612 lines
15 KiB
C
Raw Normal View History

1993-06-12 14:58:17 +00:00
/*-
* Copyright (c) 1990 The Regents of the University of California.
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
* Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
1993-06-12 14:58:17 +00:00
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz and Don Ahn.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)clock.c 7.2 (Berkeley) 5/12/91
*/
2003-06-02 16:32:55 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Routines to handle clock hardware.
*/
#include "opt_clock.h"
#include "opt_isa.h"
#include "opt_mca.h"
1996-01-04 21:13:23 +00:00
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <sys/kdb.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/module.h>
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
#include <sys/rman.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
#include <sys/timeet.h>
#include <sys/timetc.h>
#include <machine/clock.h>
Tweak how the MD code calls the fooclock() methods some. Instead of passing a pointer to an opaque clockframe structure and requiring the MD code to supply CLKF_FOO() macros to extract needed values out of the opaque structure, just pass the needed values directly. In practice this means passing the pair (usermode, pc) to hardclock() and profclock() and passing the boolean (usermode) to hardclock_cpu() and hardclock_process(). Other details: - Axe clockframe and CLKF_FOO() macros on all architectures. Basically, all the archs were taking a trapframe and converting it into a clockframe one way or another. Now they can just extract the PC and usermode values directly out of the trapframe and pass it to fooclock(). - Renamed hardclock_process() to hardclock_cpu() as the latter is more accurate. - On Alpha, we now run profclock() at hz (profhz == hz) rather than at the slower stathz. - On Alpha, for the TurboLaser machines that don't have an 8254 timecounter, call hardclock() directly. This removes an extra conditional check from every clock interrupt on Alpha on the BSP. There is probably room for even further pruning here by changing Alpha to use the simplified timecounter we use on x86 with the lapic timer since we don't get interrupts from the 8254 on Alpha anyway. - On x86, clkintr() shouldn't ever be called now unless using_lapic_timer is false, so add a KASSERT() to that affect and remove a condition to slightly optimize the non-lapic case. - Change prototypeof arm_handler_execute() so that it's first arg is a trapframe pointer rather than a void pointer for clarity. - Use KCOUNT macro in profclock() to lookup the kernel profiling bucket. Tested on: alpha, amd64, arm, i386, ia64, sparc64 Reviewed by: bde (mostly)
2005-12-22 22:16:09 +00:00
#include <machine/cpu.h>
New APIC support code: - The apic interrupt entry points have been rewritten so that each entry point can serve 32 different vectors. When the entry is executed, it uses one of the 32-bit ISR registers to determine which vector in its assigned range was triggered. Thus, the apic code can support 159 different interrupt vectors with only 5 entry points. - We now always to disable the local APIC to work around an errata in certain PPros and then re-enable it again if we decide to use the APICs to route interrupts. - We no longer map IO APICs or local APICs using special page table entries. Instead, we just use pmap_mapdev(). We also no longer export the virtual address of the local APIC as a global symbol to the rest of the system, but only in local_apic.c. To aid this, the APIC ID of each CPU is exported as a per-CPU variable. - Interrupt sources are provided for each intpin on each IO APIC. Currently, each source is given a unique interrupt vector meaning that PCI interrupts are not shared on most machines with an I/O APIC. That mapping for interrupt sources to interrupt vectors is up to the APIC enumerator driver however. - We no longer probe to see if we need to use mixed mode to route IRQ 0, instead we always use mixed mode to route IRQ 0 for now. This can be disabled via the 'NO_MIXED_MODE' kernel option. - The npx(4) driver now always probes to see if a built-in FPU is present since this test can now be performed with the new APIC code. However, an SMP kernel will panic if there is more than one CPU and a built-in FPU is not found. - PCI interrupts are now properly routed when using APICs to route interrupts, so remove the hack to psuedo-route interrupts when the intpin register was read. - The apic.h header was moved to apicreg.h and a new apicvar.h header that declares the APIs used by the new APIC code was added.
