2012-04-13 16:32:33 +00:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2012 Matteo Landi, Luigi Rizzo. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* $FreeBSD$
|
|
|
|
* $Id: netmap_mem2.c 10830 2012-03-22 18:06:01Z luigi $
|
|
|
|
*
|
|
|
|
* New memory allocator for netmap
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The new version allocates three regions:
|
|
|
|
* nm_if_pool for the struct netmap_if
|
|
|
|
* nm_ring_pool for the struct netmap_ring
|
|
|
|
* nm_buf_pool for the packet buffers.
|
|
|
|
*
|
|
|
|
* All regions need to be page-sized as we export them to
|
|
|
|
* userspace through mmap. Only the latter need to be dma-able,
|
|
|
|
* but for convenience use the same type of allocator for all.
|
|
|
|
*
|
|
|
|
* Once mapped, the three regions are exported to userspace
|
|
|
|
* as a contiguous block, starting from nm_if_pool. Each
|
|
|
|
* cluster (and pool) is an integral number of pages.
|
|
|
|
* [ . . . ][ . . . . . .][ . . . . . . . . . .]
|
|
|
|
* nm_if nm_ring nm_buf
|
|
|
|
*
|
|
|
|
* The userspace areas contain offsets of the objects in userspace.
|
|
|
|
* When (at init time) we write these offsets, we find out the index
|
|
|
|
* of the object, and from there locate the offset from the beginning
|
|
|
|
* of the region.
|
|
|
|
*
|
|
|
|
* Allocator for a pool of memory objects of the same size.
|
|
|
|
* The pool is split into smaller clusters, whose size is a
|
|
|
|
* multiple of the page size. The cluster size is chosen
|
|
|
|
* to minimize the waste for a given max cluster size
|
|
|
|
* (we do it by brute force, as we have relatively few object
|
|
|
|
* per cluster).
|
|
|
|
*
|
|
|
|
* To be polite with the cache, objects are aligned to
|
|
|
|
* the cache line, or 64 bytes. Sizes are rounded to multiple of 64.
|
|
|
|
* For each object we have
|
|
|
|
* one entry in the bitmap to signal the state. Allocation scans
|
|
|
|
* the bitmap, but since this is done only on attach, we are not
|
|
|
|
* too worried about performance
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* MEMORY SIZES:
|
|
|
|
*
|
|
|
|
* (all the parameters below will become tunables)
|
|
|
|
*
|
|
|
|
* struct netmap_if is variable size but small.
|
|
|
|
* Assuming each NIC has 8+2 rings, (4+1 tx, 4+1 rx) the netmap_if
|
|
|
|
* uses 120 bytes on a 64-bit machine.
|
|
|
|
* We allocate NETMAP_IF_MAX_SIZE (1024) which should work even for
|
|
|
|
* cards with 48 ring pairs.
|
|
|
|
* The total number of 'struct netmap_if' could be slightly larger
|
|
|
|
* that the total number of rings on all interfaces on the system.
|
|
|
|
*/
|
|
|
|
#define NETMAP_IF_MAX_SIZE 1024
|
|
|
|
#define NETMAP_IF_MAX_NUM 512
|
|
|
|
|
|
|
|
/*
|
|
|
|
* netmap rings are up to 2..4k descriptors, 8 bytes each,
|
|
|
|
* plus some glue at the beginning (32 bytes).
|
|
|
|
* We set the default ring size to 9 pages (36K) and enable
|
|
|
|
* a few hundreds of them.
|
|
|
|
*/
|
|
|
|
#define NETMAP_RING_MAX_SIZE (9*PAGE_SIZE)
|
|
|
|
#define NETMAP_RING_MAX_NUM 200 /* approx 8MB */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Buffers: the more the better. Buffer size is NETMAP_BUF_SIZE,
|
|
|
|
* 2k or slightly less, aligned to 64 bytes.
|
|
|
|
* A large 10G interface can have 2k*18 = 36k buffers per interface,
|
|
|
|
* or about 72MB of memory. Up to us to use more.
