1354 lines
34 KiB
C
Raw Normal View History

/* $NetBSD: if_admsw.c,v 1.3 2007/04/22 19:26:25 dyoung Exp $ */
/*-
* Copyright (c) 2007 Ruslan Ermilov and Vsevolod Lobko.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* 3. The names of the authors may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Device driver for Alchemy Semiconductor Au1x00 Ethernet Media
* Access Controller.
*
* TODO:
*
* Better Rx buffer management; we want to get new Rx buffers
* to the chip more quickly than we currently do.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_mib.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#include <net/bpf.h>
#include <net/bpfdesc.h>
#include <mips/adm5120/adm5120reg.h>
#include <mips/adm5120/if_admswreg.h>
#include <mips/adm5120/if_admswvar.h>
/* TODO: add locking */
#define ADMSW_LOCK(sc) do {} while(0);
#define ADMSW_UNLOCK(sc) do {} while(0);
static uint8_t vlan_matrix[SW_DEVS] = {
(1 << 6) | (1 << 0), /* CPU + port0 */
(1 << 6) | (1 << 1), /* CPU + port1 */
(1 << 6) | (1 << 2), /* CPU + port2 */
(1 << 6) | (1 << 3), /* CPU + port3 */
(1 << 6) | (1 << 4), /* CPU + port4 */
(1 << 6) | (1 << 5), /* CPU + port5 */
};
/* ifnet entry points */
static void admsw_start(struct ifnet *);
static void admsw_watchdog(void *);
static int admsw_ioctl(struct ifnet *, u_long, caddr_t);
static void admsw_init(void *);
static void admsw_stop(struct ifnet *, int);
static void admsw_reset(struct admsw_softc *);
static void admsw_set_filter(struct admsw_softc *);
static void admsw_txintr(struct admsw_softc *, int);
static void admsw_rxintr(struct admsw_softc *, int);
static int admsw_add_rxbuf(struct admsw_softc *, int, int);
#define admsw_add_rxhbuf(sc, idx) admsw_add_rxbuf(sc, idx, 1)
#define admsw_add_rxlbuf(sc, idx) admsw_add_rxbuf(sc, idx, 0)
static int admsw_mediachange(struct ifnet *);
static void admsw_mediastatus(struct ifnet *, struct ifmediareq *);
static int admsw_intr(void *);
/* bus entry points */
static int admsw_probe(device_t dev);
static int admsw_attach(device_t dev);
static int admsw_detach(device_t dev);
static int admsw_shutdown(device_t dev);
static void
admsw_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
uint32_t *addr;
if (error)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
addr = arg;
*addr = segs->ds_addr;
}
static void
admsw_rxbuf_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct admsw_descsoft *ds;
if (error)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
ds = arg;
ds->ds_nsegs = nseg;
ds->ds_addr[0] = segs[0].ds_addr;
ds->ds_len[0] = segs[0].ds_len;
}
static void
admsw_mbuf_map_addr(void *arg, bus_dma_segment_t *segs, int nseg,
bus_size_t mapsize, int error)
{
struct admsw_descsoft *ds;
if (error)
return;
ds = arg;
if((nseg != 1) && (nseg != 2))
panic("%s: nseg == %d\n", __func__, nseg);
ds->ds_nsegs = nseg;
ds->ds_addr[0] = segs[0].ds_addr;
ds->ds_len[0] = segs[0].ds_len;
if(nseg > 1) {
ds->ds_addr[1] = segs[1].ds_addr;
ds->ds_len[1] = segs[1].ds_len;
}
}
static int
admsw_probe(device_t dev)
{
device_set_desc(dev, "ADM5120 Switch Engine");
return (0);
}
#define REG_READ(o) bus_read_4((sc)->mem_res, (o))
#define REG_WRITE(o,v) bus_write_4((sc)->mem_res, (o),(v))
static void
admsw_init_bufs(struct admsw_softc *sc)
{
int i;
