}
mmc_app_decode_scr(rawscr, &softc->scr);
if ((softc->scr.sda_vsn >= 1) && (softc->csd.ccc & (1<<10))) {
mmc_sd_switch(periph, start_ccb, SD_SWITCH_MODE_CHECK,
SD_SWITCH_GROUP1, SD_SWITCH_NOCHANGE, res);
if (res[13] & 2) {
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Card supports HS\n"));
softc->card_f_max = SD_HS_MAX;
}
/*
* We deselect then reselect the card here. Some cards
* become unselected and timeout with the above two
* commands, although the state tables / diagrams in the
* standard suggest they go back to the transfer state.
* Other cards don't become deselected, and if we
* attempt to blindly re-select them, we get timeout
* errors from some controllers. So we deselect then
* reselect to handle all situations.
*/
mmc_select_card(periph, start_ccb, 0);
mmc_select_card(periph, start_ccb, get_rca(periph));
} else {
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Not trying the switch\n"));
goto finish_hs_tests;
}
}
if (mmcp->card_features & CARD_FEATURE_MMC && mmc_get_spec_vers(periph) >= 4) {
card_type = softc->raw_ext_csd[EXT_CSD_CARD_TYPE];
if (card_type & EXT_CSD_CARD_TYPE_HS_52)
softc->card_f_max = MMC_TYPE_HS_52_MAX;
else if (card_type & EXT_CSD_CARD_TYPE_HS_26)
softc->card_f_max = MMC_TYPE_HS_26_MAX;
if ((card_type & EXT_CSD_CARD_TYPE_DDR_52_1_2V) != 0 &&
(host_caps & MMC_CAP_SIGNALING_120) != 0) {
setbit(&softc->timings, bus_timing_mmc_ddr52);
setbit(&softc->vccq_120, bus_timing_mmc_ddr52);
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Card supports DDR52 at 1.2V\n"));
}
if ((card_type & EXT_CSD_CARD_TYPE_DDR_52_1_8V) != 0 &&
(host_caps & MMC_CAP_SIGNALING_180) != 0) {
setbit(&softc->timings, bus_timing_mmc_ddr52);
setbit(&softc->vccq_180, bus_timing_mmc_ddr52);
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Card supports DDR52 at 1.8V\n"));
}
if ((card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) != 0 &&
(host_caps & MMC_CAP_SIGNALING_120) != 0) {
setbit(&softc->timings, bus_timing_mmc_hs200);
setbit(&softc->vccq_120, bus_timing_mmc_hs200);
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Card supports HS200 at 1.2V\n"));
}
if ((card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) != 0 &&
(host_caps & MMC_CAP_SIGNALING_180) != 0) {
setbit(&softc->timings, bus_timing_mmc_hs200);
setbit(&softc->vccq_180, bus_timing_mmc_hs200);
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Card supports HS200 at 1.8V\n"));
}
}
}
int f_max;
finish_hs_tests:
f_max = min(host_f_max, softc->card_f_max);
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH, ("Set SD freq to %d MHz (min out of host f=%d MHz and card f=%d MHz)\n", f_max / 1000000, host_f_max / 1000000, softc->card_f_max / 1000000));
/* Enable high-speed timing on the card */
if (f_max > 25000000) {
err = mmc_set_timing(periph, start_ccb, bus_timing_hs);
if (err != MMC_ERR_NONE) {
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("Cannot switch card to high-speed mode"));
f_max = 25000000;
}
}
/* If possible, set lower-level signaling */
enum mmc_bus_timing timing;
/* FIXME: MMCCAM supports max. bus_timing_mmc_ddr52 at the moment. */
for (timing = bus_timing_mmc_ddr52; timing > bus_timing_normal; timing--) {
if (isset(&softc->vccq_120, timing)) {
/* Set VCCQ = 1.2V */
start_ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
start_ccb->ccb_h.flags = CAM_DIR_NONE;
start_ccb->ccb_h.retry_count = 0;
start_ccb->ccb_h.timeout = 100;
start_ccb->ccb_h.cbfcnp = NULL;
cts->ios.vccq = vccq_120;
cts->ios_valid = MMC_VCCQ;
xpt_action(start_ccb);
break;
} else if (isset(&softc->vccq_180, timing)) {
/* Set VCCQ = 1.8V */
start_ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
start_ccb->ccb_h.flags = CAM_DIR_NONE;
start_ccb->ccb_h.retry_count = 0;
