355 lines
8.5 KiB
C
Raw Normal View History

/*
* Copyright (c) 2004 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/user.h>
#include <err.h>
Rework how kgdb manages kernel and vmcore files to be a bit more gdb-ish so that kgdb can be used more like a normal gdb: - Load the kernel via the standard 'exec' target and allow it to be changed via the 'file' command. - Instead of explicitly loading the kernel file as the mail symbol file during startup, just pass it to gdb_main() as the executable file. - Change the kld support (via shared libraries) to cache the address of the linker_files and linker_kernel_file variables in addition to the offsets of various members in 'struct linker_file'. - When a new symbol file is loaded, recompute the addresses and offsets used by the kld support code. - When a new symbol file is loaded, recalculate the ofs_fix variable to account for the different ways a trapframe can be passed to trap frame handlers in i386. This is done by adding a MD kgdb_trgt_new_objfile() hook that is empty on all but i386. - Don't use the directory name of the kernel specified on the command line to find kernel modules in the kld support code. Instead, extract the filename of the current executable via exec_bfd. Now the 'kernel' variable is private to main.c again. - Make the 'add-kld' command explicitly fail if no executable is loaded. - Make the support for vmcores a real core-dump target that opens the kernel and vmcore on open and closes the kvm connection when closed, etc. - The 'core' command can now be used to select a vmcore to use, either a crash dump file or /dev/mem for live debugging. - The 'detach' command can be used to detach from a vmcore w/o attaching to a new one. - kgdb no longer explicitly opens a core dump during startup and no longer has to use an atexit() hook to close the kvm connection on shutdown. - Symbols for kld's are automatically loaded anytime a core is opened. Also, the unread portion of dmesg is dumped just as it was done on kgdb startup previously. - Don't require either a remote target or core dump if a kernel is specified. You can now just run 'kgdb kernel' similar to running gdb on an executable and later connect to a remote target or core dump. - Use a more relaxed way to verify remote targets specified via -r. Instead of explicitly allowing a few non-file target specifications, just assume that if stat() on the arg and on "/dev/" + arg both fail that is some non-file target and pass it to gdb. - Don't use a custom interpreter. The existing kgdb_init() hook and the target_new_objfile() hook give us sufficient hooks during startup to setup kgdb-specific behavior now. - Always add the 'proc', 'tid', and 'add-kld' commands on startup and not just if we have a core dump. Currently the 'proc' and 'tid' commands do not work for remote targets (I will fix at least 'tid' in the next round of changes though). However, the 'add-kld' command works fine for loading symbols for a kernel module on a remote target. - Always setup the 'kld' shared library target operations instead of just if we have a core dump. Although symbols for kernel modules are not automatically loaded when connecting to a remote target, you can do 'info sharedlibrary' after connecting to the remote target and kgdb will find all the modules. You can then use the 'sharedlibrary' command to load symbols from the module files. - Change kthr_init() to free the existing list of kthr objects before generating a new one. This allows it to be invoked multiple times w/o leaking memory. MFC after: 1 week
2008-04-29 20:32:45 +00:00
#include <fcntl.h>
#include <kvm.h>
#include <defs.h>
Rework how kgdb manages kernel and vmcore files to be a bit more gdb-ish so that kgdb can be used more like a normal gdb: - Load the kernel via the standard 'exec' target and allow it to be changed via the 'file' command. - Instead of explicitly loading the kernel file as the mail symbol file during startup, just pass it to gdb_main() as the executable file. - Change the kld support (via shared libraries) to cache the address of the linker_files and linker_kernel_file variables in addition to the offsets of various members in 'struct linker_file'. - When a new symbol file is loaded, recompute the addresses and offsets used by the kld support code. - When a new symbol file is loaded, recalculate the ofs_fix variable to account for the different ways a trapframe can be passed to trap frame handlers in i386. This is done by adding a MD kgdb_trgt_new_objfile() hook that is empty on all but i386. - Don't use the directory name of the kernel specified on the command line to find kernel modules in the kld support code. Instead, extract the filename of the current executable via exec_bfd. Now the 'kernel' variable is private to main.c again. - Make the 'add-kld' command explicitly fail if no executable is loaded. - Make the support for vmcores a real core-dump target that opens the kernel and vmcore on open and closes the kvm connection when closed, etc. - The 'core' command can now be used to select a vmcore to use, either a crash dump file or /dev/mem for live debugging. - The 'detach' command can be used to detach from a vmcore w/o attaching to a new one. - kgdb no longer explicitly opens a core dump during startup and no longer has to use an atexit() hook to close the kvm connection on shutdown. - Symbols for kld's are automatically loaded anytime a core is opened. Also, the unread portion of dmesg is dumped just as it was done on kgdb startup previously. - Don't require either a remote target or core dump if a kernel is specified. You can now just run 'kgdb kernel' similar to running gdb on an executable and later connect to a remote target or core dump. - Use a more relaxed way to verify remote targets specified via -r. Instead of explicitly allowing a few non-file target specifications, just assume that if stat() on the arg and on "/dev/" + arg both fail that is some non-file target and pass it to gdb. - Don't use a custom interpreter. The existing kgdb_init() hook and the target_new_objfile() hook give us sufficient hooks during startup to setup kgdb-specific behavior now. - Always add the 'proc', 'tid', and 'add-kld' commands on startup and not just if we have a core dump. Currently the 'proc' and 'tid' commands do not work for remote targets (I will fix at least 'tid' in the next round of changes though). However, the 'add-kld' command works fine for loading symbols for a kernel module on a remote target. - Always setup the 'kld' shared library target operations instead of just if we have a core dump. Although symbols for kernel modules are not automatically loaded when connecting to a remote target, you can do 'info sharedlibrary' after connecting to the remote target and kgdb will find all the modules. You can then use the 'sharedlibrary' command to load symbols from the module files. - Change kthr_init() to free the existing list of kthr objects before generating a new one. This allows it to be invoked multiple times w/o leaking memory. MFC after: 1 week
2008-04-29 20:32:45 +00:00
#include <readline/readline.h>
#include <readline/tilde.h>
#include <command.h>
#include <exec.h>
#include <frame-unwind.h>
#include <gdb.h>