struct admsw_desc *desc;
for (i = 0; i < ADMSW_NTXHDESC; i++) {
if (sc->sc_txhsoft[i].ds_mbuf != NULL) {
m_freem(sc->sc_txhsoft[i].ds_mbuf);
sc->sc_txhsoft[i].ds_mbuf = NULL;
}
desc = &sc->sc_txhdescs[i];
desc->data = 0;
desc->cntl = 0;
desc->len = MAC_BUFLEN;
desc->status = 0;
ADMSW_CDTXHSYNC(sc, i,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
sc->sc_txhdescs[ADMSW_NTXHDESC - 1].data |= ADM5120_DMA_RINGEND;
ADMSW_CDTXHSYNC(sc, ADMSW_NTXHDESC - 1,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
for (i = 0; i < ADMSW_NRXHDESC; i++) {
if (sc->sc_rxhsoft[i].ds_mbuf == NULL) {
if (admsw_add_rxhbuf(sc, i) != 0)
panic("admsw_init_bufs\n");
} else
ADMSW_INIT_RXHDESC(sc, i);
}
for (i = 0; i < ADMSW_NTXLDESC; i++) {
if (sc->sc_txlsoft[i].ds_mbuf != NULL) {
m_freem(sc->sc_txlsoft[i].ds_mbuf);
sc->sc_txlsoft[i].ds_mbuf = NULL;
}
desc = &sc->sc_txldescs[i];
desc->data = 0;
desc->cntl = 0;
desc->len = MAC_BUFLEN;
desc->status = 0;
ADMSW_CDTXLSYNC(sc, i,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
sc->sc_txldescs[ADMSW_NTXLDESC - 1].data |= ADM5120_DMA_RINGEND;
ADMSW_CDTXLSYNC(sc, ADMSW_NTXLDESC - 1,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
for (i = 0; i < ADMSW_NRXLDESC; i++) {
if (sc->sc_rxlsoft[i].ds_mbuf == NULL) {
if (admsw_add_rxlbuf(sc, i) != 0)
panic("admsw_init_bufs\n");
} else
ADMSW_INIT_RXLDESC(sc, i);
}
REG_WRITE(SEND_HBADDR_REG, ADMSW_CDTXHADDR(sc, 0));
REG_WRITE(SEND_LBADDR_REG, ADMSW_CDTXLADDR(sc, 0));
REG_WRITE(RECV_HBADDR_REG, ADMSW_CDRXHADDR(sc, 0));
REG_WRITE(RECV_LBADDR_REG, ADMSW_CDRXLADDR(sc, 0));
sc->sc_txfree = ADMSW_NTXLDESC;
sc->sc_txnext = 0;
sc->sc_txdirty = 0;
sc->sc_rxptr = 0;
}
static void
admsw_setvlan(struct admsw_softc *sc, char matrix[6])
{
uint32_t i;
i = matrix[0] + (matrix[1] << 8) + (matrix[2] << 16) + (matrix[3] << 24);
REG_WRITE(VLAN_G1_REG, i);
i = matrix[4] + (matrix[5] << 8);
REG_WRITE(VLAN_G2_REG, i);
}
static void
admsw_reset(struct admsw_softc *sc)
{
uint32_t wdog1;
int i;
REG_WRITE(PORT_CONF0_REG,
REG_READ(PORT_CONF0_REG) | PORT_CONF0_DP_MASK);
REG_WRITE(CPUP_CONF_REG,
REG_READ(CPUP_CONF_REG) | CPUP_CONF_DCPUP);
/* Wait for DMA to complete. Overkill. In 3ms, we can
* send at least two entire 1500-byte packets at 10 Mb/s.
*/
DELAY(3000);
/* The datasheet recommends that we move all PHYs to reset
* state prior to software reset.
*/
REG_WRITE(PHY_CNTL2_REG,
REG_READ(PHY_CNTL2_REG) & ~PHY_CNTL2_PHYR_MASK);
/* Reset the switch. */
REG_WRITE(ADMSW_SW_RES, 0x1);
DELAY(100 * 1000);
REG_WRITE(ADMSW_BOOT_DONE, ADMSW_BOOT_DONE_BO);
/* begin old code */
REG_WRITE(CPUP_CONF_REG,
CPUP_CONF_DCPUP | CPUP_CONF_CRCP | CPUP_CONF_DUNP_MASK |
CPUP_CONF_DMCP_MASK);
REG_WRITE(PORT_CONF0_REG, PORT_CONF0_EMCP_MASK | PORT_CONF0_EMBP_MASK);
REG_WRITE(PHY_CNTL2_REG,
REG_READ(PHY_CNTL2_REG) | PHY_CNTL2_ANE_MASK | PHY_CNTL2_PHYR_MASK |
PHY_CNTL2_AMDIX_MASK);
REG_WRITE(PHY_CNTL3_REG, REG_READ(PHY_CNTL3_REG) | PHY_CNTL3_RNT);
REG_WRITE(ADMSW_INT_MASK, INT_MASK);
REG_WRITE(ADMSW_INT_ST, INT_MASK);
/*
* While in DDB, we stop servicing interrupts, RX ring
* fills up and when free block counter falls behind FC
* threshold, the switch starts to emit 802.3x PAUSE
* frames. This can upset peer switches.
*
* Stop this from happening by disabling FC and D2
* thresholds.