|
|
|
|
*/
|
|
|
|
#ifndef CONSERVATIVE
|
|
|
|
#define NETMAP_BUF_MAX_NUM 100000 /* 200MB */
|
|
|
|
#else /* CONSERVATIVE */
|
|
|
|
#define NETMAP_BUF_MAX_NUM 20000 /* 40MB */
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
struct netmap_obj_pool {
|
|
|
|
char name[16]; /* name of the allocator */
|
|
|
|
u_int objtotal; /* actual total number of objects. */
|
|
|
|
u_int objfree; /* number of free objects. */
|
|
|
|
u_int clustentries; /* actual objects per cluster */
|
|
|
|
|
|
|
|
/* the total memory space is _numclusters*_clustsize */
|
|
|
|
u_int _numclusters; /* how many clusters */
|
|
|
|
u_int _clustsize; /* cluster size */
|
|
|
|
u_int _objsize; /* actual object size */
|
|
|
|
|
|
|
|
u_int _memtotal; /* _numclusters*_clustsize */
|
|
|
|
struct lut_entry *lut; /* virt,phys addresses, objtotal entries */
|
|
|
|
uint32_t *bitmap; /* one bit per buffer, 1 means free */
|
|
|
|
};
|
|
|
|
|
|
|
|
struct netmap_mem_d {
|
|
|
|
NM_LOCK_T nm_mtx; /* protect the allocator ? */
|
|
|
|
u_int nm_totalsize; /* shorthand */
|
|
|
|
|
|
|
|
/* pointers to the three allocators */
|
|
|
|
struct netmap_obj_pool *nm_if_pool;
|
|
|
|
struct netmap_obj_pool *nm_ring_pool;
|
|
|
|
struct netmap_obj_pool *nm_buf_pool;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct lut_entry *netmap_buffer_lut; /* exported */
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert a userspace offset to a phisical address.
|
|
|
|
* XXX re-do in a simpler way.
|
|
|
|
*
|
|
|
|
* The idea here is to hide userspace applications the fact that pre-allocated
|
|
|
|
* memory is not contiguous, but fragmented across different clusters and
|
|
|
|
* smaller memory allocators. Consequently, first of all we need to find which
|
|
|
|
* allocator is owning provided offset, then we need to find out the physical
|
|
|
|
* address associated to target page (this is done using the look-up table.
|
|
|
|
*/
|
|
|
|
static inline vm_paddr_t
|
|
|
|
netmap_ofstophys(vm_offset_t offset)
|
|
|
|
{
|
|
|
|
const struct netmap_obj_pool *p[] = {
|
|
|
|
nm_mem->nm_if_pool,
|
|
|
|
nm_mem->nm_ring_pool,
|
|
|
|
nm_mem->nm_buf_pool };
|
|
|
|
int i;
|
|
|
|
vm_offset_t o = offset;
|
|
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < 3; offset -= p[i]->_memtotal, i++) {
|
|
|
|
if (offset >= p[i]->_memtotal)
|
|
|
|
continue;
|
|
|
|
// XXX now scan the clusters
|
|
|
|
return p[i]->lut[offset / p[i]->_objsize].paddr +
|
|
|
|
offset % p[i]->_objsize;
|
|
|
|
}
|
2012-04-14 16:44:18 +00:00
|
|
|
D("invalid ofs 0x%x out of 0x%x 0x%x 0x%x", (u_int)o,
|
|
|
|
p[0]->_memtotal, p[0]->_memtotal + p[1]->_memtotal,
|
|
|
|
p[0]->_memtotal + p[1]->_memtotal + p[2]->_memtotal);
|
2012-04-13 16:32:33 +00:00
|
|
|
return 0; // XXX bad address
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* we store objects by kernel address, need to find the offset
|
|
|
|
* within the pool to export the value to userspace.