2003-11-03 21:53:38 +00:00
#include <machine/intr_machdep.h>
#include <machine/ppireg.h>
#include <machine/timerreg.h>
#include <isa/rtc.h>
#ifdef DEV_ISA
#include <isa/isareg.h>
#include <isa/isavar.h>
#endif
#ifdef DEV_MCA
#include <i386/bios/mca_machdep.h>
#endif
int clkintr_pending;
#ifndef TIMER_FREQ
#define TIMER_FREQ 1193182
#endif
u_int i8254_freq = TIMER_FREQ;
TUNABLE_INT("hw.i8254.freq", &i8254_freq);
int i8254_max_count;
static int i8254_real_max_count;
struct mtx clock_lock;
static struct intsrc *i8254_intsrc;
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
static uint16_t i8254_lastcount;
static uint16_t i8254_offset;
static int (*i8254_pending)(struct intsrc *);
static int i8254_ticked;
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
struct attimer_softc {
int intr_en;
int port_rid, intr_rid;
struct resource *port_res;
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
struct resource *intr_res;
void *intr_handler;
struct timecounter tc;
struct eventtimer et;
uint32_t intr_period;
};
static struct attimer_softc *attimer_sc = NULL;
/* Values for timerX_state: */
#define RELEASED 0
#define RELEASE_PENDING 1
#define ACQUIRED 2
#define ACQUIRE_PENDING 3
static u_char timer2_state;
2002-03-20 07:51:46 +00:00
static unsigned i8254_get_timecount(struct timecounter *tc);
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
static void set_i8254_freq(u_int freq, uint32_t intr_period);
static int
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
clkintr(void *arg)
{
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
struct attimer_softc *sc = (struct attimer_softc *)arg;
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
if (sc->intr_period != 0) {
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&clock_lock);
if (i8254_ticked)
i8254_ticked = 0;
else {
i8254_offset += i8254_max_count;
i8254_lastcount = 0;
}
clkintr_pending = 0;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&clock_lock);
}
2008-05-24 06:27:54 +00:00
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
if (sc && sc->et.et_active) {
sc->et.et_event_cb(&sc->et,
sc->et.et_arg ? sc->et.et_arg : curthread->td_intr_frame);
}
#ifdef DEV_MCA
/* Reset clock interrupt by asserting bit 7 of port 0x61 */
if (MCA_system)
outb(0x61, inb(0x61) | 0x80);
#endif
return (FILTER_HANDLED);
}
int
The "free-lance" timer in the i8254 is only used for the speaker these days, so de-generalize the acquire_timer/release_timer api to just deal with speakers. The new (optional) MD functions are: timer_spkr_acquire() timer_spkr_release() and timer_spkr_setfreq() the last of which configures the timer to generate a tone of a given frequency, in Hz instead of 1/1193182th of seconds. Drop entirely timer2 on pc98, it is not used anywhere at all. Move sysbeep() to kern/tty_cons.c and use the timer_spkr*() if they exist, and do nothing otherwise. Remove prototypes and empty acquire-/release-timer() and sysbeep() functions from the non-beeping archs. This eliminate the need for the speaker driver to know about i8254frequency at all. In theory this makes the speaker driver MI, contingent on the timer_spkr_*() functions existing but the driver does not know this yet and still attaches to the ISA bus. Syscons is more tricky, in one function, sc_tone(), it knows the hz and things are just fine. In the other function, sc_bell() it seems to get the period from the KDMKTONE ioctl in terms if 1/1193182th second, so we hardcode the 1193182 and leave it at that. It's probably not important. Change a few other sysbeep() uses which obviously knew that the argument was in terms of i8254 frequency, and leave alone those that look like people thought sysbeep() took frequency in hertz. This eliminates the knowledge of i8254_freq from all but the actual clock.c code and the prof_machdep.c on amd64 and i386, where I think it would be smart to ask for help from the timecounters anyway [TBD].
