freebsd-nq/sys/dev/xen/netback/netback_unit_tests.c
Kenneth D. Merry 7e949c467c Xen netback driver rewrite.
share/man/man4/Makefile,
share/man/man4/xnb.4,
sys/dev/xen/netback/netback.c,
sys/dev/xen/netback/netback_unit_tests.c:

	Rewrote the netback driver for xen to attach properly via newbus
	and work properly in both HVM and PVM mode (only HVM is tested).
	Works with the in-tree FreeBSD netfront driver or the Windows
	netfront driver from SuSE.  Has not been extensively tested with
	a Linux netfront driver.  Does not implement LRO, TSO, or
	polling.  Includes unit tests that may be run through sysctl
	after compiling with XNB_DEBUG defined.

sys/dev/xen/blkback/blkback.c,
sys/xen/interface/io/netif.h:

	Comment elaboration.

sys/kern/uipc_mbuf.c:

	Fix page fault in kernel mode when calling m_print() on a
	null mbuf.  Since m_print() is only used for debugging, there
	are no performance concerns for extra error checking code.

sys/kern/subr_scanf.c:

	Add the "hh" and "ll" width specifiers from C99 to scanf().
	A few callers were already using "ll" even though scanf()
	was handling it as "l".

Submitted by:	Alan Somers <alans@spectralogic.com>
Submitted by:	John Suykerbuyk <johns@spectralogic.com>
Sponsored by:	Spectra Logic
MFC after:	1 week
Reviewed by:	ken
2012-01-26 16:35:09 +00:00

2531 lines
71 KiB
C

/*-
* Copyright (c) 2009-2011 Spectra Logic Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* Authors: Justin T. Gibbs (Spectra Logic Corporation)
* Alan Somers (Spectra Logic Corporation)
* John Suykerbuyk (Spectra Logic Corporation)
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/**
* \file netback_unit_tests.c
*
* \brief Unit tests for the Xen netback driver.
*
* Due to the driver's use of static functions, these tests cannot be compiled
* standalone; they must be #include'd from the driver's .c file.
*/
/** Helper macro used to snprintf to a buffer and update the buffer pointer */
#define SNCATF(buffer, buflen, ...) do { \
size_t new_chars = snprintf(buffer, buflen, __VA_ARGS__); \
buffer += new_chars; \
/* be careful; snprintf's return value can be > buflen */ \
buflen -= MIN(buflen, new_chars); \
} while (0)
/* STRINGIFY and TOSTRING are used only to help turn __LINE__ into a string */
#define STRINGIFY(x) #x
#define TOSTRING(x) STRINGIFY(x)
/**
* Writes an error message to buffer if cond is false, and returns true
* iff the assertion failed. Note the implied parameters buffer and
* buflen
*/
#define XNB_ASSERT(cond) ({ \
int passed = (cond); \
char *_buffer = (buffer); \
size_t _buflen = (buflen); \
if (! passed) { \
strlcat(_buffer, __func__, _buflen); \
strlcat(_buffer, ":" TOSTRING(__LINE__) \
" Assertion Error: " #cond "\n", _buflen); \
} \
! passed; })
/**
* The signature used by all testcases. If the test writes anything
* to buffer, then it will be considered a failure
* \param buffer Return storage for error messages
* \param buflen The space available in the buffer
*/
typedef void testcase_t(char *buffer, size_t buflen);
/**
* Signature used by setup functions
* \return nonzero on error
*/
typedef int setup_t(void);
typedef void teardown_t(void);
/** A simple test fixture comprising setup, teardown, and test */
struct test_fixture {
/** Will be run before the test to allocate and initialize variables */
setup_t *setup;
/** Will be run if setup succeeds */
testcase_t *test;
/** Cleans up test data whether or not the setup suceeded*/
teardown_t *teardown;
};
typedef struct test_fixture test_fixture_t;
static void xnb_fill_eh_and_ip(struct mbuf *m, uint16_t ip_len,
uint16_t ip_id, uint16_t ip_p,
uint16_t ip_off, uint16_t ip_sum);
static void xnb_fill_tcp(struct mbuf *m);
static int xnb_get1pkt(struct xnb_pkt *pkt, size_t size, uint16_t flags);
static int xnb_unit_test_runner(test_fixture_t const tests[], int ntests,
char *buffer, size_t buflen);
static int __unused
null_setup(void) { return 0; }
static void __unused
null_teardown(void) { }
static setup_t setup_pvt_data;
static teardown_t teardown_pvt_data;
static testcase_t xnb_ring2pkt_emptyring;
static testcase_t xnb_ring2pkt_1req;
static testcase_t xnb_ring2pkt_2req;
static testcase_t xnb_ring2pkt_3req;
static testcase_t xnb_ring2pkt_extra;
static testcase_t xnb_ring2pkt_partial;
static testcase_t xnb_ring2pkt_wraps;
static testcase_t xnb_txpkt2rsp_emptypkt;
static testcase_t xnb_txpkt2rsp_1req;
static testcase_t xnb_txpkt2rsp_extra;
static testcase_t xnb_txpkt2rsp_long;
static testcase_t xnb_txpkt2rsp_invalid;
static testcase_t xnb_txpkt2rsp_error;
static testcase_t xnb_txpkt2rsp_wraps;
static testcase_t xnb_pkt2mbufc_empty;
static testcase_t xnb_pkt2mbufc_short;
static testcase_t xnb_pkt2mbufc_csum;
static testcase_t xnb_pkt2mbufc_1cluster;
static testcase_t xnb_pkt2mbufc_largecluster;
static testcase_t xnb_pkt2mbufc_2cluster;
static testcase_t xnb_txpkt2gnttab_empty;
static testcase_t xnb_txpkt2gnttab_short;
static testcase_t xnb_txpkt2gnttab_2req;
static testcase_t xnb_txpkt2gnttab_2cluster;
static testcase_t xnb_update_mbufc_short;
static testcase_t xnb_update_mbufc_2req;
static testcase_t xnb_update_mbufc_2cluster;
static testcase_t xnb_mbufc2pkt_empty;
static testcase_t xnb_mbufc2pkt_short;
static testcase_t xnb_mbufc2pkt_1cluster;
static testcase_t xnb_mbufc2pkt_2short;
static testcase_t xnb_mbufc2pkt_long;
static testcase_t xnb_mbufc2pkt_extra;
static testcase_t xnb_mbufc2pkt_nospace;
static testcase_t xnb_rxpkt2gnttab_empty;
static testcase_t xnb_rxpkt2gnttab_short;
static testcase_t xnb_rxpkt2gnttab_2req;
static testcase_t xnb_rxpkt2rsp_empty;
static testcase_t xnb_rxpkt2rsp_short;
static testcase_t xnb_rxpkt2rsp_extra;
static testcase_t xnb_rxpkt2rsp_2short;
static testcase_t xnb_rxpkt2rsp_2slots;
static testcase_t xnb_rxpkt2rsp_copyerror;
/* TODO: add test cases for xnb_add_mbuf_cksum for IPV6 tcp and udp */
static testcase_t xnb_add_mbuf_cksum_arp;
static testcase_t xnb_add_mbuf_cksum_tcp;
static testcase_t xnb_add_mbuf_cksum_udp;
static testcase_t xnb_add_mbuf_cksum_icmp;
static testcase_t xnb_add_mbuf_cksum_tcp_swcksum;
static testcase_t xnb_sscanf_llu;
static testcase_t xnb_sscanf_lld;
static testcase_t xnb_sscanf_hhu;
static testcase_t xnb_sscanf_hhd;
static testcase_t xnb_sscanf_hhn;
/** Private data used by unit tests */
static struct {
gnttab_copy_table gnttab;
netif_rx_back_ring_t rxb;
netif_rx_front_ring_t rxf;
netif_tx_back_ring_t txb;
netif_tx_front_ring_t txf;
struct ifnet* ifp;
netif_rx_sring_t* rxs;
netif_tx_sring_t* txs;
} xnb_unit_pvt;
static inline void safe_m_freem(struct mbuf **ppMbuf) {
if (*ppMbuf != NULL) {
m_freem(*ppMbuf);
*ppMbuf = NULL;
}
}
/**
* The unit test runner. It will run every supplied test and return an
* output message as a string
* \param tests An array of tests. Every test will be attempted.
* \param ntests The length of tests
* \param buffer Return storage for the result string
* \param buflen The length of buffer
* \return The number of tests that failed
*/
static int
xnb_unit_test_runner(test_fixture_t const tests[], int ntests, char *buffer,
size_t buflen)
{
int i;
int n_passes;
int n_failures = 0;
for (i = 0; i < ntests; i++) {
int error = tests[i].setup();
if (error != 0) {
SNCATF(buffer, buflen,
"Setup failed for test idx %d\n", i);
n_failures++;
} else {
size_t new_chars;
tests[i].test(buffer, buflen);
new_chars = strnlen(buffer, buflen);
buffer += new_chars;
buflen -= new_chars;
if (new_chars > 0) {
n_failures++;
}
}
tests[i].teardown();
}
n_passes = ntests - n_failures;
if (n_passes > 0) {
SNCATF(buffer, buflen, "%d Tests Passed\n", n_passes);
}
if (n_failures > 0) {
SNCATF(buffer, buflen, "%d Tests FAILED\n", n_failures);
}
return n_failures;
}
/** Number of unit tests. Must match the length of the tests array below */
#define TOTAL_TESTS (53)
/**
* Max memory available for returning results. 400 chars/test should give
* enough space for a five line error message for every test
*/
#define TOTAL_BUFLEN (400 * TOTAL_TESTS + 2)
/**
* Called from userspace by a sysctl. Runs all internal unit tests, and
* returns the results to userspace as a string
* \param oidp unused
* \param arg1 pointer to an xnb_softc for a specific xnb device
* \param arg2 unused
* \param req sysctl access structure
* \return a string via the special SYSCTL_OUT macro.
