freebsd-skq/lib/libsecureboot/vets.c

1024 lines
22 KiB
C
Raw Permalink Normal View History

/*-
* Copyright (c) 2017-2018, Juniper Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/**
* @file vets.c - trust store
* @brief verify signatures
*
* We leverage code from BearSSL www.bearssl.org
*/
#include <sys/time.h>
#include <stdarg.h>
#define NEED_BRSSL_H
#include "libsecureboot-priv.h"
#include <brssl.h>
#include <ta.h>
#ifndef TRUST_ANCHOR_STR
# define TRUST_ANCHOR_STR ta_PEM
#endif
#define SECONDS_PER_DAY 86400
#define SECONDS_PER_YEAR 365 * SECONDS_PER_DAY
#ifndef VE_UTC_MAX_JUMP
# define VE_UTC_MAX_JUMP 20 * SECONDS_PER_YEAR
#endif
#define X509_DAYS_TO_UTC0 719528
int DebugVe = 0;
typedef VECTOR(br_x509_certificate) cert_list;
typedef VECTOR(hash_data) digest_list;
static anchor_list trust_anchors = VEC_INIT;
static anchor_list forbidden_anchors = VEC_INIT;
static digest_list forbidden_digests = VEC_INIT;
static int anchor_verbose = 0;
void
ve_anchor_verbose_set(int n)
{
anchor_verbose = n;
}
int
ve_anchor_verbose_get(void)
{
return (anchor_verbose);
}
void
ve_debug_set(int n)
{
DebugVe = n;
}
static char ebuf[512];
char *
ve_error_get(void)
{
return (ebuf);
}
int
ve_error_set(const char *fmt, ...)
{
int rc;
va_list ap;
va_start(ap, fmt);
ebuf[0] = '\0';
rc = 0;
if (fmt) {
#ifdef STAND_H
vsprintf(ebuf, fmt, ap); /* no vsnprintf in libstand */
ebuf[sizeof(ebuf) - 1] = '\0';
rc = strlen(ebuf);
#else
rc = vsnprintf(ebuf, sizeof(ebuf), fmt, ap);
#endif
}
va_end(ap);
return (rc);
}
/* this is the time we use for verifying certs */
static time_t ve_utc = 0;
/**
* @brief
* set ve_utc used for certificate verification
*
* @param[in] utc
* time - ignored unless greater than current value
* and not a leap of 20 years or more.
*/
void
ve_utc_set(time_t utc)
{
if (utc > ve_utc &&
(ve_utc == 0 || (utc - ve_utc) < VE_UTC_MAX_JUMP)) {
DEBUG_PRINTF(2, ("Set ve_utc=%jd\n", (intmax_t)utc));
ve_utc = utc;
}
}
static void
free_cert_contents(br_x509_certificate *xc)
{
xfree(xc->data);
}
/*
* a bit of a dance to get commonName from a certificate
*/
static char *
x509_cn_get(br_x509_certificate *xc, char *buf, size_t len)
{
br_x509_minimal_context mc;
br_name_element cn;
unsigned char cn_oid[4];
int err;
if (buf == NULL)
return (buf);
/*
* We want the commonName field
* the OID we want is 2,5,4,3 - but DER encoded
*/
cn_oid[0] = 3;
cn_oid[1] = 0x55;
cn_oid[2] = 4;
cn_oid[3] = 3;
cn.oid = cn_oid;
cn.buf = buf;
cn.len = len;
cn.buf[0] = '\0';
br_x509_minimal_init(&mc, &br_sha256_vtable, NULL, 0);
br_x509_minimal_set_name_elements(&mc, &cn, 1);
/* the below actually does the work - updates cn.status */
mc.vtable->start_chain(&mc.vtable, NULL);
mc.vtable->start_cert(&mc.vtable, xc->data_len);
mc.vtable->append(&mc.vtable, xc->data, xc->data_len);
mc.vtable->end_cert(&mc.vtable);
/* we don' actually care about cert status - just its name */
err = mc.vtable->end_chain(&mc.vtable);
if (!cn.status)
buf = NULL;
return (buf);
}
/* ASN parsing related defines */
#define ASN1_PRIMITIVE_TAG 0x1F
#define ASN1_INF_LENGTH 0x80
#define ASN1_LENGTH_MASK 0x7F
/*
* Get TBS part of certificate.
