freebsd-skq/sys/mips/rmi/xlr_machdep.c

636 lines
15 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2006-2009 RMI Corporation
* Copyright (c) 2002-2004 Juli Mallett <jmallett@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
2009-12-21 11:29:30 +00:00
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/rtprio.h>
#include <sys/systm.h>
#include <sys/interrupt.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/random.h>
#include <sys/cons.h> /* cinit() */
2009-12-21 11:29:30 +00:00
#include <sys/kdb.h>
#include <sys/reboot.h>
#include <sys/queue.h>
#include <sys/smp.h>
#include <sys/timetc.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#include <machine/cpu.h>
#include <machine/cpufunc.h>
#include <machine/cpuinfo.h>
#include <machine/cpuregs.h>
#include <machine/frame.h>
#include <machine/hwfunc.h>
#include <machine/md_var.h>
#include <machine/asm.h>
#include <machine/pmap.h>
#include <machine/trap.h>
#include <machine/clock.h>
#include <machine/fls64.h>
#include <machine/intr_machdep.h>
#include <machine/smp.h>
#include <mips/rmi/iomap.h>
#include <mips/rmi/msgring.h>
#include <mips/rmi/interrupt.h>
#include <mips/rmi/pic.h>
#include <mips/rmi/board.h>
#include <mips/rmi/rmi_mips_exts.h>
#include <mips/rmi/rmi_boot_info.h>
void mpwait(void);
unsigned long xlr_io_base = (unsigned long)(DEFAULT_XLR_IO_BASE);
/* 4KB static data aread to keep a copy of the bootload env until
the dynamic kenv is setup */
char boot1_env[4096];
int rmi_spin_mutex_safe=0;
struct mtx xlr_pic_lock;
/*
* Parameters from boot loader
*/
struct boot1_info xlr_boot1_info;
int xlr_run_mode;
int xlr_argc;
int32_t *xlr_argv, *xlr_envp;
uint64_t cpu_mask_info;
uint32_t xlr_online_cpumask;
uint32_t xlr_core_cpu_mask = 0x1; /* Core 0 thread 0 is always there */
int xlr_shtlb_enabled;
int xlr_ncores;
int xlr_threads_per_core;
uint32_t xlr_hw_thread_mask;
int xlr_cpuid_to_hwtid[MAXCPU];
int xlr_hwtid_to_cpuid[MAXCPU];
static void
xlr_setup_mmu_split(void)
{
uint64_t mmu_setup;
int val = 0;
if (xlr_threads_per_core == 4 && xlr_shtlb_enabled == 0)
return; /* no change from boot setup */
switch (xlr_threads_per_core) {
case 1:
val = 0; break;
case 2:
val = 2; break;
case 4:
val = 3; break;
}
mmu_setup = read_xlr_ctrl_register(4, 0);
mmu_setup = mmu_setup & ~0x06;
mmu_setup |= (val << 1);
/* turn on global mode */
if (xlr_shtlb_enabled)
mmu_setup |= 0x01;
write_xlr_ctrl_register(4, 0, mmu_setup);
}
static void
xlr_parse_mmu_options(void)
{
#ifdef notyet
char *hw_env, *start, *end;
#endif
uint32_t cpu_map;
uint8_t core0_thr_mask, core_thr_mask;
int i, j, k;
/* First check for the shared TLB setup */
xlr_shtlb_enabled = 0;
#ifdef notyet
/*
* We don't support sharing TLB per core - TODO
*/
xlr_shtlb_enabled = 0;
if ((hw_env = getenv("xlr.shtlb")) != NULL) {
start = hw_env;
tmp = strtoul(start, &end, 0);
if (start != end)
xlr_shtlb_enabled = (tmp != 0);
else
printf("Bad value for xlr.shtlb [%s]\n", hw_env);
freeenv(hw_env);
}
#endif
/*
* XLR supports splitting the 64 TLB entries across one, two or four
* threads (split mode). XLR also allows the 64 TLB entries to be shared
* across all threads in the core using a global flag (shared TLB mode).
* We will support 1/2/4 threads in split mode or shared mode.