start_ccb->ccb_h.timeout = 100;
start_ccb->ccb_h.cbfcnp = NULL;
cts->ios.vccq = vccq_180;
cts->ios_valid = MMC_VCCQ;
xpt_action(start_ccb);
break;
} else {
/* Set VCCQ = 3.3V */
start_ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
start_ccb->ccb_h.flags = CAM_DIR_NONE;
start_ccb->ccb_h.retry_count = 0;
start_ccb->ccb_h.timeout = 100;
start_ccb->ccb_h.cbfcnp = NULL;
cts->ios.vccq = vccq_330;
cts->ios_valid = MMC_VCCQ;
xpt_action(start_ccb);
break;
}
}
/* Set frequency on the controller */
start_ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
start_ccb->ccb_h.flags = CAM_DIR_NONE;
start_ccb->ccb_h.retry_count = 0;
start_ccb->ccb_h.timeout = 100;
start_ccb->ccb_h.cbfcnp = NULL;
cts->ios.clock = f_max;
cts->ios_valid = MMC_CLK;
xpt_action(start_ccb);
/* Set bus width */
enum mmc_bus_width desired_bus_width = bus_width_1;
enum mmc_bus_width max_host_bus_width =
(host_caps & MMC_CAP_8_BIT_DATA ? bus_width_8 :
host_caps & MMC_CAP_4_BIT_DATA ? bus_width_4 : bus_width_1);
enum mmc_bus_width max_card_bus_width = bus_width_1;
if (mmcp->card_features & CARD_FEATURE_SD20 &&
softc->scr.bus_widths & SD_SCR_BUS_WIDTH_4)
max_card_bus_width = bus_width_4;
/*
* Unlike SD, MMC cards don't have any information about supported bus width...
* So we need to perform read/write test to find out the width.
*/
/* TODO: figure out bus width for MMC; use 8-bit for now (to test on BBB) */
if (mmcp->card_features & CARD_FEATURE_MMC)
max_card_bus_width = bus_width_8;
desired_bus_width = min(max_host_bus_width, max_card_bus_width);
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH,
("Set bus width to %s (min of host %s and card %s)\n",
bus_width_str(desired_bus_width),
bus_width_str(max_host_bus_width),
bus_width_str(max_card_bus_width)));
sdda_set_bus_width(periph, start_ccb, desired_bus_width);
softc->state = SDDA_STATE_NORMAL;
cam_periph_unhold(periph);
/* MMC partitions support */
if (mmcp->card_features & CARD_FEATURE_MMC && mmc_get_spec_vers(periph) >= 4) {
sdda_process_mmc_partitions(periph, start_ccb);
} else if (mmcp->card_features & CARD_FEATURE_MEMORY) {
/* For SD[HC] cards, just add one partition that is the whole card */
if (sdda_add_part(periph, 0, "sdda",
periph->unit_number,
mmc_get_media_size(periph),
sdda_get_read_only(periph, start_ccb)) == false)
return;
softc->part_curr = 0;
}
cam_periph_hold(periph, PRIBIO|PCATCH);
xpt_announce_periph(periph, softc->card_id_string);
/*
* Add async callbacks for bus reset and bus device reset calls.
* I don't bother checking if this fails as, in most cases,
* the system will function just fine without them and the only
* alternative would be to not attach the device on failure.
*/
xpt_register_async(AC_LOST_DEVICE | AC_GETDEV_CHANGED |
AC_ADVINFO_CHANGED, sddaasync, periph, periph->path);
}
static bool
sdda_add_part(struct cam_periph *periph, u_int type, const char *name,
u_int cnt, off_t media_size, bool ro)
{
struct sdda_softc *sc = (struct sdda_softc *)periph->softc;
struct sdda_part *part;
struct ccb_pathinq cpi;
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH,
("Partition type '%s', size %ju %s\n",
part_type(type),
media_size,
ro ? "(read-only)" : ""));
part = sc->part[type] = malloc(sizeof(*part), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (part == NULL) {
printf("Cannot add partition for sdda\n");
return (false);
}
part->cnt = cnt;
part->type = type;
part->ro = ro;
part->sc = sc;
snprintf(part->name, sizeof(part->name), name, periph->unit_number);
/*
* Due to the nature of RPMB partition it doesn't make much sense
* to add it as a disk. It would be more appropriate to create a
* userland tool to operate on the partition or leverage the existing
* tools from sysutils/mmc-utils.