* Since BearSSL doesn't provide any API to do this,
* it has to be implemented here.
*/
static void*
X509_to_tbs(unsigned char* cert, size_t* output_size)
{
unsigned char *result;
size_t tbs_size;
int size, i;
if (cert == NULL)
return (NULL);
/* Strip two sequences to get to the TBS section */
for (i = 0; i < 2; i++) {
/*
* XXX: We don't need to support extended tags since
* they should not be present in certificates.
*/
if ((*cert & ASN1_PRIMITIVE_TAG) == ASN1_PRIMITIVE_TAG)
return (NULL);
cert++;
if (*cert == ASN1_INF_LENGTH)
return (NULL);
size = *cert & ASN1_LENGTH_MASK;
tbs_size = 0;
/* Size can either be stored on a single or multiple bytes */
if (*cert & (ASN1_LENGTH_MASK + 1)) {
cert++;
while (*cert == 0 && size > 0) {
cert++;
size--;
}
while (size-- > 0) {
tbs_size <<= 8;
tbs_size |= *(cert++);
}
}
if (i == 0)
result = cert;
}
tbs_size += (cert - result);
if (output_size != NULL)
*output_size = tbs_size;
return (result);
}
void
ve_forbidden_digest_add(hash_data *digest, size_t num)
{
while (num--)
VEC_ADD(forbidden_digests, digest[num]);
}
static size_t
ve_anchors_add(br_x509_certificate *xcs, size_t num, anchor_list *anchors,
const char *anchors_name)
{
br_x509_trust_anchor ta;
size_t u;
for (u = 0; u < num; u++) {
if (certificate_to_trust_anchor_inner(&ta, &xcs[u]) < 0) {
break;
}
VEC_ADD(*anchors, ta);
if (anchor_verbose && anchors_name) {
char buf[64];
char *cp;
cp = x509_cn_get(&xcs[u], buf, sizeof(buf));
if (cp) {
printf("x509_anchor(%s) %s\n", cp, anchors_name);
}
}
}
return (u);
}
/**
* @brief
* add certs to our trust store
*/
size_t
ve_trust_anchors_add(br_x509_certificate *xcs, size_t num)
{
return (ve_anchors_add(xcs, num, &trust_anchors, "trusted"));
}
size_t
ve_forbidden_anchors_add(br_x509_certificate *xcs, size_t num)
{
return (ve_anchors_add(xcs, num, &forbidden_anchors, "forbidden"));
}
/**
* @brief add trust anchors in buf
*
* Assume buf contains x509 certificates, but if not and
* we support OpenPGP try adding as that.
*
* @return number of anchors added
*/
size_t
ve_trust_anchors_add_buf(unsigned char *buf, size_t len)
{
br_x509_certificate *xcs;
size_t num;
num = 0;
xcs = parse_certificates(buf, len, &num);
if (xcs != NULL) {
num = ve_trust_anchors_add(xcs, num);
#ifdef VE_OPENPGP_SUPPORT
} else {
num = openpgp_trust_add_buf(buf, len);
#endif
}
return (num);
}
/**
* @brief revoke trust anchors in buf
*
* Assume buf contains x509 certificates, but if not and
* we support OpenPGP try revoking keyId
*
* @return number of anchors revoked
*/
size_t
ve_trust_anchors_revoke(unsigned char *buf, size_t len)
{
br_x509_certificate *xcs;
size_t num;
num = 0;
xcs = parse_certificates(buf, len, &num);
if (xcs != NULL) {
num = ve_forbidden_anchors_add(xcs, num);
#ifdef VE_OPENPGP_SUPPORT
} else {
if (buf[len - 1] == '\n')
buf[len - 1] = '\0';
num = openpgp_trust_revoke((char *)buf);
#endif
}
return (num);
}
/**
* @brief
* initialize our trust_anchors from ta_PEM
*/
int