Rework how kgdb manages kernel and vmcore files to be a bit more gdb-ish so that kgdb can be used more like a normal gdb: - Load the kernel via the standard 'exec' target and allow it to be changed via the 'file' command. - Instead of explicitly loading the kernel file as the mail symbol file during startup, just pass it to gdb_main() as the executable file. - Change the kld support (via shared libraries) to cache the address of the linker_files and linker_kernel_file variables in addition to the offsets of various members in 'struct linker_file'. - When a new symbol file is loaded, recompute the addresses and offsets used by the kld support code. - When a new symbol file is loaded, recalculate the ofs_fix variable to account for the different ways a trapframe can be passed to trap frame handlers in i386. This is done by adding a MD kgdb_trgt_new_objfile() hook that is empty on all but i386. - Don't use the directory name of the kernel specified on the command line to find kernel modules in the kld support code. Instead, extract the filename of the current executable via exec_bfd. Now the 'kernel' variable is private to main.c again. - Make the 'add-kld' command explicitly fail if no executable is loaded. - Make the support for vmcores a real core-dump target that opens the kernel and vmcore on open and closes the kvm connection when closed, etc. - The 'core' command can now be used to select a vmcore to use, either a crash dump file or /dev/mem for live debugging. - The 'detach' command can be used to detach from a vmcore w/o attaching to a new one. - kgdb no longer explicitly opens a core dump during startup and no longer has to use an atexit() hook to close the kvm connection on shutdown. - Symbols for kld's are automatically loaded anytime a core is opened. Also, the unread portion of dmesg is dumped just as it was done on kgdb startup previously. - Don't require either a remote target or core dump if a kernel is specified. You can now just run 'kgdb kernel' similar to running gdb on an executable and later connect to a remote target or core dump. - Use a more relaxed way to verify remote targets specified via -r. Instead of explicitly allowing a few non-file target specifications, just assume that if stat() on the arg and on "/dev/" + arg both fail that is some non-file target and pass it to gdb. - Don't use a custom interpreter. The existing kgdb_init() hook and the target_new_objfile() hook give us sufficient hooks during startup to setup kgdb-specific behavior now. - Always add the 'proc', 'tid', and 'add-kld' commands on startup and not just if we have a core dump. Currently the 'proc' and 'tid' commands do not work for remote targets (I will fix at least 'tid' in the next round of changes though). However, the 'add-kld' command works fine for loading symbols for a kernel module on a remote target. - Always setup the 'kld' shared library target operations instead of just if we have a core dump. Although symbols for kernel modules are not automatically loaded when connecting to a remote target, you can do 'info sharedlibrary' after connecting to the remote target and kgdb will find all the modules. You can then use the 'sharedlibrary' command to load symbols from the module files. - Change kthr_init() to free the existing list of kthr objects before generating a new one. This allows it to be invoked multiple times w/o leaking memory. MFC after: 1 week
2008-04-29 20:32:45 +00:00
#include <gdbcore.h>
#include <gdbthread.h>
#include <inferior.h>
Rework how kgdb manages kernel and vmcore files to be a bit more gdb-ish so that kgdb can be used more like a normal gdb: - Load the kernel via the standard 'exec' target and allow it to be changed via the 'file' command. - Instead of explicitly loading the kernel file as the mail symbol file during startup, just pass it to gdb_main() as the executable file. - Change the kld support (via shared libraries) to cache the address of the linker_files and linker_kernel_file variables in addition to the offsets of various members in 'struct linker_file'. - When a new symbol file is loaded, recompute the addresses and offsets used by the kld support code. - When a new symbol file is loaded, recalculate the ofs_fix variable to account for the different ways a trapframe can be passed to trap frame handlers in i386. This is done by adding a MD kgdb_trgt_new_objfile() hook that is empty on all but i386. - Don't use the directory name of the kernel specified on the command line to find kernel modules in the kld support code. Instead, extract the filename of the current executable via exec_bfd. Now the 'kernel' variable is private to main.c again. - Make the 'add-kld' command explicitly fail if no executable is loaded. - Make the support for vmcores a real core-dump target that opens the kernel and vmcore on open and closes the kvm connection when closed, etc. - The 'core' command can now be used to select a vmcore to use, either a crash dump file or /dev/mem for live debugging. - The 'detach' command can be used to detach from a vmcore w/o attaching to a new one. - kgdb no longer explicitly opens a core dump during startup and no longer has to use an atexit() hook to close the kvm connection on shutdown. - Symbols for kld's are automatically loaded anytime a core is opened. Also, the unread portion of dmesg is dumped just as it was done on kgdb startup previously. - Don't require either a remote target or core dump if a kernel is specified. You can now just run 'kgdb kernel' similar to running gdb on an executable and later connect to a remote target or core dump. - Use a more relaxed way to verify remote targets specified via -r. Instead of explicitly allowing a few non-file target specifications, just assume that if stat() on the arg and on "/dev/" + arg both fail that is some non-file target and pass it to gdb. - Don't use a custom interpreter. The existing kgdb_init() hook and the target_new_objfile() hook give us sufficient hooks during startup to setup kgdb-specific behavior now. - Always add the 'proc', 'tid', and 'add-kld' commands on startup and not just if we have a core dump. Currently the 'proc' and 'tid' commands do not work for remote targets (I will fix at least 'tid' in the next round of changes though). However, the 'add-kld' command works fine for loading symbols for a kernel module on a remote target. - Always setup the 'kld' shared library target operations instead of just if we have a core dump. Although symbols for kernel modules are not automatically loaded when connecting to a remote target, you can do 'info sharedlibrary' after connecting to the remote target and kgdb will find all the modules. You can then use the 'sharedlibrary' command to load symbols from the module files. - Change kthr_init() to free the existing list of kthr objects before generating a new one. This allows it to be invoked multiple times w/o leaking memory. MFC after: 1 week
2008-04-29 20:32:45 +00:00
#include <language.h>
#include <regcache.h>
Rework how kgdb manages kernel and vmcore files to be a bit more gdb-ish so that kgdb can be used more like a normal gdb: - Load the kernel via the standard 'exec' target and allow it to be changed via the 'file' command. - Instead of explicitly loading the kernel file as the mail symbol file during startup, just pass it to gdb_main() as the executable file. - Change the kld support (via shared libraries) to cache the address of the linker_files and linker_kernel_file variables in addition to the offsets of various members in 'struct linker_file'. - When a new symbol file is loaded, recompute the addresses and offsets used by the kld support code. - When a new symbol file is loaded, recalculate the ofs_fix variable to account for the different ways a trapframe can be passed to trap frame handlers in i386. This is done by adding a MD kgdb_trgt_new_objfile() hook that is empty on all but i386. - Don't use the directory name of the kernel specified on the command line to find kernel modules in the kld support code. Instead, extract the filename of the current executable via exec_bfd. Now the 'kernel' variable is private to main.c again. - Make the 'add-kld' command explicitly fail if no executable is loaded. - Make the support for vmcores a real core-dump target that opens the kernel and vmcore on open and closes the kvm connection when closed, etc. - The 'core' command can now be used to select a vmcore to use, either a crash dump file or /dev/mem for live debugging. - The 'detach' command can be used to detach from a vmcore w/o attaching to a new one. - kgdb no longer explicitly opens a core dump during startup and no longer has to use an atexit() hook to close the kvm connection on shutdown. - Symbols for kld's are automatically loaded anytime a core is opened. Also, the unread portion of dmesg is dumped just as it was done on kgdb startup previously. - Don't require either a remote target or core dump if a kernel is specified. You can now just run 'kgdb kernel' similar to running gdb on an executable and later connect to a remote target or core dump. - Use a more relaxed way to verify remote targets specified via -r. Instead of explicitly allowing a few non-file target specifications, just assume that if stat() on the arg and on "/dev/" + arg both fail that is some non-file target and pass it to gdb. - Don't use a custom interpreter. The existing kgdb_init() hook and the target_new_objfile() hook give us sufficient hooks during startup to setup kgdb-specific behavior now. - Always add the 'proc', 'tid', and 'add-kld' commands on startup and not just if we have a core dump. Currently the 'proc' and 'tid' commands do not work for remote targets (I will fix at least 'tid' in the next round of changes though). However, the 'add-kld' command works fine for loading symbols for a kernel module on a remote target. - Always setup the 'kld' shared library target operations instead of just if we have a core dump. Although symbols for kernel modules are not automatically loaded when connecting to a remote target, you can do 'info sharedlibrary' after connecting to the remote target and kgdb will find all the modules. You can then use the 'sharedlibrary' command to load symbols from the module files. - Change kthr_init() to free the existing list of kthr objects before generating a new one. This allows it to be invoked multiple times w/o leaking memory. MFC after: 1 week
2008-04-29 20:32:45 +00:00
#include <solib.h>
#include <target.h>
#include <ui-out.h>
#include "kgdb.h"
Rework how kgdb manages kernel and vmcore files to be a bit more gdb-ish so that kgdb can be used more like a normal gdb: - Load the kernel via the standard 'exec' target and allow it to be changed via the 'file' command. - Instead of explicitly loading the kernel file as the mail symbol file during startup, just pass it to gdb_main() as the executable file. - Change the kld support (via shared libraries) to cache the address of the linker_files and linker_kernel_file variables in addition to the offsets of various members in 'struct linker_file'. - When a new symbol file is loaded, recompute the addresses and offsets used by the kld support code. - When a new symbol file is loaded, recalculate the ofs_fix variable to account for the different ways a trapframe can be passed to trap frame handlers in i386. This is done by adding a MD kgdb_trgt_new_objfile() hook that is empty on all but i386. - Don't use the directory name of the kernel specified on the command line to find kernel modules in the kld support code. Instead, extract the filename of the current executable via exec_bfd. Now the 'kernel' variable is private to main.c again. - Make the 'add-kld' command explicitly fail if no executable is loaded. - Make the support for vmcores a real core-dump target that opens the kernel and vmcore on open and closes the kvm connection when closed, etc. - The 'core' command can now be used to select a vmcore to use, either a crash dump file or /dev/mem for live debugging. - The 'detach' command can be used to detach from a vmcore w/o attaching to a new one. - kgdb no longer explicitly opens a core dump during startup and no longer has to use an atexit() hook to close the kvm connection on shutdown. - Symbols for kld's are automatically loaded anytime a core is opened. Also, the unread portion of dmesg is dumped just as it was done on kgdb startup previously. - Don't require either a remote target or core dump if a kernel is specified. You can now just run 'kgdb kernel' similar to running gdb on an executable and later connect to a remote target or core dump. - Use a more relaxed way to verify remote targets specified via -r. Instead of explicitly allowing a few non-file target specifications, just assume that if stat() on the arg and on "/dev/" + arg both fail that is some non-file target and pass it to gdb. - Don't use a custom interpreter. The existing kgdb_init() hook and the target_new_objfile() hook give us sufficient hooks during startup to setup kgdb-specific behavior now. - Always add the 'proc', 'tid', and 'add-kld' commands on startup and not just if we have a core dump. Currently the 'proc' and 'tid' commands do not work for remote targets (I will fix at least 'tid' in the next round of changes though). However, the 'add-kld' command works fine for loading symbols for a kernel module on a remote target. - Always setup the 'kld' shared library target operations instead of just if we have a core dump. Although symbols for kernel modules are not automatically loaded when connecting to a remote target, you can do 'info sharedlibrary' after connecting to the remote target and kgdb will find all the modules. You can then use the 'sharedlibrary' command to load symbols from the module files. - Change kthr_init() to free the existing list of kthr objects before generating a new one. This allows it to be invoked multiple times w/o leaking memory. MFC after: 1 week
2008-04-29 20:32:45 +00:00
static void kgdb_core_cleanup(void *);
static char *vmcore;
static struct target_ops kgdb_trgt_ops;
Rework how kgdb manages kernel and vmcore files to be a bit more gdb-ish so that kgdb can be used more like a normal gdb: - Load the kernel via the standard 'exec' target and allow it to be changed via the 'file' command. - Instead of explicitly loading the kernel file as the mail symbol file during startup, just pass it to gdb_main() as the executable file. - Change the kld support (via shared libraries) to cache the address of the linker_files and linker_kernel_file variables in addition to the offsets of various members in 'struct linker_file'. - When a new symbol file is loaded, recompute the addresses and offsets used by the kld support code. - When a new symbol file is loaded, recalculate the ofs_fix variable to account for the different ways a trapframe can be passed to trap frame handlers in i386. This is done by adding a MD kgdb_trgt_new_objfile() hook that is empty on all but i386. - Don't use the directory name of the kernel specified on the command line to find kernel modules in the kld support code. Instead, extract the filename of the current executable via exec_bfd. Now the 'kernel' variable is private to main.c again. - Make the 'add-kld' command explicitly fail if no executable is loaded. - Make the support for vmcores a real core-dump target that opens the kernel and vmcore on open and closes the kvm connection when closed, etc. - The 'core' command can now be used to select a vmcore to use, either a crash dump file or /dev/mem for live debugging. - The 'detach' command can be used to detach from a vmcore w/o attaching to a new one. - kgdb no longer explicitly opens a core dump during startup and no longer has to use an atexit() hook to close the kvm connection on shutdown. - Symbols for kld's are automatically loaded anytime a core is opened. Also, the unread portion of dmesg is dumped just as it was done on kgdb startup previously. - Don't require either a remote target or core dump if a kernel is specified. You can now just run 'kgdb kernel' similar to running gdb on an executable and later connect to a remote target or core dump. - Use a more relaxed way to verify remote targets specified via -r. Instead of explicitly allowing a few non-file target specifications, just assume that if stat() on the arg and on "/dev/" + arg both fail that is some non-file target and pass it to gdb. - Don't use a custom interpreter. The existing kgdb_init() hook and the target_new_objfile() hook give us sufficient hooks during startup to setup kgdb-specific behavior now. - Always add the 'proc', 'tid', and 'add-kld' commands on startup and not just if we have a core dump. Currently the 'proc' and 'tid' commands do not work for remote targets (I will fix at least 'tid' in the next round of changes though). However, the 'add-kld' command works fine for loading symbols for a kernel module on a remote target. - Always setup the 'kld' shared library target operations instead of just if we have a core dump. Although symbols for kernel modules are not automatically loaded when connecting to a remote target, you can do 'info sharedlibrary' after connecting to the remote target and kgdb will find all the modules. You can then use the 'sharedlibrary' command to load symbols from the module files. - Change kthr_init() to free the existing list of kthr objects before generating a new one. This allows it to be invoked multiple times w/o leaking memory. MFC after: 1 week