*/
if (type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
/* TODO: Create device, assign IOCTL handler */
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH,
("Don't know what to do with RPMB partitions yet\n"));
return (false);
}
bioq_init(&part->bio_queue);
bzero(&cpi, sizeof(cpi));
xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NONE);
cpi.ccb_h.func_code = XPT_PATH_INQ;
xpt_action((union ccb *)&cpi);
/*
* Register this media as a disk
*/
(void)cam_periph_hold(periph, PRIBIO);
cam_periph_unlock(periph);
part->disk = disk_alloc();
part->disk->d_rotation_rate = DISK_RR_NON_ROTATING;
part->disk->d_devstat = devstat_new_entry(part->name,
cnt, MMC_SECTOR_SIZE,
DEVSTAT_ALL_SUPPORTED,
DEVSTAT_TYPE_DIRECT | XPORT_DEVSTAT_TYPE(cpi.transport),
DEVSTAT_PRIORITY_DISK);
part->disk->d_open = sddaopen;
part->disk->d_close = sddaclose;
part->disk->d_strategy = sddastrategy;
if (cam_sim_pollable(periph->sim))
part->disk->d_dump = sddadump;
part->disk->d_getattr = sddagetattr;
part->disk->d_gone = sddadiskgonecb;
part->disk->d_name = part->name;
part->disk->d_drv1 = part;
part->disk->d_maxsize =
MIN(maxphys, sdda_get_max_data(periph,
(union ccb *)&cpi) * mmc_get_sector_size(periph));
part->disk->d_unit = cnt;
part->disk->d_flags = 0;
strlcpy(part->disk->d_descr, sc->card_id_string,
MIN(sizeof(part->disk->d_descr), sizeof(sc->card_id_string)));
strlcpy(part->disk->d_ident, sc->card_sn_string,
MIN(sizeof(part->disk->d_ident), sizeof(sc->card_sn_string)));
part->disk->d_hba_vendor = cpi.hba_vendor;
part->disk->d_hba_device = cpi.hba_device;
part->disk->d_hba_subvendor = cpi.hba_subvendor;
part->disk->d_hba_subdevice = cpi.hba_subdevice;
snprintf(part->disk->d_attachment, sizeof(part->disk->d_attachment),
"%s%d", cpi.dev_name, cpi.unit_number);
part->disk->d_sectorsize = mmc_get_sector_size(periph);
part->disk->d_mediasize = media_size;
part->disk->d_stripesize = 0;
part->disk->d_fwsectors = 0;
part->disk->d_fwheads = 0;
if (sdda_mmcsd_compat)
disk_add_alias(part->disk, "mmcsd");
/*
* Acquire a reference to the periph before we register with GEOM.
* We'll release this reference once GEOM calls us back (via
* sddadiskgonecb()) telling us that our provider has been freed.
*/
if (cam_periph_acquire(periph) != 0) {
xpt_print(periph->path, "%s: lost periph during "
"registration!\n", __func__);
cam_periph_lock(periph);
return (false);
}
disk_create(part->disk, DISK_VERSION);
cam_periph_lock(periph);
cam_periph_unhold(periph);
return (true);
}
/*
* For MMC cards, process EXT_CSD and add partitions that are supported by
* this device.
*/
static void
sdda_process_mmc_partitions(struct cam_periph *periph, union ccb *ccb)
{
struct sdda_softc *sc = (struct sdda_softc *)periph->softc;
struct mmc_params *mmcp = &periph->path->device->mmc_ident_data;
off_t erase_size, sector_size, size, wp_size;
int i;
const uint8_t *ext_csd;
uint8_t rev;
bool comp, ro;
ext_csd = sc->raw_ext_csd;
/*
* Enhanced user data area and general purpose partitions are only
* supported in revision 1.4 (EXT_CSD_REV == 4) and later, the RPMB
* partition in revision 1.5 (MMC v4.41, EXT_CSD_REV == 5) and later.
*/
rev = ext_csd[EXT_CSD_REV];
/*
* Ignore user-creatable enhanced user data area and general purpose
* partitions partitions as long as partitioning hasn't been finished.