2008-03-26 20:09:21 +00:00
timer_spkr_acquire(void)
{
The "free-lance" timer in the i8254 is only used for the speaker these days, so de-generalize the acquire_timer/release_timer api to just deal with speakers. The new (optional) MD functions are: timer_spkr_acquire() timer_spkr_release() and timer_spkr_setfreq() the last of which configures the timer to generate a tone of a given frequency, in Hz instead of 1/1193182th of seconds. Drop entirely timer2 on pc98, it is not used anywhere at all. Move sysbeep() to kern/tty_cons.c and use the timer_spkr*() if they exist, and do nothing otherwise. Remove prototypes and empty acquire-/release-timer() and sysbeep() functions from the non-beeping archs. This eliminate the need for the speaker driver to know about i8254frequency at all. In theory this makes the speaker driver MI, contingent on the timer_spkr_*() functions existing but the driver does not know this yet and still attaches to the ISA bus. Syscons is more tricky, in one function, sc_tone(), it knows the hz and things are just fine. In the other function, sc_bell() it seems to get the period from the KDMKTONE ioctl in terms if 1/1193182th second, so we hardcode the 1193182 and leave it at that. It's probably not important. Change a few other sysbeep() uses which obviously knew that the argument was in terms of i8254 frequency, and leave alone those that look like people thought sysbeep() took frequency in hertz. This eliminates the knowledge of i8254_freq from all but the actual clock.c code and the prof_machdep.c on amd64 and i386, where I think it would be smart to ask for help from the timecounters anyway [TBD].
2008-03-26 20:09:21 +00:00
int mode;
mode = TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT;
if (timer2_state != RELEASED)
return (-1);
timer2_state = ACQUIRED;
/*
* This access to the timer registers is as atomic as possible
* because it is a single instruction. We could do better if we
* knew the rate. Use of splclock() limits glitches to 10-100us,
* and this is probably good enough for timer2, so we aren't as
* careful with it as with timer0.
*/
outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
The "free-lance" timer in the i8254 is only used for the speaker these days, so de-generalize the acquire_timer/release_timer api to just deal with speakers. The new (optional) MD functions are: timer_spkr_acquire() timer_spkr_release() and timer_spkr_setfreq() the last of which configures the timer to generate a tone of a given frequency, in Hz instead of 1/1193182th of seconds. Drop entirely timer2 on pc98, it is not used anywhere at all. Move sysbeep() to kern/tty_cons.c and use the timer_spkr*() if they exist, and do nothing otherwise. Remove prototypes and empty acquire-/release-timer() and sysbeep() functions from the non-beeping archs. This eliminate the need for the speaker driver to know about i8254frequency at all. In theory this makes the speaker driver MI, contingent on the timer_spkr_*() functions existing but the driver does not know this yet and still attaches to the ISA bus. Syscons is more tricky, in one function, sc_tone(), it knows the hz and things are just fine. In the other function, sc_bell() it seems to get the period from the KDMKTONE ioctl in terms if 1/1193182th second, so we hardcode the 1193182 and leave it at that. It's probably not important. Change a few other sysbeep() uses which obviously knew that the argument was in terms of i8254 frequency, and leave alone those that look like people thought sysbeep() took frequency in hertz. This eliminates the knowledge of i8254_freq from all but the actual clock.c code and the prof_machdep.c on amd64 and i386, where I think it would be smart to ask for help from the timecounters anyway [TBD].
2008-03-26 20:09:21 +00:00
ppi_spkr_on(); /* enable counter2 output to speaker */
return (0);
}
int
The "free-lance" timer in the i8254 is only used for the speaker these days, so de-generalize the acquire_timer/release_timer api to just deal with speakers. The new (optional) MD functions are: timer_spkr_acquire() timer_spkr_release() and timer_spkr_setfreq() the last of which configures the timer to generate a tone of a given frequency, in Hz instead of 1/1193182th of seconds. Drop entirely timer2 on pc98, it is not used anywhere at all. Move sysbeep() to kern/tty_cons.c and use the timer_spkr*() if they exist, and do nothing otherwise. Remove prototypes and empty acquire-/release-timer() and sysbeep() functions from the non-beeping archs. This eliminate the need for the speaker driver to know about i8254frequency at all. In theory this makes the speaker driver MI, contingent on the timer_spkr_*() functions existing but the driver does not know this yet and still attaches to the ISA bus. Syscons is more tricky, in one function, sc_tone(), it knows the hz and things are just fine. In the other function, sc_bell() it seems to get the period from the KDMKTONE ioctl in terms if 1/1193182th second, so we hardcode the 1193182 and leave it at that. It's probably not important. Change a few other sysbeep() uses which obviously knew that the argument was in terms of i8254 frequency, and leave alone those that look like people thought sysbeep() took frequency in hertz. This eliminates the knowledge of i8254_freq from all but the actual clock.c code and the prof_machdep.c on amd64 and i386, where I think it would be smart to ask for help from the timecounters anyway [TBD].