*/
static int
xnb_unit_test_main(SYSCTL_HANDLER_ARGS) {
test_fixture_t const tests[TOTAL_TESTS] = {
{setup_pvt_data, xnb_ring2pkt_emptyring, teardown_pvt_data},
{setup_pvt_data, xnb_ring2pkt_1req, teardown_pvt_data},
{setup_pvt_data, xnb_ring2pkt_2req, teardown_pvt_data},
{setup_pvt_data, xnb_ring2pkt_3req, teardown_pvt_data},
{setup_pvt_data, xnb_ring2pkt_extra, teardown_pvt_data},
{setup_pvt_data, xnb_ring2pkt_partial, teardown_pvt_data},
{setup_pvt_data, xnb_ring2pkt_wraps, teardown_pvt_data},
{setup_pvt_data, xnb_txpkt2rsp_emptypkt, teardown_pvt_data},
{setup_pvt_data, xnb_txpkt2rsp_1req, teardown_pvt_data},
{setup_pvt_data, xnb_txpkt2rsp_extra, teardown_pvt_data},
{setup_pvt_data, xnb_txpkt2rsp_long, teardown_pvt_data},
{setup_pvt_data, xnb_txpkt2rsp_invalid, teardown_pvt_data},
{setup_pvt_data, xnb_txpkt2rsp_error, teardown_pvt_data},
{setup_pvt_data, xnb_txpkt2rsp_wraps, teardown_pvt_data},
{setup_pvt_data, xnb_pkt2mbufc_empty, teardown_pvt_data},
{setup_pvt_data, xnb_pkt2mbufc_short, teardown_pvt_data},
{setup_pvt_data, xnb_pkt2mbufc_csum, teardown_pvt_data},
{setup_pvt_data, xnb_pkt2mbufc_1cluster, teardown_pvt_data},
{setup_pvt_data, xnb_pkt2mbufc_largecluster, teardown_pvt_data},
{setup_pvt_data, xnb_pkt2mbufc_2cluster, teardown_pvt_data},
{setup_pvt_data, xnb_txpkt2gnttab_empty, teardown_pvt_data},
{setup_pvt_data, xnb_txpkt2gnttab_short, teardown_pvt_data},
{setup_pvt_data, xnb_txpkt2gnttab_2req, teardown_pvt_data},
{setup_pvt_data, xnb_txpkt2gnttab_2cluster, teardown_pvt_data},
{setup_pvt_data, xnb_update_mbufc_short, teardown_pvt_data},
{setup_pvt_data, xnb_update_mbufc_2req, teardown_pvt_data},
{setup_pvt_data, xnb_update_mbufc_2cluster, teardown_pvt_data},
{setup_pvt_data, xnb_mbufc2pkt_empty, teardown_pvt_data},
{setup_pvt_data, xnb_mbufc2pkt_short, teardown_pvt_data},
{setup_pvt_data, xnb_mbufc2pkt_1cluster, teardown_pvt_data},
{setup_pvt_data, xnb_mbufc2pkt_2short, teardown_pvt_data},
{setup_pvt_data, xnb_mbufc2pkt_long, teardown_pvt_data},
{setup_pvt_data, xnb_mbufc2pkt_extra, teardown_pvt_data},
{setup_pvt_data, xnb_mbufc2pkt_nospace, teardown_pvt_data},
{setup_pvt_data, xnb_rxpkt2gnttab_empty, teardown_pvt_data},
{setup_pvt_data, xnb_rxpkt2gnttab_short, teardown_pvt_data},
{setup_pvt_data, xnb_rxpkt2gnttab_2req, teardown_pvt_data},
{setup_pvt_data, xnb_rxpkt2rsp_empty, teardown_pvt_data},
{setup_pvt_data, xnb_rxpkt2rsp_short, teardown_pvt_data},
{setup_pvt_data, xnb_rxpkt2rsp_extra, teardown_pvt_data},
{setup_pvt_data, xnb_rxpkt2rsp_2short, teardown_pvt_data},
{setup_pvt_data, xnb_rxpkt2rsp_2slots, teardown_pvt_data},
{setup_pvt_data, xnb_rxpkt2rsp_copyerror, teardown_pvt_data},
{null_setup, xnb_add_mbuf_cksum_arp, null_teardown},
{null_setup, xnb_add_mbuf_cksum_icmp, null_teardown},
{null_setup, xnb_add_mbuf_cksum_tcp, null_teardown},
{null_setup, xnb_add_mbuf_cksum_tcp_swcksum, null_teardown},
{null_setup, xnb_add_mbuf_cksum_udp, null_teardown},
{null_setup, xnb_sscanf_hhd, null_teardown},
{null_setup, xnb_sscanf_hhu, null_teardown},
{null_setup, xnb_sscanf_lld, null_teardown},
{null_setup, xnb_sscanf_llu, null_teardown},
{null_setup, xnb_sscanf_hhn, null_teardown},
};
/**
* results is static so that the data will persist after this function
* returns. The sysctl code expects us to return a constant string.
* \todo: the static variable is not thread safe. Put a mutex around
* it.
*/
static char results[TOTAL_BUFLEN];
/* empty the result strings */
results[0] = 0;
xnb_unit_test_runner(tests, TOTAL_TESTS, results, TOTAL_BUFLEN);
return (SYSCTL_OUT(req, results, strnlen(results, TOTAL_BUFLEN)));
}
static int
setup_pvt_data(void)
{
int error = 0;
bzero(xnb_unit_pvt.gnttab, sizeof(xnb_unit_pvt.gnttab));
xnb_unit_pvt.txs = malloc(PAGE_SIZE, M_XENNETBACK, M_WAITOK|M_ZERO);
if (xnb_unit_pvt.txs != NULL) {
SHARED_RING_INIT(xnb_unit_pvt.txs);
BACK_RING_INIT(&xnb_unit_pvt.txb, xnb_unit_pvt.txs, PAGE_SIZE);
FRONT_RING_INIT(&xnb_unit_pvt.txf, xnb_unit_pvt.txs, PAGE_SIZE);
} else {
error = 1;
}
xnb_unit_pvt.ifp = if_alloc(IFT_ETHER);
if (xnb_unit_pvt.ifp == NULL) {
error = 1;
}
xnb_unit_pvt.rxs = malloc(PAGE_SIZE, M_XENNETBACK, M_WAITOK|M_ZERO);
if (xnb_unit_pvt.rxs != NULL) {
SHARED_RING_INIT(xnb_unit_pvt.rxs);
BACK_RING_INIT(&xnb_unit_pvt.rxb, xnb_unit_pvt.rxs, PAGE_SIZE);
FRONT_RING_INIT(&xnb_unit_pvt.rxf, xnb_unit_pvt.rxs, PAGE_SIZE);
} else {
error = 1;
}
return error;
}
static void
teardown_pvt_data(void)
{
if (xnb_unit_pvt.txs != NULL) {
free(xnb_unit_pvt.txs, M_XENNETBACK);
}
if (xnb_unit_pvt.rxs != NULL) {
free(xnb_unit_pvt.rxs, M_XENNETBACK);
}
if (xnb_unit_pvt.ifp != NULL) {
if_free(xnb_unit_pvt.ifp);
}
}
/**
* Verify that xnb_ring2pkt will not consume any requests from an empty ring
*/
static void
xnb_ring2pkt_emptyring(char *buffer, size_t buflen)
{
struct xnb_pkt pkt;
int num_consumed;
num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
xnb_unit_pvt.txb.req_cons);
XNB_ASSERT(num_consumed == 0);
}
/**
* Verify that xnb_ring2pkt can convert a single request packet correctly
*/
static void
xnb_ring2pkt_1req(char *buffer, size_t buflen)
{
struct xnb_pkt pkt;
int num_consumed;
struct netif_tx_request *req;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = 0;
req->size = 69; /* arbitrary number for test */
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
xnb_unit_pvt.txb.req_cons);
XNB_ASSERT(num_consumed == 1);
XNB_ASSERT(pkt.size == 69);
XNB_ASSERT(pkt.car_size == 69);
XNB_ASSERT(pkt.flags == 0);
XNB_ASSERT(xnb_pkt_is_valid(&pkt));
XNB_ASSERT(pkt.list_len == 1);
XNB_ASSERT(pkt.car == 0);
}
/**
* Verify that xnb_ring2pkt can convert a two request packet correctly.
* This tests handling of the MORE_DATA flag and cdr
*/
static void
xnb_ring2pkt_2req(char *buffer, size_t buflen)
{
struct xnb_pkt pkt;
int num_consumed;
struct netif_tx_request *req;
RING_IDX start_idx = xnb_unit_pvt.txf.req_prod_pvt;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = NETTXF_more_data;
req->size = 100;
xnb_unit_pvt.txf.req_prod_pvt++;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = 0;
req->size = 40;
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
xnb_unit_pvt.txb.req_cons);
XNB_ASSERT(num_consumed == 2);
XNB_ASSERT(pkt.size == 100);
XNB_ASSERT(pkt.car_size == 60);
XNB_ASSERT(pkt.flags == 0);
XNB_ASSERT(xnb_pkt_is_valid(&pkt));
XNB_ASSERT(pkt.list_len == 2);
XNB_ASSERT(pkt.car == start_idx);
XNB_ASSERT(pkt.cdr == start_idx + 1);
}
/**
* Verify that xnb_ring2pkt can convert a three request packet correctly
*/
static void
xnb_ring2pkt_3req(char *buffer, size_t buflen)
{
struct xnb_pkt pkt;
int num_consumed;
struct netif_tx_request *req;
RING_IDX start_idx = xnb_unit_pvt.txf.req_prod_pvt;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = NETTXF_more_data;
req->size = 200;
xnb_unit_pvt.txf.req_prod_pvt++;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = NETTXF_more_data;
req->size = 40;
xnb_unit_pvt.txf.req_prod_pvt++;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = 0;
req->size = 50;
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
xnb_unit_pvt.txb.req_cons);
XNB_ASSERT(num_consumed == 3);
XNB_ASSERT(pkt.size == 200);
XNB_ASSERT(pkt.car_size == 110);
XNB_ASSERT(pkt.flags == 0);
XNB_ASSERT(xnb_pkt_is_valid(&pkt));
XNB_ASSERT(pkt.list_len == 3);
XNB_ASSERT(pkt.car == start_idx);
XNB_ASSERT(pkt.cdr == start_idx + 1);
XNB_ASSERT(RING_GET_REQUEST(&xnb_unit_pvt.txb, pkt.cdr + 1) == req);
}
/**
* Verify that xnb_ring2pkt can read extra inf
*/
static void
xnb_ring2pkt_extra(char *buffer, size_t buflen)
{
struct xnb_pkt pkt;
int num_consumed;
struct netif_tx_request *req;
struct netif_extra_info *ext;
RING_IDX start_idx = xnb_unit_pvt.txf.req_prod_pvt;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = NETTXF_extra_info | NETTXF_more_data;
req->size = 150;
xnb_unit_pvt.txf.req_prod_pvt++;
ext = (struct netif_extra_info*) RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
ext->flags = 0;
ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
ext->u.gso.size = 250;
ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
ext->u.gso.features = 0;
xnb_unit_pvt.txf.req_prod_pvt++;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = 0;
req->size = 50;
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
xnb_unit_pvt.txb.req_cons);
XNB_ASSERT(num_consumed == 3);