2008-04-29 20:32:45 +00:00
kvm_t *kvm;
static char kvm_err[_POSIX2_LINE_MAX];
#define KERNOFF (kgdb_kernbase ())
#define INKERNEL(x) ((x) >= KERNOFF)
static CORE_ADDR
kgdb_kernbase (void)
{
static CORE_ADDR kernbase;
struct minimal_symbol *sym;
if (kernbase == 0) {
sym = lookup_minimal_symbol ("kernbase", NULL, NULL);
if (sym == NULL) {
kernbase = KERNBASE;
} else {
kernbase = SYMBOL_VALUE_ADDRESS (sym);
}
}
return kernbase;
}
Rework how kgdb manages kernel and vmcore files to be a bit more gdb-ish so that kgdb can be used more like a normal gdb: - Load the kernel via the standard 'exec' target and allow it to be changed via the 'file' command. - Instead of explicitly loading the kernel file as the mail symbol file during startup, just pass it to gdb_main() as the executable file. - Change the kld support (via shared libraries) to cache the address of the linker_files and linker_kernel_file variables in addition to the offsets of various members in 'struct linker_file'. - When a new symbol file is loaded, recompute the addresses and offsets used by the kld support code. - When a new symbol file is loaded, recalculate the ofs_fix variable to account for the different ways a trapframe can be passed to trap frame handlers in i386. This is done by adding a MD kgdb_trgt_new_objfile() hook that is empty on all but i386. - Don't use the directory name of the kernel specified on the command line to find kernel modules in the kld support code. Instead, extract the filename of the current executable via exec_bfd. Now the 'kernel' variable is private to main.c again. - Make the 'add-kld' command explicitly fail if no executable is loaded. - Make the support for vmcores a real core-dump target that opens the kernel and vmcore on open and closes the kvm connection when closed, etc. - The 'core' command can now be used to select a vmcore to use, either a crash dump file or /dev/mem for live debugging. - The 'detach' command can be used to detach from a vmcore w/o attaching to a new one. - kgdb no longer explicitly opens a core dump during startup and no longer has to use an atexit() hook to close the kvm connection on shutdown. - Symbols for kld's are automatically loaded anytime a core is opened. Also, the unread portion of dmesg is dumped just as it was done on kgdb startup previously. - Don't require either a remote target or core dump if a kernel is specified. You can now just run 'kgdb kernel' similar to running gdb on an executable and later connect to a remote target or core dump. - Use a more relaxed way to verify remote targets specified via -r. Instead of explicitly allowing a few non-file target specifications, just assume that if stat() on the arg and on "/dev/" + arg both fail that is some non-file target and pass it to gdb. - Don't use a custom interpreter. The existing kgdb_init() hook and the target_new_objfile() hook give us sufficient hooks during startup to setup kgdb-specific behavior now. - Always add the 'proc', 'tid', and 'add-kld' commands on startup and not just if we have a core dump. Currently the 'proc' and 'tid' commands do not work for remote targets (I will fix at least 'tid' in the next round of changes though). However, the 'add-kld' command works fine for loading symbols for a kernel module on a remote target. - Always setup the 'kld' shared library target operations instead of just if we have a core dump. Although symbols for kernel modules are not automatically loaded when connecting to a remote target, you can do 'info sharedlibrary' after connecting to the remote target and kgdb will find all the modules. You can then use the 'sharedlibrary' command to load symbols from the module files. - Change kthr_init() to free the existing list of kthr objects before generating a new one. This allows it to be invoked multiple times w/o leaking memory. MFC after: 1 week
2008-04-29 20:32:45 +00:00
static void
kgdb_trgt_open(char *filename, int from_tty)
{
struct cleanup *old_chain;
struct thread_info *ti;
struct kthr *kt;
kvm_t *nkvm;
char *temp;
int ontop;
target_preopen (from_tty);
if (!filename)
error ("No vmcore file specified.");
if (!exec_bfd)
error ("Can't open a vmcore without a kernel");
filename = tilde_expand (filename);
if (filename[0] != '/') {
temp = concat (current_directory, "/", filename, NULL);
xfree(filename);
filename = temp;
}
old_chain = make_cleanup (xfree, filename);
nkvm = kvm_openfiles(bfd_get_filename(exec_bfd), filename, NULL,
write_files ? O_RDWR : O_RDONLY, kvm_err);
if (nkvm == NULL)
error ("Failed to open vmcore: %s", kvm_err);
/* Don't free the filename now and close any previous vmcore. */
discard_cleanups(old_chain);
unpush_target(&kgdb_trgt_ops);
kvm = nkvm;
vmcore = filename;
old_chain = make_cleanup(kgdb_core_cleanup, NULL);
ontop = !push_target (&kgdb_trgt_ops);
discard_cleanups (old_chain);
kgdb_dmesg();
init_thread_list();
kt = kgdb_thr_init();
while (kt != NULL) {
ti = add_thread(pid_to_ptid(kt->tid));
Rework how kgdb manages kernel and vmcore files to be a bit more gdb-ish so that kgdb can be used more like a normal gdb: - Load the kernel via the standard 'exec' target and allow it to be changed via the 'file' command. - Instead of explicitly loading the kernel file as the mail symbol file during startup, just pass it to gdb_main() as the executable file. - Change the kld support (via shared libraries) to cache the address of the linker_files and linker_kernel_file variables in addition to the offsets of various members in 'struct linker_file'. - When a new symbol file is loaded, recompute the addresses and offsets used by the kld support code. - When a new symbol file is loaded, recalculate the ofs_fix variable to account for the different ways a trapframe can be passed to trap frame handlers in i386. This is done by adding a MD kgdb_trgt_new_objfile() hook that is empty on all but i386. - Don't use the directory name of the kernel specified on the command line to find kernel modules in the kld support code. Instead, extract the filename of the current executable via exec_bfd. Now the 'kernel' variable is private to main.c again. - Make the 'add-kld' command explicitly fail if no executable is loaded. - Make the support for vmcores a real core-dump target that opens the kernel and vmcore on open and closes the kvm connection when closed, etc. - The 'core' command can now be used to select a vmcore to use, either a crash dump file or /dev/mem for live debugging. - The 'detach' command can be used to detach from a vmcore w/o attaching to a new one. - kgdb no longer explicitly opens a core dump during startup and no longer has to use an atexit() hook to close the kvm connection on shutdown. - Symbols for kld's are automatically loaded anytime a core is opened. Also, the unread portion of dmesg is dumped just as it was done on kgdb startup previously. - Don't require either a remote target or core dump if a kernel is specified. You can now just run 'kgdb kernel' similar to running gdb on an executable and later connect to a remote target or core dump. - Use a more relaxed way to verify remote targets specified via -r. Instead of explicitly allowing a few non-file target specifications, just assume that if stat() on the arg and on "/dev/" + arg both fail that is some non-file target and pass it to gdb. - Don't use a custom interpreter. The existing kgdb_init() hook and the target_new_objfile() hook give us sufficient hooks during startup to setup kgdb-specific behavior now. - Always add the 'proc', 'tid', and 'add-kld' commands on startup and not just if we have a core dump. Currently the 'proc' and 'tid' commands do not work for remote targets (I will fix at least 'tid' in the next round of changes though). However, the 'add-kld' command works fine for loading symbols for a kernel module on a remote target. - Always setup the 'kld' shared library target operations instead of just if we have a core dump. Although symbols for kernel modules are not automatically loaded when connecting to a remote target, you can do 'info sharedlibrary' after connecting to the remote target and kgdb will find all the modules. You can then use the 'sharedlibrary' command to load symbols from the module files. - Change kthr_init() to free the existing list of kthr objects before generating a new one. This allows it to be invoked multiple times w/o leaking memory. MFC after: 1 week