*
*/
xlr_ncores = 1;
cpu_map = xlr_boot1_info.cpu_online_map;
#ifndef SMP /* Uniprocessor! */
if (cpu_map != 0x1) {
printf("WARNING: Starting uniprocessor kernel on cpumask [0x%lx]!\n"
"WARNING: Other CPUs will be unused.\n", (u_long)cpu_map);
cpu_map = 0x1;
}
#endif
core0_thr_mask = cpu_map & 0xf;
switch (core0_thr_mask) {
case 1:
xlr_threads_per_core = 1; break;
case 3:
xlr_threads_per_core = 2; break;
case 0xf:
xlr_threads_per_core = 4; break;
default:
goto unsupp;
}
/* Verify other cores CPU masks */
for (i = 1; i < XLR_MAX_CORES; i++) {
core_thr_mask = (cpu_map >> (i*4)) & 0xf;
if (core_thr_mask) {
if (core_thr_mask != core0_thr_mask)
goto unsupp;
xlr_ncores++;
}
}
xlr_hw_thread_mask = cpu_map;
/* setup hardware processor id to cpu id mapping */
for (i = 0; i< MAXCPU; i++)
xlr_cpuid_to_hwtid[i] =
xlr_hwtid_to_cpuid [i] = -1;
for (i = 0, k = 0; i < XLR_MAX_CORES; i++) {
if (((cpu_map >> (i*4)) & 0xf) == 0)
continue;
for (j = 0; j < xlr_threads_per_core; j++) {
xlr_cpuid_to_hwtid[k] = i*4 + j;
xlr_hwtid_to_cpuid[i*4 + j] = k;
k++;
}
}
/* setup for the startup core */
xlr_setup_mmu_split();
return;
unsupp:
printf("ERROR : Unsupported CPU mask [use 1,2 or 4 threads per core].\n"
"\tcore0 thread mask [%lx], boot cpu mask [%lx]\n"
"\tUsing default, 16 TLB entries per CPU, split mode\n",
(u_long)core0_thr_mask, (u_long)cpu_map);
panic("Invalid CPU mask - halting.\n");
return;
}
static void
xlr_set_boot_flags(void)
{
char *p;
p = getenv("bootflags");
if (p == NULL)
p = getenv("boot_flags"); /* old style */
if (p == NULL)
return;
for (; p && *p != '\0'; p++) {
switch (*p) {
case 'd':
case 'D':
boothowto |= RB_KDB;
break;
case 'g':
case 'G':
boothowto |= RB_GDB;
break;
case 'v':
case 'V':
boothowto |= RB_VERBOSE;
break;
case 's': /* single-user (default, supported for sanity) */
case 'S':
boothowto |= RB_SINGLE;
break;
default:
printf("Unrecognized boot flag '%c'.\n", *p);
break;
}
}
freeenv(p);
return;
}
extern uint32_t _end;
static void
mips_init(void)
{
init_param1();
init_param2(physmem);
mips_cpu_init();
cpuinfo.cache_coherent_dma = TRUE;
pmap_bootstrap();
#ifdef DDB
kdb_init();
if (boothowto & RB_KDB) {
2009-12-21 11:29:30 +00:00
kdb_enter("Boot flags requested debugger", NULL);
}
#endif
mips_proc0_init();
mutex_init();
}
u_int
platform_get_timecount(struct timecounter *tc __unused)
{
return (0xffffffffU - pic_timer_count32(PIC_CLOCK_TIMER));
}
static void
xlr_pic_init(void)
{
struct timecounter pic_timecounter = {
platform_get_timecount, /* get_timecount */
0, /* no poll_pps */
~0U, /* counter_mask */
PIC_TIMER_HZ, /* frequency */
"XLRPIC", /* name */
2000, /* quality (adjusted in code) */
};
xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET);
int i, irq;
write_c0_eimr64(0ULL);
mtx_init(&xlr_pic_lock, "pic", NULL, MTX_SPIN);
xlr_write_reg(mmio, PIC_CTRL, 0);
/* Initialize all IRT entries */
for (i = 0; i < PIC_NUM_IRTS; i++) {
irq = PIC_INTR_TO_IRQ(i);
/*
* Disable all IRTs. Set defaults (local scheduling, high
* polarity, level * triggered, and CPU irq)
*/
xlr_write_reg(mmio, PIC_IRT_1(i), (1 << 30) | (1 << 6) | irq);
/* Bind all PIC irqs to cpu 0 */
xlr_write_reg(mmio, PIC_IRT_0(i), 0x01);
}
/* Setup timer 7 of PIC as a timestamp, no interrupts */
pic_init_timer(PIC_CLOCK_TIMER);
pic_set_timer(PIC_CLOCK_TIMER, ~UINT64_C(0));
platform_timecounter = &pic_timecounter;
}
static void