2008-03-26 20:09:21 +00:00
timer_spkr_release(void)
{
if (timer2_state != ACQUIRED)
return (-1);
timer2_state = RELEASED;
outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
The "free-lance" timer in the i8254 is only used for the speaker these days, so de-generalize the acquire_timer/release_timer api to just deal with speakers. The new (optional) MD functions are: timer_spkr_acquire() timer_spkr_release() and timer_spkr_setfreq() the last of which configures the timer to generate a tone of a given frequency, in Hz instead of 1/1193182th of seconds. Drop entirely timer2 on pc98, it is not used anywhere at all. Move sysbeep() to kern/tty_cons.c and use the timer_spkr*() if they exist, and do nothing otherwise. Remove prototypes and empty acquire-/release-timer() and sysbeep() functions from the non-beeping archs. This eliminate the need for the speaker driver to know about i8254frequency at all. In theory this makes the speaker driver MI, contingent on the timer_spkr_*() functions existing but the driver does not know this yet and still attaches to the ISA bus. Syscons is more tricky, in one function, sc_tone(), it knows the hz and things are just fine. In the other function, sc_bell() it seems to get the period from the KDMKTONE ioctl in terms if 1/1193182th second, so we hardcode the 1193182 and leave it at that. It's probably not important. Change a few other sysbeep() uses which obviously knew that the argument was in terms of i8254 frequency, and leave alone those that look like people thought sysbeep() took frequency in hertz. This eliminates the knowledge of i8254_freq from all but the actual clock.c code and the prof_machdep.c on amd64 and i386, where I think it would be smart to ask for help from the timecounters anyway [TBD].
2008-03-26 20:09:21 +00:00
ppi_spkr_off(); /* disable counter2 output to speaker */
return (0);
}
The "free-lance" timer in the i8254 is only used for the speaker these days, so de-generalize the acquire_timer/release_timer api to just deal with speakers. The new (optional) MD functions are: timer_spkr_acquire() timer_spkr_release() and timer_spkr_setfreq() the last of which configures the timer to generate a tone of a given frequency, in Hz instead of 1/1193182th of seconds. Drop entirely timer2 on pc98, it is not used anywhere at all. Move sysbeep() to kern/tty_cons.c and use the timer_spkr*() if they exist, and do nothing otherwise. Remove prototypes and empty acquire-/release-timer() and sysbeep() functions from the non-beeping archs. This eliminate the need for the speaker driver to know about i8254frequency at all. In theory this makes the speaker driver MI, contingent on the timer_spkr_*() functions existing but the driver does not know this yet and still attaches to the ISA bus. Syscons is more tricky, in one function, sc_tone(), it knows the hz and things are just fine. In the other function, sc_bell() it seems to get the period from the KDMKTONE ioctl in terms if 1/1193182th second, so we hardcode the 1193182 and leave it at that. It's probably not important. Change a few other sysbeep() uses which obviously knew that the argument was in terms of i8254 frequency, and leave alone those that look like people thought sysbeep() took frequency in hertz. This eliminates the knowledge of i8254_freq from all but the actual clock.c code and the prof_machdep.c on amd64 and i386, where I think it would be smart to ask for help from the timecounters anyway [TBD].