2008-04-29 20:32:45 +00:00
kt = kgdb_thr_next(kt);
}
if (curkthr != 0)
inferior_ptid = pid_to_ptid(curkthr->tid);
Rework how kgdb manages kernel and vmcore files to be a bit more gdb-ish so that kgdb can be used more like a normal gdb: - Load the kernel via the standard 'exec' target and allow it to be changed via the 'file' command. - Instead of explicitly loading the kernel file as the mail symbol file during startup, just pass it to gdb_main() as the executable file. - Change the kld support (via shared libraries) to cache the address of the linker_files and linker_kernel_file variables in addition to the offsets of various members in 'struct linker_file'. - When a new symbol file is loaded, recompute the addresses and offsets used by the kld support code. - When a new symbol file is loaded, recalculate the ofs_fix variable to account for the different ways a trapframe can be passed to trap frame handlers in i386. This is done by adding a MD kgdb_trgt_new_objfile() hook that is empty on all but i386. - Don't use the directory name of the kernel specified on the command line to find kernel modules in the kld support code. Instead, extract the filename of the current executable via exec_bfd. Now the 'kernel' variable is private to main.c again. - Make the 'add-kld' command explicitly fail if no executable is loaded. - Make the support for vmcores a real core-dump target that opens the kernel and vmcore on open and closes the kvm connection when closed, etc. - The 'core' command can now be used to select a vmcore to use, either a crash dump file or /dev/mem for live debugging. - The 'detach' command can be used to detach from a vmcore w/o attaching to a new one. - kgdb no longer explicitly opens a core dump during startup and no longer has to use an atexit() hook to close the kvm connection on shutdown. - Symbols for kld's are automatically loaded anytime a core is opened. Also, the unread portion of dmesg is dumped just as it was done on kgdb startup previously. - Don't require either a remote target or core dump if a kernel is specified. You can now just run 'kgdb kernel' similar to running gdb on an executable and later connect to a remote target or core dump. - Use a more relaxed way to verify remote targets specified via -r. Instead of explicitly allowing a few non-file target specifications, just assume that if stat() on the arg and on "/dev/" + arg both fail that is some non-file target and pass it to gdb. - Don't use a custom interpreter. The existing kgdb_init() hook and the target_new_objfile() hook give us sufficient hooks during startup to setup kgdb-specific behavior now. - Always add the 'proc', 'tid', and 'add-kld' commands on startup and not just if we have a core dump. Currently the 'proc' and 'tid' commands do not work for remote targets (I will fix at least 'tid' in the next round of changes though). However, the 'add-kld' command works fine for loading symbols for a kernel module on a remote target. - Always setup the 'kld' shared library target operations instead of just if we have a core dump. Although symbols for kernel modules are not automatically loaded when connecting to a remote target, you can do 'info sharedlibrary' after connecting to the remote target and kgdb will find all the modules. You can then use the 'sharedlibrary' command to load symbols from the module files. - Change kthr_init() to free the existing list of kthr objects before generating a new one. This allows it to be invoked multiple times w/o leaking memory. MFC after: 1 week
2008-04-29 20:32:45 +00:00
if (ontop) {
/* XXX: fetch registers? */
kld_init();
flush_cached_frames();
select_frame (get_current_frame());
print_stack_frame(get_selected_frame(),
frame_relative_level(get_selected_frame()), 1);
} else
warning(
"you won't be able to access this vmcore until you terminate\n\
your %s; do ``info files''", target_longname);
}
static void
kgdb_trgt_close(int quitting)
{
if (kvm != NULL) {
inferior_ptid = null_ptid;
CLEAR_SOLIB();
if (kvm_close(kvm) != 0)
warning("cannot close \"%s\": %s", vmcore,
kvm_geterr(kvm));
kvm = NULL;
xfree(vmcore);
vmcore = NULL;
if (kgdb_trgt_ops.to_sections) {
xfree(kgdb_trgt_ops.to_sections);
kgdb_trgt_ops.to_sections = NULL;
kgdb_trgt_ops.to_sections_end = NULL;
}
}
}
static void
kgdb_core_cleanup(void *arg)
{
kgdb_trgt_close(0);
}
static void
kgdb_trgt_detach(char *args, int from_tty)
{
if (args)
error ("Too many arguments");
unpush_target(&kgdb_trgt_ops);
reinit_frame_cache();
if (from_tty)
printf_filtered("No vmcore file now.\n");
}
static char *
kgdb_trgt_extra_thread_info(struct thread_info *ti)
{
return (kgdb_thr_extra_thread_info(ptid_get_pid(ti->ptid)));
}
static void
kgdb_trgt_files_info(struct target_ops *target)
{
Rework how kgdb manages kernel and vmcore files to be a bit more gdb-ish so that kgdb can be used more like a normal gdb: - Load the kernel via the standard 'exec' target and allow it to be changed via the 'file' command. - Instead of explicitly loading the kernel file as the mail symbol file during startup, just pass it to gdb_main() as the executable file. - Change the kld support (via shared libraries) to cache the address of the linker_files and linker_kernel_file variables in addition to the offsets of various members in 'struct linker_file'. - When a new symbol file is loaded, recompute the addresses and offsets used by the kld support code. - When a new symbol file is loaded, recalculate the ofs_fix variable to account for the different ways a trapframe can be passed to trap frame handlers in i386. This is done by adding a MD kgdb_trgt_new_objfile() hook that is empty on all but i386. - Don't use the directory name of the kernel specified on the command line to find kernel modules in the kld support code. Instead, extract the filename of the current executable via exec_bfd. Now the 'kernel' variable is private to main.c again. - Make the 'add-kld' command explicitly fail if no executable is loaded. - Make the support for vmcores a real core-dump target that opens the kernel and vmcore on open and closes the kvm connection when closed, etc. - The 'core' command can now be used to select a vmcore to use, either a crash dump file or /dev/mem for live debugging. - The 'detach' command can be used to detach from a vmcore w/o attaching to a new one. - kgdb no longer explicitly opens a core dump during startup and no longer has to use an atexit() hook to close the kvm connection on shutdown. - Symbols for kld's are automatically loaded anytime a core is opened. Also, the unread portion of dmesg is dumped just as it was done on kgdb startup previously. - Don't require either a remote target or core dump if a kernel is specified. You can now just run 'kgdb kernel' similar to running gdb on an executable and later connect to a remote target or core dump. - Use a more relaxed way to verify remote targets specified via -r. Instead of explicitly allowing a few non-file target specifications, just assume that if stat() on the arg and on "/dev/" + arg both fail that is some non-file target and pass it to gdb. - Don't use a custom interpreter. The existing kgdb_init() hook and the target_new_objfile() hook give us sufficient hooks during startup to setup kgdb-specific behavior now. - Always add the 'proc', 'tid', and 'add-kld' commands on startup and not just if we have a core dump. Currently the 'proc' and 'tid' commands do not work for remote targets (I will fix at least 'tid' in the next round of changes though). However, the 'add-kld' command works fine for loading symbols for a kernel module on a remote target. - Always setup the 'kld' shared library target operations instead of just if we have a core dump. Although symbols for kernel modules are not automatically loaded when connecting to a remote target, you can do 'info sharedlibrary' after connecting to the remote target and kgdb will find all the modules. You can then use the 'sharedlibrary' command to load symbols from the module files. - Change kthr_init() to free the existing list of kthr objects before generating a new one. This allows it to be invoked multiple times w/o leaking memory. MFC after: 1 week