*/
REG_WRITE(FC_TH_REG,
REG_READ(FC_TH_REG) & ~(FC_TH_FCS_MASK | FC_TH_D2S_MASK));
admsw_setvlan(sc, vlan_matrix);
for (i = 0; i < SW_DEVS; i++) {
REG_WRITE(MAC_WT1_REG,
sc->sc_enaddr[2] |
(sc->sc_enaddr[3]<<8) |
(sc->sc_enaddr[4]<<16) |
((sc->sc_enaddr[5]+i)<<24));
REG_WRITE(MAC_WT0_REG, (i<<MAC_WT0_VLANID_SHIFT) |
(sc->sc_enaddr[0]<<16) | (sc->sc_enaddr[1]<<24) |
MAC_WT0_WRITE | MAC_WT0_VLANID_EN);
while (!(REG_READ(MAC_WT0_REG) & MAC_WT0_WRITE_DONE));
}
wdog1 = REG_READ(ADM5120_WDOG1);
REG_WRITE(ADM5120_WDOG1, wdog1 & ~ADM5120_WDOG1_WDE);
}
static int
admsw_attach(device_t dev)
{
uint8_t enaddr[ETHER_ADDR_LEN];
struct admsw_softc *sc = (struct admsw_softc *) device_get_softc(dev);
struct ifnet *ifp;
int error, i, rid;
sc->sc_dev = dev;
device_printf(dev, "ADM5120 Switch Engine, %d ports\n", SW_DEVS);
sc->ndevs = 0;
/* XXXMIPS: fix it */
enaddr[0] = 0x00;
enaddr[1] = 0x0C;
enaddr[2] = 0x42;
enaddr[3] = 0x07;
enaddr[4] = 0xB2;
enaddr[5] = 0x4E;
memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
device_printf(sc->sc_dev, "base Ethernet address %s\n",
ether_sprintf(enaddr));
callout_init(&sc->sc_watchdog, 1);
rid = 0;
if ((sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE)) == NULL) {
device_printf(dev, "unable to allocate memory resource\n");
return (ENXIO);
}
/* Hook up the interrupt handler. */
rid = 0;
if ((sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE)) == NULL) {
device_printf(dev, "unable to allocate IRQ resource\n");
return (ENXIO);
}
if ((error = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET,
admsw_intr, NULL, sc, &sc->sc_ih)) != 0) {
device_printf(dev,
"WARNING: unable to register interrupt handler\n");
return (error);
}
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
if ((error = bus_dma_tag_create(NULL, 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
NULL, NULL, sizeof(struct admsw_control_data), 1,
sizeof(struct admsw_control_data), 0, NULL, NULL,
&sc->sc_control_dmat)) != 0) {
device_printf(sc->sc_dev,
"unable to create control data DMA map, error = %d\n",
error);
return (error);
}
if ((error = bus_dmamem_alloc(sc->sc_control_dmat,
(void **)&sc->sc_control_data, BUS_DMA_NOWAIT,
&sc->sc_cddmamap)) != 0) {
device_printf(sc->sc_dev,
"unable to allocate control data, error = %d\n", error);
return (error);
}
if ((error = bus_dmamap_load(sc->sc_control_dmat, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct admsw_control_data),
admsw_dma_map_addr, &sc->sc_cddma, 0)) != 0) {
device_printf(sc->sc_dev,
"unable to load control data DMA map, error = %d\n", error);
return (error);
}
/*
* Create the transmit buffer DMA maps.
*/
if ((error = bus_dma_tag_create(NULL, 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL,
&sc->sc_bufs_dmat)) != 0) {
device_printf(sc->sc_dev,
"unable to create control data DMA map, error = %d\n",
error);
return (error);
}
for (i = 0; i < ADMSW_NTXHDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_bufs_dmat, 0,
&sc->sc_txhsoft[i].ds_dmamap)) != 0) {
device_printf(sc->sc_dev,
"unable to create txh DMA map %d, error = %d\n",
i, error);
return (error);
}
sc->sc_txhsoft[i].ds_mbuf = NULL;
}
for (i = 0; i < ADMSW_NTXLDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_bufs_dmat, 0,
&sc->sc_txlsoft[i].ds_dmamap)) != 0) {
device_printf(sc->sc_dev,
"unable to create txl DMA map %d, error = %d\n",
i, error);
return (error);
}
sc->sc_txlsoft[i].ds_mbuf = NULL;