XNB_ASSERT(pkt.extra.flags == 0);
XNB_ASSERT(pkt.extra.type == XEN_NETIF_EXTRA_TYPE_GSO);
XNB_ASSERT(pkt.extra.u.gso.size == 250);
XNB_ASSERT(pkt.extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4);
XNB_ASSERT(pkt.size == 150);
XNB_ASSERT(pkt.car_size == 100);
XNB_ASSERT(pkt.flags == NETTXF_extra_info);
XNB_ASSERT(xnb_pkt_is_valid(&pkt));
XNB_ASSERT(pkt.list_len == 2);
XNB_ASSERT(pkt.car == start_idx);
XNB_ASSERT(pkt.cdr == start_idx + 2);
XNB_ASSERT(RING_GET_REQUEST(&xnb_unit_pvt.txb, pkt.cdr) == req);
}
/**
* Verify that xnb_ring2pkt will consume no requests if the entire packet is
* not yet in the ring
*/
static void
xnb_ring2pkt_partial(char *buffer, size_t buflen)
{
struct xnb_pkt pkt;
int num_consumed;
struct netif_tx_request *req;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = NETTXF_more_data;
req->size = 150;
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
xnb_unit_pvt.txb.req_cons);
XNB_ASSERT(num_consumed == 0);
XNB_ASSERT(! xnb_pkt_is_valid(&pkt));
}
/**
* Verity that xnb_ring2pkt can read a packet whose requests wrap around
* the end of the ring
*/
static void
xnb_ring2pkt_wraps(char *buffer, size_t buflen)
{
struct xnb_pkt pkt;
int num_consumed;
struct netif_tx_request *req;
unsigned int rsize;
/*
* Manually tweak the ring indices to create a ring with no responses
* and the next request slot at position 2 from the end
*/
rsize = RING_SIZE(&xnb_unit_pvt.txf);
xnb_unit_pvt.txf.req_prod_pvt = rsize - 2;
xnb_unit_pvt.txf.rsp_cons = rsize - 2;
xnb_unit_pvt.txs->req_prod = rsize - 2;
xnb_unit_pvt.txs->req_event = rsize - 1;
xnb_unit_pvt.txs->rsp_prod = rsize - 2;
xnb_unit_pvt.txs->rsp_event = rsize - 1;
xnb_unit_pvt.txb.rsp_prod_pvt = rsize - 2;
xnb_unit_pvt.txb.req_cons = rsize - 2;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = NETTXF_more_data;
req->size = 550;
xnb_unit_pvt.txf.req_prod_pvt++;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = NETTXF_more_data;
req->size = 100;
xnb_unit_pvt.txf.req_prod_pvt++;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = 0;
req->size = 50;
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
xnb_unit_pvt.txb.req_cons);
XNB_ASSERT(num_consumed == 3);
XNB_ASSERT(xnb_pkt_is_valid(&pkt));
XNB_ASSERT(pkt.list_len == 3);
XNB_ASSERT(RING_GET_REQUEST(&xnb_unit_pvt.txb, pkt.cdr + 1) == req);
}
/**
* xnb_txpkt2rsp should do nothing for an empty packet
*/
static void
xnb_txpkt2rsp_emptypkt(char *buffer, size_t buflen)
{
int num_consumed;
struct xnb_pkt pkt;
netif_tx_back_ring_t txb_backup = xnb_unit_pvt.txb;
netif_tx_sring_t txs_backup = *xnb_unit_pvt.txs;
pkt.list_len = 0;
/* must call xnb_ring2pkt just to intialize pkt */
num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
xnb_unit_pvt.txb.req_cons);
xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 0);
XNB_ASSERT(
memcmp(&txb_backup, &xnb_unit_pvt.txb, sizeof(txb_backup)) == 0);
XNB_ASSERT(
memcmp(&txs_backup, xnb_unit_pvt.txs, sizeof(txs_backup)) == 0);
}
/**
* xnb_txpkt2rsp responding to one request
*/
static void
xnb_txpkt2rsp_1req(char *buffer, size_t buflen)
{
uint16_t num_consumed;
struct xnb_pkt pkt;
struct netif_tx_request *req;
struct netif_tx_response *rsp;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->size = 1000;
req->flags = 0;
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
xnb_unit_pvt.txb.req_cons);
xnb_unit_pvt.txb.req_cons += num_consumed;
xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 0);
rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, xnb_unit_pvt.txf.rsp_cons);
XNB_ASSERT(
xnb_unit_pvt.txb.rsp_prod_pvt == xnb_unit_pvt.txs->req_prod);
XNB_ASSERT(rsp->id == req->id);
XNB_ASSERT(rsp->status == NETIF_RSP_OKAY);
};
/**
* xnb_txpkt2rsp responding to 1 data request and 1 extra info
*/
static void
xnb_txpkt2rsp_extra(char *buffer, size_t buflen)
{
uint16_t num_consumed;
struct xnb_pkt pkt;
struct netif_tx_request *req;
netif_extra_info_t *ext;
struct netif_tx_response *rsp;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->size = 1000;
req->flags = NETTXF_extra_info;
req->id = 69;
xnb_unit_pvt.txf.req_prod_pvt++;
ext = (netif_extra_info_t*) RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
ext->flags = 0;
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
xnb_unit_pvt.txb.req_cons);
xnb_unit_pvt.txb.req_cons += num_consumed;
xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 0);
XNB_ASSERT(
xnb_unit_pvt.txb.rsp_prod_pvt == xnb_unit_pvt.txs->req_prod);
rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, xnb_unit_pvt.txf.rsp_cons);
XNB_ASSERT(rsp->id == req->id);
XNB_ASSERT(rsp->status == NETIF_RSP_OKAY);
rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb,
xnb_unit_pvt.txf.rsp_cons + 1);
XNB_ASSERT(rsp->status == NETIF_RSP_NULL);
};
/**
* xnb_pkg2rsp responding to 3 data requests and 1 extra info
*/
static void
xnb_txpkt2rsp_long(char *buffer, size_t buflen)
{
uint16_t num_consumed;
struct xnb_pkt pkt;
struct netif_tx_request *req;
netif_extra_info_t *ext;
struct netif_tx_response *rsp;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->size = 1000;
req->flags = NETTXF_extra_info | NETTXF_more_data;
req->id = 254;
xnb_unit_pvt.txf.req_prod_pvt++;
ext = (netif_extra_info_t*) RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
ext->flags = 0;
xnb_unit_pvt.txf.req_prod_pvt++;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->size = 300;
req->flags = NETTXF_more_data;
req->id = 1034;
xnb_unit_pvt.txf.req_prod_pvt++;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->size = 400;
req->flags = 0;
req->id = 34;
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
xnb_unit_pvt.txb.req_cons);
xnb_unit_pvt.txb.req_cons += num_consumed;
xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 0);
XNB_ASSERT(
xnb_unit_pvt.txb.rsp_prod_pvt == xnb_unit_pvt.txs->req_prod);
rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, xnb_unit_pvt.txf.rsp_cons);
XNB_ASSERT(rsp->id ==
RING_GET_REQUEST(&xnb_unit_pvt.txf, 0)->id);
XNB_ASSERT(rsp->status == NETIF_RSP_OKAY);
rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb,
xnb_unit_pvt.txf.rsp_cons + 1);
XNB_ASSERT(rsp->status == NETIF_RSP_NULL);
rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb,
xnb_unit_pvt.txf.rsp_cons + 2);
XNB_ASSERT(rsp->id ==
RING_GET_REQUEST(&xnb_unit_pvt.txf, 2)->id);
XNB_ASSERT(rsp->status == NETIF_RSP_OKAY);
rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb,
xnb_unit_pvt.txf.rsp_cons + 3);
XNB_ASSERT(rsp->id ==
RING_GET_REQUEST(&xnb_unit_pvt.txf, 3)->id);
XNB_ASSERT(rsp->status == NETIF_RSP_OKAY);
}
/**
* xnb_txpkt2rsp responding to an invalid packet.
* Note: this test will result in an error message being printed to the console
* such as:
* xnb(xnb_ring2pkt:1306): Unknown extra info type 255. Discarding packet
*/
static void
xnb_txpkt2rsp_invalid(char *buffer, size_t buflen)
{
uint16_t num_consumed;
struct xnb_pkt pkt;
struct netif_tx_request *req;
netif_extra_info_t *ext;
struct netif_tx_response *rsp;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->size = 1000;
req->flags = NETTXF_extra_info;
req->id = 69;
xnb_unit_pvt.txf.req_prod_pvt++;
ext = (netif_extra_info_t*) RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
ext->type = 0xFF; /* Invalid extra type */
ext->flags = 0;
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
xnb_unit_pvt.txb.req_cons);
xnb_unit_pvt.txb.req_cons += num_consumed;
XNB_ASSERT(! xnb_pkt_is_valid(&pkt));
xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 0);
XNB_ASSERT(
xnb_unit_pvt.txb.rsp_prod_pvt == xnb_unit_pvt.txs->req_prod);
rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, xnb_unit_pvt.txf.rsp_cons);
XNB_ASSERT(rsp->id == req->id);
XNB_ASSERT(rsp->status == NETIF_RSP_ERROR);
rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb,
xnb_unit_pvt.txf.rsp_cons + 1);
XNB_ASSERT(rsp->status == NETIF_RSP_NULL);
};
/**
* xnb_txpkt2rsp responding to one request which caused an error
*/
static void
xnb_txpkt2rsp_error(char *buffer, size_t buflen)
{
uint16_t num_consumed;
struct xnb_pkt pkt;
struct netif_tx_request *req;
struct netif_tx_response *rsp;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->size = 1000;
req->flags = 0;
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
xnb_unit_pvt.txb.req_cons);
xnb_unit_pvt.txb.req_cons += num_consumed;
xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 1);
rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, xnb_unit_pvt.txf.rsp_cons);
XNB_ASSERT(
xnb_unit_pvt.txb.rsp_prod_pvt == xnb_unit_pvt.txs->req_prod);
XNB_ASSERT(rsp->id == req->id);
XNB_ASSERT(rsp->status == NETIF_RSP_ERROR);
};
/**
* xnb_txpkt2rsp's responses wrap around the end of the ring
*/
static void
xnb_txpkt2rsp_wraps(char *buffer, size_t buflen)
{
struct xnb_pkt pkt;
int num_consumed;
struct netif_tx_request *req;
struct netif_tx_response *rsp;
unsigned int rsize;
/*
* Manually tweak the ring indices to create a ring with no responses
* and the next request slot at position 2 from the end
*/
rsize = RING_SIZE(&xnb_unit_pvt.txf);
xnb_unit_pvt.txf.req_prod_pvt = rsize - 2;
xnb_unit_pvt.txf.rsp_cons = rsize - 2;
xnb_unit_pvt.txs->req_prod = rsize - 2;
xnb_unit_pvt.txs->req_event = rsize - 1;
xnb_unit_pvt.txs->rsp_prod = rsize - 2;
xnb_unit_pvt.txs->rsp_event = rsize - 1;
xnb_unit_pvt.txb.rsp_prod_pvt = rsize - 2;
xnb_unit_pvt.txb.req_cons = rsize - 2;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = NETTXF_more_data;
req->size = 550;
req->id = 1;
xnb_unit_pvt.txf.req_prod_pvt++;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = NETTXF_more_data;
req->size = 100;
req->id = 2;
xnb_unit_pvt.txf.req_prod_pvt++;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = 0;
req->size = 50;
req->id = 3;
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
xnb_unit_pvt.txb.req_cons);
xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 0);
XNB_ASSERT(
xnb_unit_pvt.txb.rsp_prod_pvt == xnb_unit_pvt.txs->req_prod);
rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb,
xnb_unit_pvt.txf.rsp_cons + 2);
XNB_ASSERT(rsp->id == req->id);
XNB_ASSERT(rsp->status == NETIF_RSP_OKAY);
}
/**
* Helper function used to setup pkt2mbufc tests
* \param size size in bytes of the single request to push to the ring
* \param flags optional flags to put in the netif request
* \param[out] pkt the returned packet object
* \return number of requests consumed from the ring
*/
static int
xnb_get1pkt(struct xnb_pkt *pkt, size_t size, uint16_t flags)
{
struct netif_tx_request *req;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = flags;
req->size = size;
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
return xnb_ring2pkt(pkt, &xnb_unit_pvt.txb,
xnb_unit_pvt.txb.req_cons);
}
/**
* xnb_pkt2mbufc on an empty packet
*/
static void
xnb_pkt2mbufc_empty(char *buffer, size_t buflen)
{
int num_consumed;
struct xnb_pkt pkt;
struct mbuf *pMbuf;
pkt.list_len = 0;
/* must call xnb_ring2pkt just to intialize pkt */
num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
xnb_unit_pvt.txb.req_cons);
pkt.size = 0;
pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
safe_m_freem(&pMbuf);
}
/**
* xnb_pkt2mbufc on short packet that can fit in an mbuf internal buffer
*/
static void
xnb_pkt2mbufc_short(char *buffer, size_t buflen)
{
const size_t size = MINCLSIZE - 1;
struct xnb_pkt pkt;
struct mbuf *pMbuf;
xnb_get1pkt(&pkt, size, 0);
pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
XNB_ASSERT(M_TRAILINGSPACE(pMbuf) >= size);
safe_m_freem(&pMbuf);
}
/**
* xnb_pkt2mbufc on short packet whose checksum was validated by the netfron
*/
static void
xnb_pkt2mbufc_csum(char *buffer, size_t buflen)
{
const size_t size = MINCLSIZE - 1;
struct xnb_pkt pkt;
struct mbuf *pMbuf;
xnb_get1pkt(&pkt, size, NETTXF_data_validated);
pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
XNB_ASSERT(M_TRAILINGSPACE(pMbuf) >= size);
XNB_ASSERT(pMbuf->m_pkthdr.csum_flags & CSUM_IP_CHECKED);
XNB_ASSERT(pMbuf->m_pkthdr.csum_flags & CSUM_IP_VALID);
XNB_ASSERT(pMbuf->m_pkthdr.csum_flags & CSUM_DATA_VALID);
XNB_ASSERT(pMbuf->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR);
safe_m_freem(&pMbuf);
}
/**
* xnb_pkt2mbufc on packet that can fit in one cluster
*/
static void
xnb_pkt2mbufc_1cluster(char *buffer, size_t buflen)
{
const size_t size = MINCLSIZE;
struct xnb_pkt pkt;
struct mbuf *pMbuf;
xnb_get1pkt(&pkt, size, 0);
pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
XNB_ASSERT(M_TRAILINGSPACE(pMbuf) >= size);
safe_m_freem(&pMbuf);
}
/**
* xnb_pkt2mbufc on packet that cannot fit in one regular cluster
*/
static void
xnb_pkt2mbufc_largecluster(char *buffer, size_t buflen)
{
const size_t size = MCLBYTES + 1;
struct xnb_pkt pkt;
struct mbuf *pMbuf;
xnb_get1pkt(&pkt, size, 0);
pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
XNB_ASSERT(M_TRAILINGSPACE(pMbuf) >= size);
safe_m_freem(&pMbuf);
}
/**
* xnb_pkt2mbufc on packet that cannot fit in one clusters
*/
static void
xnb_pkt2mbufc_2cluster(char *buffer, size_t buflen)
{
const size_t size = 2 * MCLBYTES + 1;
size_t space = 0;
struct xnb_pkt pkt;
struct mbuf *pMbuf;
struct mbuf *m;
xnb_get1pkt(&pkt, size, 0);
pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
for (m = pMbuf; m != NULL; m = m->m_next) {
space += M_TRAILINGSPACE(m);
}
XNB_ASSERT(space >= size);
safe_m_freem(&pMbuf);
}
/**
* xnb_txpkt2gnttab on an empty packet. Should return empty gnttab
*/
static void
xnb_txpkt2gnttab_empty(char *buffer, size_t buflen)
{
int n_entries;
struct xnb_pkt pkt;
struct mbuf *pMbuf;
pkt.list_len = 0;
/* must call xnb_ring2pkt just to intialize pkt */
xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons);
pkt.size = 0;
pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab,
&xnb_unit_pvt.txb, DOMID_FIRST_RESERVED);
XNB_ASSERT(n_entries == 0);
safe_m_freem(&pMbuf);
}
/**
* xnb_txpkt2gnttab on a short packet, that can fit in one mbuf internal buffer
* and has one request
*/
static void
xnb_txpkt2gnttab_short(char *buffer, size_t buflen)
{
const size_t size = MINCLSIZE - 1;
int n_entries;
struct xnb_pkt pkt;
struct mbuf *pMbuf;
struct netif_tx_request *req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = 0;
req->size = size;
req->gref = 7;
req->offset = 17;
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons);
pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab,
&xnb_unit_pvt.txb, DOMID_FIRST_RESERVED);
XNB_ASSERT(n_entries == 1);
XNB_ASSERT(xnb_unit_pvt.gnttab[0].len == size);
/* flags should indicate gref's for source */
XNB_ASSERT(xnb_unit_pvt.gnttab[0].flags & GNTCOPY_source_gref);
XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.offset == req->offset);
XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.domid == DOMID_SELF);
XNB_ASSERT(xnb_unit_pvt.gnttab[0].dest.offset == virt_to_offset(
mtod(pMbuf, vm_offset_t)));
XNB_ASSERT(xnb_unit_pvt.gnttab[0].dest.u.gmfn ==
virt_to_mfn(mtod(pMbuf, vm_offset_t)));
XNB_ASSERT(xnb_unit_pvt.gnttab[0].dest.domid == DOMID_FIRST_RESERVED);
safe_m_freem(&pMbuf);
}
/**
* xnb_txpkt2gnttab on a packet with two requests, that can fit into a single
* mbuf cluster
*/
static void
xnb_txpkt2gnttab_2req(char *buffer, size_t buflen)
{
int n_entries;
struct xnb_pkt pkt;
struct mbuf *pMbuf;
struct netif_tx_request *req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = NETTXF_more_data;
req->size = 1900;
req->gref = 7;
req->offset = 0;
xnb_unit_pvt.txf.req_prod_pvt++;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = 0;
req->size = 500;
req->gref = 8;
req->offset = 0;
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons);
pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab,
&xnb_unit_pvt.txb, DOMID_FIRST_RESERVED);
XNB_ASSERT(n_entries == 2);
XNB_ASSERT(xnb_unit_pvt.gnttab[0].len == 1400);
XNB_ASSERT(xnb_unit_pvt.gnttab[0].dest.offset == virt_to_offset(
mtod(pMbuf, vm_offset_t)));
XNB_ASSERT(xnb_unit_pvt.gnttab[1].len == 500);
XNB_ASSERT(xnb_unit_pvt.gnttab[1].dest.offset == virt_to_offset(
mtod(pMbuf, vm_offset_t) + 1400));
safe_m_freem(&pMbuf);
}
/**
* xnb_txpkt2gnttab on a single request that spans two mbuf clusters
*/
static void
xnb_txpkt2gnttab_2cluster(char *buffer, size_t buflen)
{
int n_entries;
struct xnb_pkt pkt;
struct mbuf *pMbuf;
const uint16_t data_this_transaction = (MCLBYTES*2) + 1;
struct netif_tx_request *req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = 0;
req->size = data_this_transaction;
req->gref = 8;
req->offset = 0;
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons);
pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab,
&xnb_unit_pvt.txb, DOMID_FIRST_RESERVED);
if (M_TRAILINGSPACE(pMbuf) == MCLBYTES) {