2008-03-26 20:09:21 +00:00
void
timer_spkr_setfreq(int freq)
{
freq = i8254_freq / freq;
mtx_lock_spin(&clock_lock);
outb(TIMER_CNTR2, freq & 0xff);
outb(TIMER_CNTR2, freq >> 8);
mtx_unlock_spin(&clock_lock);
}
static int
getit(void)
{
- Change fast interrupts on x86 to push a full interrupt frame and to return through doreti to handle ast's. This is necessary for the clock interrupts to work properly. - Change the clock interrupts on the x86 to be fast instead of threaded. This is needed because both hardclock() and statclock() need to run in the context of the current process, not in a separate thread context. - Kill the prevproc hack as it is no longer needed. - We really need Giant when we call psignal(), but we don't want to block during the clock interrupt. Instead, use two p_flag's in the proc struct to mark the current process as having a pending SIGVTALRM or a SIGPROF and let them be delivered during ast() when hardclock() has finished running. - Remove CLKF_BASEPRI, which was #ifdef'd out on the x86 anyways. It was broken on the x86 if it was turned on since cpl is gone. It's only use was to bogusly run softclock() directly during hardclock() rather than scheduling an SWI. - Remove the COM_LOCK simplelock and replace it with a clock_lock spin mutex. Since the spin mutex already handles disabling/restoring interrupts appropriately, this also lets us axe all the *_intr() fu. - Back out the hacks in the APIC_IO x86 cpu_initclocks() code to use temporary fast interrupts for the APIC trial. - Add two new process flags P_ALRMPEND and P_PROFPEND to mark the pending signals in hardclock() that are to be delivered in ast(). Submitted by: jakeb (making statclock safe in a fast interrupt) Submitted by: cp (concept of delaying signals until ast())
2000-10-06 02:20:21 +00:00
int high, low;
mtx_lock_spin(&clock_lock);
/* Select timer0 and latch counter value. */
outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
low = inb(TIMER_CNTR0);
high = inb(TIMER_CNTR0);
mtx_unlock_spin(&clock_lock);
return ((high << 8) | low);
}
/*
* Wait "n" microseconds.
* Relies on timer 1 counting down from (i8254_freq / hz)
* Note: timer had better have been programmed before this is first used!
*/
void
DELAY(int n)
{
int delta, prev_tick, tick, ticks_left;
#ifdef DELAYDEBUG
int getit_calls = 1;
int n1;
static int state = 0;
#endif
if (tsc_freq != 0 && !tsc_is_broken) {
uint64_t start, end, now;
sched_pin();
start = rdtsc();
end = start + (tsc_freq * n) / 1000000;
do {
cpu_spinwait();
now = rdtsc();
} while (now < end || (now > start && end < start));
sched_unpin();
return;
}
#ifdef DELAYDEBUG
if (state == 0) {
state = 1;
for (n1 = 1; n1 <= 10000000; n1 *= 10)
DELAY(n1);
state = 2;
}
if (state == 1)
printf("DELAY(%d)...", n);
#endif
/*
* Read the counter first, so that the rest of the setup overhead is
* counted. Guess the initial overhead is 20 usec (on most systems it
* takes about 1.5 usec for each of the i/o's in getit(). The loop
* takes about 6 usec on a 486/33 and 13 usec on a 386/20. The
* multiplications and divisions to scale the count take a while).
*
* However, if ddb is active then use a fake counter since reading
* the i8254 counter involves acquiring a lock. ddb must not do
* locking for many reasons, but it calls here for at least atkbd
* input.
*/
#ifdef KDB
if (kdb_active)
prev_tick = 1;
else
#endif
prev_tick = getit();
n -= 0; /* XXX actually guess no initial overhead */
/*
* Calculate (n * (i8254_freq / 1e6)) without using floating point
* and without any avoidable overflows.
*/
if (n <= 0)
ticks_left = 0;
else if (n < 256)
/*
* Use fixed point to avoid a slow division by 1000000.
* 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
* 2^15 is the first power of 2 that gives exact results
* for n between 0 and 256.