xlr_mem_init(void)
{
struct xlr_boot1_mem_map *boot_map;
vm_size_t physsz = 0;
int i, j;
/* get physical memory info from boot loader */
boot_map = (struct xlr_boot1_mem_map *)
(unsigned long)xlr_boot1_info.psb_mem_map;
for (i = 0, j = 0; i < boot_map->num_entries; i++, j += 2) {
if (boot_map->physmem_map[i].type == BOOT1_MEM_RAM) {
if (j == 14) {
printf("*** ERROR *** memory map too large ***\n");
break;
}
if (j == 0) {
/* TODO FIXME */
/* start after kernel end */
phys_avail[0] = (vm_paddr_t)
MIPS_KSEG0_TO_PHYS(&_end) + 0x20000;
/* boot loader start */
/* HACK to Use bootloaders memory region */
/* TODO FIXME */
if (boot_map->physmem_map[0].size == 0x0c000000) {
boot_map->physmem_map[0].size = 0x0ff00000;
}
phys_avail[1] = boot_map->physmem_map[0].addr +
boot_map->physmem_map[0].size;
printf("First segment: addr:%p -> %p \n",
(void *)phys_avail[0],
(void *)phys_avail[1]);
} else {
/*
* Can't use this code yet, because most of the fixed allocations happen from
* the biggest physical area. If we have more than 512M memory the kernel will try
* to map from the second are which is not in KSEG0 and not mapped
*/
phys_avail[j] = (vm_paddr_t)
boot_map->physmem_map[i].addr;
phys_avail[j + 1] = phys_avail[j] +
boot_map->physmem_map[i].size;
if (phys_avail[j + 1] < phys_avail[j] ) {
/* Houston we have an issue. Memory is
* larger than possible. Its probably in
* 64 bit > 4Gig and we are in 32 bit mode.
*/
phys_avail[j + 1] = 0xfffff000;
printf("boot map size was %jx\n",
(intmax_t)boot_map->physmem_map[i].size);
boot_map->physmem_map[i].size = phys_avail[j + 1]
- phys_avail[j];
printf("reduced to %jx\n",
(intmax_t)boot_map->physmem_map[i].size);
}
printf("Next segment : addr:%p -> %p \n",
(void *)phys_avail[j],
(void *)phys_avail[j+1]);
}
physsz += boot_map->physmem_map[i].size;
}
}
/* FIXME XLR TODO */
phys_avail[j] = phys_avail[j + 1] = 0;
realmem = physmem = btoc(physsz);
}
void
platform_start(__register_t a0 __unused,
__register_t a1 __unused,
__register_t a2 __unused,
__register_t a3 __unused)
{
int i;
#ifdef SMP
uint32_t tmp;
void (*wakeup) (void *, void *, unsigned int);
#endif
/* XXX FIXME the code below is not 64 bit clean */
/* Save boot loader and other stuff from scratch regs */
xlr_boot1_info = *(struct boot1_info *)(intptr_t)(int)read_c0_register32(MIPS_COP_0_OSSCRATCH, 0);
cpu_mask_info = read_c0_register64(MIPS_COP_0_OSSCRATCH, 1);
xlr_online_cpumask = read_c0_register32(MIPS_COP_0_OSSCRATCH, 2);
xlr_run_mode = read_c0_register32(MIPS_COP_0_OSSCRATCH, 3);
xlr_argc = read_c0_register32(MIPS_COP_0_OSSCRATCH, 4);
/*
* argv and envp are passed in array of 32bit pointers
*/
xlr_argv = (int32_t *)(intptr_t)(int)read_c0_register32(MIPS_COP_0_OSSCRATCH, 5);
xlr_envp = (int32_t *)(intptr_t)(int)read_c0_register32(MIPS_COP_0_OSSCRATCH, 6);
/* TODO: Verify the magic number here */
/* FIXMELATER: xlr_boot1_info.magic_number */
/* Initialize pcpu stuff */
mips_pcpu0_init();
/* initialize console so that we have printf */
boothowto |= (RB_SERIAL | RB_MULTIPLE); /* Use multiple consoles */
/* clockrate used by delay, so initialize it here */
cpu_clock = xlr_boot1_info.cpu_frequency / 1000000;
/*
* Note the time counter on CPU0 runs not at system clock speed, but
* at PIC time counter speed (which is returned by
* platform_get_frequency(). Thus we do not use
* xlr_boot1_info.cpu_frequency here.