/* there should be three mbufs and three gnttab entries */
XNB_ASSERT(n_entries == 3);
XNB_ASSERT(xnb_unit_pvt.gnttab[0].len == MCLBYTES);
XNB_ASSERT(
xnb_unit_pvt.gnttab[0].dest.offset == virt_to_offset(
mtod(pMbuf, vm_offset_t)));
XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.offset == 0);
XNB_ASSERT(xnb_unit_pvt.gnttab[1].len == MCLBYTES);
XNB_ASSERT(
xnb_unit_pvt.gnttab[1].dest.offset == virt_to_offset(
mtod(pMbuf->m_next, vm_offset_t)));
XNB_ASSERT(xnb_unit_pvt.gnttab[1].source.offset == MCLBYTES);
XNB_ASSERT(xnb_unit_pvt.gnttab[2].len == 1);
XNB_ASSERT(
xnb_unit_pvt.gnttab[2].dest.offset == virt_to_offset(
mtod(pMbuf->m_next, vm_offset_t)));
XNB_ASSERT(xnb_unit_pvt.gnttab[2].source.offset == 2 *
MCLBYTES);
} else if (M_TRAILINGSPACE(pMbuf) == 2 * MCLBYTES) {
/* there should be two mbufs and two gnttab entries */
XNB_ASSERT(n_entries == 2);
XNB_ASSERT(xnb_unit_pvt.gnttab[0].len == 2 * MCLBYTES);
XNB_ASSERT(
xnb_unit_pvt.gnttab[0].dest.offset == virt_to_offset(
mtod(pMbuf, vm_offset_t)));
XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.offset == 0);
XNB_ASSERT(xnb_unit_pvt.gnttab[1].len == 1);
XNB_ASSERT(
xnb_unit_pvt.gnttab[1].dest.offset == virt_to_offset(
mtod(pMbuf->m_next, vm_offset_t)));
XNB_ASSERT(
xnb_unit_pvt.gnttab[1].source.offset == 2 * MCLBYTES);
} else {
/* should never get here */
XNB_ASSERT(0);
}
if (pMbuf != NULL)
m_freem(pMbuf);
}
/**
* xnb_update_mbufc on a short packet that only has one gnttab entry
*/
static void
xnb_update_mbufc_short(char *buffer, size_t buflen)
{
const size_t size = MINCLSIZE - 1;
int n_entries;
struct xnb_pkt pkt;
struct mbuf *pMbuf;
struct netif_tx_request *req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = 0;
req->size = size;
req->gref = 7;
req->offset = 17;
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons);
pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab,
&xnb_unit_pvt.txb, DOMID_FIRST_RESERVED);
/* Update grant table's status fields as the hypervisor call would */
xnb_unit_pvt.gnttab[0].status = GNTST_okay;
xnb_update_mbufc(pMbuf, xnb_unit_pvt.gnttab, n_entries);
XNB_ASSERT(pMbuf->m_len == size);
XNB_ASSERT(pMbuf->m_pkthdr.len == size);
safe_m_freem(&pMbuf);
}
/**
* xnb_update_mbufc on a packet with two requests, that can fit into a single
* mbuf cluster
*/
static void
xnb_update_mbufc_2req(char *buffer, size_t buflen)
{
int n_entries;
struct xnb_pkt pkt;
struct mbuf *pMbuf;
struct netif_tx_request *req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = NETTXF_more_data;
req->size = 1900;
req->gref = 7;
req->offset = 0;
xnb_unit_pvt.txf.req_prod_pvt++;
req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = 0;
req->size = 500;
req->gref = 8;
req->offset = 0;
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons);
pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab,
&xnb_unit_pvt.txb, DOMID_FIRST_RESERVED);
/* Update grant table's status fields as the hypervisor call would */
xnb_unit_pvt.gnttab[0].status = GNTST_okay;
xnb_unit_pvt.gnttab[1].status = GNTST_okay;
xnb_update_mbufc(pMbuf, xnb_unit_pvt.gnttab, n_entries);
XNB_ASSERT(n_entries == 2);
XNB_ASSERT(pMbuf->m_pkthdr.len == 1900);
XNB_ASSERT(pMbuf->m_len == 1900);
safe_m_freem(&pMbuf);
}
/**
* xnb_update_mbufc on a single request that spans two mbuf clusters
*/
static void
xnb_update_mbufc_2cluster(char *buffer, size_t buflen)
{
int i;
int n_entries;
struct xnb_pkt pkt;
struct mbuf *pMbuf;
const uint16_t data_this_transaction = (MCLBYTES*2) + 1;
struct netif_tx_request *req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
xnb_unit_pvt.txf.req_prod_pvt);
req->flags = 0;
req->size = data_this_transaction;
req->gref = 8;
req->offset = 0;
xnb_unit_pvt.txf.req_prod_pvt++;
RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons);
pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab,
&xnb_unit_pvt.txb, DOMID_FIRST_RESERVED);
/* Update grant table's status fields */
for (i = 0; i < n_entries; i++) {
xnb_unit_pvt.gnttab[0].status = GNTST_okay;
}
xnb_update_mbufc(pMbuf, xnb_unit_pvt.gnttab, n_entries);
if (n_entries == 3) {
/* there should be three mbufs and three gnttab entries */
XNB_ASSERT(pMbuf->m_pkthdr.len == data_this_transaction);
XNB_ASSERT(pMbuf->m_len == MCLBYTES);
XNB_ASSERT(pMbuf->m_next->m_len == MCLBYTES);
XNB_ASSERT(pMbuf->m_next->m_next->m_len == 1);
} else if (n_entries == 2) {
/* there should be two mbufs and two gnttab entries */
XNB_ASSERT(n_entries == 2);
XNB_ASSERT(pMbuf->m_pkthdr.len == data_this_transaction);
XNB_ASSERT(pMbuf->m_len == 2 * MCLBYTES);
XNB_ASSERT(pMbuf->m_next->m_len == 1);
} else {
/* should never get here */
XNB_ASSERT(0);
}
safe_m_freem(&pMbuf);
}
/** xnb_mbufc2pkt on an empty mbufc */
static void
xnb_mbufc2pkt_empty(char *buffer, size_t buflen) {
struct xnb_pkt pkt;
int free_slots = 64;
struct mbuf *mbuf;
mbuf = m_get(M_WAITOK, MT_DATA);
/*
* note: it is illegal to set M_PKTHDR on a mbuf with no data. Doing so
* will cause m_freem to segfault
*/
XNB_ASSERT(mbuf->m_len == 0);
xnb_mbufc2pkt(mbuf, &pkt, 0, free_slots);
XNB_ASSERT(! xnb_pkt_is_valid(&pkt));
safe_m_freem(&mbuf);
}
/** xnb_mbufc2pkt on a short mbufc */
static void
xnb_mbufc2pkt_short(char *buffer, size_t buflen) {
struct xnb_pkt pkt;
size_t size = 128;
int free_slots = 64;
RING_IDX start = 9;
struct mbuf *mbuf;
mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA);
mbuf->m_flags |= M_PKTHDR;
mbuf->m_pkthdr.len = size;
mbuf->m_len = size;
xnb_mbufc2pkt(mbuf, &pkt, start, free_slots);
XNB_ASSERT(xnb_pkt_is_valid(&pkt));
XNB_ASSERT(pkt.size == size);
XNB_ASSERT(pkt.car_size == size);
XNB_ASSERT(! (pkt.flags &
(NETRXF_more_data | NETRXF_extra_info)));
XNB_ASSERT(pkt.list_len == 1);
XNB_ASSERT(pkt.car == start);
safe_m_freem(&mbuf);
}
/** xnb_mbufc2pkt on a single mbuf with an mbuf cluster */
static void
xnb_mbufc2pkt_1cluster(char *buffer, size_t buflen) {
struct xnb_pkt pkt;
size_t size = MCLBYTES;
int free_slots = 32;
RING_IDX start = 12;
struct mbuf *mbuf;
mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA);
mbuf->m_flags |= M_PKTHDR;
mbuf->m_pkthdr.len = size;
mbuf->m_len = size;
xnb_mbufc2pkt(mbuf, &pkt, start, free_slots);
XNB_ASSERT(xnb_pkt_is_valid(&pkt));
XNB_ASSERT(pkt.size == size);
XNB_ASSERT(pkt.car_size == size);
XNB_ASSERT(! (pkt.flags &
(NETRXF_more_data | NETRXF_extra_info)));
XNB_ASSERT(pkt.list_len == 1);
XNB_ASSERT(pkt.car == start);
safe_m_freem(&mbuf);
}
/** xnb_mbufc2pkt on a a two-mbuf chain with short data regions */
static void
xnb_mbufc2pkt_2short(char *buffer, size_t buflen) {
struct xnb_pkt pkt;
size_t size1 = MHLEN - 5;
size_t size2 = MHLEN - 15;
int free_slots = 32;
RING_IDX start = 14;
struct mbuf *mbufc, *mbufc2;
mbufc = m_getm(NULL, size1, M_WAITOK, MT_DATA);
mbufc->m_flags |= M_PKTHDR;
if (mbufc == NULL) {
XNB_ASSERT(mbufc != NULL);
return;
}
mbufc2 = m_getm(mbufc, size2, M_WAITOK, MT_DATA);
if (mbufc2 == NULL) {
XNB_ASSERT(mbufc2 != NULL);
safe_m_freem(&mbufc);
return;
}
mbufc2->m_pkthdr.len = size1 + size2;
mbufc2->m_len = size1;
xnb_mbufc2pkt(mbufc2, &pkt, start, free_slots);
XNB_ASSERT(xnb_pkt_is_valid(&pkt));
XNB_ASSERT(pkt.size == size1 + size2);
XNB_ASSERT(pkt.car == start);
/*
* The second m_getm may allocate a new mbuf and append
* it to the chain, or it may simply extend the first mbuf.
*/
if (mbufc2->m_next != NULL) {
XNB_ASSERT(pkt.car_size == size1);
XNB_ASSERT(pkt.list_len == 1);
XNB_ASSERT(pkt.cdr == start + 1);
}
safe_m_freem(&mbufc2);
}
/** xnb_mbufc2pkt on a a mbuf chain with >1 mbuf cluster */
static void
xnb_mbufc2pkt_long(char *buffer, size_t buflen) {
struct xnb_pkt pkt;
size_t size = 14 * MCLBYTES / 3;
size_t size_remaining;
int free_slots = 15;
RING_IDX start = 3;
struct mbuf *mbufc, *m;
mbufc = m_getm(NULL, size, M_WAITOK, MT_DATA);
mbufc->m_flags |= M_PKTHDR;
if (mbufc == NULL) {
XNB_ASSERT(mbufc != NULL);
return;
}
mbufc->m_pkthdr.len = size;
size_remaining = size;
for (m = mbufc; m != NULL; m = m->m_next) {
m->m_len = MAX(M_TRAILINGSPACE(m), size_remaining);
size_remaining -= m->m_len;
}
xnb_mbufc2pkt(mbufc, &pkt, start, free_slots);
XNB_ASSERT(xnb_pkt_is_valid(&pkt));
XNB_ASSERT(pkt.size == size);
XNB_ASSERT(pkt.car == start);
XNB_ASSERT(pkt.car_size = mbufc->m_len);
/*
* There should be >1 response in the packet, and there is no
* extra info.