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < ADMSW_NRXHDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_bufs_dmat, 0,
&sc->sc_rxhsoft[i].ds_dmamap)) != 0) {
device_printf(sc->sc_dev,
"unable to create rxh DMA map %d, error = %d\n",
i, error);
return (error);
}
sc->sc_rxhsoft[i].ds_mbuf = NULL;
}
for (i = 0; i < ADMSW_NRXLDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_bufs_dmat, 0,
&sc->sc_rxlsoft[i].ds_dmamap)) != 0) {
device_printf(sc->sc_dev,
"unable to create rxl DMA map %d, error = %d\n",
i, error);
return (error);
}
sc->sc_rxlsoft[i].ds_mbuf = NULL;
}
admsw_init_bufs(sc);
admsw_reset(sc);
for (i = 0; i < SW_DEVS; i++) {
ifmedia_init(&sc->sc_ifmedia[i], 0, admsw_mediachange,
admsw_mediastatus);
ifmedia_add(&sc->sc_ifmedia[i], IFM_ETHER|IFM_10_T, 0, NULL);
ifmedia_add(&sc->sc_ifmedia[i],
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
ifmedia_add(&sc->sc_ifmedia[i], IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(&sc->sc_ifmedia[i],
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
ifmedia_add(&sc->sc_ifmedia[i], IFM_ETHER|IFM_AUTO, 0, NULL);
ifmedia_set(&sc->sc_ifmedia[i], IFM_ETHER|IFM_AUTO);
ifp = sc->sc_ifnet[i] = if_alloc(IFT_ETHER);
/* Setup interface parameters */
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), i);
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = admsw_ioctl;
ifp->if_output = ether_output;
ifp->if_start = admsw_start;
ifp->if_init = admsw_init;
ifp->if_mtu = ETHERMTU;
ifp->if_baudrate = IF_Mbps(100);
IFQ_SET_MAXLEN(&ifp->if_snd, max(ADMSW_NTXLDESC, ifqmaxlen));
ifp->if_snd.ifq_drv_maxlen = max(ADMSW_NTXLDESC, ifqmaxlen);
IFQ_SET_READY(&ifp->if_snd);
ifp->if_capabilities |= IFCAP_VLAN_MTU;
/* Attach the interface. */
ether_ifattach(ifp, enaddr);
enaddr[5]++;
}
/* XXX: admwdog_attach(sc); */
/* leave interrupts and cpu port disabled */
return (0);
}
static int
admsw_detach(device_t dev)
{
printf("TODO: DETACH\n");
return (0);
}
/*
* admsw_shutdown:
*
* Make sure the interface is stopped at reboot time.
*/
static int
admsw_shutdown(device_t dev)
{
struct admsw_softc *sc;
int i;
sc = device_get_softc(dev);
for (i = 0; i < SW_DEVS; i++)
admsw_stop(sc->sc_ifnet[i], 1);
return (0);
}
/*
* admsw_start: [ifnet interface function]
*
* Start packet transmission on the interface.
*/
static void
admsw_start(struct ifnet *ifp)
{
struct admsw_softc *sc = ifp->if_softc;
struct mbuf *m0, *m;
struct admsw_descsoft *ds;
struct admsw_desc *desc;
bus_dmamap_t dmamap;
struct ether_header *eh;
int error, nexttx, len, i;
static int vlan = 0;
/*
* Loop through the send queues, setting up transmit descriptors
* unitl we drain the queues, or use up all available transmit
* descriptors.
*/
for (;;) {
vlan++;
if (vlan == SW_DEVS)
vlan = 0;
i = vlan;
for (;;) {
ifp = sc->sc_ifnet[i];
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE))
== IFF_DRV_RUNNING) {
/* Grab a packet off the queue. */
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 != NULL)
break;
}
i++;
if (i == SW_DEVS)
i = 0;
if (i == vlan)
return;
}
vlan = i;
m = NULL;
/* Get a spare descriptor. */
if (sc->sc_txfree == 0) {
/* No more slots left; notify upper layer. */
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
nexttx = sc->sc_txnext;
desc = &sc->sc_txldescs[nexttx];
ds = &sc->sc_txlsoft[nexttx];
dmamap = ds->ds_dmamap;
/*
* Load the DMA map. If this fails, the packet either
* didn't fit in the alloted number of segments, or we
* were short on resources. In this case, we'll copy
* and try again.