|
|
|
|
* Algorithm: scan until we find the cluster, then add the
|
|
|
|
* actual offset in the cluster
|
|
|
|
*/
|
2012-04-13 22:24:57 +00:00
|
|
|
static ssize_t
|
2012-04-13 16:32:33 +00:00
|
|
|
netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr)
|
|
|
|
{
|
|
|
|
int i, k = p->clustentries, n = p->objtotal;
|
|
|
|
ssize_t ofs = 0;
|
|
|
|
|
|
|
|
for (i = 0; i < n; i += k, ofs += p->_clustsize) {
|
|
|
|
const char *base = p->lut[i].vaddr;
|
|
|
|
ssize_t relofs = (const char *) vaddr - base;
|
|
|
|
|
|
|
|
if (relofs < 0 || relofs > p->_clustsize)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
ofs = ofs + relofs;
|
|
|
|
ND("%s: return offset %d (cluster %d) for pointer %p",
|
|
|
|
p->name, ofs, i, vaddr);
|
|
|
|
return ofs;
|
|
|
|
}
|
|
|
|
D("address %p is not contained inside any cluster (%s)",
|
|
|
|
vaddr, p->name);
|
|
|
|
return 0; /* An error occurred */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Helper functions which convert virtual addresses to offsets */
|
|
|
|
#define netmap_if_offset(v) \
|
|
|
|
netmap_obj_offset(nm_mem->nm_if_pool, (v))
|
|
|
|
|
|
|
|
#define netmap_ring_offset(v) \
|
|
|
|
(nm_mem->nm_if_pool->_memtotal + \
|
|
|
|
netmap_obj_offset(nm_mem->nm_ring_pool, (v)))
|
|
|
|
|
|
|
|
#define netmap_buf_offset(v) \
|
|
|
|
(nm_mem->nm_if_pool->_memtotal + \
|
|
|
|
nm_mem->nm_ring_pool->_memtotal + \
|
|
|
|
netmap_obj_offset(nm_mem->nm_buf_pool, (v)))
|
|
|
|
|
|
|
|
|
|
|
|
static void *
|
|
|
|
netmap_obj_malloc(struct netmap_obj_pool *p, int len)
|
|
|
|
{
|
|
|
|
uint32_t i = 0; /* index in the bitmap */
|
|
|
|
uint32_t mask, j; /* slot counter */
|
|
|
|
void *vaddr = NULL;
|
|
|
|
|
|
|
|
if (len > p->_objsize) {
|
|
|
|
D("%s request size %d too large", p->name, len);
|
|
|
|
// XXX cannot reduce the size
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (p->objfree == 0) {
|
|
|
|
D("%s allocator: run out of memory", p->name);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* termination is guaranteed by p->free */
|
|
|
|
while (vaddr == NULL) {
|
|
|
|
uint32_t cur = p->bitmap[i];
|
|
|
|
if (cur == 0) { /* bitmask is fully used */
|
|
|
|
i++;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
/* locate a slot */
|
|
|
|
for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1)
|
|
|
|
;
|
|
|
|
|
|
|
|
p->bitmap[i] &= ~mask; /* mark object as in use */
|
|
|
|
p->objfree--;
|
|
|
|
|
|
|
|
vaddr = p->lut[i * 32 + j].vaddr;
|
|
|
|
}
|
|
|
|
ND("%s allocator: allocated object @ [%d][%d]: vaddr %p", i, j, vaddr);
|
|
|
|
|
|
|
|
return vaddr;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* free by index, not by address
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
netmap_obj_free(struct netmap_obj_pool *p, uint32_t j)
|
|
|
|
{
|
|
|
|
if (j >= p->objtotal) {
|
|
|
|
D("invalid index %u, max %u", j, p->objtotal);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
p->bitmap[j / 32] |= (1 << (j % 32));
|
|
|
|
p->objfree++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr)
|
|
|
|
{
|
|
|
|
int i, j, n = p->_memtotal / p->_clustsize;
|
|
|
|
|
|
|
|
for (i = 0, j = 0; i < n; i++, j += p->clustentries) {
|
|
|
|
void *base = p->lut[i * p->clustentries].vaddr;
|
|
|
|
ssize_t relofs = (ssize_t) vaddr - (ssize_t) base;
|
|
|
|
|
|
|
|
/* Given address, is out of the scope of the current cluster.*/
|
|
|
|