ve_trust_init(void)
{
static int once = -1;
if (once >= 0)
return (once);
once = 0; /* to be sure */
#ifdef BUILD_UTC
ve_utc_set(BUILD_UTC); /* ensure sanity */
#endif
ve_utc_set(time(NULL));
ve_error_set(NULL); /* make sure it is empty */
#ifdef VE_PCR_SUPPORT
ve_pcr_init();
#endif
#ifdef TRUST_ANCHOR_STR
ve_trust_anchors_add_buf(__DECONST(unsigned char *, TRUST_ANCHOR_STR),
sizeof(TRUST_ANCHOR_STR));
#endif
once = (int) VEC_LEN(trust_anchors);
#ifdef VE_OPENPGP_SUPPORT
once += openpgp_trust_init();
#endif
return (once);
}
/**
* if we can verify the certificate chain in "certs",
* return the public key and if "xcp" is !NULL the associated
* certificate
*/
static br_x509_pkey *
verify_signer_xcs(br_x509_certificate *xcs,
size_t num,
br_name_element *elts, size_t num_elts,
anchor_list *anchors)
{
br_x509_minimal_context mc;
br_x509_certificate *xc;
size_t u;
cert_list chain = VEC_INIT;
const br_x509_pkey *tpk;
br_x509_pkey *pk;
unsigned int usages;
int err;
DEBUG_PRINTF(5, ("verify_signer: %zu certs in chain\n", num));
VEC_ADDMANY(chain, xcs, num);
if (VEC_LEN(chain) == 0) {
ve_error_set("ERROR: no/invalid certificate chain\n");
return (NULL);
}
DEBUG_PRINTF(5, ("verify_signer: %zu trust anchors\n",
VEC_LEN(*anchors)));
br_x509_minimal_init(&mc, &br_sha256_vtable,
&VEC_ELT(*anchors, 0),
VEC_LEN(*anchors));
#ifdef VE_ECDSA_SUPPORT
br_x509_minimal_set_ecdsa(&mc,
&br_ec_prime_i31, &br_ecdsa_i31_vrfy_asn1);
#endif
#ifdef VE_RSA_SUPPORT
br_x509_minimal_set_rsa(&mc, &br_rsa_i31_pkcs1_vrfy);
#endif
#if defined(UNIT_TEST) && defined(VE_DEPRECATED_RSA_SHA1_SUPPORT)
/* This is deprecated! do not enable unless you absoultely have to */
br_x509_minimal_set_hash(&mc, br_sha1_ID, &br_sha1_vtable);
#endif
br_x509_minimal_set_hash(&mc, br_sha256_ID, &br_sha256_vtable);
#ifdef VE_SHA384_SUPPORT
br_x509_minimal_set_hash(&mc, br_sha384_ID, &br_sha384_vtable);
#endif
#ifdef VE_SHA512_SUPPORT
br_x509_minimal_set_hash(&mc, br_sha512_ID, &br_sha512_vtable);
#endif
br_x509_minimal_set_name_elements(&mc, elts, num_elts);
#ifdef _STANDALONE
/*
* Clock is probably bogus so we use ve_utc.
*/
mc.days = (ve_utc / SECONDS_PER_DAY) + X509_DAYS_TO_UTC0;
mc.seconds = (ve_utc % SECONDS_PER_DAY);
#endif
mc.vtable->start_chain(&mc.vtable, NULL);
for (u = 0; u < VEC_LEN(chain); u ++) {
xc = &VEC_ELT(chain, u);
mc.vtable->start_cert(&mc.vtable, xc->data_len);
mc.vtable->append(&mc.vtable, xc->data, xc->data_len);
mc.vtable->end_cert(&mc.vtable);
switch (mc.err) {
case 0:
case BR_ERR_X509_OK:
case BR_ERR_X509_EXPIRED:
break;
default:
printf("u=%zu mc.err=%d\n", u, mc.err);
break;
}
}
err = mc.vtable->end_chain(&mc.vtable);
pk = NULL;
if (err) {
ve_error_set("Validation failed, err = %d", err);
} else {
tpk = mc.vtable->get_pkey(&mc.vtable, &usages);
if (tpk != NULL) {
pk = xpkeydup(tpk);
}
}
VEC_CLEAR(chain);
return (pk);
}
/*
* Check if digest of one of the certificates from verified chain
* is present in the forbidden database.