*/
if (m0->m_pkthdr.len < ETHER_MIN_LEN ||
bus_dmamap_load_mbuf(sc->sc_bufs_dmat, dmamap, m0,
admsw_mbuf_map_addr, ds, BUS_DMA_NOWAIT) != 0) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
device_printf(sc->sc_dev,
"unable to allocate Tx mbuf\n");
break;
}
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
device_printf(sc->sc_dev,
"unable to allocate Tx cluster\n");
m_freem(m);
break;
}
}
m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
if (m->m_pkthdr.len < ETHER_MIN_LEN) {
if (M_TRAILINGSPACE(m) < ETHER_MIN_LEN - m->m_pkthdr.len)
panic("admsw_start: M_TRAILINGSPACE\n");
memset(mtod(m, uint8_t *) + m->m_pkthdr.len, 0,
ETHER_MIN_LEN - ETHER_CRC_LEN - m->m_pkthdr.len);
m->m_pkthdr.len = m->m_len = ETHER_MIN_LEN;
}
error = bus_dmamap_load_mbuf(sc->sc_bufs_dmat,
dmamap, m, admsw_mbuf_map_addr, ds, BUS_DMA_NOWAIT);
if (error) {
device_printf(sc->sc_dev,
"unable to load Tx buffer, error = %d\n",
error);
break;
}
}
if (m != NULL) {
m_freem(m0);
m0 = m;
}
/*
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
*/
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_bufs_dmat, dmamap, BUS_DMASYNC_PREWRITE);
if (ds->ds_nsegs != 1 && ds->ds_nsegs != 2)
panic("admsw_start: nsegs == %d\n", ds->ds_nsegs);
desc->data = ds->ds_addr[0];
desc->len = len = ds->ds_len[0];
if (ds->ds_nsegs > 1) {
len += ds->ds_len[1];
desc->cntl = ds->ds_addr[1] | ADM5120_DMA_BUF2ENABLE;
} else
desc->cntl = 0;
desc->status = (len << ADM5120_DMA_LENSHIFT) | (1 << vlan);
eh = mtod(m0, struct ether_header *);
if (ntohs(eh->ether_type) == ETHERTYPE_IP &&
m0->m_pkthdr.csum_flags & CSUM_IP)
desc->status |= ADM5120_DMA_CSUM;
if (nexttx == ADMSW_NTXLDESC - 1)
desc->data |= ADM5120_DMA_RINGEND;
desc->data |= ADM5120_DMA_OWN;
/* Sync the descriptor. */
ADMSW_CDTXLSYNC(sc, nexttx,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
REG_WRITE(SEND_TRIG_REG, 1);
/* printf("send slot %d\n",nexttx); */
/*
* Store a pointer to the packet so we can free it later.
*/
ds->ds_mbuf = m0;
/* Advance the Tx pointer. */
sc->sc_txfree--;
sc->sc_txnext = ADMSW_NEXTTXL(nexttx);
/* Pass the packet to any BPF listeners. */
BPF_MTAP(ifp, m0);
/* Set a watchdog timer in case the chip flakes out. */
sc->sc_timer = 5;
}
}
/*
* admsw_watchdog: [ifnet interface function]
*
* Watchdog timer handler.
*/
static void
admsw_watchdog(void *arg)
{
struct admsw_softc *sc = arg;
struct ifnet *ifp;
int vlan;
callout_reset(&sc->sc_watchdog, hz, admsw_watchdog, sc);
if (sc->sc_timer == 0 || --sc->sc_timer > 0)
return;
/* Check if an interrupt was lost. */
if (sc->sc_txfree == ADMSW_NTXLDESC) {
device_printf(sc->sc_dev, "watchdog false alarm\n");
return;
}
if (sc->sc_timer != 0)
device_printf(sc->sc_dev, "watchdog timer is %d!\n",
sc->sc_timer);
admsw_txintr(sc, 0);
if (sc->sc_txfree == ADMSW_NTXLDESC) {
device_printf(sc->sc_dev, "tx IRQ lost (queue empty)\n");
return;
}
if (sc->sc_timer != 0) {
device_printf(sc->sc_dev, "tx IRQ lost (timer recharged)\n");
return;
}
device_printf(sc->sc_dev, "device timeout, txfree = %d\n",
sc->sc_txfree);
for (vlan = 0; vlan < SW_DEVS; vlan++)
admsw_stop(sc->sc_ifnet[vlan], 0);
admsw_init(sc);
ifp = sc->sc_ifnet[0];
/* Try to get more packets going. */
admsw_start(ifp);
}
/*
* admsw_ioctl: [ifnet interface function]
*
* Handle control requests from the operator.
*/
static int
admsw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct admsw_softc *sc = ifp->if_softc;
struct ifdrv *ifd;
int error, port;
ADMSW_LOCK(sc);
switch (cmd) {
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
port = 0;
while(port < SW_DEVS)
if(ifp == sc->sc_ifnet[port])
break;
else
port++;
if (port >= SW_DEVS)
error = EOPNOTSUPP;
else
error = ifmedia_ioctl(ifp, (struct ifreq *)data,
&sc->sc_ifmedia[port], cmd);
break;
case SIOCGDRVSPEC:
case SIOCSDRVSPEC:
ifd = (struct ifdrv *) data;
if (ifd->ifd_cmd != 0 || ifd->ifd_len != sizeof(vlan_matrix)) {
error = EINVAL;
break;
}
if (cmd == SIOCGDRVSPEC) {
error = copyout(vlan_matrix, ifd->ifd_data,
sizeof(vlan_matrix));
} else {
error = copyin(ifd->ifd_data, vlan_matrix,
sizeof(vlan_matrix));
admsw_setvlan(sc, vlan_matrix);
}
break;
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
admsw_set_filter(sc);
error = 0;
}
break;
}
/* Try to get more packets going. */
admsw_start(ifp);
ADMSW_UNLOCK(sc);
return (error);
}
/*
* admsw_intr:
*
* Interrupt service routine.