if (vaddr < base || relofs > p->_clustsize)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
j = j + relofs / p->_objsize;
|
|
|
|
KASSERT(j != 0, ("Cannot free object 0"));
|
|
|
|
netmap_obj_free(p, j);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
ND("address %p is not contained inside any cluster (%s)",
|
|
|
|
vaddr, p->name);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define netmap_if_malloc(len) netmap_obj_malloc(nm_mem->nm_if_pool, len)
|
|
|
|
#define netmap_if_free(v) netmap_obj_free_va(nm_mem->nm_if_pool, (v))
|
|
|
|
#define netmap_ring_malloc(len) netmap_obj_malloc(nm_mem->nm_ring_pool, len)
|
|
|
|
#define netmap_buf_malloc() \
|
|
|
|
netmap_obj_malloc(nm_mem->nm_buf_pool, NETMAP_BUF_SIZE)
|
|
|
|
|
|
|
|
|
|
|
|
/* Return the index associated to the given packet buffer */
|
|
|
|
#define netmap_buf_index(v) \
|
|
|
|
(netmap_obj_offset(nm_mem->nm_buf_pool, (v)) / nm_mem->nm_buf_pool->_objsize)
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
netmap_new_bufs(struct netmap_if *nifp __unused,
|
|
|
|
struct netmap_slot *slot, u_int n)
|
|
|
|
{
|
|
|
|
struct netmap_obj_pool *p = nm_mem->nm_buf_pool;
|
|
|
|
uint32_t i = 0; /* slot counter */
|
|
|
|
|
|
|
|
for (i = 0; i < n; i++) {
|
|
|
|
void *vaddr = netmap_buf_malloc();
|
|
|
|
if (vaddr == NULL) {
|
|
|
|
D("unable to locate empty packet buffer");
|
|
|
|
goto cleanup;
|
|
|
|
}
|
|
|
|
|
|
|
|
slot[i].buf_idx = netmap_buf_index(vaddr);
|
|
|
|
KASSERT(slot[i].buf_idx != 0,
|
|
|
|
("Assigning buf_idx=0 to just created slot"));
|
|
|
|
slot[i].len = p->_objsize;
|
|
|
|
slot[i].flags = NS_BUF_CHANGED; // XXX GAETANO hack
|
|
|
|
}
|
|
|
|
|
|
|
|
ND("allocated %d buffers, %d available", n, p->objfree);
|
|
|
|
return;
|
|
|
|
|
|
|
|
cleanup:
|
|
|
|
for (i--; i >= 0; i--) {
|
|
|
|
netmap_obj_free(nm_mem->nm_buf_pool, slot[i].buf_idx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
netmap_free_buf(struct netmap_if *nifp, uint32_t i)
|
|
|
|
{
|
|
|
|
struct netmap_obj_pool *p = nm_mem->nm_buf_pool;
|
|
|
|
if (i < 2 || i >= p->objtotal) {
|
|
|
|
D("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
netmap_obj_free(nm_mem->nm_buf_pool, i);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Free all resources related to an allocator.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
netmap_destroy_obj_allocator(struct netmap_obj_pool *p)
|
|
|
|
{
|
|
|
|
if (p == NULL)
|
|
|
|
return;
|
|
|
|
if (p->bitmap)
|
|
|
|
free(p->bitmap, M_NETMAP);
|
|
|
|
if (p->lut) {
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < p->objtotal; i += p->clustentries) {
|
|
|
|
if (p->lut[i].vaddr)
|
|
|
|
contigfree(p->lut[i].vaddr, p->_clustsize, M_NETMAP);
|
|
|
|
}
|
|
|
|
bzero(p->lut, sizeof(struct lut_entry) * p->objtotal);
|
|
|
|
free(p->lut, M_NETMAP);
|
|
|
|
}
|
|
|
|
bzero(p, sizeof(*p));
|
|
|
|
free(p, M_NETMAP);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We receive a request for objtotal objects, of size objsize each.
|
|
|
|
* Internally we may round up both numbers, as we allocate objects
|
|
|
|
* in small clusters multiple of the page size.
|
|
|
|
* In the allocator we don't need to store the objsize,
|
|
|
|
* but we do need to keep track of objtotal' and clustentries,
|
|
|
|
* as they are needed when freeing memory.
|
|
|
|
*
|
|
|
|
* XXX note -- userspace needs the buffers to be contiguous,
|
|
|
|
* so we cannot afford gaps at the end of a cluster.