*/
mips_timer_early_init(xlr_boot1_info.cpu_frequency);
/* Init console please */
cninit();
init_static_kenv(boot1_env, sizeof(boot1_env));
printf("Environment (from %d args):\n", xlr_argc - 1);
if (xlr_argc == 1)
printf("\tNone\n");
for (i = 1; i < xlr_argc; i++) {
char *n, *arg;
arg = (char *)(intptr_t)xlr_argv[i];
printf("\t%s\n", arg);
n = strsep(&arg, "=");
if (arg == NULL)
setenv(n, "1");
else
setenv(n, arg);
}
xlr_set_boot_flags();
xlr_parse_mmu_options();
xlr_mem_init();
/* Set up hz, among others. */
mips_init();
#ifdef SMP
/*
* If thread 0 of any core is not available then mark whole core as
* not available
*/
tmp = xlr_boot1_info.cpu_online_map;
for (i = 4; i < MAXCPU; i += 4) {
if ((tmp & (0xf << i)) && !(tmp & (0x1 << i))) {
/*
* Oops.. thread 0 is not available. Disable whole
* core
*/
tmp = tmp & ~(0xf << i);
printf("WARNING: Core %d is disabled because thread 0"
" of this core is not enabled.\n", i / 4);
}
}
xlr_boot1_info.cpu_online_map = tmp;
/* Wakeup Other cpus, and put them in bsd park code. */
wakeup = ((void (*) (void *, void *, unsigned int))
(unsigned long)(xlr_boot1_info.wakeup));
printf("Waking up CPUs 0x%jx.\n",
(intmax_t)xlr_boot1_info.cpu_online_map & ~(0x1U));
if (xlr_boot1_info.cpu_online_map & ~(0x1U))
wakeup(mpwait, 0,
(unsigned int)xlr_boot1_info.cpu_online_map);
#endif
/* xlr specific post initialization */
/* initialize other on chip stuff */
xlr_board_info_setup();
xlr_msgring_config();
xlr_pic_init();
xlr_msgring_cpu_init();
mips_timer_init_params(xlr_boot1_info.cpu_frequency, 0);
printf("Platform specific startup now completes\n");
}
void
platform_cpu_init()
{
}
void
platform_identify(void)
{
printf("Board [%d:%d], processor 0x%08x\n", (int)xlr_boot1_info.board_major_version,
(int)xlr_boot1_info.board_minor_version, mips_rd_prid());
}
/*
* XXX Maybe return the state of the watchdog in enter, and pass it to
* exit? Like spl().
*/
void
platform_trap_enter(void)
{
}
void
platform_reset(void)
{
xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_GPIO_OFFSET);
/* write 1 to GPIO software reset register */
xlr_write_reg(mmio, 8, 1);
}
void
platform_trap_exit(void)
{
}
#ifdef SMP
int xlr_ap_release[MAXCPU];
int
platform_start_ap(int cpuid)
{
int hwid = xlr_cpuid_to_hwtid[cpuid];
if (xlr_boot1_info.cpu_online_map & (1<<hwid)) {
/*
* other cpus are enabled by the boot loader and they will be
* already looping in mpwait, release them
*/
atomic_store_rel_int(&xlr_ap_release[hwid], 1);
return (0);
} else
return (-1);
}
void
platform_init_ap(int cpuid)
{
uint32_t stat;
/* The first thread has to setup the core MMU split */
if (xlr_thr_id() == 0)
xlr_setup_mmu_split();
/* Setup interrupts for secondary CPUs here */
stat = mips_rd_status();
KASSERT((stat & MIPS_SR_INT_IE) == 0,
("Interrupts enabled in %s!", __func__));
stat |= MIPS_SR_COP_2_BIT | MIPS_SR_COP_0_BIT;
mips_wr_status(stat);
write_c0_eimr64(0ULL);
xlr_enable_irq(IRQ_IPI);
xlr_enable_irq(IRQ_TIMER);
if (xlr_thr_id() == 0) {
xlr_msgring_cpu_init();
xlr_enable_irq(IRQ_MSGRING);
}
return;
}
int
platform_ipi_intrnum(void)
{
return (IRQ_IPI);
}
void
platform_ipi_send(int cpuid)
{
pic_send_ipi(xlr_cpuid_to_hwtid[cpuid], platform_ipi_intrnum());
}
void
platform_ipi_clear(void)
{
}
int
platform_processor_id(void)
{
return (xlr_hwtid_to_cpuid[xlr_cpu_id()]);
}
int
platform_num_processors(void)
{
return (xlr_ncores * xlr_threads_per_core);
}
struct cpu_group *
platform_smp_topo()
{
return (smp_topo_2level(CG_SHARE_L2, xlr_ncores, CG_SHARE_L1,
xlr_threads_per_core, CG_FLAG_THREAD));
}
#endif