2008-04-29 20:32:45 +00:00
printf_filtered ("\t`%s', ", vmcore);
wrap_here (" ");
printf_filtered ("file type %s.\n", "FreeBSD kernel vmcore");
}
static void
kgdb_trgt_find_new_threads(void)
{
struct target_ops *tb;
if (kvm != NULL)
return;
tb = find_target_beneath(&kgdb_trgt_ops);
if (tb->to_find_new_threads != NULL)
tb->to_find_new_threads();
}
static char *
kgdb_trgt_pid_to_str(ptid_t ptid)
{
static char buf[33];
snprintf(buf, sizeof(buf), "Thread %d", ptid_get_pid(ptid));
return (buf);
}
static int
kgdb_trgt_thread_alive(ptid_t ptid)
{
return (kgdb_thr_lookup_tid(ptid_get_pid(ptid)) != NULL);
}
static int
kgdb_trgt_xfer_memory(CORE_ADDR memaddr, char *myaddr, int len, int write,
struct mem_attrib *attrib, struct target_ops *target)
{
struct target_ops *tb;
if (kvm != NULL) {
if (len == 0)
return (0);
if (!write)
return (kvm_read(kvm, memaddr, myaddr, len));
else
return (kvm_write(kvm, memaddr, myaddr, len));
}
tb = find_target_beneath(target);
return (tb->to_xfer_memory(memaddr, myaddr, len, write, attrib, tb));
}
Rework how kgdb manages kernel and vmcore files to be a bit more gdb-ish so that kgdb can be used more like a normal gdb: - Load the kernel via the standard 'exec' target and allow it to be changed via the 'file' command. - Instead of explicitly loading the kernel file as the mail symbol file during startup, just pass it to gdb_main() as the executable file. - Change the kld support (via shared libraries) to cache the address of the linker_files and linker_kernel_file variables in addition to the offsets of various members in 'struct linker_file'. - When a new symbol file is loaded, recompute the addresses and offsets used by the kld support code. - When a new symbol file is loaded, recalculate the ofs_fix variable to account for the different ways a trapframe can be passed to trap frame handlers in i386. This is done by adding a MD kgdb_trgt_new_objfile() hook that is empty on all but i386. - Don't use the directory name of the kernel specified on the command line to find kernel modules in the kld support code. Instead, extract the filename of the current executable via exec_bfd. Now the 'kernel' variable is private to main.c again. - Make the 'add-kld' command explicitly fail if no executable is loaded. - Make the support for vmcores a real core-dump target that opens the kernel and vmcore on open and closes the kvm connection when closed, etc. - The 'core' command can now be used to select a vmcore to use, either a crash dump file or /dev/mem for live debugging. - The 'detach' command can be used to detach from a vmcore w/o attaching to a new one. - kgdb no longer explicitly opens a core dump during startup and no longer has to use an atexit() hook to close the kvm connection on shutdown. - Symbols for kld's are automatically loaded anytime a core is opened. Also, the unread portion of dmesg is dumped just as it was done on kgdb startup previously. - Don't require either a remote target or core dump if a kernel is specified. You can now just run 'kgdb kernel' similar to running gdb on an executable and later connect to a remote target or core dump. - Use a more relaxed way to verify remote targets specified via -r. Instead of explicitly allowing a few non-file target specifications, just assume that if stat() on the arg and on "/dev/" + arg both fail that is some non-file target and pass it to gdb. - Don't use a custom interpreter. The existing kgdb_init() hook and the target_new_objfile() hook give us sufficient hooks during startup to setup kgdb-specific behavior now. - Always add the 'proc', 'tid', and 'add-kld' commands on startup and not just if we have a core dump. Currently the 'proc' and 'tid' commands do not work for remote targets (I will fix at least 'tid' in the next round of changes though). However, the 'add-kld' command works fine for loading symbols for a kernel module on a remote target. - Always setup the 'kld' shared library target operations instead of just if we have a core dump. Although symbols for kernel modules are not automatically loaded when connecting to a remote target, you can do 'info sharedlibrary' after connecting to the remote target and kgdb will find all the modules. You can then use the 'sharedlibrary' command to load symbols from the module files. - Change kthr_init() to free the existing list of kthr objects before generating a new one. This allows it to be invoked multiple times w/o leaking memory. MFC after: 1 week
2008-04-29 20:32:45 +00:00
static int
kgdb_trgt_ignore_breakpoints(CORE_ADDR addr, char *contents)
{
return 0;
}
static void
kgdb_switch_to_thread(int tid)
{
char buf[16];
int thread_id;
thread_id = pid_to_thread_id(pid_to_ptid(tid));
if (thread_id == 0)
error ("invalid tid");
snprintf(buf, sizeof(buf), "%d", thread_id);
gdb_thread_select(uiout, buf);
}
static void
kgdb_set_proc_cmd (char *arg, int from_tty)
{
CORE_ADDR addr;
struct kthr *thr;
if (!arg)
error_no_arg ("proc address for the new context");
if (kvm == NULL)
error ("only supported for core file target");
addr = (CORE_ADDR) parse_and_eval_address (arg);
if (!INKERNEL (addr)) {
thr = kgdb_thr_lookup_pid((int)addr);
if (thr == NULL)
error ("invalid pid");
} else {
thr = kgdb_thr_lookup_paddr(addr);
if (thr == NULL)
error("invalid proc address");
}
kgdb_switch_to_thread(thr->tid);
}
static void
kgdb_set_tid_cmd (char *arg, int from_tty)
{
CORE_ADDR addr;
struct kthr *thr;
if (!arg)
error_no_arg ("TID or thread address for the new context");
addr = (CORE_ADDR) parse_and_eval_address (arg);
if (kvm != NULL && INKERNEL (addr)) {
thr = kgdb_thr_lookup_taddr(addr);
if (thr == NULL)
error("invalid thread address");
addr = thr->tid;
}
kgdb_switch_to_thread(addr);
}
Rework how kgdb manages kernel and vmcore files to be a bit more gdb-ish so that kgdb can be used more like a normal gdb: - Load the kernel via the standard 'exec' target and allow it to be changed via the 'file' command. - Instead of explicitly loading the kernel file as the mail symbol file during startup, just pass it to gdb_main() as the executable file. - Change the kld support (via shared libraries) to cache the address of the linker_files and linker_kernel_file variables in addition to the offsets of various members in 'struct linker_file'. - When a new symbol file is loaded, recompute the addresses and offsets used by the kld support code. - When a new symbol file is loaded, recalculate the ofs_fix variable to account for the different ways a trapframe can be passed to trap frame handlers in i386. This is done by adding a MD kgdb_trgt_new_objfile() hook that is empty on all but i386. - Don't use the directory name of the kernel specified on the command line to find kernel modules in the kld support code. Instead, extract the filename of the current executable via exec_bfd. Now the 'kernel' variable is private to main.c again. - Make the 'add-kld' command explicitly fail if no executable is loaded. - Make the support for vmcores a real core-dump target that opens the kernel and vmcore on open and closes the kvm connection when closed, etc. - The 'core' command can now be used to select a vmcore to use, either a crash dump file or /dev/mem for live debugging. - The 'detach' command can be used to detach from a vmcore w/o attaching to a new one. - kgdb no longer explicitly opens a core dump during startup and no longer has to use an atexit() hook to close the kvm connection on shutdown. - Symbols for kld's are automatically loaded anytime a core is opened. Also, the unread portion of dmesg is dumped just as it was done on kgdb startup previously. - Don't require either a remote target or core dump if a kernel is specified. You can now just run 'kgdb kernel' similar to running gdb on an executable and later connect to a remote target or core dump. - Use a more relaxed way to verify remote targets specified via -r. Instead of explicitly allowing a few non-file target specifications, just assume that if stat() on the arg and on "/dev/" + arg both fail that is some non-file target and pass it to gdb. - Don't use a custom interpreter. The existing kgdb_init() hook and the target_new_objfile() hook give us sufficient hooks during startup to setup kgdb-specific behavior now. - Always add the 'proc', 'tid', and 'add-kld' commands on startup and not just if we have a core dump. Currently the 'proc' and 'tid' commands do not work for remote targets (I will fix at least 'tid' in the next round of changes though). However, the 'add-kld' command works fine for loading symbols for a kernel module on a remote target. - Always setup the 'kld' shared library target operations instead of just if we have a core dump. Although symbols for kernel modules are not automatically loaded when connecting to a remote target, you can do 'info sharedlibrary' after connecting to the remote target and kgdb will find all the modules. You can then use the 'sharedlibrary' command to load symbols from the module files. - Change kthr_init() to free the existing list of kthr objects before generating a new one. This allows it to be invoked multiple times w/o leaking memory. MFC after: 1 week