|
|
|
|
*/
|
|
|
|
static struct netmap_obj_pool *
|
|
|
|
netmap_new_obj_allocator(const char *name, u_int objtotal, u_int objsize)
|
|
|
|
{
|
|
|
|
struct netmap_obj_pool *p;
|
|
|
|
int i, n;
|
|
|
|
u_int clustsize; /* the cluster size, multiple of page size */
|
|
|
|
u_int clustentries; /* how many objects per entry */
|
|
|
|
|
|
|
|
#define MAX_CLUSTSIZE (1<<17)
|
|
|
|
#define LINE_ROUND 64
|
|
|
|
if (objsize >= MAX_CLUSTSIZE) {
|
|
|
|
/* we could do it but there is no point */
|
|
|
|
D("unsupported allocation for %d bytes", objsize);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
/* make sure objsize is a multiple of LINE_ROUND */
|
|
|
|
i = (objsize & (LINE_ROUND - 1));
|
|
|
|
if (i) {
|
|
|
|
D("XXX aligning object by %d bytes", LINE_ROUND - i);
|
|
|
|
objsize += LINE_ROUND - i;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Compute number of objects using a brute-force approach:
|
|
|
|
* given a max cluster size,
|
|
|
|
* we try to fill it with objects keeping track of the
|
|
|
|
* wasted space to the next page boundary.
|
|
|
|
*/
|
|
|
|
for (clustentries = 0, i = 1;; i++) {
|
|
|
|
u_int delta, used = i * objsize;
|
|
|
|
if (used > MAX_CLUSTSIZE)
|
|
|
|
break;
|
|
|
|
delta = used % PAGE_SIZE;
|
|
|
|
if (delta == 0) { // exact solution
|
|
|
|
clustentries = i;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (delta > ( (clustentries*objsize) % PAGE_SIZE) )
|
|
|
|
clustentries = i;
|
|
|
|
}
|
|
|
|
// D("XXX --- ouch, delta %d (bad for buffers)", delta);
|
|
|
|
/* compute clustsize and round to the next page */
|
|
|
|
clustsize = clustentries * objsize;
|
|
|
|
i = (clustsize & (PAGE_SIZE - 1));
|
|
|
|
if (i)
|
|
|
|
clustsize += PAGE_SIZE - i;
|
|
|
|
D("objsize %d clustsize %d objects %d",
|
|
|
|
objsize, clustsize, clustentries);
|
|
|
|
|
|
|
|
p = malloc(sizeof(struct netmap_obj_pool), M_NETMAP,
|
|
|
|
M_WAITOK | M_ZERO);
|
|
|
|
if (p == NULL) {
|
|
|
|
D("Unable to create '%s' allocator", name);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Allocate and initialize the lookup table.
|
|
|
|
*
|
|
|
|
* The number of clusters is n = ceil(objtotal/clustentries)
|
|
|
|
* objtotal' = n * clustentries
|
|
|
|
*/
|
|
|
|
strncpy(p->name, name, sizeof(p->name));
|
|
|
|
p->clustentries = clustentries;
|
|
|
|
p->_clustsize = clustsize;
|
|
|
|
n = (objtotal + clustentries - 1) / clustentries;
|
|
|
|
p->_numclusters = n;
|
|
|
|
p->objtotal = n * clustentries;
|
|
|
|
p->objfree = p->objtotal - 2; /* obj 0 and 1 are reserved */
|
|
|
|
p->_objsize = objsize;
|
|
|
|
p->_memtotal = p->_numclusters * p->_clustsize;
|
|
|
|
|
|
|
|
p->lut = malloc(sizeof(struct lut_entry) * p->objtotal,
|
|
|
|
M_NETMAP, M_WAITOK | M_ZERO);
|
|
|
|
if (p->lut == NULL) {
|
|
|
|
D("Unable to create lookup table for '%s' allocator", name);
|
|
|
|
goto clean;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Allocate the bitmap */
|
|
|
|
n = (p->objtotal + 31) / 32;
|
|
|
|
p->bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP, M_WAITOK | M_ZERO);
|
|
|
|
if (p->bitmap == NULL) {
|
|
|
|
D("Unable to create bitmap (%d entries) for allocator '%s'", n,
|
|
|
|
name);
|
|
|
|
goto clean;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate clusters, init pointers and bitmap
|
|
|
|
*/
|
|
|
|
for (i = 0; i < p->objtotal;) {
|
|
|
|
int lim = i + clustentries;
|
|
|
|
char *clust;
|
|
|
|
|
|
|
|
clust = contigmalloc(clustsize, M_NETMAP, M_WAITOK | M_ZERO,
|
|
|
|
0, -1UL, PAGE_SIZE, 0);
|
|
|
|
if (clust == NULL) {
|
|
|
|
/*
|
|
|
|
* If we get here, there is a severe memory shortage,
|
|
|
|
* so halve the allocated memory to reclaim some.