* Since UEFI allows to store three types of digests
* all of them have to be checked separately.
*/
static int
check_forbidden_digests(br_x509_certificate *xcs, size_t num)
{
unsigned char sha256_digest[br_sha256_SIZE];
unsigned char sha384_digest[br_sha384_SIZE];
unsigned char sha512_digest[br_sha512_SIZE];
void *tbs;
hash_data *digest;
br_hash_compat_context ctx;
const br_hash_class *md;
size_t tbs_len, i;
int have_sha256, have_sha384, have_sha512;
if (VEC_LEN(forbidden_digests) == 0)
return (0);
/*
* Iterate through certificates, extract their To-Be-Signed section,
* and compare its digest against the ones in the forbidden database.
*/
while (num--) {
tbs = X509_to_tbs(xcs[num].data, &tbs_len);
if (tbs == NULL) {
printf("Failed to obtain TBS part of certificate\n");
return (1);
}
have_sha256 = have_sha384 = have_sha512 = 0;
for (i = 0; i < VEC_LEN(forbidden_digests); i++) {
digest = &VEC_ELT(forbidden_digests, i);
switch (digest->hash_size) {
case br_sha256_SIZE:
if (!have_sha256) {
have_sha256 = 1;
md = &br_sha256_vtable;
md->init(&ctx.vtable);
md->update(&ctx.vtable, tbs, tbs_len);
md->out(&ctx.vtable, sha256_digest);
}
if (!memcmp(sha256_digest,
digest->data,
br_sha256_SIZE))
return (1);
break;
case br_sha384_SIZE:
if (!have_sha384) {
have_sha384 = 1;
md = &br_sha384_vtable;
md->init(&ctx.vtable);
md->update(&ctx.vtable, tbs, tbs_len);
md->out(&ctx.vtable, sha384_digest);
}
if (!memcmp(sha384_digest,
digest->data,
br_sha384_SIZE))
return (1);
break;
case br_sha512_SIZE:
if (!have_sha512) {
have_sha512 = 1;
md = &br_sha512_vtable;
md->init(&ctx.vtable);
md->update(&ctx.vtable, tbs, tbs_len);
md->out(&ctx.vtable, sha512_digest);
}
if (!memcmp(sha512_digest,
digest->data,
br_sha512_SIZE))
return (1);
break;
}
}
}
return (0);
}
static br_x509_pkey *
verify_signer(const char *certs,
br_name_element *elts, size_t num_elts)
{
br_x509_certificate *xcs;
br_x509_pkey *pk;
size_t num;
pk = NULL;
ve_trust_init();
xcs = read_certificates(certs, &num);
if (xcs == NULL) {
ve_error_set("cannot read certificates\n");
return (NULL);
}
/*
* Check if either
* 1. There is a direct match between cert from forbidden_anchors
* and a cert from chain.
* 2. CA that signed the chain is found in forbidden_anchors.
*/
if (VEC_LEN(forbidden_anchors) > 0)
pk = verify_signer_xcs(xcs, num, elts, num_elts, &forbidden_anchors);
if (pk != NULL) {
ve_error_set("Certificate is on forbidden list\n");
xfreepkey(pk);
pk = NULL;
goto out;
}
pk = verify_signer_xcs(xcs, num, elts, num_elts, &trust_anchors);
if (pk == NULL)
goto out;
/*
* Check if hash of tbs part of any certificate in chain
* is on the forbidden list.