2008-04-29 20:32:45 +00:00
int fbsdcoreops_suppress_target = 1;
void
Rework how kgdb manages kernel and vmcore files to be a bit more gdb-ish so that kgdb can be used more like a normal gdb: - Load the kernel via the standard 'exec' target and allow it to be changed via the 'file' command. - Instead of explicitly loading the kernel file as the mail symbol file during startup, just pass it to gdb_main() as the executable file. - Change the kld support (via shared libraries) to cache the address of the linker_files and linker_kernel_file variables in addition to the offsets of various members in 'struct linker_file'. - When a new symbol file is loaded, recompute the addresses and offsets used by the kld support code. - When a new symbol file is loaded, recalculate the ofs_fix variable to account for the different ways a trapframe can be passed to trap frame handlers in i386. This is done by adding a MD kgdb_trgt_new_objfile() hook that is empty on all but i386. - Don't use the directory name of the kernel specified on the command line to find kernel modules in the kld support code. Instead, extract the filename of the current executable via exec_bfd. Now the 'kernel' variable is private to main.c again. - Make the 'add-kld' command explicitly fail if no executable is loaded. - Make the support for vmcores a real core-dump target that opens the kernel and vmcore on open and closes the kvm connection when closed, etc. - The 'core' command can now be used to select a vmcore to use, either a crash dump file or /dev/mem for live debugging. - The 'detach' command can be used to detach from a vmcore w/o attaching to a new one. - kgdb no longer explicitly opens a core dump during startup and no longer has to use an atexit() hook to close the kvm connection on shutdown. - Symbols for kld's are automatically loaded anytime a core is opened. Also, the unread portion of dmesg is dumped just as it was done on kgdb startup previously. - Don't require either a remote target or core dump if a kernel is specified. You can now just run 'kgdb kernel' similar to running gdb on an executable and later connect to a remote target or core dump. - Use a more relaxed way to verify remote targets specified via -r. Instead of explicitly allowing a few non-file target specifications, just assume that if stat() on the arg and on "/dev/" + arg both fail that is some non-file target and pass it to gdb. - Don't use a custom interpreter. The existing kgdb_init() hook and the target_new_objfile() hook give us sufficient hooks during startup to setup kgdb-specific behavior now. - Always add the 'proc', 'tid', and 'add-kld' commands on startup and not just if we have a core dump. Currently the 'proc' and 'tid' commands do not work for remote targets (I will fix at least 'tid' in the next round of changes though). However, the 'add-kld' command works fine for loading symbols for a kernel module on a remote target. - Always setup the 'kld' shared library target operations instead of just if we have a core dump. Although symbols for kernel modules are not automatically loaded when connecting to a remote target, you can do 'info sharedlibrary' after connecting to the remote target and kgdb will find all the modules. You can then use the 'sharedlibrary' command to load symbols from the module files. - Change kthr_init() to free the existing list of kthr objects before generating a new one. This allows it to be invoked multiple times w/o leaking memory. MFC after: 1 week
2008-04-29 20:32:45 +00:00
initialize_kgdb_target(void)
{
kgdb_trgt_ops.to_magic = OPS_MAGIC;
kgdb_trgt_ops.to_shortname = "kernel";
Rework how kgdb manages kernel and vmcore files to be a bit more gdb-ish so that kgdb can be used more like a normal gdb: - Load the kernel via the standard 'exec' target and allow it to be changed via the 'file' command. - Instead of explicitly loading the kernel file as the mail symbol file during startup, just pass it to gdb_main() as the executable file. - Change the kld support (via shared libraries) to cache the address of the linker_files and linker_kernel_file variables in addition to the offsets of various members in 'struct linker_file'. - When a new symbol file is loaded, recompute the addresses and offsets used by the kld support code. - When a new symbol file is loaded, recalculate the ofs_fix variable to account for the different ways a trapframe can be passed to trap frame handlers in i386. This is done by adding a MD kgdb_trgt_new_objfile() hook that is empty on all but i386. - Don't use the directory name of the kernel specified on the command line to find kernel modules in the kld support code. Instead, extract the filename of the current executable via exec_bfd. Now the 'kernel' variable is private to main.c again. - Make the 'add-kld' command explicitly fail if no executable is loaded. - Make the support for vmcores a real core-dump target that opens the kernel and vmcore on open and closes the kvm connection when closed, etc. - The 'core' command can now be used to select a vmcore to use, either a crash dump file or /dev/mem for live debugging. - The 'detach' command can be used to detach from a vmcore w/o attaching to a new one. - kgdb no longer explicitly opens a core dump during startup and no longer has to use an atexit() hook to close the kvm connection on shutdown. - Symbols for kld's are automatically loaded anytime a core is opened. Also, the unread portion of dmesg is dumped just as it was done on kgdb startup previously. - Don't require either a remote target or core dump if a kernel is specified. You can now just run 'kgdb kernel' similar to running gdb on an executable and later connect to a remote target or core dump. - Use a more relaxed way to verify remote targets specified via -r. Instead of explicitly allowing a few non-file target specifications, just assume that if stat() on the arg and on "/dev/" + arg both fail that is some non-file target and pass it to gdb. - Don't use a custom interpreter. The existing kgdb_init() hook and the target_new_objfile() hook give us sufficient hooks during startup to setup kgdb-specific behavior now. - Always add the 'proc', 'tid', and 'add-kld' commands on startup and not just if we have a core dump. Currently the 'proc' and 'tid' commands do not work for remote targets (I will fix at least 'tid' in the next round of changes though). However, the 'add-kld' command works fine for loading symbols for a kernel module on a remote target. - Always setup the 'kld' shared library target operations instead of just if we have a core dump. Although symbols for kernel modules are not automatically loaded when connecting to a remote target, you can do 'info sharedlibrary' after connecting to the remote target and kgdb will find all the modules. You can then use the 'sharedlibrary' command to load symbols from the module files. - Change kthr_init() to free the existing list of kthr objects before generating a new one. This allows it to be invoked multiple times w/o leaking memory. MFC after: 1 week