*/
ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
else
/*
* Don't bother using fixed point, although gcc-2.7.2
* generates particularly poor code for the long long
* division, since even the slow way will complete long
* before the delay is up (unless we're interrupted).
*/
ticks_left = ((u_int)n * (long long)i8254_freq + 999999)
/ 1000000;
while (ticks_left > 0) {
#ifdef KDB
if (kdb_active) {
inb(0x84);
tick = prev_tick - 1;
if (tick <= 0)
tick = i8254_max_count;
} else
#endif
tick = getit();
#ifdef DELAYDEBUG
++getit_calls;
#endif
delta = prev_tick - tick;
prev_tick = tick;
if (delta < 0) {
delta += i8254_max_count;
/*
* Guard against i8254_max_count being wrong.
* This shouldn't happen in normal operation,
* but it may happen if set_i8254_freq() is
* traced.
*/
if (delta < 0)
delta = 0;
}
ticks_left -= delta;
}
#ifdef DELAYDEBUG
if (state == 1)
printf(" %d calls to getit() at %d usec each\n",
getit_calls, (n + 5) / getit_calls);
#endif
}
static void
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
set_i8254_freq(u_int freq, uint32_t intr_period)
{
int new_i8254_real_max_count;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&clock_lock);
i8254_freq = freq;
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
if (intr_period == 0)
new_i8254_real_max_count = 0x10000;
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
else {
new_i8254_real_max_count =
min(((uint64_t)i8254_freq * intr_period) >> 32, 0x10000);
}
if (new_i8254_real_max_count != i8254_real_max_count) {
i8254_real_max_count = new_i8254_real_max_count;
if (i8254_real_max_count == 0x10000)
i8254_max_count = 0xffff;
else
i8254_max_count = i8254_real_max_count;
outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
outb(TIMER_CNTR0, i8254_real_max_count & 0xff);
outb(TIMER_CNTR0, i8254_real_max_count >> 8);
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&clock_lock);
}
static void
i8254_restore(void)
{
mtx_lock_spin(&clock_lock);
outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
outb(TIMER_CNTR0, i8254_real_max_count & 0xff);
outb(TIMER_CNTR0, i8254_real_max_count >> 8);
mtx_unlock_spin(&clock_lock);
}
#ifndef __amd64__
/*
* Restore all the timers non-atomically (XXX: should be atomically).
*
* This function is called from pmtimer_resume() to restore all the timers.
* This should not be necessary, but there are broken laptops that do not
* restore all the timers on resume.
* As long as pmtimer is not part of amd64 suport, skip this for the amd64
* case.
*/
void
timer_restore(void)
{
i8254_restore(); /* restore i8254_freq and hz */
atrtc_restore(); /* reenable RTC interrupts */
}
#endif
/* This is separate from startrtclock() so that it can be called early. */
void
i8254_init(void)
{
mtx_init(&clock_lock, "clk", NULL, MTX_SPIN | MTX_NOPROFILE);
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
set_i8254_freq(i8254_freq, 0);
}
void
1995-05-30 08:16:23 +00:00
startrtclock()
{
init_TSC();
1993-06-12 14:58:17 +00:00
}
void
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
cpu_initclocks(void)
1993-06-12 14:58:17 +00:00
{
- Change fast interrupts on x86 to push a full interrupt frame and to return through doreti to handle ast's. This is necessary for the clock interrupts to work properly. - Change the clock interrupts on the x86 to be fast instead of threaded. This is needed because both hardclock() and statclock() need to run in the context of the current process, not in a separate thread context. - Kill the prevproc hack as it is no longer needed. - We really need Giant when we call psignal(), but we don't want to block during the clock interrupt. Instead, use two p_flag's in the proc struct to mark the current process as having a pending SIGVTALRM or a SIGPROF and let them be delivered during ast() when hardclock() has finished running. - Remove CLKF_BASEPRI, which was #ifdef'd out on the x86 anyways. It was broken on the x86 if it was turned on since cpl is gone. It's only use was to bogusly run softclock() directly during hardclock() rather than scheduling an SWI. - Remove the COM_LOCK simplelock and replace it with a clock_lock spin mutex. Since the spin mutex already handles disabling/restoring interrupts appropriately, this also lets us axe all the *_intr() fu. - Back out the hacks in the APIC_IO x86 cpu_initclocks() code to use temporary fast interrupts for the APIC trial. - Add two new process flags P_ALRMPEND and P_PROFPEND to mark the pending signals in hardclock() that are to be delivered in ast(). Submitted by: jakeb (making statclock safe in a fast interrupt) Submitted by: cp (concept of delaying signals until ast())
2000-10-06 02:20:21 +00:00
init_TSC_tc();
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
cpu_initclocks_bsp();
}
static int
sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
{
int error;
u_int freq;
/*
* Use `i8254' instead of `timer' in external names because `timer'
* is is too generic. Should use it everywhere.