*/
comp = (ext_csd[EXT_CSD_PART_SET] & EXT_CSD_PART_SET_COMPLETED) != 0;
/*
* Add enhanced user data area slice, unless it spans the entirety of
* the user data area. The enhanced area is of a multiple of high
* capacity write protect groups ((ERASE_GRP_SIZE + HC_WP_GRP_SIZE) *
* 512 KB) and its offset given in either sectors or bytes, depending
* on whether it's a high capacity device or not.
* NB: The slicer and its slices need to be registered before adding
* the disk for the corresponding user data area as re-tasting is
* racy.
*/
sector_size = mmc_get_sector_size(periph);
size = ext_csd[EXT_CSD_ENH_SIZE_MULT] +
(ext_csd[EXT_CSD_ENH_SIZE_MULT + 1] << 8) +
(ext_csd[EXT_CSD_ENH_SIZE_MULT + 2] << 16);
if (rev >= 4 && comp == TRUE && size > 0 &&
(ext_csd[EXT_CSD_PART_SUPPORT] &
EXT_CSD_PART_SUPPORT_ENH_ATTR_EN) != 0 &&
(ext_csd[EXT_CSD_PART_ATTR] & (EXT_CSD_PART_ATTR_ENH_USR)) != 0) {
erase_size = ext_csd[EXT_CSD_ERASE_GRP_SIZE] * 1024 *
MMC_SECTOR_SIZE;
wp_size = ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
size *= erase_size * wp_size;
if (size != mmc_get_media_size(periph) * sector_size) {
sc->enh_size = size;
sc->enh_base = (ext_csd[EXT_CSD_ENH_START_ADDR] +
(ext_csd[EXT_CSD_ENH_START_ADDR + 1] << 8) +
(ext_csd[EXT_CSD_ENH_START_ADDR + 2] << 16) +
(ext_csd[EXT_CSD_ENH_START_ADDR + 3] << 24)) *
((mmcp->card_features & CARD_FEATURE_SDHC) ? 1: MMC_SECTOR_SIZE);
} else
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH,
("enhanced user data area spans entire device"));
}
/*
* Add default partition. This may be the only one or the user
* data area in case partitions are supported.
*/
ro = sdda_get_read_only(periph, ccb);
sdda_add_part(periph, EXT_CSD_PART_CONFIG_ACC_DEFAULT, "sdda",
periph->unit_number, mmc_get_media_size(periph), ro);
sc->part_curr = EXT_CSD_PART_CONFIG_ACC_DEFAULT;
if (mmc_get_spec_vers(periph) < 3)
return;
/* Belatedly announce enhanced user data slice. */
if (sc->enh_size != 0) {
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH,
("enhanced user data area off 0x%jx size %ju bytes\n",
sc->enh_base, sc->enh_size));
}
/*
* Determine partition switch timeout (provided in units of 10 ms)
* and ensure it's at least 300 ms as some eMMC chips lie.
*/
sc->part_time = max(ext_csd[EXT_CSD_PART_SWITCH_TO] * 10 * 1000,
300 * 1000);
/* Add boot partitions, which are of a fixed multiple of 128 KB. */
size = ext_csd[EXT_CSD_BOOT_SIZE_MULT] * MMC_BOOT_RPMB_BLOCK_SIZE;
if (size > 0 && (sdda_get_host_caps(periph, ccb) & MMC_CAP_BOOT_NOACC) == 0) {
sdda_add_part(periph, EXT_CSD_PART_CONFIG_ACC_BOOT0,
SDDA_FMT_BOOT, 0, size,
ro | ((ext_csd[EXT_CSD_BOOT_WP_STATUS] &
EXT_CSD_BOOT_WP_STATUS_BOOT0_MASK) != 0));
sdda_add_part(periph, EXT_CSD_PART_CONFIG_ACC_BOOT1,
SDDA_FMT_BOOT, 1, size,
ro | ((ext_csd[EXT_CSD_BOOT_WP_STATUS] &
EXT_CSD_BOOT_WP_STATUS_BOOT1_MASK) != 0));
}
/* Add RPMB partition, which also is of a fixed multiple of 128 KB. */
size = ext_csd[EXT_CSD_RPMB_MULT] * MMC_BOOT_RPMB_BLOCK_SIZE;
if (rev >= 5 && size > 0)
sdda_add_part(periph, EXT_CSD_PART_CONFIG_ACC_RPMB,
SDDA_FMT_RPMB, 0, size, ro);
if (rev <= 3 || comp == FALSE)
return;
/*
* Add general purpose partitions, which are of a multiple of high
* capacity write protect groups, too.
