freebsd-nq/sys/amd64/include/intr_machdep.h
John Baldwin 520ffff83e Change the x86 interrupt code to suspend/resume interrupt controllers
(PICs) rather than interrupt sources.  This allows interrupt controllers
with no interrupt pics (such as the 8259As when APIC is in use) to
participate in suspend/resume.
- Always register the 8259A PICs even if we don't use any of their pins.
- Explicitly reset the 8259As on resume on amd64 if 'device atpic' isn't
  included.
- Add a "dummy" PIC for the local APIC on the BSP to reset the local APIC
  on resume.  This gets suspend/resume working with APIC on UP systems.
  SMP still needs more work to bring the APs back to life.

The MFC after is tentative.

Tested by:	anholt (i386)
Submitted by:	Andrea Bittau <a.bittau at cs.ucl.ac.uk> (3)
MFC after:	1 week
2006-10-10 23:23:12 +00:00

147 lines
5.0 KiB
C

/*-
* Copyright (c) 2003 John Baldwin <jhb@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef __MACHINE_INTR_MACHDEP_H__
#define __MACHINE_INTR_MACHDEP_H__
#ifdef _KERNEL
/*
* The maximum number of I/O interrupts we allow. This number is rather
* arbitrary as it is just the maximum IRQ resource value. The interrupt
* source for a given IRQ maps that I/O interrupt to device interrupt
* source whether it be a pin on an interrupt controller or an MSI interrupt.
* The 16 ISA IRQs are assigned fixed IDT vectors, but all other device
* interrupts allocate IDT vectors on demand. Currently we have 191 IDT
* vectors available for device interrupts. On many systems with I/O APICs,
* a lot of the IRQs are not used, so this number can be much larger than
* 191 and still be safe since only interrupt sources in actual use will
* allocate IDT vectors.
*
* For now we stick with 255 as ISA IRQs and PCI intline IRQs only allow
* for IRQs in the range 0 - 254. When MSI support is added this number
* will likely increase.
*/
#define NUM_IO_INTS 255
/*
* - 1 ??? dummy counter.
* - 2 counters for each I/O interrupt.
* - 1 counter for each CPU for lapic timer.
* - 7 counters for each CPU for IPI counters for SMP.
*/
#ifdef SMP
#define INTRCNT_COUNT (1 + NUM_IO_INTS * 2 + (1 + 7) * MAXCPU)
#else
#define INTRCNT_COUNT (1 + NUM_IO_INTS * 2 + 1)
#endif
#ifndef LOCORE
typedef void inthand_t(u_int cs, u_int ef, u_int esp, u_int ss);
#define IDTVEC(name) __CONCAT(X,name)
struct intsrc;
/*
* Methods that a PIC provides to mask/unmask a given interrupt source,
* "turn on" the interrupt on the CPU side by setting up an IDT entry, and
* return the vector associated with this source.
*/
struct pic {
void (*pic_enable_source)(struct intsrc *);
void (*pic_disable_source)(struct intsrc *, int);
void (*pic_eoi_source)(struct intsrc *);
void (*pic_enable_intr)(struct intsrc *);
int (*pic_vector)(struct intsrc *);
int (*pic_source_pending)(struct intsrc *);
void (*pic_suspend)(struct pic *);
void (*pic_resume)(struct pic *);
int (*pic_config_intr)(struct intsrc *, enum intr_trigger,
enum intr_polarity);
void (*pic_assign_cpu)(struct intsrc *, u_int apic_id);
STAILQ_ENTRY(pic) pics;
};
/* Flags for pic_disable_source() */
enum {
PIC_EOI,
PIC_NO_EOI,
};
/*
* An interrupt source. The upper-layer code uses the PIC methods to
* control a given source. The lower-layer PIC drivers can store additional
* private data in a given interrupt source such as an interrupt pin number
* or an I/O APIC pointer.
*/
struct intsrc {
struct pic *is_pic;
struct intr_event *is_event;
u_long *is_count;
u_long *is_straycount;
u_int is_index;
u_int is_enabled:1;
};
struct trapframe;
extern struct mtx icu_lock;
extern int elcr_found;
#ifndef DEV_ATPIC
void atpic_reset(void);
#endif
/* XXX: The elcr_* prototypes probably belong somewhere else. */
int elcr_probe(void);
enum intr_trigger elcr_read_trigger(u_int irq);
void elcr_resume(void);
void elcr_write_trigger(u_int irq, enum intr_trigger trigger);
#ifdef SMP
void intr_add_cpu(u_int apic_id);
#else
#define intr_add_cpu(apic_id)
#endif
int intr_add_handler(const char *name, int vector, driver_intr_t handler,
void *arg, enum intr_type flags, void **cookiep);
int intr_config_intr(int vector, enum intr_trigger trig,
enum intr_polarity pol);
void intr_execute_handlers(struct intsrc *isrc, struct trapframe *frame);
struct intsrc *intr_lookup_source(int vector);
int intr_register_pic(struct pic *pic);
int intr_register_source(struct intsrc *isrc);
int intr_remove_handler(void *cookie);
void intr_resume(void);
void intr_suspend(void);
void intrcnt_add(const char *name, u_long **countp);
#endif /* !LOCORE */
#endif /* _KERNEL */
#endif /* !__MACHINE_INTR_MACHDEP_H__ */