*/
XNB_ASSERT(! (pkt.flags & NETRXF_extra_info));
XNB_ASSERT(pkt.cdr == pkt.car + 1);
safe_m_freem(&mbufc);
}
/** xnb_mbufc2pkt on a a mbuf chain with >1 mbuf cluster and extra info */
static void
xnb_mbufc2pkt_extra(char *buffer, size_t buflen) {
struct xnb_pkt pkt;
size_t size = 14 * MCLBYTES / 3;
size_t size_remaining;
int free_slots = 15;
RING_IDX start = 3;
struct mbuf *mbufc, *m;
mbufc = m_getm(NULL, size, M_WAITOK, MT_DATA);
if (mbufc == NULL) {
XNB_ASSERT(mbufc != NULL);
return;
}
mbufc->m_flags |= M_PKTHDR;
mbufc->m_pkthdr.len = size;
mbufc->m_pkthdr.csum_flags |= CSUM_TSO;
mbufc->m_pkthdr.tso_segsz = TCP_MSS - 40;
size_remaining = size;
for (m = mbufc; m != NULL; m = m->m_next) {
m->m_len = MAX(M_TRAILINGSPACE(m), size_remaining);
size_remaining -= m->m_len;
}
xnb_mbufc2pkt(mbufc, &pkt, start, free_slots);
XNB_ASSERT(xnb_pkt_is_valid(&pkt));
XNB_ASSERT(pkt.size == size);
XNB_ASSERT(pkt.car == start);
XNB_ASSERT(pkt.car_size = mbufc->m_len);
/* There should be >1 response in the packet, there is extra info */
XNB_ASSERT(pkt.flags & NETRXF_extra_info);
XNB_ASSERT(pkt.flags & NETRXF_data_validated);
XNB_ASSERT(pkt.cdr == pkt.car + 2);
XNB_ASSERT(pkt.extra.u.gso.size = mbufc->m_pkthdr.tso_segsz);
XNB_ASSERT(pkt.extra.type == XEN_NETIF_EXTRA_TYPE_GSO);
XNB_ASSERT(! (pkt.extra.flags & XEN_NETIF_EXTRA_FLAG_MORE));
safe_m_freem(&mbufc);
}
/** xnb_mbufc2pkt with insufficient space in the ring */
static void
xnb_mbufc2pkt_nospace(char *buffer, size_t buflen) {
struct xnb_pkt pkt;
size_t size = 14 * MCLBYTES / 3;
size_t size_remaining;
int free_slots = 2;
RING_IDX start = 3;
struct mbuf *mbufc, *m;
int error;
mbufc = m_getm(NULL, size, M_WAITOK, MT_DATA);
mbufc->m_flags |= M_PKTHDR;
if (mbufc == NULL) {
XNB_ASSERT(mbufc != NULL);
return;
}
mbufc->m_pkthdr.len = size;
size_remaining = size;
for (m = mbufc; m != NULL; m = m->m_next) {
m->m_len = MAX(M_TRAILINGSPACE(m), size_remaining);
size_remaining -= m->m_len;
}
error = xnb_mbufc2pkt(mbufc, &pkt, start, free_slots);
XNB_ASSERT(error == EAGAIN);
XNB_ASSERT(! xnb_pkt_is_valid(&pkt));
safe_m_freem(&mbufc);
}
/**
* xnb_rxpkt2gnttab on an empty packet. Should return empty gnttab
*/
static void
xnb_rxpkt2gnttab_empty(char *buffer, size_t buflen)
{
struct xnb_pkt pkt;
int nr_entries;
int free_slots = 60;
struct mbuf *mbuf;
mbuf = m_get(M_WAITOK, MT_DATA);
xnb_mbufc2pkt(mbuf, &pkt, 0, free_slots);
nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab,
&xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED);
XNB_ASSERT(nr_entries == 0);
safe_m_freem(&mbuf);
}
/** xnb_rxpkt2gnttab on a short packet without extra data */
static void
xnb_rxpkt2gnttab_short(char *buffer, size_t buflen) {
struct xnb_pkt pkt;
int nr_entries;
size_t size = 128;
int free_slots = 60;
RING_IDX start = 9;
struct netif_rx_request *req;
struct mbuf *mbuf;
mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA);
mbuf->m_flags |= M_PKTHDR;
mbuf->m_pkthdr.len = size;
mbuf->m_len = size;
xnb_mbufc2pkt(mbuf, &pkt, start, free_slots);
req = RING_GET_REQUEST(&xnb_unit_pvt.rxf,
xnb_unit_pvt.txf.req_prod_pvt);
req->gref = 7;
nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab,
&xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED);
XNB_ASSERT(nr_entries == 1);
XNB_ASSERT(xnb_unit_pvt.gnttab[0].len == size);
/* flags should indicate gref's for dest */
XNB_ASSERT(xnb_unit_pvt.gnttab[0].flags & GNTCOPY_dest_gref);
XNB_ASSERT(xnb_unit_pvt.gnttab[0].dest.offset == 0);
XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.domid == DOMID_SELF);
XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.offset == virt_to_offset(
mtod(mbuf, vm_offset_t)));
XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.u.gmfn ==
virt_to_mfn(mtod(mbuf, vm_offset_t)));
XNB_ASSERT(xnb_unit_pvt.gnttab[0].dest.domid == DOMID_FIRST_RESERVED);
safe_m_freem(&mbuf);
}
/**
* xnb_rxpkt2gnttab on a packet with two different mbufs in a single chai
*/
static void
xnb_rxpkt2gnttab_2req(char *buffer, size_t buflen)
{
struct xnb_pkt pkt;
int nr_entries;
int i, num_mbufs;
size_t total_granted_size = 0;
size_t size = MJUMPAGESIZE + 1;
int free_slots = 60;
RING_IDX start = 11;
struct netif_rx_request *req;
struct mbuf *mbuf, *m;
mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA);
mbuf->m_flags |= M_PKTHDR;
mbuf->m_pkthdr.len = size;
mbuf->m_len = size;
xnb_mbufc2pkt(mbuf, &pkt, start, free_slots);
for (i = 0, m=mbuf; m != NULL; i++, m = m->m_next) {
req = RING_GET_REQUEST(&xnb_unit_pvt.rxf,
xnb_unit_pvt.txf.req_prod_pvt);
req->gref = i;
req->id = 5;
}
num_mbufs = i;
nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab,
&xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED);
XNB_ASSERT(nr_entries >= num_mbufs);
for (i = 0; i < nr_entries; i++) {
int end_offset = xnb_unit_pvt.gnttab[i].len +
xnb_unit_pvt.gnttab[i].dest.offset;
XNB_ASSERT(end_offset <= PAGE_SIZE);
total_granted_size += xnb_unit_pvt.gnttab[i].len;
}
XNB_ASSERT(total_granted_size == size);
}
/**
* xnb_rxpkt2rsp on an empty packet. Shouldn't make any response
*/
static void
xnb_rxpkt2rsp_empty(char *buffer, size_t buflen)
{
struct xnb_pkt pkt;
int nr_entries;
int nr_reqs;
int free_slots = 60;
netif_rx_back_ring_t rxb_backup = xnb_unit_pvt.rxb;
netif_rx_sring_t rxs_backup = *xnb_unit_pvt.rxs;
struct mbuf *mbuf;
mbuf = m_get(M_WAITOK, MT_DATA);
xnb_mbufc2pkt(mbuf, &pkt, 0, free_slots);
nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab,
&xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED);
nr_reqs = xnb_rxpkt2rsp(&pkt, xnb_unit_pvt.gnttab, nr_entries,
&xnb_unit_pvt.rxb);
XNB_ASSERT(nr_reqs == 0);
XNB_ASSERT(
memcmp(&rxb_backup, &xnb_unit_pvt.rxb, sizeof(rxb_backup)) == 0);
XNB_ASSERT(
memcmp(&rxs_backup, xnb_unit_pvt.rxs, sizeof(rxs_backup)) == 0);
safe_m_freem(&mbuf);
}
/**
* xnb_rxpkt2rsp on a short packet with no extras
*/
static void
xnb_rxpkt2rsp_short(char *buffer, size_t buflen)
{
struct xnb_pkt pkt;
int nr_entries, nr_reqs;
size_t size = 128;
int free_slots = 60;
RING_IDX start = 5;
struct netif_rx_request *req;
struct netif_rx_response *rsp;
struct mbuf *mbuf;
mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA);
mbuf->m_flags |= M_PKTHDR;
mbuf->m_pkthdr.len = size;
mbuf->m_len = size;
xnb_mbufc2pkt(mbuf, &pkt, start, free_slots);
req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start);
req->gref = 7;
xnb_unit_pvt.rxb.req_cons = start;
xnb_unit_pvt.rxb.rsp_prod_pvt = start;
xnb_unit_pvt.rxs->req_prod = start + 1;
xnb_unit_pvt.rxs->rsp_prod = start;
nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab,
&xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED);
nr_reqs = xnb_rxpkt2rsp(&pkt, xnb_unit_pvt.gnttab, nr_entries,
&xnb_unit_pvt.rxb);
XNB_ASSERT(nr_reqs == 1);
XNB_ASSERT(xnb_unit_pvt.rxb.rsp_prod_pvt == start + 1);
rsp = RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start);
XNB_ASSERT(rsp->id == req->id);
XNB_ASSERT(rsp->offset == 0);
XNB_ASSERT((rsp->flags & (NETRXF_more_data | NETRXF_extra_info)) == 0);
XNB_ASSERT(rsp->status == size);
safe_m_freem(&mbuf);
}
/**
* xnb_rxpkt2rsp with extra data
*/
static void
xnb_rxpkt2rsp_extra(char *buffer, size_t buflen)
{
struct xnb_pkt pkt;
int nr_entries, nr_reqs;
size_t size = 14;
int free_slots = 15;
RING_IDX start = 3;
uint16_t id = 49;
uint16_t gref = 65;
uint16_t mss = TCP_MSS - 40;
struct mbuf *mbufc;
struct netif_rx_request *req;
struct netif_rx_response *rsp;
struct netif_extra_info *ext;
mbufc = m_getm(NULL, size, M_WAITOK, MT_DATA);
if (mbufc == NULL) {
XNB_ASSERT(mbufc != NULL);
return;
}
mbufc->m_flags |= M_PKTHDR;
mbufc->m_pkthdr.len = size;
mbufc->m_pkthdr.csum_flags |= CSUM_TSO;
mbufc->m_pkthdr.tso_segsz = mss;
mbufc->m_len = size;
xnb_mbufc2pkt(mbufc, &pkt, start, free_slots);
req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start);
req->id = id;
req->gref = gref;
req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start + 1);
req->id = id + 1;
req->gref = gref + 1;
xnb_unit_pvt.rxb.req_cons = start;
xnb_unit_pvt.rxb.rsp_prod_pvt = start;
xnb_unit_pvt.rxs->req_prod = start + 2;
xnb_unit_pvt.rxs->rsp_prod = start;
nr_entries = xnb_rxpkt2gnttab(&pkt, mbufc, xnb_unit_pvt.gnttab,
&xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED);
nr_reqs = xnb_rxpkt2rsp(&pkt, xnb_unit_pvt.gnttab, nr_entries,
&xnb_unit_pvt.rxb);
XNB_ASSERT(nr_reqs == 2);
XNB_ASSERT(xnb_unit_pvt.rxb.rsp_prod_pvt == start + 2);
rsp = RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start);
XNB_ASSERT(rsp->id == id);
XNB_ASSERT((rsp->flags & NETRXF_more_data) == 0);
XNB_ASSERT((rsp->flags & NETRXF_extra_info));
XNB_ASSERT((rsp->flags & NETRXF_data_validated));
XNB_ASSERT((rsp->flags & NETRXF_csum_blank));
XNB_ASSERT(rsp->status == size);
ext = (struct netif_extra_info*)
RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start + 1);
XNB_ASSERT(ext->type == XEN_NETIF_EXTRA_TYPE_GSO);
XNB_ASSERT(! (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE));
XNB_ASSERT(ext->u.gso.size == mss);
XNB_ASSERT(ext->u.gso.type == XEN_NETIF_EXTRA_TYPE_GSO);
safe_m_freem(&mbufc);
}
/**
* xnb_rxpkt2rsp on a packet with more than a pages's worth of data. It should
* generate two response slot