|
|
|
|
*/
|
|
|
|
D("Unable to create cluster at %d for '%s' allocator",
|
|
|
|
i, name);
|
|
|
|
lim = i / 2;
|
|
|
|
for (; i >= lim; i--) {
|
|
|
|
p->bitmap[ (i>>5) ] &= ~( 1 << (i & 31) );
|
|
|
|
if (i % clustentries == 0 && p->lut[i].vaddr)
|
|
|
|
contigfree(p->lut[i].vaddr,
|
|
|
|
p->_clustsize, M_NETMAP);
|
|
|
|
}
|
|
|
|
p->objtotal = i;
|
|
|
|
p->objfree = p->objtotal - 2;
|
|
|
|
p->_numclusters = i / clustentries;
|
|
|
|
p->_memtotal = p->_numclusters * p->_clustsize;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
for (; i < lim; i++, clust += objsize) {
|
|
|
|
p->bitmap[ (i>>5) ] |= ( 1 << (i & 31) );
|
|
|
|
p->lut[i].vaddr = clust;
|
|
|
|
p->lut[i].paddr = vtophys(clust);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
p->bitmap[0] = ~3; /* objs 0 and 1 is always busy */
|
|
|
|
D("Pre-allocated %d clusters (%d/%dKB) for '%s'",
|
|
|
|
p->_numclusters, p->_clustsize >> 10,
|
|
|
|
p->_memtotal >> 10, name);
|
|
|
|
|
|
|
|
return p;
|
|
|
|
|
|
|
|
clean:
|
|
|
|
netmap_destroy_obj_allocator(p);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
netmap_memory_init(void)
|
|
|
|
{
|
|
|
|
struct netmap_obj_pool *p;
|
|
|
|
|
|
|
|
nm_mem = malloc(sizeof(struct netmap_mem_d), M_NETMAP,
|
|
|
|
M_WAITOK | M_ZERO);
|
|
|
|
if (nm_mem == NULL)
|
|
|
|
goto clean;
|
|
|
|
|
|
|
|
p = netmap_new_obj_allocator("netmap_if",
|
|
|
|
NETMAP_IF_MAX_NUM, NETMAP_IF_MAX_SIZE);
|
|
|
|
if (p == NULL)
|
|
|
|
goto clean;
|
|
|
|
nm_mem->nm_if_pool = p;
|
|
|
|
|
|
|
|
p = netmap_new_obj_allocator("netmap_ring",
|
|
|
|
NETMAP_RING_MAX_NUM, NETMAP_RING_MAX_SIZE);
|
|
|
|
if (p == NULL)
|
|
|
|
goto clean;
|
|
|
|
nm_mem->nm_ring_pool = p;
|
|
|
|
|
|
|
|
p = netmap_new_obj_allocator("netmap_buf",
|
|
|
|
NETMAP_BUF_MAX_NUM, NETMAP_BUF_SIZE);
|
|
|
|
if (p == NULL)
|
|
|
|
goto clean;
|
|
|
|
netmap_total_buffers = p->objtotal;
|
|
|
|
netmap_buffer_lut = p->lut;
|
|
|
|
nm_mem->nm_buf_pool = p;
|
|
|
|
netmap_buffer_base = p->lut[0].vaddr;
|
|
|
|
|
|
|
|
mtx_init(&nm_mem->nm_mtx, "netmap memory allocator lock", NULL,
|
|
|
|
MTX_DEF);
|
|
|
|
nm_mem->nm_totalsize =
|
|
|
|
nm_mem->nm_if_pool->_memtotal +
|
|
|
|
nm_mem->nm_ring_pool->_memtotal +
|
|
|
|
nm_mem->nm_buf_pool->_memtotal;
|
|
|
|
|
|
|
|
D("Have %d KB for interfaces, %d KB for rings and %d MB for buffers",
|
|
|
|
nm_mem->nm_if_pool->_memtotal >> 10,
|
|
|
|
nm_mem->nm_ring_pool->_memtotal >> 10,
|
|
|
|
nm_mem->nm_buf_pool->_memtotal >> 20);
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
clean:
|
|
|
|
if (nm_mem) {
|
|
|
|
netmap_destroy_obj_allocator(nm_mem->nm_ring_pool);
|
|
|
|
netmap_destroy_obj_allocator(nm_mem->nm_if_pool);
|
|
|
|
free(nm_mem, M_NETMAP);
|
|
|
|
}
|
|
|
|
return ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
netmap_memory_fini(void)