2008-04-29 20:32:45 +00:00
kgdb_trgt_ops.to_longname = "kernel core dump file";
kgdb_trgt_ops.to_doc =
"Use a vmcore file as a target. Specify the filename of the vmcore file.";
kgdb_trgt_ops.to_stratum = core_stratum;
kgdb_trgt_ops.to_has_memory = 1;
kgdb_trgt_ops.to_has_registers = 1;
kgdb_trgt_ops.to_has_stack = 1;
Rework how kgdb manages kernel and vmcore files to be a bit more gdb-ish so that kgdb can be used more like a normal gdb: - Load the kernel via the standard 'exec' target and allow it to be changed via the 'file' command. - Instead of explicitly loading the kernel file as the mail symbol file during startup, just pass it to gdb_main() as the executable file. - Change the kld support (via shared libraries) to cache the address of the linker_files and linker_kernel_file variables in addition to the offsets of various members in 'struct linker_file'. - When a new symbol file is loaded, recompute the addresses and offsets used by the kld support code. - When a new symbol file is loaded, recalculate the ofs_fix variable to account for the different ways a trapframe can be passed to trap frame handlers in i386. This is done by adding a MD kgdb_trgt_new_objfile() hook that is empty on all but i386. - Don't use the directory name of the kernel specified on the command line to find kernel modules in the kld support code. Instead, extract the filename of the current executable via exec_bfd. Now the 'kernel' variable is private to main.c again. - Make the 'add-kld' command explicitly fail if no executable is loaded. - Make the support for vmcores a real core-dump target that opens the kernel and vmcore on open and closes the kvm connection when closed, etc. - The 'core' command can now be used to select a vmcore to use, either a crash dump file or /dev/mem for live debugging. - The 'detach' command can be used to detach from a vmcore w/o attaching to a new one. - kgdb no longer explicitly opens a core dump during startup and no longer has to use an atexit() hook to close the kvm connection on shutdown. - Symbols for kld's are automatically loaded anytime a core is opened. Also, the unread portion of dmesg is dumped just as it was done on kgdb startup previously. - Don't require either a remote target or core dump if a kernel is specified. You can now just run 'kgdb kernel' similar to running gdb on an executable and later connect to a remote target or core dump. - Use a more relaxed way to verify remote targets specified via -r. Instead of explicitly allowing a few non-file target specifications, just assume that if stat() on the arg and on "/dev/" + arg both fail that is some non-file target and pass it to gdb. - Don't use a custom interpreter. The existing kgdb_init() hook and the target_new_objfile() hook give us sufficient hooks during startup to setup kgdb-specific behavior now. - Always add the 'proc', 'tid', and 'add-kld' commands on startup and not just if we have a core dump. Currently the 'proc' and 'tid' commands do not work for remote targets (I will fix at least 'tid' in the next round of changes though). However, the 'add-kld' command works fine for loading symbols for a kernel module on a remote target. - Always setup the 'kld' shared library target operations instead of just if we have a core dump. Although symbols for kernel modules are not automatically loaded when connecting to a remote target, you can do 'info sharedlibrary' after connecting to the remote target and kgdb will find all the modules. You can then use the 'sharedlibrary' command to load symbols from the module files. - Change kthr_init() to free the existing list of kthr objects before generating a new one. This allows it to be invoked multiple times w/o leaking memory. MFC after: 1 week
2008-04-29 20:32:45 +00:00
kgdb_trgt_ops.to_open = kgdb_trgt_open;
kgdb_trgt_ops.to_close = kgdb_trgt_close;
kgdb_trgt_ops.to_attach = find_default_attach;
kgdb_trgt_ops.to_detach = kgdb_trgt_detach;
kgdb_trgt_ops.to_extra_thread_info = kgdb_trgt_extra_thread_info;
kgdb_trgt_ops.to_fetch_registers = kgdb_trgt_fetch_registers;
kgdb_trgt_ops.to_files_info = kgdb_trgt_files_info;
kgdb_trgt_ops.to_find_new_threads = kgdb_trgt_find_new_threads;
kgdb_trgt_ops.to_pid_to_str = kgdb_trgt_pid_to_str;
kgdb_trgt_ops.to_store_registers = kgdb_trgt_store_registers;
kgdb_trgt_ops.to_thread_alive = kgdb_trgt_thread_alive;
kgdb_trgt_ops.to_xfer_memory = kgdb_trgt_xfer_memory;
Rework how kgdb manages kernel and vmcore files to be a bit more gdb-ish so that kgdb can be used more like a normal gdb: - Load the kernel via the standard 'exec' target and allow it to be changed via the 'file' command. - Instead of explicitly loading the kernel file as the mail symbol file during startup, just pass it to gdb_main() as the executable file. - Change the kld support (via shared libraries) to cache the address of the linker_files and linker_kernel_file variables in addition to the offsets of various members in 'struct linker_file'. - When a new symbol file is loaded, recompute the addresses and offsets used by the kld support code. - When a new symbol file is loaded, recalculate the ofs_fix variable to account for the different ways a trapframe can be passed to trap frame handlers in i386. This is done by adding a MD kgdb_trgt_new_objfile() hook that is empty on all but i386. - Don't use the directory name of the kernel specified on the command line to find kernel modules in the kld support code. Instead, extract the filename of the current executable via exec_bfd. Now the 'kernel' variable is private to main.c again. - Make the 'add-kld' command explicitly fail if no executable is loaded. - Make the support for vmcores a real core-dump target that opens the kernel and vmcore on open and closes the kvm connection when closed, etc. - The 'core' command can now be used to select a vmcore to use, either a crash dump file or /dev/mem for live debugging. - The 'detach' command can be used to detach from a vmcore w/o attaching to a new one. - kgdb no longer explicitly opens a core dump during startup and no longer has to use an atexit() hook to close the kvm connection on shutdown. - Symbols for kld's are automatically loaded anytime a core is opened. Also, the unread portion of dmesg is dumped just as it was done on kgdb startup previously. - Don't require either a remote target or core dump if a kernel is specified. You can now just run 'kgdb kernel' similar to running gdb on an executable and later connect to a remote target or core dump. - Use a more relaxed way to verify remote targets specified via -r. Instead of explicitly allowing a few non-file target specifications, just assume that if stat() on the arg and on "/dev/" + arg both fail that is some non-file target and pass it to gdb. - Don't use a custom interpreter. The existing kgdb_init() hook and the target_new_objfile() hook give us sufficient hooks during startup to setup kgdb-specific behavior now. - Always add the 'proc', 'tid', and 'add-kld' commands on startup and not just if we have a core dump. Currently the 'proc' and 'tid' commands do not work for remote targets (I will fix at least 'tid' in the next round of changes though). However, the 'add-kld' command works fine for loading symbols for a kernel module on a remote target. - Always setup the 'kld' shared library target operations instead of just if we have a core dump. Although symbols for kernel modules are not automatically loaded when connecting to a remote target, you can do 'info sharedlibrary' after connecting to the remote target and kgdb will find all the modules. You can then use the 'sharedlibrary' command to load symbols from the module files. - Change kthr_init() to free the existing list of kthr objects before generating a new one. This allows it to be invoked multiple times w/o leaking memory. MFC after: 1 week
2008-04-29 20:32:45 +00:00
kgdb_trgt_ops.to_insert_breakpoint = kgdb_trgt_ignore_breakpoints;
kgdb_trgt_ops.to_remove_breakpoint = kgdb_trgt_ignore_breakpoints;
add_target(&kgdb_trgt_ops);
add_com ("proc", class_obscure, kgdb_set_proc_cmd,
"Set current process context");
add_com ("tid", class_obscure, kgdb_set_tid_cmd,
"Set current thread context");
}