*/
freq = i8254_freq;
error = sysctl_handle_int(oidp, &freq, 0, req);
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
if (error == 0 && req->newptr != NULL) {
if (attimer_sc) {
set_i8254_freq(freq, attimer_sc->intr_period);
attimer_sc->tc.tc_frequency = freq;
} else {
set_i8254_freq(freq, 0);
}
}
return (error);
}
SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
static unsigned
i8254_get_timecount(struct timecounter *tc)
{
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
device_t dev = (device_t)tc->tc_priv;
struct attimer_softc *sc = device_get_softc(dev);
register_t flags;
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
uint16_t count;
u_int high, low;
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
if (sc->intr_period == 0)
return (i8254_max_count - getit());
#ifdef __amd64__
flags = read_rflags();
#else
flags = read_eflags();
#endif
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&clock_lock);
/* Select timer0 and latch counter value. */
outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
low = inb(TIMER_CNTR0);
high = inb(TIMER_CNTR0);
count = i8254_max_count - ((high << 8) | low);
if (count < i8254_lastcount ||
(!i8254_ticked && (clkintr_pending ||
((count < 20 || (!(flags & PSL_I) &&
count < i8254_max_count / 2u)) &&
i8254_pending != NULL && i8254_pending(i8254_intsrc))))) {
i8254_ticked = 1;
i8254_offset += i8254_max_count;
}
i8254_lastcount = count;
count += i8254_offset;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&clock_lock);
return (count);
}
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
static int
attimer_start(struct eventtimer *et,
struct bintime *first, struct bintime *period)
{
device_t dev = (device_t)et->et_priv;
struct attimer_softc *sc = device_get_softc(dev);
sc->intr_period = period->frac >> 32;
set_i8254_freq(i8254_freq, sc->intr_period);
if (!sc->intr_en) {
i8254_intsrc->is_pic->pic_enable_source(i8254_intsrc);
sc->intr_en = 1;
}
return (0);
}
static int
attimer_stop(struct eventtimer *et)
{
device_t dev = (device_t)et->et_priv;
struct attimer_softc *sc = device_get_softc(dev);
sc->intr_period = 0;
set_i8254_freq(i8254_freq, sc->intr_period);
return (0);
}
#ifdef DEV_ISA
/*
* Attach to the ISA PnP descriptors for the timer
*/
static struct isa_pnp_id attimer_ids[] = {
{ 0x0001d041 /* PNP0100 */, "AT timer" },
{ 0 }
};
static int
attimer_probe(device_t dev)
{
int result;
result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids);
/* ENOENT means no PnP-ID, device is hinted. */
if (result == ENOENT) {
device_set_desc(dev, "AT timer");
return (BUS_PROBE_LOW_PRIORITY);
}
return (result);
}
static int
attimer_attach(device_t dev)
{
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
struct attimer_softc *sc;
u_long s;
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
int i;
attimer_sc = sc = device_get_softc(dev);
bzero(sc, sizeof(struct attimer_softc));
if (!(sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT,
&sc->port_rid, IO_TIMER1, IO_TIMER1 + 3, 4, RF_ACTIVE)))
device_printf(dev,"Warning: Couldn't map I/O.\n");
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
i8254_intsrc = intr_lookup_source(0);
if (i8254_intsrc != NULL)
i8254_pending = i8254_intsrc->is_pic->pic_source_pending;
set_i8254_freq(i8254_freq, 0);
sc->tc.tc_get_timecount = i8254_get_timecount;
sc->tc.tc_counter_mask = 0xffff;
sc->tc.tc_frequency = i8254_freq;
sc->tc.tc_name = "i8254";
sc->tc.tc_quality = 0;
sc->tc.tc_priv = dev;
tc_init(&sc->tc);
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"clock", &i) != 0 || i != 0) {
sc->intr_rid = 0;
while (bus_get_resource(dev, SYS_RES_IRQ, sc->intr_rid,