|
|
|
|
{
|
|
|
|
if (!nm_mem)
|
|
|
|
return;
|
|
|
|
netmap_destroy_obj_allocator(nm_mem->nm_if_pool);
|
|
|
|
netmap_destroy_obj_allocator(nm_mem->nm_ring_pool);
|
|
|
|
netmap_destroy_obj_allocator(nm_mem->nm_buf_pool);
|
|
|
|
mtx_destroy(&nm_mem->nm_mtx);
|
|
|
|
free(nm_mem, M_NETMAP);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void *
|
|
|
|
netmap_if_new(const char *ifname, struct netmap_adapter *na)
|
|
|
|
{
|
|
|
|
struct netmap_if *nifp;
|
|
|
|
struct netmap_ring *ring;
|
|
|
|
ssize_t base; /* handy for relative offsets between rings and nifp */
|
|
|
|
u_int i, len, ndesc;
|
|
|
|
u_int ntx = na->num_tx_rings + 1; /* shorthand, include stack ring */
|
|
|
|
u_int nrx = na->num_rx_rings + 1; /* shorthand, include stack ring */
|
|
|
|
struct netmap_kring *kring;
|
|
|
|
|
|
|
|
NMA_LOCK();
|
|
|
|
/*
|
|
|
|
* the descriptor is followed inline by an array of offsets
|
|
|
|
* to the tx and rx rings in the shared memory region.
|
|
|
|
*/
|
|
|
|
len = sizeof(struct netmap_if) + (nrx + ntx) * sizeof(ssize_t);
|
|
|
|
nifp = netmap_if_malloc(len);
|
|
|
|
if (nifp == NULL) {
|
|
|
|
NMA_UNLOCK();
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* initialize base fields -- override const */
|
|
|
|
*(int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
|
|
|
|
*(int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
|
|
|
|
strncpy(nifp->ni_name, ifname, IFNAMSIZ);
|
|
|
|
|
|
|
|
(na->refcount)++; /* XXX atomic ? we are under lock */
|
|
|
|
if (na->refcount > 1) { /* already setup, we are done */
|
|
|
|
NMA_UNLOCK();
|
|
|
|
goto final;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* First instance, allocate netmap rings and buffers for this card
|
|
|
|
* The rings are contiguous, but have variable size.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < ntx; i++) { /* Transmit rings */
|
|
|
|
kring = &na->tx_rings[i];
|
|
|
|
ndesc = na->num_tx_desc;
|
|
|
|
bzero(kring, sizeof(*kring));
|
|
|
|
len = sizeof(struct netmap_ring) +
|
|
|
|
ndesc * sizeof(struct netmap_slot);
|
|
|
|
ring = netmap_ring_malloc(len);
|
|
|
|
if (ring == NULL) {
|
|
|
|
D("Cannot allocate tx_ring[%d] for %s", i, ifname);
|
|
|
|
goto cleanup;
|
|
|
|
}
|
|
|
|
ND("txring[%d] at %p ofs %d", i, ring);
|
|
|
|
kring->na = na;
|
|
|
|
kring->ring = ring;
|
|
|
|
*(int *)(uintptr_t)&ring->num_slots = kring->nkr_num_slots = ndesc;
|
|
|
|
*(ssize_t *)(uintptr_t)&ring->buf_ofs =
|
|
|
|
(nm_mem->nm_if_pool->_memtotal +
|
|
|
|
nm_mem->nm_ring_pool->_memtotal) -
|
|
|
|
netmap_ring_offset(ring);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* IMPORTANT:
|
|
|
|
* Always keep one slot empty, so we can detect new
|
|
|
|
* transmissions comparing cur and nr_hwcur (they are
|
|
|
|
* the same only if there are no new transmissions).