*/
static void
xnb_rxpkt2rsp_2slots(char *buffer, size_t buflen)
{
struct xnb_pkt pkt;
int nr_entries, nr_reqs;
size_t size = PAGE_SIZE + 100;
int free_slots = 3;
uint16_t id1 = 17;
uint16_t id2 = 37;
uint16_t gref1 = 24;
uint16_t gref2 = 34;
RING_IDX start = 15;
struct netif_rx_request *req;
struct netif_rx_response *rsp;
struct mbuf *mbuf;
mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA);
mbuf->m_flags |= M_PKTHDR;
mbuf->m_pkthdr.len = size;
if (mbuf->m_next != NULL) {
size_t first_len = MIN(M_TRAILINGSPACE(mbuf), size);
mbuf->m_len = first_len;
mbuf->m_next->m_len = size - first_len;
} else {
mbuf->m_len = size;
}
xnb_mbufc2pkt(mbuf, &pkt, start, free_slots);
req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start);
req->gref = gref1;
req->id = id1;
req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start + 1);
req->gref = gref2;
req->id = id2;
xnb_unit_pvt.rxb.req_cons = start;
xnb_unit_pvt.rxb.rsp_prod_pvt = start;
xnb_unit_pvt.rxs->req_prod = start + 2;
xnb_unit_pvt.rxs->rsp_prod = start;
nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab,
&xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED);
nr_reqs = xnb_rxpkt2rsp(&pkt, xnb_unit_pvt.gnttab, nr_entries,
&xnb_unit_pvt.rxb);
XNB_ASSERT(nr_reqs == 2);
XNB_ASSERT(xnb_unit_pvt.rxb.rsp_prod_pvt == start + 2);
rsp = RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start);
XNB_ASSERT(rsp->id == id1);
XNB_ASSERT(rsp->offset == 0);
XNB_ASSERT((rsp->flags & NETRXF_extra_info) == 0);
XNB_ASSERT(rsp->flags & NETRXF_more_data);
XNB_ASSERT(rsp->status == PAGE_SIZE);
rsp = RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start + 1);
XNB_ASSERT(rsp->id == id2);
XNB_ASSERT(rsp->offset == 0);
XNB_ASSERT((rsp->flags & NETRXF_extra_info) == 0);
XNB_ASSERT(! (rsp->flags & NETRXF_more_data));
XNB_ASSERT(rsp->status == size - PAGE_SIZE);
safe_m_freem(&mbuf);
}
/** xnb_rxpkt2rsp on a grant table with two sub-page entries */
static void
xnb_rxpkt2rsp_2short(char *buffer, size_t buflen) {
struct xnb_pkt pkt;
int nr_reqs, nr_entries;
size_t size1 = MHLEN - 5;
size_t size2 = MHLEN - 15;
int free_slots = 32;
RING_IDX start = 14;
uint16_t id = 47;
uint16_t gref = 54;
struct netif_rx_request *req;
struct netif_rx_response *rsp;
struct mbuf *mbufc;
mbufc = m_getm(NULL, size1, M_WAITOK, MT_DATA);
mbufc->m_flags |= M_PKTHDR;
if (mbufc == NULL) {
XNB_ASSERT(mbufc != NULL);
return;
}
m_getm(mbufc, size2, M_WAITOK, MT_DATA);
XNB_ASSERT(mbufc->m_next != NULL);
mbufc->m_pkthdr.len = size1 + size2;
mbufc->m_len = size1;
mbufc->m_next->m_len = size2;
xnb_mbufc2pkt(mbufc, &pkt, start, free_slots);
req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start);
req->gref = gref;
req->id = id;
xnb_unit_pvt.rxb.req_cons = start;
xnb_unit_pvt.rxb.rsp_prod_pvt = start;
xnb_unit_pvt.rxs->req_prod = start + 1;
xnb_unit_pvt.rxs->rsp_prod = start;
nr_entries = xnb_rxpkt2gnttab(&pkt, mbufc, xnb_unit_pvt.gnttab,
&xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED);
nr_reqs = xnb_rxpkt2rsp(&pkt, xnb_unit_pvt.gnttab, nr_entries,
&xnb_unit_pvt.rxb);
XNB_ASSERT(nr_entries == 2);
XNB_ASSERT(nr_reqs == 1);
rsp = RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start);
XNB_ASSERT(rsp->id == id);
XNB_ASSERT(rsp->status == size1 + size2);
XNB_ASSERT(rsp->offset == 0);
XNB_ASSERT(! (rsp->flags & (NETRXF_more_data | NETRXF_extra_info)));
safe_m_freem(&mbufc);
}
/**
* xnb_rxpkt2rsp on a long packet with a hypervisor gnttab_copy error
* Note: this test will result in an error message being printed to the console
* such as:
* xnb(xnb_rxpkt2rsp:1720): Got error -1 for hypervisor gnttab_copy status
*/
static void
xnb_rxpkt2rsp_copyerror(char *buffer, size_t buflen)
{
struct xnb_pkt pkt;
int nr_entries, nr_reqs;
int id = 7;
int gref = 42;
uint16_t canary = 6859;
size_t size = 7 * MCLBYTES;
int free_slots = 9;
RING_IDX start = 2;
struct netif_rx_request *req;
struct netif_rx_response *rsp;
struct mbuf *mbuf;
mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA);
mbuf->m_flags |= M_PKTHDR;
mbuf->m_pkthdr.len = size;
mbuf->m_len = size;
xnb_mbufc2pkt(mbuf, &pkt, start, free_slots);
req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start);
req->gref = gref;
req->id = id;
xnb_unit_pvt.rxb.req_cons = start;
xnb_unit_pvt.rxb.rsp_prod_pvt = start;
xnb_unit_pvt.rxs->req_prod = start + 1;
xnb_unit_pvt.rxs->rsp_prod = start;
req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start + 1);
req->gref = canary;
req->id = canary;
nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab,
&xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED);
/* Inject the error*/
xnb_unit_pvt.gnttab[2].status = GNTST_general_error;
nr_reqs = xnb_rxpkt2rsp(&pkt, xnb_unit_pvt.gnttab, nr_entries,
&xnb_unit_pvt.rxb);
XNB_ASSERT(nr_reqs == 1);
XNB_ASSERT(xnb_unit_pvt.rxb.rsp_prod_pvt == start + 1);
rsp = RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start);
XNB_ASSERT(rsp->id == id);
XNB_ASSERT(rsp->status == NETIF_RSP_ERROR);
req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start + 1);
XNB_ASSERT(req->gref == canary);
XNB_ASSERT(req->id == canary);
safe_m_freem(&mbuf);
}
/**
* xnb_add_mbuf_cksum on an ARP request packet
*/
static void
xnb_add_mbuf_cksum_arp(char *buffer, size_t buflen)
{
const size_t pkt_len = sizeof(struct ether_header) +
sizeof(struct ether_arp);
struct mbuf *mbufc;
struct ether_header *eh;
struct ether_arp *ep;
unsigned char pkt_orig[pkt_len];
mbufc = m_getm(NULL, pkt_len, M_WAITOK, MT_DATA);
/* Fill in an example arp request */
eh = mtod(mbufc, struct ether_header*);
eh->ether_dhost[0] = 0xff;
eh->ether_dhost[1] = 0xff;
eh->ether_dhost[2] = 0xff;
eh->ether_dhost[3] = 0xff;
eh->ether_dhost[4] = 0xff;
eh->ether_dhost[5] = 0xff;
eh->ether_shost[0] = 0x00;
eh->ether_shost[1] = 0x15;
eh->ether_shost[2] = 0x17;
eh->ether_shost[3] = 0xe9;
eh->ether_shost[4] = 0x30;
eh->ether_shost[5] = 0x68;
eh->ether_type = htons(ETHERTYPE_ARP);
ep = (struct ether_arp*)(eh + 1);
ep->ea_hdr.ar_hrd = htons(ARPHRD_ETHER);
ep->ea_hdr.ar_pro = htons(ETHERTYPE_IP);
ep->ea_hdr.ar_hln = 6;
ep->ea_hdr.ar_pln = 4;
ep->ea_hdr.ar_op = htons(ARPOP_REQUEST);
ep->arp_sha[0] = 0x00;
ep->arp_sha[1] = 0x15;
ep->arp_sha[2] = 0x17;
ep->arp_sha[3] = 0xe9;
ep->arp_sha[4] = 0x30;
ep->arp_sha[5] = 0x68;
ep->arp_spa[0] = 0xc0;
ep->arp_spa[1] = 0xa8;
ep->arp_spa[2] = 0x0a;
ep->arp_spa[3] = 0x04;
bzero(&(ep->arp_tha), ETHER_ADDR_LEN);
ep->arp_tpa[0] = 0xc0;
ep->arp_tpa[1] = 0xa8;
ep->arp_tpa[2] = 0x0a;
ep->arp_tpa[3] = 0x06;
/* fill in the length field */
mbufc->m_len = pkt_len;
mbufc->m_pkthdr.len = pkt_len;
/* indicate that the netfront uses hw-assisted checksums */
mbufc->m_pkthdr.csum_flags = CSUM_IP_CHECKED | CSUM_IP_VALID |
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
/* Make a backup copy of the packet */
bcopy(mtod(mbufc, const void*), pkt_orig, pkt_len);
/* Function under test */
xnb_add_mbuf_cksum(mbufc);
/* Verify that the packet's data did not change */
XNB_ASSERT(bcmp(mtod(mbufc, const void*), pkt_orig, pkt_len) == 0);
m_freem(mbufc);
}
/**
* Helper function that populates the ethernet header and IP header used by
* some of the xnb_add_mbuf_cksum unit tests. m must already be allocated
* and must be large enough
*/
static void
xnb_fill_eh_and_ip(struct mbuf *m, uint16_t ip_len, uint16_t ip_id,
uint16_t ip_p, uint16_t ip_off, uint16_t ip_sum)
{
struct ether_header *eh;
struct ip *iph;
eh = mtod(m, struct ether_header*);
eh->ether_dhost[0] = 0x00;
eh->ether_dhost[1] = 0x16;
eh->ether_dhost[2] = 0x3e;
eh->ether_dhost[3] = 0x23;
eh->ether_dhost[4] = 0x50;
eh->ether_dhost[5] = 0x0b;
eh->ether_shost[0] = 0x00;
eh->ether_shost[1] = 0x16;
eh->ether_shost[2] = 0x30;
eh->ether_shost[3] = 0x00;
eh->ether_shost[4] = 0x00;
eh->ether_shost[5] = 0x00;
eh->ether_type = htons(ETHERTYPE_IP);
iph = (struct ip*)(eh + 1);
iph->ip_hl = 0x5; /* 5 dwords == 20 bytes */
iph->ip_v = 4; /* IP v4 */
iph->ip_tos = 0;
iph->ip_len = htons(ip_len);
iph->ip_id = htons(ip_id);
iph->ip_off = htons(ip_off);
iph->ip_ttl = 64;
iph->ip_p = ip_p;
iph->ip_sum = htons(ip_sum);
iph->ip_src.s_addr = htonl(0xc0a80a04);
iph->ip_dst.s_addr = htonl(0xc0a80a05);
}
/**
* xnb_add_mbuf_cksum on an ICMP packet, based on a tcpdump of an actual
* ICMP packet
*/
static void
xnb_add_mbuf_cksum_icmp(char *buffer, size_t buflen)
{
const size_t icmp_len = 64; /* set by ping(1) */
const size_t pkt_len = sizeof(struct ether_header) +
sizeof(struct ip) + icmp_len;
struct mbuf *mbufc;
struct ether_header *eh;
struct ip *iph;
struct icmp *icmph;
unsigned char pkt_orig[icmp_len];
uint32_t *tv_field;
uint8_t *data_payload;
int i;
const uint16_t ICMP_CSUM = 0xaed7;
const uint16_t IP_CSUM = 0xe533;
mbufc = m_getm(NULL, pkt_len, M_WAITOK, MT_DATA);
/* Fill in an example ICMP ping request */
eh = mtod(mbufc, struct ether_header*);
xnb_fill_eh_and_ip(mbufc, 84, 28, IPPROTO_ICMP, 0, 0);
iph = (struct ip*)(eh + 1);
icmph = (struct icmp*)(iph + 1);
icmph->icmp_type = ICMP_ECHO;
icmph->icmp_code = 0;
icmph->icmp_cksum = htons(ICMP_CSUM);
icmph->icmp_id = htons(31492);
icmph->icmp_seq = htons(0);
/*
* ping(1) uses bcopy to insert a native-endian timeval after icmp_seq.