*/
static int
admsw_intr(void *arg)
{
struct admsw_softc *sc = arg;
uint32_t pending;
pending = REG_READ(ADMSW_INT_ST);
REG_WRITE(ADMSW_INT_ST, pending);
if (sc->ndevs == 0)
return (FILTER_STRAY);
if ((pending & ADMSW_INTR_RHD) != 0)
admsw_rxintr(sc, 1);
if ((pending & ADMSW_INTR_RLD) != 0)
admsw_rxintr(sc, 0);
if ((pending & ADMSW_INTR_SHD) != 0)
admsw_txintr(sc, 1);
if ((pending & ADMSW_INTR_SLD) != 0)
admsw_txintr(sc, 0);
return (FILTER_HANDLED);
}
/*
* admsw_txintr:
*
* Helper; handle transmit interrupts.
*/
static void
admsw_txintr(struct admsw_softc *sc, int prio)
{
struct ifnet *ifp;
struct admsw_desc *desc;
struct admsw_descsoft *ds;
int i, vlan;
int gotone = 0;
/* printf("txintr: txdirty: %d, txfree: %d\n",sc->sc_txdirty, sc->sc_txfree); */
for (i = sc->sc_txdirty; sc->sc_txfree != ADMSW_NTXLDESC;
i = ADMSW_NEXTTXL(i)) {
ADMSW_CDTXLSYNC(sc, i,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
desc = &sc->sc_txldescs[i];
ds = &sc->sc_txlsoft[i];
if (desc->data & ADM5120_DMA_OWN) {
ADMSW_CDTXLSYNC(sc, i,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
break;
}
bus_dmamap_sync(sc->sc_bufs_dmat, ds->ds_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_bufs_dmat, ds->ds_dmamap);
m_freem(ds->ds_mbuf);
ds->ds_mbuf = NULL;
vlan = ffs(desc->status & 0x3f) - 1;
if (vlan < 0 || vlan >= SW_DEVS)
panic("admsw_txintr: bad vlan\n");
ifp = sc->sc_ifnet[vlan];
gotone = 1;
/* printf("clear tx slot %d\n",i); */
ifp->if_opackets++;
sc->sc_txfree++;
}
if (gotone) {
sc->sc_txdirty = i;
for (vlan = 0; vlan < SW_DEVS; vlan++)
sc->sc_ifnet[vlan]->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp = sc->sc_ifnet[0];
/* Try to queue more packets. */
admsw_start(ifp);
/*
* If there are no more pending transmissions,
* cancel the watchdog timer.
*/
if (sc->sc_txfree == ADMSW_NTXLDESC)
sc->sc_timer = 0;
}
/* printf("txintr end: txdirty: %d, txfree: %d\n",sc->sc_txdirty, sc->sc_txfree); */
}
/*
* admsw_rxintr:
*
* Helper; handle receive interrupts.
*/
static void
admsw_rxintr(struct admsw_softc *sc, int high)
{
struct ifnet *ifp;
struct admsw_descsoft *ds;
struct mbuf *m;
uint32_t stat;
int i, len, port, vlan;
/* printf("rxintr\n"); */
if (high)
panic("admsw_rxintr: high priority packet\n");
#if 1
ADMSW_CDRXLSYNC(sc, sc->sc_rxptr,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
if ((sc->sc_rxldescs[sc->sc_rxptr].data & ADM5120_DMA_OWN) == 0)
ADMSW_CDRXLSYNC(sc, sc->sc_rxptr,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
else {
i = sc->sc_rxptr;
do {
ADMSW_CDRXLSYNC(sc, i,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
i = ADMSW_NEXTRXL(i);
/* the ring is empty, just return. */
if (i == sc->sc_rxptr)
return;
ADMSW_CDRXLSYNC(sc, i,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
} while (sc->sc_rxldescs[i].data & ADM5120_DMA_OWN);
ADMSW_CDRXLSYNC(sc, i,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
ADMSW_CDRXLSYNC(sc, sc->sc_rxptr,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
if ((sc->sc_rxldescs[sc->sc_rxptr].data & ADM5120_DMA_OWN) == 0)
ADMSW_CDRXLSYNC(sc, sc->sc_rxptr,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
else {
ADMSW_CDRXLSYNC(sc, sc->sc_rxptr,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* We've fallen behind the chip: catch it. */
#if 0