|
|
|
|
*/
|
|
|
|
ring->avail = kring->nr_hwavail = ndesc - 1;
|
|
|
|
ring->cur = kring->nr_hwcur = 0;
|
|
|
|
*(int *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE;
|
|
|
|
ND("initializing slots for txring[%d]", i);
|
|
|
|
netmap_new_bufs(nifp, ring->slot, ndesc);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < nrx; i++) { /* Receive rings */
|
|
|
|
kring = &na->rx_rings[i];
|
|
|
|
ndesc = na->num_rx_desc;
|
|
|
|
bzero(kring, sizeof(*kring));
|
|
|
|
len = sizeof(struct netmap_ring) +
|
|
|
|
ndesc * sizeof(struct netmap_slot);
|
|
|
|
ring = netmap_ring_malloc(len);
|
|
|
|
if (ring == NULL) {
|
|
|
|
D("Cannot allocate rx_ring[%d] for %s", i, ifname);
|
|
|
|
goto cleanup;
|
|
|
|
}
|
|
|
|
ND("rxring[%d] at %p ofs %d", i, ring);
|
|
|
|
|
|
|
|
kring->na = na;
|
|
|
|
kring->ring = ring;
|
|
|
|
*(int *)(uintptr_t)&ring->num_slots = kring->nkr_num_slots = ndesc;
|
|
|
|
*(ssize_t *)(uintptr_t)&ring->buf_ofs =
|
|
|
|
(nm_mem->nm_if_pool->_memtotal +
|
|
|
|
nm_mem->nm_ring_pool->_memtotal) -
|
|
|
|
netmap_ring_offset(ring);
|
|
|
|
|
|
|
|
ring->cur = kring->nr_hwcur = 0;
|
|
|
|
ring->avail = kring->nr_hwavail = 0; /* empty */
|
|
|
|
*(int *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE;
|
|
|
|
ND("initializing slots for rxring[%d]", i);
|
|
|
|
netmap_new_bufs(nifp, ring->slot, ndesc);
|
|
|
|
}
|
|
|
|
NMA_UNLOCK();
|
|
|
|
#ifdef linux
|
|
|
|
// XXX initialize the selrecord structs.
|
|
|
|
for (i = 0; i < ntx; i++)
|
|
|
|
init_waitqueue_head(&na->tx_rings[i].si);
|
2012-07-26 16:45:28 +00:00
|
|
|
for (i = 0; i < nrx; i++)
|
|
|
|
init_waitqueue_head(&na->rx_rings[i].si);
|
2012-04-13 16:32:33 +00:00
|
|
|
init_waitqueue_head(&na->tx_si);
|
2012-07-26 16:45:28 +00:00
|
|
|
init_waitqueue_head(&na->rx_si);
|
2012-04-13 16:32:33 +00:00
|
|
|
#endif
|
|
|
|
final:
|
|
|
|
/*
|
|
|
|
* fill the slots for the rx and tx rings. They contain the offset
|
|
|
|
* between the ring and nifp, so the information is usable in
|
|
|
|
* userspace to reach the ring from the nifp.
|
|
|
|
*/
|
|
|
|
base = netmap_if_offset(nifp);
|
|
|
|
for (i = 0; i < ntx; i++) {
|
|
|
|
*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] =
|
|
|
|
netmap_ring_offset(na->tx_rings[i].ring) - base;
|
|
|
|
}
|
|
|
|
for (i = 0; i < nrx; i++) {
|
|
|
|
*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+ntx] =
|
|
|
|
netmap_ring_offset(na->rx_rings[i].ring) - base;
|
|
|
|
}
|
|
|
|
return (nifp);
|
|
|
|
cleanup:
|
|
|
|
// XXX missing
|
|
|
|
NMA_UNLOCK();
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
netmap_free_rings(struct netmap_adapter *na)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < na->num_tx_rings + 1; i++)
|
|
|
|
netmap_obj_free_va(nm_mem->nm_ring_pool,
|
|
|
|
na->tx_rings[i].ring);
|
|
|
|
for (i = 0; i < na->num_rx_rings + 1; i++)
|
|
|
|
netmap_obj_free_va(nm_mem->nm_ring_pool,
|
|
|
|
na->rx_rings[i].ring);
|
|
|
|
}
|