&s, NULL) == 0 && s != 0)
sc->intr_rid++;
if (!(sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
&sc->intr_rid, 0, 0, 1, RF_ACTIVE))) {
device_printf(dev,"Can't map interrupt.\n");
return (0);
}
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
/* Dirty hack, to make bus_setup_intr to not enable source. */
i8254_intsrc->is_handlers++;
if ((bus_setup_intr(dev, sc->intr_res,
INTR_MPSAFE | INTR_TYPE_CLK,
(driver_filter_t *)clkintr, NULL,
sc, &sc->intr_handler))) {
device_printf(dev, "Can't setup interrupt.\n");
i8254_intsrc->is_handlers--;
return (0);
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
}
i8254_intsrc->is_handlers--;
i8254_intsrc->is_pic->pic_enable_intr(i8254_intsrc);
sc->et.et_name = "i8254";
sc->et.et_flags = ET_FLAGS_PERIODIC;
sc->et.et_quality = 100;
sc->et.et_frequency = i8254_freq;
sc->et.et_start = attimer_start;
sc->et.et_stop = attimer_stop;
sc->et.et_priv = dev;
et_register(&sc->et);
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
}
return(0);
}
static int
attimer_resume(device_t dev)
{
i8254_restore();
return (0);
}
static device_method_t attimer_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, attimer_probe),
DEVMETHOD(device_attach, attimer_attach),
DEVMETHOD(device_detach, bus_generic_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend),
DEVMETHOD(device_resume, attimer_resume),
{ 0, 0 }
};
static driver_t attimer_driver = {
"attimer",
attimer_methods,
Implement new event timers infrastructure. It provides unified APIs for writing event timer drivers, for choosing best possible drivers by machine independent code and for operating them to supply kernel with hardclock(), statclock() and profclock() events in unified fashion on various hardware. Infrastructure provides support for both per-CPU (independent for every CPU core) and global timers in periodic and one-shot modes. MI management code at this moment uses only periodic mode, but one-shot mode use planned for later, as part of tickless kernel project. For this moment infrastructure used on i386 and amd64 architectures. Other archs are welcome to follow, while their current operation should not be affected. This patch updates existing drivers (i8254, RTC and LAPIC) for the new order, and adds event timers support into the HPET driver. These drivers have different capabilities: LAPIC - per-CPU timer, supports periodic and one-shot operation, may freeze in C3 state, calibrated on first use, so may be not exactly precise. HPET - depending on hardware can work as per-CPU or global, supports periodic and one-shot operation, usually provides several event timers. i8254 - global, limited to periodic mode, because same hardware used also as time counter. RTC - global, supports only periodic mode, set of frequencies in Hz limited by powers of 2. Depending on hardware capabilities, drivers preferred in following orders, either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC. User may explicitly specify wanted timers via loader tunables or sysctls: kern.eventtimer.timer1 and kern.eventtimer.timer2. If requested driver is unavailable or unoperational, system will try to replace it. If no more timers available or "NONE" specified for second, system will operate using only one timer, multiplying it's frequency by few times and uing respective dividers to honor hz, stathz and profhz values, set during initial setup.
2010-06-20 21:33:29 +00:00
sizeof(struct attimer_softc),
};
static devclass_t attimer_devclass;
DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
2001-08-30 09:17:03 +00:00
DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
#endif /* DEV_ISA */