device_printf(sc->sc_dev,
"RX ring resync, base=%x, work=%x, %d -> %d\n",
REG_READ(RECV_LBADDR_REG),
REG_READ(RECV_LWADDR_REG), sc->sc_rxptr, i);
#endif
sc->sc_rxptr = i;
/* ADMSW_EVCNT_INCR(&sc->sc_ev_rxsync); */
}
}
#endif
for (i = sc->sc_rxptr;; i = ADMSW_NEXTRXL(i)) {
ds = &sc->sc_rxlsoft[i];
ADMSW_CDRXLSYNC(sc, i,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
if (sc->sc_rxldescs[i].data & ADM5120_DMA_OWN) {
ADMSW_CDRXLSYNC(sc, i,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
break;
}
/* printf("process slot %d\n",i); */
bus_dmamap_sync(sc->sc_bufs_dmat, ds->ds_dmamap,
BUS_DMASYNC_POSTREAD);
stat = sc->sc_rxldescs[i].status;
len = (stat & ADM5120_DMA_LEN) >> ADM5120_DMA_LENSHIFT;
len -= ETHER_CRC_LEN;
port = (stat & ADM5120_DMA_PORTID) >> ADM5120_DMA_PORTSHIFT;
for (vlan = 0; vlan < SW_DEVS; vlan++)
if ((1 << port) & vlan_matrix[vlan])
break;
if (vlan == SW_DEVS)
vlan = 0;
ifp = sc->sc_ifnet[vlan];
m = ds->ds_mbuf;
if (admsw_add_rxlbuf(sc, i) != 0) {
ifp->if_ierrors++;
ADMSW_INIT_RXLDESC(sc, i);
bus_dmamap_sync(sc->sc_bufs_dmat, ds->ds_dmamap,
BUS_DMASYNC_PREREAD);
continue;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
if ((stat & ADM5120_DMA_TYPE) == ADM5120_DMA_TYPE_IP) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if (!(stat & ADM5120_DMA_CSUMFAIL))
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
}
BPF_MTAP(ifp, m);
/* Pass it on. */
(*ifp->if_input)(ifp, m);
ifp->if_ipackets++;
}
/* Update the receive pointer. */
sc->sc_rxptr = i;
}
/*
* admsw_init: [ifnet interface function]
*
* Initialize the interface.
*/
static void
admsw_init(void *xsc)
{
struct admsw_softc *sc = xsc;
struct ifnet *ifp;
int i;
for (i = 0; i < SW_DEVS; i++) {
ifp = sc->sc_ifnet[i];
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
if (sc->ndevs == 0) {
admsw_init_bufs(sc);
admsw_reset(sc);
REG_WRITE(CPUP_CONF_REG,
CPUP_CONF_CRCP | CPUP_CONF_DUNP_MASK |
CPUP_CONF_DMCP_MASK);
/* clear all pending interrupts */
REG_WRITE(ADMSW_INT_ST, INT_MASK);
/* enable needed interrupts */
REG_WRITE(ADMSW_INT_MASK,
REG_READ(ADMSW_INT_MASK) &
~(ADMSW_INTR_SHD | ADMSW_INTR_SLD |
ADMSW_INTR_RHD | ADMSW_INTR_RLD |
ADMSW_INTR_HDF | ADMSW_INTR_LDF));
callout_reset(&sc->sc_watchdog, hz,
admsw_watchdog, sc);
}
sc->ndevs++;
}
/* mark iface as running */
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
/* Set the receive filter. */
admsw_set_filter(sc);
}
/*
* admsw_stop: [ifnet interface function]
*
* Stop transmission on the interface.
*/
static void
admsw_stop(struct ifnet *ifp, int disable)
{
struct admsw_softc *sc = ifp->if_softc;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
return;
if (--sc->ndevs == 0) {
/* printf("debug: de-initializing hardware\n"); */
/* disable cpu port */
REG_WRITE(CPUP_CONF_REG,
CPUP_CONF_DCPUP | CPUP_CONF_CRCP |
CPUP_CONF_DUNP_MASK | CPUP_CONF_DMCP_MASK);
/* XXX We should disable, then clear? --dyoung */
/* clear all pending interrupts */
REG_WRITE(ADMSW_INT_ST, INT_MASK);
/* disable interrupts */
REG_WRITE(ADMSW_INT_MASK, INT_MASK);
/* Cancel the watchdog timer. */
sc->sc_timer = 0;
callout_stop(&sc->sc_watchdog);
}
/* Mark the interface as down. */
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
return;
}
/*
* admsw_set_filter:
*
* Set up the receive filter.