*/
if (check_forbidden_digests(xcs, num)) {
ve_error_set("Certificate hash is on forbidden list\n");
xfreepkey(pk);
pk = NULL;
}
out:
free_certificates(xcs, num);
return (pk);
}
/**
* we need a hex digest including trailing newline below
*/
char *
hexdigest(char *buf, size_t bufsz, unsigned char *foo, size_t foo_len)
{
char const hex2ascii[] = "0123456789abcdef";
size_t i;
/* every binary byte is 2 chars in hex + newline + null */
if (bufsz < (2 * foo_len) + 2)
return (NULL);
for (i = 0; i < foo_len; i++) {
buf[i * 2] = hex2ascii[foo[i] >> 4];
buf[i * 2 + 1] = hex2ascii[foo[i] & 0x0f];
}
buf[i * 2] = 0x0A; /* we also want a newline */
buf[i * 2 + 1] = '\0';
return (buf);
}
/**
* @brief
* verify file against sigfile using pk
*
* When we generated the signature in sigfile,
* we hashed (sha256) file, and sent that to signing server
* which hashed (sha256) that hash.
*
* To verify we need to replicate that result.
*
* @param[in] pk
* br_x509_pkey
*
* @paramp[in] file
* file to be verified
*
* @param[in] sigfile
* signature (PEM encoded)
*
* @return NULL on error, otherwise content of file.
*/
#ifdef VE_ECDSA_SUPPORT
static unsigned char *
verify_ec(br_x509_pkey *pk, const char *file, const char *sigfile)
{
#ifdef VE_ECDSA_HASH_AGAIN
char *hex, hexbuf[br_sha512_SIZE * 2 + 2];
#endif
unsigned char rhbuf[br_sha512_SIZE];
br_sha256_context ctx;
unsigned char *fcp, *scp;
size_t flen, slen, plen;
pem_object *po;
const br_ec_impl *ec;
br_ecdsa_vrfy vrfy;
if ((fcp = read_file(file, &flen)) == NULL)
return (NULL);
if ((scp = read_file(sigfile, &slen)) == NULL) {
free(fcp);
return (NULL);
}
if ((po = decode_pem(scp, slen, &plen)) == NULL) {
free(fcp);
free(scp);
return (NULL);
}
br_sha256_init(&ctx);
br_sha256_update(&ctx, fcp, flen);
br_sha256_out(&ctx, rhbuf);
#ifdef VE_ECDSA_HASH_AGAIN
hex = hexdigest(hexbuf, sizeof(hexbuf), rhbuf, br_sha256_SIZE);
/* now hash that */
if (hex) {
br_sha256_init(&ctx);
br_sha256_update(&ctx, hex, strlen(hex));
br_sha256_out(&ctx, rhbuf);
}
#endif
ec = br_ec_get_default();
vrfy = br_ecdsa_vrfy_asn1_get_default();
if (!vrfy(ec, rhbuf, br_sha256_SIZE, &pk->key.ec, po->data,
po->data_len)) {
free(fcp);
fcp = NULL;
}
free(scp);
return (fcp);
}
#endif
#if defined(VE_RSA_SUPPORT) || defined(VE_OPENPGP_SUPPORT)
/**
* @brief verify an rsa digest
*
* @return 0 on failure
*/
int
verify_rsa_digest (br_rsa_public_key *pkey,
const unsigned char *hash_oid,
unsigned char *mdata, size_t mlen,
unsigned char *sdata, size_t slen)
{
br_rsa_pkcs1_vrfy vrfy;
unsigned char vhbuf[br_sha512_SIZE];
vrfy = br_rsa_pkcs1_vrfy_get_default();
if (!vrfy(sdata, slen, hash_oid, mlen, pkey, vhbuf) ||
memcmp(vhbuf, mdata, mlen) != 0) {
return (0); /* fail */
}
return (1); /* ok */
}
#endif
/**
* @brief
* verify file against sigfile using pk
*
* When we generated the signature in sigfile,
* we hashed (sha256) file, and sent that to signing server
* which hashed (sha256) that hash.
*
* Or (deprecated) we simply used sha1 hash directly.
*
* To verify we need to replicate that result.
*
* @param[in] pk
* br_x509_pkey
*
* @paramp[in] file
* file to be verified
*
* @param[in] sigfile
* signature (PEM encoded)
*
* @return NULL on error, otherwise content of file.