*/
if ((ext_csd[EXT_CSD_PART_SUPPORT] & EXT_CSD_PART_SUPPORT_EN) != 0) {
erase_size = ext_csd[EXT_CSD_ERASE_GRP_SIZE] * 1024 *
MMC_SECTOR_SIZE;
wp_size = ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
for (i = 0; i < MMC_PART_GP_MAX; i++) {
size = ext_csd[EXT_CSD_GP_SIZE_MULT + i * 3] +
(ext_csd[EXT_CSD_GP_SIZE_MULT + i * 3 + 1] << 8) +
(ext_csd[EXT_CSD_GP_SIZE_MULT + i * 3 + 2] << 16);
if (size == 0)
continue;
sdda_add_part(periph, EXT_CSD_PART_CONFIG_ACC_GP0 + i,
SDDA_FMT_GP, i, size * erase_size * wp_size, ro);
}
}
}
/*
* We cannot just call mmc_switch() since it will sleep, and we are in
* GEOM context and cannot sleep. Instead, create an MMCIO request to switch
* partitions and send it to h/w, and upon completion resume processing
* the I/O queue.
* This function cannot fail, instead check switch errors in sddadone().
*/
static void
sdda_init_switch_part(struct cam_periph *periph, union ccb *start_ccb,
uint8_t part)
{
struct sdda_softc *sc = (struct sdda_softc *)periph->softc;
uint8_t value;
KASSERT(part < MMC_PART_MAX, ("%s: invalid partition index", __func__));
sc->part_requested = part;
value = (sc->raw_ext_csd[EXT_CSD_PART_CONFIG] &
~EXT_CSD_PART_CONFIG_ACC_MASK) | part;
mmc_switch_fill_mmcio(start_ccb, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_PART_CONFIG, value, sc->part_time);
start_ccb->ccb_h.cbfcnp = sddadone;
sc->outstanding_cmds++;
cam_periph_unlock(periph);
xpt_action(start_ccb);
cam_periph_lock(periph);
}
/* Called with periph lock held! */
static void
sddastart(struct cam_periph *periph, union ccb *start_ccb)
{
struct bio *bp;
struct sdda_softc *softc = (struct sdda_softc *)periph->softc;
struct sdda_part *part;
struct mmc_params *mmcp = &periph->path->device->mmc_ident_data;
uint8_t part_index;
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("sddastart\n"));
if (softc->state != SDDA_STATE_NORMAL) {
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("device is not in SDDA_STATE_NORMAL yet\n"));
xpt_release_ccb(start_ccb);
return;
}
/* Find partition that has outstanding commands. Prefer current partition. */
part_index = softc->part_curr;
part = softc->part[softc->part_curr];
bp = bioq_first(&part->bio_queue);
if (bp == NULL) {
for (part_index = 0; part_index < MMC_PART_MAX; part_index++) {
if ((part = softc->part[part_index]) != NULL &&
(bp = bioq_first(&softc->part[part_index]->bio_queue)) != NULL)
break;
}
}
if (bp == NULL) {
xpt_release_ccb(start_ccb);
return;
}
if (part_index != softc->part_curr) {
CAM_DEBUG(periph->path, CAM_DEBUG_PERIPH,
("Partition %d -> %d\n", softc->part_curr, part_index));
/*
* According to section "6.2.2 Command restrictions" of the eMMC
* specification v5.1, CMD19/CMD21 aren't allowed to be used with
* RPMB partitions. So we pause re-tuning along with triggering
* it up-front to decrease the likelihood of re-tuning becoming
* necessary while accessing an RPMB partition. Consequently, an
* RPMB partition should immediately be switched away from again
* after an access in order to allow for re-tuning to take place
* anew.