* For this test, we will set the bytes individually for portability.
*/
tv_field = (uint32_t*)(&(icmph->icmp_hun));
tv_field[0] = 0x4f02cfac;
tv_field[1] = 0x0007c46a;
/*
* Remainder of packet is an incrmenting 8 bit integer, starting with 8
*/
data_payload = (uint8_t*)(&tv_field[2]);
for (i = 8; i < 37; i++) {
*data_payload++ = i;
}
/* fill in the length field */
mbufc->m_len = pkt_len;
mbufc->m_pkthdr.len = pkt_len;
/* indicate that the netfront uses hw-assisted checksums */
mbufc->m_pkthdr.csum_flags = CSUM_IP_CHECKED | CSUM_IP_VALID |
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
bcopy(mtod(mbufc, const void*), pkt_orig, icmp_len);
/* Function under test */
xnb_add_mbuf_cksum(mbufc);
/* Check the IP checksum */
XNB_ASSERT(iph->ip_sum == htons(IP_CSUM));
/* Check that the ICMP packet did not change */
XNB_ASSERT(bcmp(icmph, pkt_orig, icmp_len));
m_freem(mbufc);
}
/**
* xnb_add_mbuf_cksum on a UDP packet, based on a tcpdump of an actual
* UDP packet
*/
static void
xnb_add_mbuf_cksum_udp(char *buffer, size_t buflen)
{
const size_t udp_len = 16;
const size_t pkt_len = sizeof(struct ether_header) +
sizeof(struct ip) + udp_len;
struct mbuf *mbufc;
struct ether_header *eh;
struct ip *iph;
struct udphdr *udp;
uint8_t *data_payload;
const uint16_t IP_CSUM = 0xe56b;
const uint16_t UDP_CSUM = 0xdde2;
mbufc = m_getm(NULL, pkt_len, M_WAITOK, MT_DATA);
/* Fill in an example UDP packet made by 'uname | nc -u <host> 2222 */
eh = mtod(mbufc, struct ether_header*);
xnb_fill_eh_and_ip(mbufc, 36, 4, IPPROTO_UDP, 0, 0xbaad);
iph = (struct ip*)(eh + 1);
udp = (struct udphdr*)(iph + 1);
udp->uh_sport = htons(0x51ae);
udp->uh_dport = htons(0x08ae);
udp->uh_ulen = htons(udp_len);
udp->uh_sum = htons(0xbaad); /* xnb_add_mbuf_cksum will fill this in */
data_payload = (uint8_t*)(udp + 1);
data_payload[0] = 'F';
data_payload[1] = 'r';
data_payload[2] = 'e';
data_payload[3] = 'e';
data_payload[4] = 'B';
data_payload[5] = 'S';
data_payload[6] = 'D';
data_payload[7] = '\n';
/* fill in the length field */
mbufc->m_len = pkt_len;
mbufc->m_pkthdr.len = pkt_len;
/* indicate that the netfront uses hw-assisted checksums */
mbufc->m_pkthdr.csum_flags = CSUM_IP_CHECKED | CSUM_IP_VALID |
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
/* Function under test */
xnb_add_mbuf_cksum(mbufc);
/* Check the checksums */
XNB_ASSERT(iph->ip_sum == htons(IP_CSUM));
XNB_ASSERT(udp->uh_sum == htons(UDP_CSUM));
m_freem(mbufc);
}
/**
* Helper function that populates a TCP packet used by all of the
* xnb_add_mbuf_cksum tcp unit tests. m must already be allocated and must be
* large enough
*/
static void
xnb_fill_tcp(struct mbuf *m)
{
struct ether_header *eh;
struct ip *iph;
struct tcphdr *tcp;
uint32_t *options;
uint8_t *data_payload;
/* Fill in an example TCP packet made by 'uname | nc <host> 2222' */
eh = mtod(m, struct ether_header*);
xnb_fill_eh_and_ip(m, 60, 8, IPPROTO_TCP, IP_DF, 0);
iph = (struct ip*)(eh + 1);
tcp = (struct tcphdr*)(iph + 1);
tcp->th_sport = htons(0x9cd9);
tcp->th_dport = htons(2222);
tcp->th_seq = htonl(0x00f72b10);
tcp->th_ack = htonl(0x7f37ba6c);
tcp->th_x2 = 0;
tcp->th_off = 8;
tcp->th_flags = 0x18;
tcp->th_win = htons(0x410);
/* th_sum is incorrect; will be inserted by function under test */
tcp->th_sum = htons(0xbaad);
tcp->th_urp = htons(0);
/*
* The following 12 bytes of options encode:
* [nop, nop, TS val 33247 ecr 3457687679]
*/
options = (uint32_t*)(tcp + 1);
options[0] = htonl(0x0101080a);
options[1] = htonl(0x000081df);
options[2] = htonl(0xce18207f);
data_payload = (uint8_t*)(&options[3]);
data_payload[0] = 'F';
data_payload[1] = 'r';
data_payload[2] = 'e';
data_payload[3] = 'e';
data_payload[4] = 'B';
data_payload[5] = 'S';
data_payload[6] = 'D';
data_payload[7] = '\n';
}
/**
* xnb_add_mbuf_cksum on a TCP packet, based on a tcpdump of an actual TCP
* packet
*/
static void
xnb_add_mbuf_cksum_tcp(char *buffer, size_t buflen)
{
const size_t payload_len = 8;
const size_t tcp_options_len = 12;
const size_t pkt_len = sizeof(struct ether_header) + sizeof(struct ip) +
sizeof(struct tcphdr) + tcp_options_len + payload_len;
struct mbuf *mbufc;
struct ether_header *eh;
struct ip *iph;
struct tcphdr *tcp;
const uint16_t IP_CSUM = 0xa55a;
const uint16_t TCP_CSUM = 0x2f64;
mbufc = m_getm(NULL, pkt_len, M_WAITOK, MT_DATA);
/* Fill in an example TCP packet made by 'uname | nc <host> 2222' */
xnb_fill_tcp(mbufc);
eh = mtod(mbufc, struct ether_header*);
iph = (struct ip*)(eh + 1);
tcp = (struct tcphdr*)(iph + 1);
/* fill in the length field */
mbufc->m_len = pkt_len;
mbufc->m_pkthdr.len = pkt_len;
/* indicate that the netfront uses hw-assisted checksums */
mbufc->m_pkthdr.csum_flags = CSUM_IP_CHECKED | CSUM_IP_VALID |
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
/* Function under test */
xnb_add_mbuf_cksum(mbufc);
/* Check the checksums */
XNB_ASSERT(iph->ip_sum == htons(IP_CSUM));
XNB_ASSERT(tcp->th_sum == htons(TCP_CSUM));
m_freem(mbufc);
}
/**
* xnb_add_mbuf_cksum on a TCP packet that does not use HW assisted checksums
*/
static void
xnb_add_mbuf_cksum_tcp_swcksum(char *buffer, size_t buflen)
{
const size_t payload_len = 8;
const size_t tcp_options_len = 12;
const size_t pkt_len = sizeof(struct ether_header) + sizeof(struct ip) +
sizeof(struct tcphdr) + tcp_options_len + payload_len;
struct mbuf *mbufc;
struct ether_header *eh;
struct ip *iph;
struct tcphdr *tcp;
/* Use deliberately bad checksums, and verify that they don't get */
/* corrected by xnb_add_mbuf_cksum */
const uint16_t IP_CSUM = 0xdead;
const uint16_t TCP_CSUM = 0xbeef;
mbufc = m_getm(NULL, pkt_len, M_WAITOK, MT_DATA);
/* Fill in an example TCP packet made by 'uname | nc <host> 2222' */
xnb_fill_tcp(mbufc);
eh = mtod(mbufc, struct ether_header*);
iph = (struct ip*)(eh + 1);
iph->ip_sum = htons(IP_CSUM);
tcp = (struct tcphdr*)(iph + 1);
tcp->th_sum = htons(TCP_CSUM);
/* fill in the length field */
mbufc->m_len = pkt_len;
mbufc->m_pkthdr.len = pkt_len;
/* indicate that the netfront does not use hw-assisted checksums */
mbufc->m_pkthdr.csum_flags = 0;
/* Function under test */
xnb_add_mbuf_cksum(mbufc);
/* Check that the checksums didn't change */
XNB_ASSERT(iph->ip_sum == htons(IP_CSUM));
XNB_ASSERT(tcp->th_sum == htons(TCP_CSUM));
m_freem(mbufc);
}
/**
* sscanf on unsigned chars
*/
static void
xnb_sscanf_hhu(char *buffer, size_t buflen)
{
const char mystr[] = "137";
uint8_t dest[12];
int i;
for (i = 0; i < 12; i++)
dest[i] = 'X';
sscanf(mystr, "%hhu", &dest[4]);
for (i = 0; i < 12; i++)
XNB_ASSERT(dest[i] == (i == 4 ? 137 : 'X'));
}
/**
* sscanf on signed chars
*/
static void
xnb_sscanf_hhd(char *buffer, size_t buflen)
{
const char mystr[] = "-27";
int8_t dest[12];
int i;
for (i = 0; i < 12; i++)
dest[i] = 'X';
sscanf(mystr, "%hhd", &dest[4]);
for (i = 0; i < 12; i++)
XNB_ASSERT(dest[i] == (i == 4 ? -27 : 'X'));
}
/**
* sscanf on signed long longs
*/
static void
xnb_sscanf_lld(char *buffer, size_t buflen)
{
const char mystr[] = "-123456789012345"; /* about -2**47 */
long long dest[3];
int i;
for (i = 0; i < 3; i++)
dest[i] = (long long)0xdeadbeefdeadbeef;
sscanf(mystr, "%lld", &dest[1]);
for (i = 0; i < 3; i++)
XNB_ASSERT(dest[i] == (i != 1 ? (long long)0xdeadbeefdeadbeef :
-123456789012345));
}
/**
* sscanf on unsigned long longs
*/
static void
xnb_sscanf_llu(char *buffer, size_t buflen)
{
const char mystr[] = "12802747070103273189";
unsigned long long dest[3];
int i;
for (i = 0; i < 3; i++)
dest[i] = (long long)0xdeadbeefdeadbeef;
sscanf(mystr, "%llu", &dest[1]);
for (i = 0; i < 3; i++)
XNB_ASSERT(dest[i] == (i != 1 ? (long long)0xdeadbeefdeadbeef :
12802747070103273189ull));
}
/**
* sscanf on unsigned short short n's
*/
static void
xnb_sscanf_hhn(char *buffer, size_t buflen)
{
const char mystr[] =
"000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f"
"202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f"
"404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f";
unsigned char dest[12];
int i;
for (i = 0; i < 12; i++)
dest[i] = (unsigned char)'X';
sscanf(mystr,
"000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f"
"202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f"
"404142434445464748494a4b4c4d4e4f%hhn", &dest[4]);
for (i = 0; i < 12; i++)
XNB_ASSERT(dest[i] == (i == 4 ? 160 : 'X'));
}