*/
#ifdef VE_RSA_SUPPORT
static unsigned char *
verify_rsa(br_x509_pkey *pk, const char *file, const char *sigfile)
{
unsigned char rhbuf[br_sha512_SIZE];
const unsigned char *hash_oid;
const br_hash_class *md;
br_hash_compat_context mctx;
unsigned char *fcp, *scp;
size_t flen, slen, plen, hlen;
pem_object *po;
if ((fcp = read_file(file, &flen)) == NULL)
return (NULL);
if ((scp = read_file(sigfile, &slen)) == NULL) {
free(fcp);
return (NULL);
}
if ((po = decode_pem(scp, slen, &plen)) == NULL) {
free(fcp);
free(scp);
return (NULL);
}
switch (po->data_len) {
#if defined(UNIT_TEST) && defined(VE_DEPRECATED_RSA_SHA1_SUPPORT)
case 256:
// this is our old deprecated sig method
md = &br_sha1_vtable;
hlen = br_sha1_SIZE;
hash_oid = BR_HASH_OID_SHA1;
break;
#endif
default:
md = &br_sha256_vtable;
hlen = br_sha256_SIZE;
hash_oid = BR_HASH_OID_SHA256;
break;
}
md->init(&mctx.vtable);
md->update(&mctx.vtable, fcp, flen);
md->out(&mctx.vtable, rhbuf);
if (!verify_rsa_digest(&pk->key.rsa, hash_oid,
rhbuf, hlen, po->data, po->data_len)) {
free(fcp);
fcp = NULL;
}
free(scp);
return (fcp);
}
#endif
/**
* @brief
* verify a signature and return content of signed file
*
* @param[in] sigfile
* file containing signature
* we derrive path of signed file and certificate change from
* this.
*
* @param[in] flags
* only bit 1 significant so far
*
* @return NULL on error otherwise content of signed file
*/
unsigned char *
verify_sig(const char *sigfile, int flags)
{
br_x509_pkey *pk;
br_name_element cn;
char cn_buf[80];
unsigned char cn_oid[4];
char pbuf[MAXPATHLEN];
char *cp;
unsigned char *ucp;
size_t n;
DEBUG_PRINTF(5, ("verify_sig: %s\n", sigfile));
n = strlcpy(pbuf, sigfile, sizeof(pbuf));
if (n > (sizeof(pbuf) - 5) || strcmp(&sigfile[n - 3], "sig") != 0)
return (NULL);
cp = strcpy(&pbuf[n - 3], "certs");
/*
* We want the commonName field
* the OID we want is 2,5,4,3 - but DER encoded
*/
cn_oid[0] = 3;
cn_oid[1] = 0x55;
cn_oid[2] = 4;
cn_oid[3] = 3;
cn.oid = cn_oid;
cn.buf = cn_buf;
cn.len = sizeof(cn_buf);
pk = verify_signer(pbuf, &cn, 1);
if (!pk) {
printf("cannot verify: %s: %s\n", pbuf, ve_error_get());
return (NULL);
}
for (; cp > pbuf; cp--) {
if (*cp == '.') {
*cp = '\0';
break;
}
}
switch (pk->key_type) {
#ifdef VE_ECDSA_SUPPORT
case BR_KEYTYPE_EC:
ucp = verify_ec(pk, pbuf, sigfile);
break;
#endif
#ifdef VE_RSA_SUPPORT
case BR_KEYTYPE_RSA:
ucp = verify_rsa(pk, pbuf, sigfile);
break;
#endif
default:
ucp = NULL; /* not supported */
}
xfreepkey(pk);
if (!ucp) {
printf("Unverified %s (%s)\n", pbuf,
cn.status ? cn_buf : "unknown");
} else if ((flags & 1) != 0) {
printf("Verified %s signed by %s\n", pbuf,
cn.status ? cn_buf : "someone we trust");
}
return (ucp);
}
/**
* @brief verify hash matches
*
* We have finished hashing a file,
* see if we got the desired result.