*/
static void
admsw_set_filter(struct admsw_softc *sc)
{
int i;
uint32_t allmc, anymc, conf, promisc;
struct ifnet *ifp;
struct ifmultiaddr *ifma;
/* Find which ports should be operated in promisc mode. */
allmc = anymc = promisc = 0;
for (i = 0; i < SW_DEVS; i++) {
ifp = sc->sc_ifnet[i];
if (ifp->if_flags & IFF_PROMISC)
promisc |= vlan_matrix[i];
ifp->if_flags &= ~IFF_ALLMULTI;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
{
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
anymc |= vlan_matrix[i];
}
if_maddr_runlock(ifp);
}
conf = REG_READ(CPUP_CONF_REG);
/* 1 Disable forwarding of unknown & multicast packets to
* CPU on all ports.
* 2 Enable forwarding of unknown & multicast packets to
* CPU on ports where IFF_PROMISC or IFF_ALLMULTI is set.
*/
conf |= CPUP_CONF_DUNP_MASK | CPUP_CONF_DMCP_MASK;
/* Enable forwarding of unknown packets to CPU on selected ports. */
conf ^= ((promisc << CPUP_CONF_DUNP_SHIFT) & CPUP_CONF_DUNP_MASK);
conf ^= ((allmc << CPUP_CONF_DMCP_SHIFT) & CPUP_CONF_DMCP_MASK);
conf ^= ((anymc << CPUP_CONF_DMCP_SHIFT) & CPUP_CONF_DMCP_MASK);
REG_WRITE(CPUP_CONF_REG, conf);
}
/*
* admsw_add_rxbuf:
*
* Add a receive buffer to the indicated descriptor.
*/
int
admsw_add_rxbuf(struct admsw_softc *sc, int idx, int high)
{
struct admsw_descsoft *ds;
struct mbuf *m;
int error;
if (high)
ds = &sc->sc_rxhsoft[idx];
else
ds = &sc->sc_rxlsoft[idx];
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
if (ds->ds_mbuf != NULL)
bus_dmamap_unload(sc->sc_bufs_dmat, ds->ds_dmamap);
ds->ds_mbuf = m;
error = bus_dmamap_load(sc->sc_bufs_dmat, ds->ds_dmamap,
m->m_ext.ext_buf, m->m_ext.ext_size, admsw_rxbuf_map_addr,
ds, BUS_DMA_NOWAIT);
if (error) {
device_printf(sc->sc_dev,
"can't load rx DMA map %d, error = %d\n", idx, error);
panic("admsw_add_rxbuf"); /* XXX */
}
bus_dmamap_sync(sc->sc_bufs_dmat, ds->ds_dmamap, BUS_DMASYNC_PREREAD);
if (high)
ADMSW_INIT_RXHDESC(sc, idx);
else
ADMSW_INIT_RXLDESC(sc, idx);
return (0);
}
int
admsw_mediachange(struct ifnet *ifp)
{
struct admsw_softc *sc = ifp->if_softc;
int port = 0;
struct ifmedia *ifm;
int old, new, val;
while(port < SW_DEVS) {
if(ifp == sc->sc_ifnet[port])
break;
else
port++;
}
ifm = &sc->sc_ifmedia[port];
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
val = PHY_CNTL2_AUTONEG|PHY_CNTL2_100M|PHY_CNTL2_FDX;
} else if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
val = PHY_CNTL2_100M|PHY_CNTL2_FDX;
else
val = PHY_CNTL2_100M;
} else if (IFM_SUBTYPE(ifm->ifm_media) == IFM_10_T) {
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
val = PHY_CNTL2_FDX;
else
val = 0;
} else
return (EINVAL);
old = REG_READ(PHY_CNTL2_REG);
new = old & ~((PHY_CNTL2_AUTONEG|PHY_CNTL2_100M|PHY_CNTL2_FDX) << port);
new |= (val << port);
if (new != old)
REG_WRITE(PHY_CNTL2_REG, new);
return (0);
}
void
admsw_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct admsw_softc *sc = ifp->if_softc;
int port = 0;
int status;
while(port < SW_DEVS) {
if(ifp == sc->sc_ifnet[port])
break;
else
port++;
}
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
status = REG_READ(PHY_ST_REG) >> port;
if ((status & PHY_ST_LINKUP) == 0) {
ifmr->ifm_active |= IFM_NONE;
return;
}
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= (status & PHY_ST_100M) ? IFM_100_TX : IFM_10_T;
if (status & PHY_ST_FDX)
ifmr->ifm_active |= IFM_FDX;
}
static device_method_t admsw_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, admsw_probe),
DEVMETHOD(device_attach, admsw_attach),
DEVMETHOD(device_detach, admsw_detach),
DEVMETHOD(device_shutdown, admsw_shutdown),
{ 0, 0 }
};
static devclass_t admsw_devclass;
static driver_t admsw_driver = {
"admsw",
admsw_methods,
sizeof(struct admsw_softc),
};
DRIVER_MODULE(admsw, obio, admsw_driver, admsw_devclass, 0, 0);
MODULE_DEPEND(admsw, ether, 1, 1, 1);