*/
/* TODO: pause retune if switching to RPMB partition */
softc->state = SDDA_STATE_PART_SWITCH;
sdda_init_switch_part(periph, start_ccb, part_index);
return;
}
bioq_remove(&part->bio_queue, bp);
switch (bp->bio_cmd) {
case BIO_WRITE:
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("BIO_WRITE\n"));
part->flags |= SDDA_FLAG_DIRTY;
/* FALLTHROUGH */
case BIO_READ:
{
struct ccb_mmcio *mmcio;
uint64_t blockno = bp->bio_pblkno;
uint16_t count = bp->bio_bcount / MMC_SECTOR_SIZE;
uint16_t opcode;
if (bp->bio_cmd == BIO_READ)
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("BIO_READ\n"));
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE,
("Block %"PRIu64" cnt %u\n", blockno, count));
/* Construct new MMC command */
if (bp->bio_cmd == BIO_READ) {
if (count > 1)
opcode = MMC_READ_MULTIPLE_BLOCK;
else
opcode = MMC_READ_SINGLE_BLOCK;
} else {
if (count > 1)
opcode = MMC_WRITE_MULTIPLE_BLOCK;
else
opcode = MMC_WRITE_BLOCK;
}
start_ccb->ccb_h.func_code = XPT_MMC_IO;
start_ccb->ccb_h.flags = (bp->bio_cmd == BIO_READ ? CAM_DIR_IN : CAM_DIR_OUT);
start_ccb->ccb_h.retry_count = 0;
start_ccb->ccb_h.timeout = 15 * 1000;
start_ccb->ccb_h.cbfcnp = sddadone;
mmcio = &start_ccb->mmcio;
mmcio->cmd.opcode = opcode;
mmcio->cmd.arg = blockno;
if (!(mmcp->card_features & CARD_FEATURE_SDHC))
mmcio->cmd.arg <<= 9;
mmcio->cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
mmcio->cmd.data = softc->mmcdata;
memset(mmcio->cmd.data, 0, sizeof(struct mmc_data));
mmcio->cmd.data->data = bp->bio_data;
mmcio->cmd.data->len = MMC_SECTOR_SIZE * count;
mmcio->cmd.data->flags = (bp->bio_cmd == BIO_READ ? MMC_DATA_READ : MMC_DATA_WRITE);
/* Direct h/w to issue CMD12 upon completion */
if (count > 1) {
mmcio->cmd.data->flags |= MMC_DATA_MULTI;
mmcio->stop.opcode = MMC_STOP_TRANSMISSION;
mmcio->stop.flags = MMC_RSP_R1B | MMC_CMD_AC;
mmcio->stop.arg = 0;
}
break;
}
case BIO_FLUSH:
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("BIO_FLUSH\n"));
sddaschedule(periph);
break;
case BIO_DELETE:
CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("BIO_DELETE\n"));
sddaschedule(periph);
break;
default:
biofinish(bp, NULL, EOPNOTSUPP);
xpt_release_ccb(start_ccb);
return;
}
start_ccb->ccb_h.ccb_bp = bp;
softc->outstanding_cmds++;
softc->refcount++;
cam_periph_unlock(periph);
xpt_action(start_ccb);
cam_periph_lock(periph);
/* May have more work to do, so ensure we stay scheduled */
sddaschedule(periph);
}
static void
sddadone(struct cam_periph *periph, union ccb *done_ccb)
{
struct bio *bp;
struct sdda_softc *softc;
struct ccb_mmcio *mmcio;
struct cam_path *path;
uint32_t card_status;
int error = 0;
softc = (struct sdda_softc *)periph->softc;
mmcio = &done_ccb->mmcio;
path = done_ccb->ccb_h.path;
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("sddadone\n"));
if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
CAM_DEBUG(path, CAM_DEBUG_TRACE, ("Error!!!\n"));
if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
cam_release_devq(path,
/*relsim_flags*/0,
/*reduction*/0,
/*timeout*/0,
/*getcount_only*/0);
error = EIO;
} else {
if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
panic("REQ_CMP with QFRZN");
error = 0;
}
card_status = mmcio->cmd.resp[0];
CAM_DEBUG(path, CAM_DEBUG_TRACE,
("Card status: %08x\n", R1_STATUS(card_status)));