*
* @param[in] ctx
* pointer to hash context
*
* @param[in] md
* pointer to hash class
*
* @param[in] path
* name of the file we are checking
*
* @param[in] want
* the expected result
*
* @param[in] hlen
* size of hash output
*
* @return 0 on success
*/
int
ve_check_hash(br_hash_compat_context *ctx, const br_hash_class *md,
const char *path, const char *want, size_t hlen)
{
char hexbuf[br_sha512_SIZE * 2 + 2];
unsigned char hbuf[br_sha512_SIZE];
char *hex;
int rc;
int n;
md->out(&ctx->vtable, hbuf);
#ifdef VE_PCR_SUPPORT
ve_pcr_update(path, hbuf, hlen);
#endif
hex = hexdigest(hexbuf, sizeof(hexbuf), hbuf, hlen);
if (!hex)
return (VE_FINGERPRINT_WRONG);
n = 2*hlen;
if ((rc = strncmp(hex, want, n))) {
ve_error_set("%s: %.*s != %.*s", path, n, hex, n, want);
rc = VE_FINGERPRINT_WRONG;
}
return (rc ? rc : VE_FINGERPRINT_OK);
}
#ifdef VE_HASH_KAT_STR
static int
test_hash(const br_hash_class *md, size_t hlen,
const char *hname, const char *s, size_t slen, const char *want)
{
br_hash_compat_context mctx;
md->init(&mctx.vtable);
md->update(&mctx.vtable, s, slen);
return (ve_check_hash(&mctx, md, hname, want, hlen) != VE_FINGERPRINT_OK);
}
#endif
#define ve_test_hash(n, N) \
printf("Testing hash: " #n "\t\t\t\t%s\n", \
test_hash(&br_ ## n ## _vtable, br_ ## n ## _SIZE, #n, \
VE_HASH_KAT_STR, VE_HASH_KAT_STRLEN(VE_HASH_KAT_STR), \
vh_ ## N) ? "Failed" : "Passed")
/**
* @brief
* run self tests on hash and signature verification
*
* Test that the hash methods (SHA1 and SHA256) work.
* Test that we can verify a certificate for each supported
* Root CA.
*
* @return cached result.
*/
int
ve_self_tests(void)
{
static int once = -1;
#ifdef VERIFY_CERTS_STR
br_x509_certificate *xcs;
br_x509_pkey *pk;
br_name_element cn;
char cn_buf[80];
unsigned char cn_oid[4];
size_t num;
size_t u;
#endif
if (once >= 0)
return (once);
once = 0;
DEBUG_PRINTF(5, ("Self tests...\n"));
#ifdef VE_HASH_KAT_STR
#ifdef VE_SHA1_SUPPORT
ve_test_hash(sha1, SHA1);
#endif
#ifdef VE_SHA256_SUPPORT
ve_test_hash(sha256, SHA256);
#endif
#ifdef VE_SHA384_SUPPORT
ve_test_hash(sha384, SHA384);
#endif
#ifdef VE_SHA512_SUPPORT
ve_test_hash(sha512, SHA512);
#endif
#endif
#ifdef VERIFY_CERTS_STR
xcs = parse_certificates(__DECONST(unsigned char *, VERIFY_CERTS_STR),
sizeof(VERIFY_CERTS_STR), &num);
if (xcs != NULL) {
/*
* We want the commonName field
* the OID we want is 2,5,4,3 - but DER encoded
*/
cn_oid[0] = 3;
cn_oid[1] = 0x55;
cn_oid[2] = 4;
cn_oid[3] = 3;
cn.oid = cn_oid;
cn.buf = cn_buf;
for (u = 0; u < num; u ++) {
cn.len = sizeof(cn_buf);
if ((pk = verify_signer_xcs(&xcs[u], 1, &cn, 1, &trust_anchors)) != NULL) {
free_cert_contents(&xcs[u]);
once++;
printf("Testing verify certificate: %s\tPassed\n",
cn.status ? cn_buf : "");
xfreepkey(pk);
}
}
if (!once)
printf("Testing verify certificate:\t\t\tFailed\n");
xfree(xcs);
}
#endif /* VERIFY_CERTS_STR */
#ifdef VE_OPENPGP_SUPPORT
if (!openpgp_self_tests())
once++;
#endif
return (once);
}