CAM_DEBUG(path, CAM_DEBUG_TRACE,
("Current state: %d\n", R1_CURRENT_STATE(card_status)));
/* Process result of switching MMC partitions */
if (softc->state == SDDA_STATE_PART_SWITCH) {
CAM_DEBUG(path, CAM_DEBUG_TRACE,
("Completing partition switch to %d\n",
softc->part_requested));
softc->outstanding_cmds--;
/* Complete partition switch */
softc->state = SDDA_STATE_NORMAL;
if (error != 0) {
/* TODO: Unpause retune if accessing RPMB */
xpt_release_ccb(done_ccb);
xpt_schedule(periph, CAM_PRIORITY_NORMAL);
return;
}
softc->raw_ext_csd[EXT_CSD_PART_CONFIG] =
(softc->raw_ext_csd[EXT_CSD_PART_CONFIG] &
~EXT_CSD_PART_CONFIG_ACC_MASK) | softc->part_requested;
/* TODO: Unpause retune if accessing RPMB */
softc->part_curr = softc->part_requested;
xpt_release_ccb(done_ccb);
/* Return to processing BIO requests */
xpt_schedule(periph, CAM_PRIORITY_NORMAL);
return;
}
bp = (struct bio *)done_ccb->ccb_h.ccb_bp;
bp->bio_error = error;
if (error != 0) {
bp->bio_resid = bp->bio_bcount;
bp->bio_flags |= BIO_ERROR;
} else {
/* XXX: How many bytes remaining? */
bp->bio_resid = 0;
if (bp->bio_resid > 0)
bp->bio_flags |= BIO_ERROR;
}
softc->outstanding_cmds--;
xpt_release_ccb(done_ccb);
/*
* Release the periph refcount taken in sddastart() for each CCB.
*/
KASSERT(softc->refcount >= 1, ("sddadone softc %p refcount %d", softc, softc->refcount));
softc->refcount--;
biodone(bp);
}
static int
sddaerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags)
{
return(cam_periph_error(ccb, cam_flags, sense_flags));
}
static int
sddadump(void *arg, void *virtual, off_t offset, size_t length)
{
struct ccb_mmcio mmcio;
struct disk *dp;
struct sdda_part *part;
struct sdda_softc *softc;
struct cam_periph *periph;
struct mmc_params *mmcp;
uint16_t count;
uint16_t opcode;
int error;
dp = arg;
part = dp->d_drv1;
softc = part->sc;
periph = softc->periph;
mmcp = &periph->path->device->mmc_ident_data;
if (softc->state != SDDA_STATE_NORMAL)
return (ENXIO);
count = length / MMC_SECTOR_SIZE;
if (count == 0)
return (0);
if (softc->part[softc->part_curr] != part)
return (EIO); /* TODO implement polled partition switch */
memset(&mmcio, 0, sizeof(mmcio));
xpt_setup_ccb(&mmcio.ccb_h, periph->path, CAM_PRIORITY_NORMAL); /* XXX needed? */
mmcio.ccb_h.func_code = XPT_MMC_IO;
mmcio.ccb_h.flags = CAM_DIR_OUT;
mmcio.ccb_h.retry_count = 0;
mmcio.ccb_h.timeout = 15 * 1000;
if (count > 1)
opcode = MMC_WRITE_MULTIPLE_BLOCK;
else
opcode = MMC_WRITE_BLOCK;
mmcio.cmd.opcode = opcode;
mmcio.cmd.arg = offset / MMC_SECTOR_SIZE;
if (!(mmcp->card_features & CARD_FEATURE_SDHC))
mmcio.cmd.arg <<= 9;
mmcio.cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
mmcio.cmd.data = softc->mmcdata;
memset(mmcio.cmd.data, 0, sizeof(struct mmc_data));
mmcio.cmd.data->data = virtual;
mmcio.cmd.data->len = MMC_SECTOR_SIZE * count;
mmcio.cmd.data->flags = MMC_DATA_WRITE;
/* Direct h/w to issue CMD12 upon completion */
if (count > 1) {
mmcio.cmd.data->flags |= MMC_DATA_MULTI;
mmcio.stop.opcode = MMC_STOP_TRANSMISSION;
mmcio.stop.flags = MMC_RSP_R1B | MMC_CMD_AC;
mmcio.stop.arg = 0;
}
error = cam_periph_runccb((union ccb *)&mmcio, cam_periph_error,
0, SF_NO_RECOVERY | SF_NO_RETRY, NULL);
if (error != 0)
printf("Aborting dump due to I/O error.\n");
return (error);
}
#endif /* _KERNEL */